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Motivation

Dynamic matching

Incomplete Information

No transfers

Strategy of the matched agents or stability is not the focus; the focus
is on the information mediating mechanism.

Combinatorial aspects of matching and learning

example: Online dating, user content or ads on screen vs user types...
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Desiderata

Build a theory of matching with;

Incomplete Information about own preferences, partner’s type.

Dynamics, learning: information is to be had over time, through
matches.

Central mechanism as an facilitator of increased match quality.
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Dynamic Matching as Combinatorial Bandits

Consider dynamically matching 2 men and 2 women to maximize the
expected β− discounted sum of match payoffs up to infinity, equivalently
the match payoff at a geometric stopping time with 1− β. Each
(man i,woman j) is an independent bandit, whereas the overall match
permutation is not:

	  
Payoffs	  to	  a	  
matching	  pair	  	  
(man	  i,	  woman	  j)	  
each	  period	  

Woman	  1	   Woman	  2	  

man	  1	   1+e	  
1/2	  	  prob.	  à	  	  2	  
1/2	  prob.	  à	  	  0	  

	  

man	  2	  
1/2	  	  prob.	  à	  	  2	  
1/2	  prob.	  à	  	  0	  

	  
1+e	  
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Dynamic Matching as Combinatorial Bandits

Consider each bandit in isolation. Remember the Gittins index for a
general bandit arm with state evolution {xt}∞

t=1 at state x0 is

G(x0) = sup
τ>0

E{Σt=τ−1
t=0 βtu(xt)}

E{Σt=τ−1
t=0 βt}

for all stopping times τ

For our example, G11 = G22 =
1+e
1−β whereas G12 = G21 = g

g =
1

2

2

1− β
+

1

2
β⇒ g =

2

(2− β)(1− β)
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Dynamic Matching as Combinatorial Bandits

As the problem is an MDP, the only two matching strategies to
compare are
(I) ”always match (1, 2)→ (1, 2)”
(II)”match (1, 2)→ (2, 1) first, and then revert to (1, 2)→ (1, 2) if
not successful”

For G12 = g > 1+e
1−β slightly, each agent would prefer (II) individually.

Socially, one might think going with the strategy that maximizes the
sum of the Gittins indices would be better. However,

The total social welfare for (I) = 2G11

(II) =
1

4

4

1− β
+

1

4

2(1 + e)β

1− β
+

1

2
{2 + β

1− β
max{2, 2(1 + e)}

For e ∈ ( β
4−β ,

β
2−β ), (I ) > (II ) !!
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Dynamic Matching as Combinatorial Bandits

Intuitively, in (II) the ”sum” of option values of matching 1→ 2 AND
2→ 1 do not materialize. The ”Gittins index” of the matching is
LESS THAN 2G12, as we cannot preferentially stop one leg of the
matching keeping the other leg intact.

It cannot be remedied even if the agents come from a pool of 2 types,
and we can match two men to two women of the same type, as long
as we match 2 pairs simultaneously.

One way to go around it to give up the simultaneity of the whole
matching, and match agents one by one.

Another way is to restrict the space of preferences allowed ; luckily, for
some strongly correlated preferences, we will retain the indexability.
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MODEL Agents

There are N men and N women in the match pool, they are infinitely
lived.

Preferences of the agents are not known ex-ante: There is an ’optimal
matching”, a permutation σ̄ : N → N, that is unknown to all parties.
That is, it is common knowledge that each type has a single favorite
type on the opposite market, and that each type’s favorite is distinct.

Nature chooses σ̄ according to the common prior π : N ×N → R+

with row and column sums 1; a doubly-stochastic matrix.

Notice that π(i , j) is the marginal probability that man i finds a
woman j a good match, and vice versa.
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MODEL Timing Reports and Rematch

Time is discrete t = 0, 1, 2, ...

There is a central mechanism (CM), matching each man with exactly
one distinct woman each period; σt : N → N, a permutation on N,
with Σ the set of all permutations on types (all matchings).

