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Networked World

• A classical view of the internet

• Open, evolutionary architecture
• Lacks central control and coordination
• Dynamically varying infrastructure and users
• Resource sharing
• Interesting mix of computational and strategic complexities



A Load Balancing Game

• Matching n clients (users) to m servers (access points)

• A compatibility graph:

– edge (i,j) if client i can be served by j

• Identical servers with unit resource

• Latency as cost of matching:
– a server matched to k clients has latency = k

• Quality of matching in this uncoordinated world?

QuickTime?and a
 decompressor

are needed to see this picture.
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Price of Anarchy
• Selfish Routing [Roughgarden et al., Papadimitriou]

• (Social) optimum = 0.5 flow on each link

– latency = 3/4

• Self-interested (Nash) optimum flow = 1 on top link

– latency = 1

• Price of Anarchy = Ratio of Social to Nash Optimum

– this example 4/3
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Anarchy in Load Balancing

• What is the worst-case ratio between costs of optimum and 
Nash matching?

QuickTime?and a
 decompressor

are needed to see this picture.

Input Opt Nash Arbitrary

Cost = 3 Cost = 5 Cost = 5



Anarchy in Load Balancing

• With identical servers, OPT is always NASH, but not vice 
versa.

• I.e. best case Nash = Opt

• Ratio between worst-case Nash and Opt?

QuickTime?and a
 decompressor

are needed to see this picture.

Input Opt Nash Arbitrary

Cost = 3 Cost = 5 Cost = 5



Bounds

• Theorem 1: For identical servers, price of anarchy is atmost

• Theorem 2: Price of anarchy is at least 2.001
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More Bounds
• For non-identical servers, social optimum no longer Nash Equilibrium.

• Theorem 3: PoA < 5/2.
• For Lp norm latency, PoA = O(p/logp)
• Selfish Load Balancing, S.-Toth-Zhou, Algorithmica ‘07.
• Price of routing unsplittable flow, Awerbuch, Azar, Epstein, STOC ‘05



Algorithms

• Nash matching by local swaps:

– in each round, a user switches to better server.

– Provably O(n2) rounds.

• Instead suppose clients arrive one by one and each 
chooses the best available server at that time.

– Greedy Matching

– Not necessarily a Nash matching

– But can be shown to be O(1) factor optimal.



Mobility and Load Balancing



Mobility and Load Balancing

• Wireless access points (APs) at airport, malls, etc.
• User can select and use any AP

– Selected AP need not be in range
– User moves towards selected AP if necessary

• Strategic tradeoffs between cost of mobility and 
wireless service quality
– Users are rational, selfish entities

• Maximize personal benefit
• No regard for system cost



Modeling the Game

• User arrive sequentially

• AP bandwidth shared equally among attached users

– AP with fewer attached users preferable

• Distance of AP from user’s location

– Closer AP preferable (less mobility, better signal)

• Cost function  (user I and AP j),

Cij = γ * xj + β * di,j

where xj = number of users at AP j

di,j = distance between user i and AP j

γ, β are constants (same for all users)



Simple Distributed Algorithm

• Greedy algorithm
– Upon arrival, each user picks the AP with currently 

minimum cost

– No future swaps done.

• Theorem: The greedy always produces a Nash 
equilibrium

• Social optimal always Nash.



Price of Anarchy

• β = 0   (Mobility cost zero)
– Only Nash equilibriums are those that distribute users evenly

– Pessimistic price of anarchy = 1

• γ = 0  (Users bandwidth-agnostic)
– Unbounded price of anarchy

• General case (neither β nor γ zero):
– Open



Spectrum Auctions
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Spectrum Auctions

• Auctions: efficient allocation of scarce resources
• Auctioneer: dynamic price discovery based on demand
• Users: request and acquire spectrum when they need it

16

Periodic  Spectrum Auctions 

1

6

2

3

5 4



Computational Complexity

• Externality: interference
– Spatial reuse possible
– Nearby users cannot use same channel

• Combinatorial auctions NP-complete
• Hard even without expressive bidding due to graph coloring

• Focus on computational efficiency, without strategic considerations.
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Piecewise Linear Price-Quantity Bids

• Bids: the desired quantity of spectrum f at a per-unit price p

b/a

b

f(p)=(b-p)/a

Spectrum

Unit Price

Linear bids
Spectrum

Unit Price

Piecewise linear bids

Approximate arbitrary 
bidding preferencesCompactCompact



Bidding by Price-Quantity Curves

Piecewise Linear Price 
Demand bids–

compact yet expressive 
bidding format

User Auctioneer

Uniform vs. 
Discriminatory– tradeoffs 
between efficiency and 

fairness

BiddingBidding Pricing ModelPricing Model

Fast auction clearing 
algorithms for both 
pricing models

Allocation (clearing)Allocation (clearing)

5
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How do 
users bid?

