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Carathéodory’s Theorem

Any vector in the convex hull of a set V in Rd can be expressed as

a convex combination of at most d+ 1 vectors of V .
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Approx. Carathéodory’s Theorem

Given set V in the p-unit ball with norm p ≥ 2, for every vector in

the convex hull of V there exists an ε-close (under p-norm distance)

vector that is a convex combination of O
(

p
ε2

)
vectors of V .



Application: Algorithm for Approximate Nash Equilibria
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Nash equilibrium in two-player games is PPAD-hard [GP06,
DGP06, CD06, CDT09].
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Payoff matrices A and B of size n× n
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deviation
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xTBej ≤ xTBy ∀j ∈ [n]



Payoff matrices A and B of size n× n
Probability vectors over [n]: x and y

Nash equilibrium (x, y): No player can benefit by unilateral
deviation

eTi Ay ≤ xTAy ∀i ∈ [n] and

xTBej ≤ xTBy ∀j ∈ [n]

Approximate Nash equilibrium (x, y): No player can benefit
more than ε by unilateral deviation

eTi Ay ≤ xTAy + ε ∀i ∈ [n] and

xTBej ≤ xTBy + ε ∀j ∈ [n]
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Nash Equilibria

General Games: Exp. time
[Lemke & Howson 1964]

Zero-Sum Games: Poly. time
[von Neumann 1928, Dantzig

1951]
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Nash Equilibria

General Games: Exp. time
[Lemke & Howson 1964]

Zero-Sum Games: Poly. time
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1951]
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General Games: nO(logn)
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Low-Rank Games: (1/ε)rank

[Alon et al. 2013]

This Talk: Sparsity
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number of non-zero entries in any column of A+B.

• Sparsity = 0 in zero-sum games

• In general, sparsity is at most n



Definition (Sparsity of a Game)

The sparsity of a game (A,B) is defined to be the maximum
number of non-zero entries in any column of A+B.

Theorem

In a two-player s-sparse game an ε-Nash equilibrium can be

computed in time nO(log s/ε2).

Payoff matrices normalized A,B ∈ [−1, 1]n×n.



Definition (Sparsity of a Game)

The sparsity of a game (A,B) is defined to be the maximum
number of non-zero entries in any column of A+B.

Theorem

In a two-player s-sparse game an ε-Nash equilibrium can be

computed in time nO(log s/ε2).

Implications:

• When s is a fixed constant we get a polynomial-time algorithm

• For general games (s ≤ n) the running time matches the
best-known upper bound: nO(logn/ε2) [LMM’03].





Definition (Sparsity of a Game)

The sparsity of a game (A,B) is defined to be the maximum
number of non-zero entries in any column of A+B.

Theorem

In a two-player s-sparse game an ε-Nash equilibrium can be

computed in time nO(log s/ε2).

Note: Sparse Games are Hard [CDT 2006].



Nash eq: eTi Ay ≤ xTAy ∀i and

xTBej ≤ xTBy ∀j

Bilinear Program for Nash Eq. [MS’64]

maximize xT (A+B)y − π1 − π2
subject to xTB ≤ π2 and Ay ≤ π1

x, y ∈ ∆n and π1, π2 ∈ [−1, 1]
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A vector close to Cy∗ is sufficient to find an approx. Nash eq.
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computed in time nO(log s/ε2).



Bilinear Program for Nash Eq. [MS’64]

maximize xTCy − π1 − π2
subject to xTB ≤ π2 and Ay ≤ π1

x, y ∈ ∆n and π1, π2 ∈ [−1, 1]
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General Result

We can efficiently approximate any sparse bilinear or
quadratic form over the simplex.
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Given set V in the p-unit ball with norm p ≥ 2, for every vector in

the convex hull of V there exists an ε-close (under p-norm distance)

vector that is a convex combination of O
(

p
ε2

)
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Proof via the Probabilistic Method and
Khintchine-Kahane Inequality
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Extensions

• Convex hull of matrices with entrywise norm and Schatten
p-norm

Approx. Birkhoff-von Neumann Theorem

For every d× d doubly stochastic matrix D there exists an ε-close

(under the entrywise ∞-norm) doubly stochastic matrix D′ such

that D′ is a convex combination of O
(

log d
ε2

)
permutation matrices.
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Extensions

• Convex hull of matrices with entrywise norm and Schatten
p-norm

• Colorful Carathéodory Theorem

Barman, An Approximate Version of Carathéodory’s Theorem
with Applications to Approximating Nash Equilibria and Dense
Bipartite Subgraphs, http://arxiv.org/abs/1406.2296, 2014



Extensions

• Convex hull of matrices with entrywise norm and Schatten
p-norm

• Colorful Carathéodory Theorem

Barman, An Approximate Version of Carathéodory’s Theorem
with Applications to Approximating Nash Equilibria and Dense
Bipartite Subgraphs, http://arxiv.org/abs/1406.2296, 2014

Thank You!
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Khintchine-Kahane Inequality [TJ74,S11]

Let r1, r2, . . . , rm be a sequence of i.i.d. random variables
with Pr(ri = ±1) = 1

2
In addition, let u1, u2, . . . , um ∈ Rd be a deterministic se-
quence of vectors. Then, for 2 ≤ p <∞

E

∥∥∥∥∥
m∑

i=1

riui

∥∥∥∥∥
p

≤ √p
(

m∑

i=1

‖ui‖2p

) 1
2


