

Algorithmic Problems in Network Economics

Subhash Suri UC Santa Barbara

SoCal NEGT Symposium, Oct 1-2, 2009

Networked World

• A classical view of the internet

- Open, evolutionary architecture
- Lacks central control and coordination
- Dynamically varying infrastructure and users
- Resource sharing
- Interesting mix of computational and strategic complexities

servers

QuickTime?and a decompressor are needed to see this picture.

clients

- Matching n clients (users) to m servers (access points)
- A compatibility graph:

- edge (i,j) if client i can be served by j

- Identical servers with unit resource
- Latency as cost of matching:

– a server matched to k clients has latency = k

• Quality of matching in this uncoordinated world?

Price of Anarchy

• Selfish Routing [Roughgarden et al., Papadimitriou]

- (Social) optimum = 0.5 flow on each link
 - latency = 3/4
- Self-interested (Nash) optimum flow = 1 on top link
 - latency = 1
- Price of Anarchy = Ratio of Social to Nash Optimum
 - this example 4/3

Anarchy in Load Balancing

• What is the worst-case ratio between costs of optimum and Nash matching?

QuickTime?and a decompressor are needed to see this picture.

Input

Opt Cost = 3 Nash Cost = 5 Arbitrary Cost = 5

Anarchy in Load Balancing

- With identical servers, OPT is always NASH, but not vice versa.
- I.e. best case Nash = Opt
- Ratio between worst-case Nash and Opt?

QuickTime?and a decompressor are needed to see this picture.

Input

Opt Cost = 3 Nash Cost = 5 Arbitrary Cost = 5

• Theorem 1: For identical servers, price of anarchy is atmost

$$(1+2/\sqrt{3}) = 2.155$$

• Theorem 2: Price of anarchy is at least 2.001

More Bounds

• For non-identical servers, social optimum no longer Nash Equilibrium.

- Theorem 3: PoA < 5/2.
- For Lp norm latency, PoA = O(p/logp)
- Selfish Load Balancing, S.-Toth-Zhou, Algorithmica '07.
- Price of routing unsplittable flow, Awerbuch, Azar, Epstein, STOC '05

Algorithms

- Nash matching by local swaps:
 - in each round, a user switches to better server.
 - Provably $O(n^2)$ rounds.
- Instead suppose clients arrive one by one and each chooses the best available server at that time.
 - -Greedy Matching
 - -Not necessarily a Nash matching
 - -But can be shown to be O(1) factor optimal.

Mobility and Load Balancing

- Wireless access points (APs) at airport, malls, etc.
- User can select and use any AP
 - Selected AP need not be in range
 - User moves towards selected AP if necessary
- Strategic tradeoffs between cost of mobility and wireless service quality
 - Users are rational, selfish entities
 - Maximize personal benefit
 - No regard for system cost

Modeling the Game

- User arrive sequentially
- AP bandwidth shared equally among attached users
 - AP with fewer attached users preferable
- Distance of AP from user's location
 - Closer AP preferable (less mobility, better signal)
- Cost function (user I and AP j),

 $\mathbf{C}_{ij} = \mathbf{x}^* \mathbf{x}_j + \mathbf{\beta}^* \mathbf{d}_{i,j}$

where $x_j =$ number of users at AP *j*

 $d_{i,i}$ = distance between user *i* and AP *j*

 γ , β are constants (same for all users)

Simple Distributed Algorithm

- Greedy algorithm
 - Upon arrival, each user picks the AP with currently minimum cost
 - -No future swaps done.
- Theorem: The greedy always produces a Nash equilibrium
- Social optimal always Nash.

Price of Anarchy

- $\beta = 0$ (Mobility cost zero)
 - Only Nash equilibriums are those that distribute users evenly
 - Pessimistic price of anarchy = 1
- Y = 0 (Users bandwidth-agnostic)
 - Unbounded price of anarchy
- General case (neither β nor γ zero):

- Open

Spectrum Auctions

- Auctions: efficient allocation of scarce resources
- Auctioneer: dynamic price discovery based on demand
- Users: request and acquire spectrum when they need it

Computational Complexity

- Externality: interference
 - Spatial reuse possible
 - Nearby users cannot use same channel

- Combinatorial auctions NP-complete
- Hard even without expressive bidding due to graph coloring
- Focus on computational efficiency, without strategic considerations.

• Bids: the desired quantity of spectrum f at a per-unit price p

Bidding by Price-Quantity Curves

The Auction Clearing Problem

Allocate price(s) and spectrum to maximize the total revenue R(.) subject to Interference Constraints

Analytical Bounds

Theoretical bounds	Clearing with Uniform Pricing	Clearing with Discriminatory Pricing
Revenue efficiency	$\boldsymbol{R} \geq \frac{1}{3}\boldsymbol{R}_{OPT}$	$R \geq \frac{n}{3(n+1)}R_{OPT}$
complexity	$O(n\log n + n\log U)$	polynomial
When the conflict graph is a tree	$R = R_{OPT}$	$R = R_{OPT}$

Strategy-proof Spectrum Auctions

Strategy-proof Spectrum Auctions

- Input:
 - Spectrum as k channels: 1, 2, ..., k
 - A set of n bidders
- Output:
 - A polynomial time strategy-proof mechanism for spectrum allocation
 - Subject to interference constraints

- Motivation:
 - Dynamic redistribution of FCC's long term licenses
 - Fair and open
 - Economic Efficiency

Graph Coloring

- Conflict-free channel allocation = graph coloring
- Computationally, graph coloring intractable and in-approximable.

- If all we care about is truthfulness, a trivial solution:
 - Allocate channels to k highest bidders
 - Price: Bid of (k+1)th highest bidder

• Inefficient spectrum utilization: a₃ and a₄ left out

Truthfulness with Maximal Utilization

- Always allocate a channel unless doing so precludes another user
- Desiderata:
 - Truthfulness
 - Pareto optimality
 - Computational efficiency
- VCG doesn't satisfy the computational efficiency requirement

First Attempt

- Sort and Greedily allocate channels
 - Allocate lowest available index
- Each winning bidder pays the bid of highest unallocated neighbor

VIOLATES TRUTHFULNESS !!!

Another Attempt

- Greedily allocate channels
- For each Winning bidder a_i determine neighbor a_i s.t.
 - $-a_i$ loses when a_i is present, but
 - $-a_i$ wins when a_i is absent
- Charge a_i the bid of a_i

New Auction: Veritas

- Sort and Greedily allocate channels (lowest available first)
- Veritas-Pricing:
 - A winner i pays the bid of its critical neighbor C(i)
 - To determine Critical Neighbor for i
 - run greedy algorithm with B b_i
 - Critical Neighbor of i is the first one to be denied a channel.

of channels = 2

Proof of Veritas

- Theorem: Veritas is truthful, achieves pareto optimality, and runs in O(n³k)
- Proof sketch
 - Criticality: Unique critical value for each winning bidder.
 - Monotonicity: A bid above the critical value always wins.
 - Truthfulness: If we charge every bidder its critical value, no incentive to lie.

Bib and Collaborators

- Joint work with
 - Buragohain, Gandhi, Toth, Zheng, Zhou, Zhou
- Papers
 - Selfish Load Balancing, Algorithmica, 2007
 - A game-theoretic analysis of wireless access points selection by mobile users, Computer Communication '08
 - Towards real-time dynamic spectrum auctions, Computer Networks, '08
 - eBay in the sky: strategy-proof wireless spectrum auctions, Mobicom '08

Thank You!