Each period, each matched pair (i , j) receives a match quality signal
s∈ {1 = success, 0 = fail} with probability a > 1/2 if σ̄(i) = j and
with probability 1− a otherwise.
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MODEL Timing Reports and Rematch

The signals are observed by CM, but not by other pairs. Notice that
one match’s signal is informative for other matches, too.

After receiving the signal, each agent privately declares
d = 1 = Accept or d = 0 = Reject for the current partner;
acceptance is irrevocable.

With an exogenous probability 1− β, the dating stops at the end of
each dating period.

If there are reciprocally accepted matches they end up as a final
match, if not, they are left single.
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match, if not, they are left single.
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MODEL Payoffs and Strategies

Agents have an outside option of 0, and receive payoffs of βt × 1 iff
the dating stops at time t with an reciprocally accepted optimal
partner j , i.e. σ̄t(i) = j and 0 otherwise.

Man i ’s observed history is, hi
t = hi

t−1 ⊕ (σt(i), s i
σt (i),t

, dt) with

hi
0 = ∅ and the CM’s observed history is ht = ⊕i h

i
t ⊕j hj

t ; and
capitals H i

t , Ht for the set of histories.

A strategy of an agent i , d i is a collection of d i
t : H i

t → {0, 1}, and a
matching mechanism M is a collection of Mt : Ht → Σ
Note that only the first acceptance counts; hence we can focus on
histories where that agent hasn’t accepted anybody yet; the timing of
acceptance is the strategic component.
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MODEL Strategies and Equilibrium

I restrict attention to stationary Markov strategies in private beliefs,
and stationary Markov Mechanisms: The agent i ’s posterior belief
about the ”optimal matching” σ̄ at time t is derived only from the
private history hi

t . Let the posterior πi
t = π ⊕ s i

t be the Bayes update
after the collection of own private signals.

I assume d i is a function of πi
t and the current match but NOT on

the time index. Notice that if nobody else (including the mechanism)
is using t, there exists a stationary Markov best response not
depending on t, as the environment is then stationary.

I assume M depends ONLY on the posterior πM
t , which is the Bayes

update after observing ALL agents’ signals.
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MODEL Strategies and Equilibrium

Lemma

Given any stationary Markov mechanism M, there exists a stationary
Markov equilibrium for the agents. Furthermore, the equilibrium strategy
d i induces a Markov stopping time that solves the Gittins equation;

sup
τ>0

E{Σt=τ−1
t=0 u(xt)}

E{Σt=τ−1
t=0 βt}

Here, τ is derived through the first acceptance decision in d i . Expectation
is wrt to the Markov evolution of private beliefs implied by the mechanism
and others’ strategy.
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Efficient Mechanism

Consider the first best scenario. We will describe an efficient/ first
best mechanism.

Let Mπ = σ ∈ Σ be the matching induced under the posterior π on
the agent preferences (on the optimal -unknown- matching σ̄)

Theorem

Suppose CM is making the acceptance decisions on behalf of the agents.
Let Meff be the mechanism such that

(i) Meff
π maximizes {

N

∑
i=1

πi ,σ(i)} over all permutations.

(ii) The acceptance decisions taken on behalf of the agents, d i , are derived
as in the Lemma, given the matching component Meff

π

Meff maximizes the expected sum of payoffs to all agents.
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Efficient Mechanism - Proof

Note that the mechanism uses the matching/permutation that is
most likely to be the -unknown- optimal matching, σ̄

This means that myopic optimal matching is efficient in our setup.

It is the largest probability matching in the support of π. Computing
it is very easy; it is the static assignment problem.
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Efficient Mechanism - Proof

The proof proceeds through these steps;

CM with acceptance rights faces a MDP, the actions being
(1) choosing the permutation each period, and
(2) deciding on behalf of the agents.

The second stage should be a Markov stopping time given (1) is
Markov. Hence the whole problem is a MDP.

