Opinion Dynamics and the Evolution of Influence Networks

Francesco Bullo

Department of Mechanical Engineering Center for Control,

Dynamical Systems & Computation University of California at Santa Barbara

2014 SoCal Symp on Network Economics and Game Theory

Peng Jia

Ana MirTabatabaei Noah Friedkin

Motivations

• drivers

- "big data" increasingle available
- quantitative methods in social sciences
- applications in marketing and (in)-security

• dynamical processes over social networks

- opinion dynamics, info propagation
- network formation and evolution
- co-evolutionary processes
- key novelty: sequence of issues

Krackhardt's advice network

Francesco Bullo (UCSB) Influence Networks SoCal NEGT'14 1 / 16 Small deliberative groups	Francesco Bullo (UCSB) Influence Networks Opinions, influence networks and centrality	SoCal NEGT'14 2 / 1
 small deliberative groups are assembled in most social organization to deal with sequences of issues in particular domains: judicial, legislative and executive branches: grand juries, federal panels 	 Dynamics and Formation of Opinions convex combinations of opinions model by French ('56), Harary ('65), and DeGroot ('74) 	
 of judges, Supreme Court – standing policy bodies, congressional committees – advisory boards corporations: board of directors/trustees universities: faculty meetings group properties may evolve over its issue sequence according to 	 Dynamics of Influence Networks and Social Power reflected appraisal hypothesis by Cooley, 1902 individual' self-appraisal (e.g., self-confidence, self-esteem, self-worth) is influenced by the appraisal of other individuals of her 	Opinion formation
 natural social processes that modify its internal social structure possible systematic changes: a stabilization of individuals' levels of openness and closure to interpersonal influences on their initial preferences, a stabilization of individuals' ranking of, and influence accorded to, 	 mathematization by Friedkin, 2012: varying social power and self-confidence constant relative interpersonal relations Network centrality 	
other members'	 centrality measure of network nodes, e.g., eigenvector centrality by Bonacich, 1972 	Social network for male wire-tailed manakins (Ryder e al. 2008)

Francesco Bullo (UCSB)

SoCal NEGT'14 3 / 16

Francesco Bullo (UCSB)

Opinions, influence networks and centrality

Dynamics and Formation of Opinions

- convex combinations of opinions
- model by French ('56), Harary ('65), and DeGroot ('74)

Dynamics of Influence Networks and Social Power

• reflected appraisal hypothesis by Cooley, 1902

individual' self-appraisal (e.g., self-confidence, self-esteem, self-worth) is influenced by the appraisal of other individuals of her

- mathematization by Friedkin, 2012:
 - varying social power and self-confidence
 - constant relative interpersonal relations

Network centrality

• centrality measure of network nodes, e.g., eigenvector centrality by Bonacich, 1972

Social network for male wire-tailed manakins (Ryder et al. 2008)

Opinion formation

Social network for obesity study

(Christakis and Fowler, 2007)

Opinions, influence networks and centrality

Dynamics and Formation of Opinions

- convex combinations of opinions
- model by French ('56), Harary ('65), and DeGroot ('74)

Dynamics of Influence Networks and Social Power

• reflected appraisal hypothesis by Cooley, 1902

individual' self-appraisal (e.g., self-confidence, self-esteem, self-worth) is influenced by the appraisal of other individuals of her

• mathematization by Friedkin, 2012:

centrality by Bonacich, 1972

DeGroot opinion dynamics model

y(t+1) = W y(t)

- varying social power and self-confidence
- constant relative interpersonal relations

• centrality measure of network nodes, e.g., eigenvector

Network centrality

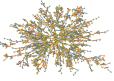
- Social network for male wire-tailed manakins (Ryder et al. 2008)
- Francesco Bullo (UCSB)
 Influence Networks
 SoCal NEGT'14
 4 / 16

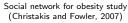
 The dynamics of opinions
 The dynamics of opinions
 The dynamics of opinions

DeGroot opinion dynamics model

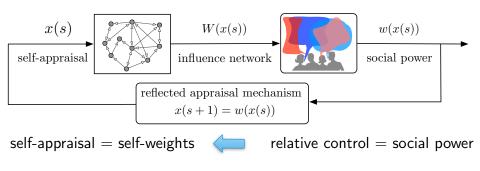
$$y(t+1) = W y(t)$$

- Opinions $y \in \mathbb{R}^n$
- Influence network = row-stochastic W
- by P-F: lim_{t→∞} y(t) = (w^Ty(0))1_n where w is dominant left eigenvector of W
- Self-weights $W_{ii} =: x_i$
- Interpersonal accorded weights W_{ii}
- Relative interpersonal accorded weights C_{ij} , where $W_{ij} = (1 - x_i)C_{ij}$


