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Carathéodory’s Theorem

Any vector in the convex hull of a set V in R? can be expressed as
a convex combination of at most d + 1 vectors of V.
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Approx. Carathéodory’s Theorem

Given set V' in the p-unit ball with norm p > 2, for every vector in
the convex hull of V' there exists an e-close (under p-norm distance)

vector that is a convex combination of O (£ ) vectors of V.




Application: Algorithm for Approximate Nash Equilibria
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Payoff matrices A and B of size n x n
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Payoff matrices A and B of size n x n

Probability vectors over [n]: x and y
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Probability vectors over [n]: x and y

Nash equilibrium (z,y): No player can benefit by unilateral
deviation

efAy<aTAy  Vie[n] and
t"Be; <2'By  Vj € [n]




Payoff matrices A and B of size n x n

Probability vectors over [n]: x and y

(z,y): No player can benefit by unilateral
deviation

el Ay <z Ay Vi € [n] and
2T Be; < zT By Vj € [n]

(z,y): No player can benefit
more than e by unilateral deviation

el Ay <azTAy+e Vi € [n] and
2T Be; < xTBy +¢ Vj € [n]



Computation of Eq. in Two-Player Games

Nash Equilibria

General Games: Exp. time
[Lemke & Howson 1964]

Zero-Sum Games: Poly. time
[von Neumann 1928, Dantzig
1951]
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Computation of Eq. in Two-Player Games

Nash Equilibria Approximate Nash Equilibria
Exp. time nOlogn)
[Lemke & Howson 1964] [Lipton et al. 2003]
Poly. time (1/e)remk
[von Neumann 1928, Dantzig [Alon et al. 2013]
1951]

This Talk: Sparsity



Definition (Sparsity of a Game)

The sparsity of a game (A, B) is defined to be the maximum
number of non-zero entries in any column of A + B.
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The sparsity of a game (A, B) is defined to be the maximum
number of non-zero entries in any column of A + B.

e Sparsity =0 in
e In general, sparsity is at most n



Definition (Sparsity of a Game)

The sparsity of a game (A, B) is defined to be the maximum
number of non-zero entries in any column of A + B.

Theorem

In a two-player s-sparse game an e-Nash equilibrium can be

computed in time nOlogs/e?)

Payoff matrices normalized A, B € [—1, 1]™*".



Definition (Sparsity of a Game)

The sparsity of a game (A, B) is defined to be the maximum
number of non-zero entries in any column of A + B.

Theorem

In a two-player s-sparse game an e-Nash equilibrium can be

computed in time nOlogs/e?)

Implications:
e When s is a fixed constant we get a polynomial-time algorithm

e For general games (s < n) the running time matches the
best-known upper bound: nO(ogn/c*) [LMM'03].






Definition (Sparsity of a Game)

The sparsity of a game (A, B) is defined to be the maximum
number of non-zero entries in any column of A + B.

Theorem

In a two-player s-sparse game an e-Nash equilibrium can be

computed in time nOlogs/e?)

Note: Sparse Games are Hard [CDT 2006].



Nash eq: el Ay < 2T Ay Vi and
xTBej < 2T By Vi

Bilinear Program for Nash Eq. [MS'64]

maximize z(A+ B)y —m —m
subject to 2B < 7wy and Ay <m
x,y €A™ and mp,m € [—1,1]
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Say (z*,y*) is a Nash eq. Given u* = Cy* we get an LP.

maximize x!u* —m —my

subject to z'B<m and Ay<m

n




Bilinear Program for Nash Eq. [MS'64]

maximize xTC’y — T — Ty
subject to 2'B < m and Ay <m
x,y € A" and m,m € [—1,1]

Say (z*,y*) is a Nash eq. Given u* = C'y* we get an LP.
maximize xlu* — m — o
subject to 2T'B <m and Ay < m
z,y € A" and m,me € [-1,1]
Cy=u"

A vector close to C'y* is sufficient to find an approx. Nash eq.
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Bilinear Program for Nash Eq. [MS'64]

maximize xTC’y — T — Ty
subject to 2'B < m and Ay <m
x,y € A" and m,m € [—1,1]
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Theorem

In a two-player s-sparse game an e-Nash equilibrium can be

computed in time nOlogs



Bilinear Program for Nash Eq. [MS'64]

maximize xTC’y — T — Ty
subject to 2'B < m and Ay <m
x,y € A" and m,m € [—1,1]
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General Result

We can efficiently approximate any sparse bilinear or
quadratic form over the simplex.



v’ Application: Algorithm for Approximate Nash Equilibria
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Approx. Carathéodory’s Theorem

Given set V' in the p-unit ball with norm p > 2, for every vector in

the convex hull of V' there exists an e-close (under p-norm distance)
vector that is a convex combination of O (%) vectors of V.

Proof via the Probabilistic Method and
Khintchine-Kahane Inequality



Extensions
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p-norm




Extensions

e Convex hull of matrices with and Schatten
p-norm

Approx. Birkhoff-von Neumann Theorem

For every d x d doubly stochastic matrix D there exists an e-close
(under the entrywise co-norm) doubly stochastic matrix D’ such

that D’ is a convex combination of O <1““ ’]> permutation matrices.
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Extensions

e Convex hull of matrices with entrywise norm and Schatten
p-norm
e Colorful Carathéodory Theorem

B Barman, An Approximate Version of Carathéodory’s Theorem
with Applications to Approximating Nash Equilibria and Dense
Bipartite Subgraphs, http://arxiv.org/abs/1406.2296, 2014
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Proof via the Probabilistic Method
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With i.i.d. samples s1, ..., 8, ~ w,

g(815- -5 8m) = H% D iy Si — pr
e g concentrates: Pr(|g — E[g]| > &) < e =™
e Bounded expectation: E[g] <&, form = O(p/e?)
e Overall: Pr(|lw" —wl, > 2¢) < gem O

Approx. Carathéodory’s Theorem

Given set V' in the p-unit ball with norm p > 2, for every vector in

the convex hull of V' there exists an e-close (under p-norm distance)
vector that is a convex combination of O (%) vectors of V.




Khintchine-Kahane Inequality [TJ74,S11]

Let r1,79,...,7, be a sequence of i.i.d. random variables
with Pr(r; = £1) = §

In addition, let uy,usg,..., Uy € R be a deterministic se-
quence of vectors. Then, for 2 < p < oo

m

m 9
E (> riw| <p <Z||ui||12)>
=1

i=1 .