Unimprovability principle implies we just need to show the value
function is excessive.

An interchange argument: Swapping two components of any given
permutaion towards the myopic optimal permutation improves the
payoff.

The myopic optimality is reminiscent of early results on bandits where
arms are prefectly negatively correlated, i.e. Feldman (1962),
Rodman(1978).
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Efficient Mechanism Meff and Incentive Compatibility

For our strategially limited agents, the only IC is when and whom to
accept.

We will lastly show that the (2) stage of the efficient mechanism
Meff , the acceptance decisions of agents (whom and when) can be
easily decentralized.

Remember that in Theorem (1), the CM took acceptance decisions
on behalf of the agents to maximize the SUM of all agents’ payoffs.

Theorem

If the CM uses the mechanism Meff it is an equilibrium for the agents to
use acceptance decisions to imitate the acceptance decisions of the
efficient mechanism.

Yilmaz Kocer (USC) Dynamic Matching and Learning NEGT 2014, Caltech 18 / 20



Efficient Mechanism Meff and Incentive Compatibility

For our strategially limited agents, the only IC is when and whom to
accept.

We will lastly show that the (2) stage of the efficient mechanism
Meff , the acceptance decisions of agents (whom and when) can be
easily decentralized.

Remember that in Theorem (1), the CM took acceptance decisions
on behalf of the agents to maximize the SUM of all agents’ payoffs.

Theorem

If the CM uses the mechanism Meff it is an equilibrium for the agents to
use acceptance decisions to imitate the acceptance decisions of the
efficient mechanism.

Yilmaz Kocer (USC) Dynamic Matching and Learning NEGT 2014, Caltech 18 / 20



Efficient Mechanism Meff and Incentive Compatibility

For our strategially limited agents, the only IC is when and whom to
accept.

We will lastly show that the (2) stage of the efficient mechanism
Meff , the acceptance decisions of agents (whom and when) can be
easily decentralized.

Remember that in Theorem (1), the CM took acceptance decisions
on behalf of the agents to maximize the SUM of all agents’ payoffs.

Theorem

If the CM uses the mechanism Meff it is an equilibrium for the agents to
use acceptance decisions to imitate the acceptance decisions of the
efficient mechanism.

Yilmaz Kocer (USC) Dynamic Matching and Learning NEGT 2014, Caltech 18 / 20



Efficient Mechanism Meff and Incentive Compatibility

For our strategially limited agents, the only IC is when and whom to
accept.

We will lastly show that the (2) stage of the efficient mechanism
Meff , the acceptance decisions of agents (whom and when) can be
easily decentralized.

Remember that in Theorem (1), the CM took acceptance decisions
on behalf of the agents to maximize the SUM of all agents’ payoffs.

Theorem

If the CM uses the mechanism Meff it is an equilibrium for the agents to
use acceptance decisions to imitate the acceptance decisions of the
efficient mechanism.

Yilmaz Kocer (USC) Dynamic Matching and Learning NEGT 2014, Caltech 18 / 20



Efficient Mechanism Meff and Incentive Compatibility -
Proof

The proof is by contradiction. Suppose all other agents follow the
efficient mechanism’s acceptance decisions, and an agent deviates.

The sign of the first order effect of the deviation is the same for the
agent’s payoffs and the total payoff (of all agents), implied by the
positive correlation in preferences.

Corollary ⇒ The expected payoff of each agent in the efficient
mechanism is increasing in the informativeness of the signal a, and
the discount factor β.
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Conclusion and Extensions

I develop a model of dynamic matching where the CM has a
facilitator role for information mediation.

Strategic considerations on part of the agents were not the focus.

Combinatorial aspects of learning through a matching is emphasized.

A clean analysis for a rather restricted class of preferences. An
original extension of the Gittins indexability to a combinatorial
learning problem.

Further steps:

Entry and exit from the match pool.

Richer preferences.

More strategic components on part of the agents.
Thank you !
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