Opinions y ∈ ℝⁿ Influence network = row-stochastic W by P-F: lim_{t→∞} y(t) = (w^Ty(0))1_n


- where w is dominant left eigenvector of W
- Self-weights $W_{ii} =: x_i$
- Interpersonal accorded weights W_{ii}
- Relative interpersonal accorded weights C_{ij}, where W_{ij} = (1 - x_i)C_{ij}

Opinion formation



The dynamics of opinions	The dynamics of social power and self-confidence
<section-header> DeGroot opinion dynamics model μ(t + 1) = W μ(t) Opinions y ∈ ℝⁿ Influence network = row-stochastic W by P-F: lim_{t→∞} y(t) = (w^Ty(0))1_n where w is dominant left eigenvector of W Self-weights W_{ii} =: x_i Interpersonal accorded weights W_{ii} Relative interpersonal accorded weights C_{ij}, where W_{ij} = (1 - x_i)C_{ij} W(x) = diag(x)I_n + diag(1_n - x)C </section-header>	Reflected appraisal hypothesis by Cooley, 1902: individual' self-appraisal (e.g., self-confidence, self-esteem, self-worth) is influenced by the appraisal held by others of her
Francesco Bullo (UCSB)Influence NetworksSoCal NEGT'145 / 16The dynamics of social power and self-confidence	Francesco Bullo (UCSB)Influence NetworksSoCal NEGT'146 / 16The dynamics of social power and self-confidence
Reflected appraisal hypothesis by Cooley, 1902: individual' self-appraisal (e.g., self-confidence, self-esteem, self-worth) is influenced by the appraisal held by others of her	Reflected appraisal hypothesis by Cooley, 1902: individual' self-appraisal (e.g., self-confidence, self-esteem, self-worth) is influenced by the appraisal held by others of her
Mathematization by Friedkin, 2012:	Mathematization by Friedkin, 2012:
along a sequence of issues, individual dampens/elevates	along a sequence of issues, individual dampens/elevates

self-weight x_i according to her relative prior control

self-weight x_i according to her relative prior control

Influence Networks

The dynamical system

- DeGroot dynamics about an issue: y(t+1) = W(x)y(t)
- Influence network $W(x) = diag(x)I_n + diag(\mathbb{1}_n x)C$
- Reflected appraisal across issues:

$$x(k+1) = w(x(k)) \qquad = F(x(k))$$

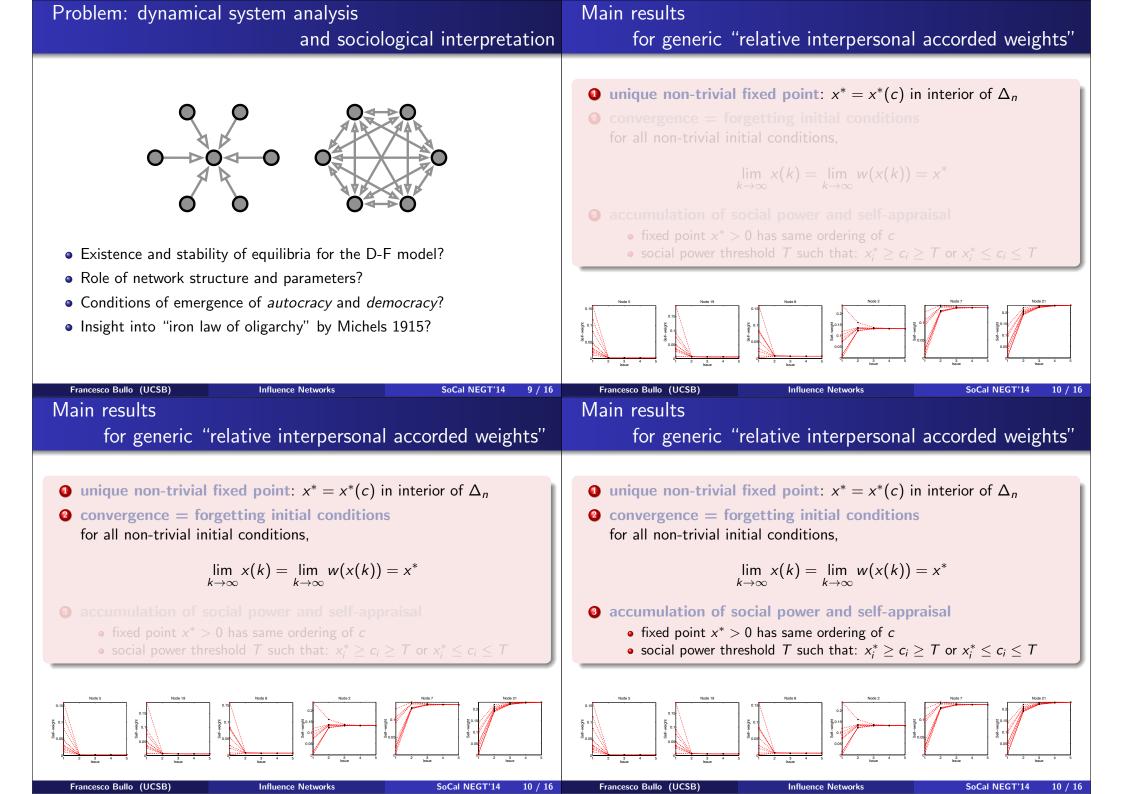
DeGroot-Friedkin dynamics

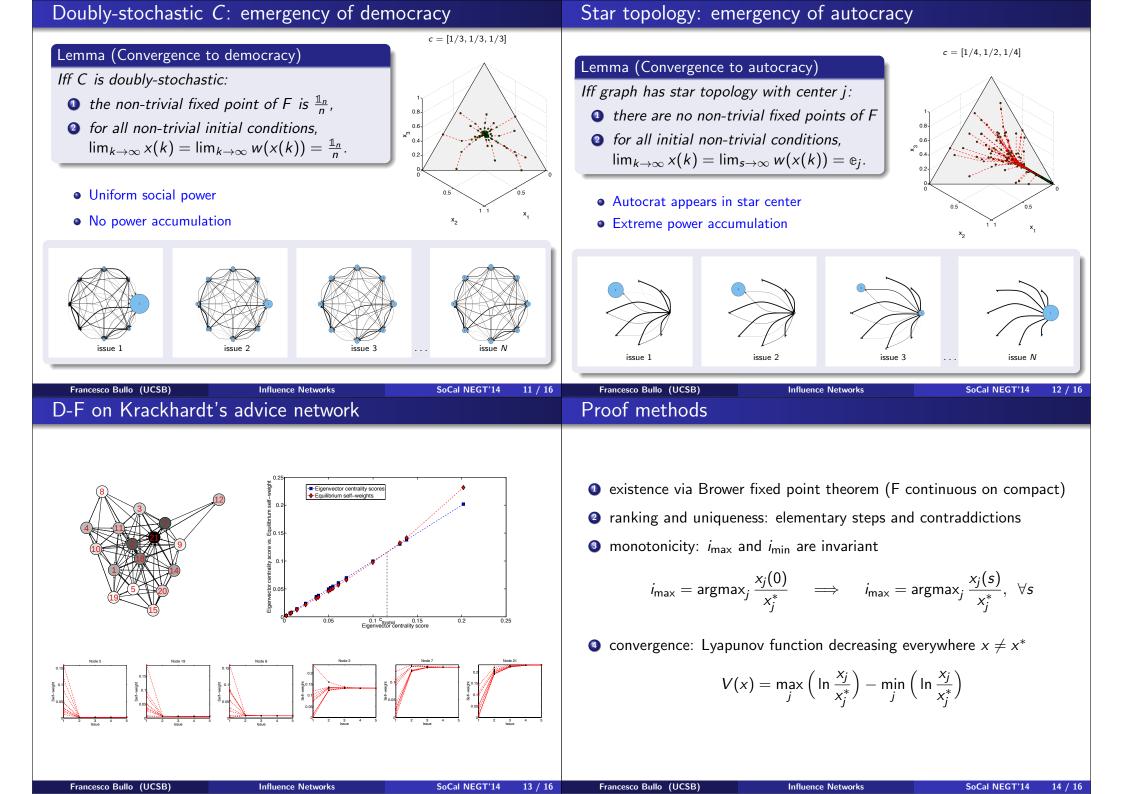
$$F(x) = \begin{cases} e_i, & \text{if} \\ \left(\frac{c_1}{1-x_1}, \dots, \frac{c_n}{1-x_n}\right) / \sum_{i=1}^n \frac{c_i}{1-x_i}, & \text{o} \end{cases}$$

