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Introduction

Motivation

We almost always use the DU (“discounted utility”) model with

geometric/exponential discounting in dynamic decision

problems/dynamic games (Samuelson 1937).

There are many empirical and experimental evidences that are at

odds with the DU model.

“nonstandard” time preferences have been introduced. One example:

β − δ discounting. It is very simple and tractable.
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Introduction

Motivation

Our goal is to provide a framework in which we can study dynamic

decision problems/dynamic games with as many time preferences as

possible.

Why is this interesting?

I We can examine the robustness of results based on a particular

“nonstandard” time preference.

I We may be able to find a new useful class of time preferences.

I Given a time preference in continuous time, we like to study discrete

time dynamic games with different period length by changing a

frequency of plays.
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Introduction

For today’s talk, I show that a recursive characterization of

equilibrium payoffs is possible for some class of time preferences for

dynamic games (and dynamic decision problems).

Which class? Time preferences that are eventually recursive.
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Introduction

Some Examples

General Discounting

Wi (g
∞
i ) = g1

i + β1δg
2
i + ...+ βK−1δ

K−1gK
i + βKδ

K

[ ∞∑
t=1

δt−1gK+t
i

]

I geometric discounting when β1 = β2 = ... = βK = 1.

I “quasi-hyperbolic” (β − δ) discounting when

β1 = ... = βK = β ∈ (0, 1).

I Hyperbolic discounting.
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1 player problem

Special Case: 1 player

We first consider a special case with 1 player. We consider usual

environments for infinite horizon dynamic programming problem with

deterministic transition.

I State st ∈ S . A player takes an action at ∈ A in period t, which

generates payoff g(st , at) and determines the next state

st+1 = f (st , at).

I S and A are compact and g and f are continuous. Let g(s, a) ∈ [0, g ].
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1 player problem

Assumption on Behavior/Equilibrium

What would a player with general time preference (W (g1, g2, ...)) do?

What is optimal for you today may not be optimal for your

tomorrow-self (who has the same W )

This problem is not a simple optimization problem, it is like a game

among multiple selves.

We assume that each player at each history takes a strategy of future

selves as given. Essentially we treat a player at different histories as

different players.
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1 player problem

Standard Case with Geometric Discounting: Bellman Equation

V (st) = max
at∈A

g(st , at) + δV (f (st , at))
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1 player problem

Special Case: 1 player

To be concrete, assume W (g∞) = g1 + β1δg
2 + β2δ

2(g3 + δg4 + ...).

Two things to note:

I Typically no unique optimal plan and multiple equilibria. Thus no value

function. Maybe we need a value correspondence V (s) ⊂
[
0, g

1−δ

]
?

I We would like a value correspondence to be recursive/self-generating.

How to do it?
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1 player problem

Special Case: 1 player

Main Idea: We consider a slightly more complicated correspondence

Z (s) ⊂
(
A×

[
0, g

1−δ

])
, which is a set of all possible pairs of a

current action and a continuation payoff evaluated by geometric

discounting (which we call continuation score) given current state s.

Now consider the following problem for each s given some Z :

max
a1∈A

g(s, a1) + β1δ
1g(f (s, a1), a2(s, a1)) + β2δ

2V (s, a1)

, where
(
a2(s, a1),V (s, a1)

)
∈ Z (f (s, a1)).

The solution of this provides a new Z̃ (s): the set of all possible pairs

of a1 and a continuation score V = g(f (s, a1), a2(s, a1)) + δV (s, a1).
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1 player problem

Special Case: 1 player

Let Z ∗(s) be the set of all possible pairs of a current action and a

continuation score given state s that can arise in equilibrium.

“Theorem”: Z ∗ is the largest fixed point of Z → Z̃ .

Once we have Z ∗, then we can characterize all the equilibrium payoffs

given s by solving:

max
a1∈A

g(s, a1) + β1δ
1g(f (s, a1), a2(s, a1)) + β2δ

2V (s, a1)

where
(
a2(s, a1),V (s, a1)

)
∈ Z ∗(f (s, a1)).
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Dynamic Games

Dynamic Games

We can extend this to dynamic games.

I n players with action sets Ai , i = 1, .., n.

I Payoff: gi (s, a), Transition: f (s, a)
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Dynamic Games

K -Recursive Preference

Our main assumption about time preferences is K-Recursivitiy.

K-Recursivity

Wi is K -recursive if there exists a function Gi and a recursive function Ŵi

such that Wi (g
∞) = Gi (g

1,K , Ŵi (g
K+1,∞)).

I Ŵi is recursive if there exists a function Fi such that

Ŵi (g
∞) = Fi (g

1, Ŵi (g
2,∞)).

I In addition, continuity, monotonicity etc. are assumed.

I Let V † ⊂ Rn be a bounded set that contains the range of Ŵ = (Ŵ1, ..., Ŵn).

Idea: Wi depends on the first K period payoffs and a recursive

summary statistic (score) of all future payoffs from period K + 1.
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Dynamic Games

Rough Summary

Assume K -recursive time preferences.

What can be supported today depends on the set of all possible pairs of the

K − 1 action profiles from the 2nd period and continuation scores from the

K + 1st period given each state s in the next period. Denote this set by

Z (s) ⊂
(
AK−1 × V †

)
Given Z (s), we can derive the set of all possible pairs of the K − 1 action

profiles from the current period and continuation scores from the K th period

given current s. Thus we have a mapping from Z to Z̃ .

Let Z∗(s) be the set of all possible pairs of the K − 1 action profiles from

the current period and continuation scores from the K th period given state

s that can arise in equilibrium.

Z∗ is the largest fixed point of the mapping Z → Z̃ .
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Dynamic Games

Some special case with no state (i.e. repeated game).

a,   a2,   a3, ……,  aK,   W 
K+1 

a’,  a’2,  a’3, ……,  a’K,  W’ 
K+1 

Deviation 

a,  a2 , ……, aK-1, W    (=F(aK, W  ) ) 
K K+1 

Incentive Constraint 

Generated Actions-Score Pair 
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Dynamic Games

Future Research

There are many things we can do.

I Use different equilibrium concepts.

I Characterization of Markov equilibrium payoffs.

I Existence.

I Apply our method to well-known problems (ex. intergenerational

altruism).
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