How to set 
prices?

how to handle the 
bids to efficiently 
maximize revenue?
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Pricing Models
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Uniform Pricing
One per‐unit price p* for everyone

Uniform Pricing
One per‐unit price p* for everyone

Discriminatory Pricing
Different prices for different bidders

Discriminatory Pricing
Different prices for different bidders

The Auction Clearing Problem

Allocate price(s) and spectrum to maximize the total revenue R(.)
subject to Interference Constraints
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Analytical Bounds

Clearing with Uniform 
Pricing

Clearing with Uniform 
Pricing
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Clearing with 
Discriminatory Pricing

Clearing with 
Discriminatory Pricing
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Theoretical 
bounds
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Strategy-proof Spectrum Auctions



Strategy-proof Spectrum Auctions

• Input:
– Spectrum as k channels: 1, 2, …, k
– A set of n bidders

• Output:
– A polynomial time strategy-proof mechanism for

spectrum allocation
– Subject to interference constraints

• Motivation:
– Dynamic redistribution of FCC’s long term licenses
– Fair and open
– Economic Efficiency

# of channels = 2

a1

a2

a4a3

a5

Channel1 Channel2



Graph Coloring

• Conflict-free channel allocation = graph coloring
• Computationally, graph coloring intractable and in-approximable.

a1

a2

a3

a5
# of channels = 2

a4

Channel1 Channel2

a1

a2

a3

a5

INTERFERENCE 
GRAPH

a4



Vickery Auction

• If all we care about is truthfulness, a trivial solution:
– Allocate channels to k highest bidders

– Price: Bid of (k+1)th highest bidder

• Inefficient spectrum utilization: a3 and a4 left out

b1=5 b2=4 b3=1 b4=2

# of channels = 2

PRICE CHARGED : 
2

a2a1 a3 a4

5

Bids



Truthfulness with Maximal Utilization

• Always allocate a channel unless doing so precludes another user

• Desiderata:

– Truthfulness

– Pareto optimality

– Computational efficiency

• VCG doesn’t satisfy the computational efficiency requirement
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First Attempt

• Sort and Greedily allocate channels

– Allocate lowest available index

• Each winning bidder pays the bid of highest unallocated neighbor

a1

b1=5

a2 a3 a4

b2=4 b3=1 b4=2

# of channels = 2

v1=5 v2=4 v3=1 v4=2

u4=1u3=0u2=3u1=5

b1=5 b2=4 b3=3 b4=2

v1=5 v2=4 v3=1 v4=2

u4=2u3=1u2=4u1=5

Valuations

Bids

Utility

a1 a2 a3 a4

VIOLATES TRUTHFULNESS !!!
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Another Attempt

• Greedily allocate channels 

• For each Winning bidder ai  determine neighbor aj s.t.

– aj loses when ai is present, but

– aj wins when ai is absent

• Charge ai the bid of aj

a1

b1=5

a2 a3 a4

b2=4 b3=1 b4=2
v1=5 v2=4 v3=1 v4=2

u4=1u3=0u2=3u1=5

a1

b1=5

a2 a3 a4

b2=4 b3=2 b4=2
v1=5 v2=4 v3=1 v4=2

u4=2u3=1u2=4u1=5

• AGAIN, THIS VIOLATES TRUTHFULNESS !!!



New Auction: Veritas

• Sort and Greedily allocate channels (lowest available first)

• Veritas-Pricing:

– A winner i pays the bid of its critical neighbor C(i) 

– To determine Critical Neighbor for i

• run greedy algorithm with B - bi

• Critical Neighbor of i is the first one to be denied a 
channel.
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Veritas Example

Step 1: Run greedy

b1=5 b4=2
Step 2: compute price for a2
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a1

b1=5

a2 a3 a4

b2=4 b3=1 b4=2

# of channels = 2

a1 a3

b3=1

Channels available for a2

a4

Critical Neighbor for a2



Proof of Veritas

• Theorem: Veritas is truthful, achieves pareto optimality, and runs in 
O(n3k)

• Proof sketch

– Criticality: Unique critical value for each winning bidder.

– Monotonicity: A bid above the critical value always wins.

– Truthfulness: If we charge every bidder its critical value, no 
incentive to lie. 
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Thank You!