where *c* is the dominant left eigenvector of *C*

The dynamical system

- DeGroot dynamics about an issue: y(t+1) = W(x)y(t)
- Influence network $W(x) = diag(x)I_n + diag(\mathbb{1}_n x)C$
- Reflected appraisal across issues:


$$x(k+1) = w(x(k)) \qquad = F(x(k))$$


DeGroot-Friedkin dynamics

$$F(x) = \begin{cases} e_i, & \text{if } x = e_i \text{ for all } i \\ \left(\frac{c_1}{1 - x_1}, \dots, \frac{c_n}{1 - x_n}\right) / \sum_{i=1}^n \frac{c_i}{1 - x_i}, & \text{otherwise} \end{cases}$$

where c is the dominant left eigenvector of C

Francesco Bullo (UCSB)Influence NetworksSoThe map and the eigenvector centrality parameter	oCal NEGT'14 7 / 16 eter	Francesco Bullo (UCSB) The map and the	Influence Networks eigenvector centralit	socal NEGT'14 7 / 16 y parameter
$F(x) = \begin{cases} \mathbb{e}_i, & \text{if } x = \mathbb{e}_i \\ \left(\frac{c_1}{1 - x_1}, \dots, \frac{c_n}{1 - x_n}\right) / \sum_{i=1}^n \frac{c_i}{1 - x_i}, & \text{otherwise} \end{cases}$ • $F : \Delta_n \to \Delta_n \text{ locally Lipschitz}$ • The vertices $\{\mathbb{e}_i\}$ are fixed points under F • relative interpersonal weights C play role only through \mathbb{E}_i • $c = appropriate eigenvector centrality (dominant left eigenvector centralit$	с	• $F: \Delta_n \to \Delta_n$ local • The vertices $\{e_i\}$ a • relative interperson	$(\cdot, \frac{c_n}{1-x_n}) / \sum_{i=1}^n \frac{c_i}{1-x_i},$ Ily Lipschitz are fixed points under F hal weights C play role only genvector centrality (domin	y through <i>c</i>
Lemma (Eigenvector centrality)For any C row-stochastic, irreducible with zero diagonal and• $max{c_i} \leq 0.5$ • $c_i = 0.5 \iff G(C)$ is with star topology and i is the diagonal is the diagonal framesco Bullo (UCSB)		• max $\{c_i\} \leq 0.5$	ntrality) ic, irreducible with zero di C) is with star topology ar	

Ongoing experiment

- 30 groups of 4 subjects in a face-to-face discussion
- opinion formation on a sequence of 15 issues
- issues in the domain of choice dilemmas:

what is your minimum level of confidence (scored 0-100) required to accept a risky option with a high payoff rather than a less risky option with a low payoff

- 15 groups under pressure to reach consensus, other 15 no
- On each issue, each subject privately recorded (in following temporal order):
 - () an initial opinion on the issue prior to the group-discussion,
 - a final opinion on the issue upon completion of the group-discussion (which ranged from 3-27 minutes), and
 - an allocation of 100 influence units (under the instruction that these allocations should represent their appraisals of the relative influence of each group member's opinion on their own opinion).

Contributions and future work

Contributions

- a new perspective and a novel dynamical model for *social power*, *self-appraisal*, *influence networks*
- dynamics and feedback in sociology
- a new potential explanation for the emergence of autocracy see "iron law of oligarchy" by Michels 1911

Future work

- Robustness of results for distinct models of opinion dynamics
- Robustness of results for higher-order models of reflected appraisal

Reference: Opinion Dynamics and The Evolution of Social Power in nfluence Networks. SIAM Review, 2013, to appear Funding: Institute for Collaborative Biotechnology through grant W911NF-09-D-0001 from the U.S. Army Research Office

Francesco Bullo (UCSB)	Influence Networks	SoCal NEGT'14	15 / 16
Contributions and f	uture work		
Contributions			
	d a novel dynamical mode for <i>social power, self-appra</i>		works
dynamics and feedba	ck in sociology		
 a new potential explana 	anation for the emergence see "iron law of oliga	•	1911
Future work			
 Robustness of results 	for distinct models of opi	nion dynamics	
 Robustness of results 	s for higher-order models o	f reflected apprais	al
Influence Networks. SIAM Funding: Institute for Co	amics and The Evolution of I Review, 2013, to appear Ilaborative Biotechnology the U.S. Army Research (through grant	
Francesco Bullo (UCSB)	Influence Networks	SoCal NEGT'14	16 / 16