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Is Efficient Bilateral Trade Possible?

Buyer and seller privately know their values for an indivisible good

Either of the two agents may have the higher value

Myerson and Satterthwaite (1983): efficient trade is not possible

• no Bayesian incentive-compatible, interim individually-rational,
budget-balanced mechanism is ex-post Pareto efficient.

This negative answer presumes quasilinear utilities.
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Beyond Quasilinearity

• Risk aversion
• Wealth effects
• Risk of bankruptcy



Beyond Quasilinearity

Paper:

• Normal goods: each agent’s reservation price for the good
increases with the agent’s money holding (Cook and Graham,
1977).

• The semi-elasticities of the marginal utilities of money and
good with respect to private information are well-behaved.

Talk:

• Separable example:

u (x ,m; v) = vx + U (m)

where U

0 > 0 > U

00.



Contribution

• Efficient trade is possible if agents’ utilities are not too
responsive to their private information.

• Away from quasilinearity, efficient trade is possible even if
utilities are highly responsive to private information.

• Technology for mechanism design with normal goods.
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Literature on Efficient Trade

• Disjoint domains of types (Myerson and Sattherwaite 1983)
• Infinite risk-aversion (Chatterjee and Samuelson 1983)
• Correlated types (McAfee and Reny 1992)
• Many agents (Wilson 1985, Makowski and Ostroy 1989,

Makowski and Mezzetti 1994, Rustichini, Satterthwaite, and
Williams 1994, Reny and Perry 2006, Cripps and Swinkels
2006)

• Budget-breakers and large ex ante gains from trade (McAfee
1991, Riley 2012)

• Divisible good initially co-owned by both agents (Cramton,
Gibbons, and Klemperer 1987)

• Many goods (Jackson and Sonnenschein 2007, Jackson,
Sonnenschein, and Xing 2014)



Literature on Mechanisms and Efficiency
Beyond Quasilinearity

Deterministic Mechanisms

• Holt (1980), Matthews (1983), Maskin and Riley (1984),
Morimoto and Serizawa (2014)

Pareto frontier for normal goods

• Garratt (1999)
• Baisa (2014)



Example 1: Log Utility

Utility u (x ,m; v) = vx + log m where

x = 1 if the agent has the good, or x = 0 otherwise;

m � 0 money holdings of the agent;

initial money holdings m

S

,m
B

such that the median types of buyer
and seller have the same utility;

v � 0 agent’s privately known type; v

S and v

B distributed iid
uniformly on [2, 100]

Efficient trade is then possible!
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Example 1: Pareto Frontier



Example 1: Log Utility

•
at point S the seller’s money holdings are

m

S(v s , vb) =
v

b

v

s + v

b M

•
at point B the buyer’s money holdings are

m

B(v s , vb) =
v

s

v

s + v

b M

Efficient money holdings do not depend on who has the good:

M � m

S(v s , vb) = m

B(v s , vb).
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Example 1: Mechanism

•
The probability that the seller gets the item if the seller reports v

s

and the buyer reports v

b
is

⇡(v s , vb) =
1

2

+
1

98

ˆ v s

51

log(100 + x)� log(2 + x)

x

dx

+
1

98

ˆ vb

51

� log(100 + x) + log(2 + x)

x

dx .

• This mechanism is Bayesian incentive compatible, individually
rational, and Pareto efficient



Example 2: Shifted Cobb-Douglas

Utility U (x ,m; v) = (1 + vx)m where

x = 1 if the agent has the good, or x = 0 otherwise;

m � 0 money holdings of the agent; m

S

, m

B

initial money holdings;

v � 0 agent’s privately known type; v

S and v

B distributed
arbitrarily (correlation allowed but not needed).



Example 2: Pareto Frontier



Example 2: IR Set on the Pareto Frontier



Example 2: Efficient Mechanism

Give the good and all money to the seller with probability mS
mS+mB

,

Give the good and all money to the buyer with probability mB
mS+mB

.

• Incentive compatible and efficient.

• Individually rational for the seller:

m

S

m

S

+ m

B

⇣
1 + v

S

⌘
(m

S

+ m

B

) �
⇣
1 + v

S

⌘
m

S

.

• Individually rational for the buyer:

m

B

m

S

+ m

B

⇣
1 + v

B

⌘
(m

S

+ m

B

) � m

B

.
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An Aside: Do People Use Such Lottery
Mechanisms?

• Betting the farm.
• Poker tournaments.



Model

Endowments (total amount of money M fixed):

• seller’s: the indivisible good and money m

S .
• buyer’s: money m

B = M � m

S .

Utility u (x ,m; v)

• strictly increasing in x ,m, and v ,
• strictly concave in m, and
• twice differentiable in m and v .

Privately known types v

S , vB ; arbitrary continuous distribution.

Separable example: u (x ,m; v) = vx + U (m)
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Normality

The indivisible good is normal for v if for any m, p, ✏ > 0:

u(0,m; v) = u(1,m�p; v) =) u(0,m+✏; v) < u(1,m+✏�p; v).
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A Condition on Semi-Elasticities

@
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log (u (1,m, v)� u (0,m, v)) >
@

@v

log
✓
@

@m

u (x ,m, v)

◆
= constant
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Main Theorem

Fix u

s (·, ·; v⇤), u

b (·, ·; v⇤), and any initial money endowments but

one. There is � > 0 such that if

max
x2{0,1},m2[0,M], v

���u✓ (x ,m, v)� u

✓ (x ,m, v⇤)
��� < �,

then there is an incentive-compatible and individually-rational

mechanism that generates efficient trade.



Alternative Formulation

Fix any u

s (·, ·; ·), u

b (·, ·; ·), any v

⇤
, and any initial money

endowments but one. There is an interval (v , v) 3 v

⇤
such that:

•
for any distribution of agents’ types on [v , v ]⇥ [v , v ],
there is an incentive-compatible, individually-rational

mechanism that generates efficient trade.



Pareto Frontier



CRRA Example u (x ,m; v) = vx + m
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Separable Example u (x ,m; v) = vx + U (m)

@⇡
�
v

s , vb

�

@v

s

= �
@U

�
m

S

�
v

s , vb

��

@m

@m

S

�
v

s , vb

�

@v

s

CRRA utility of money U (m) = m

r

m

S(v s , vb) =

�
v

b

� 1
1�r

(v s)
1

1�r +
�
v

b

� 1
1�r

M
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Proof of the Main Theorem



Proof: How to Elicit Types?

Mechanism: agents obtain allocation S

�
v

s , vb

�
with probability

⇡
�
v

s , vb

�
and allocation B

�
v

s , vb

�
with probability 1 � ⇡

�
v

s , vb

�
.

Challenge: find function ⇡
�
v

s , vb

�
such that agents report their

true types in a Bayesian Nash equilibrium.

Step 1: we solve the agents’ first order condition to find ⇡

Step 2: we verify the agents’ second order condition.
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First Order Conditions

E
v

b|v s


S1

⇣
v

s , vb

⌘ @
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s

⇡
⇣
v
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⌘
+ S2

⇣
v

s , vb

⌘
⇡
⇣
v

s , vb

⌘�
= � (v s)

E
v

s |vb


B1
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s , vb
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⇡
⇣
v
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⌘
+ B2
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⌘
⇡
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s , vb
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=  

⇣
v
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First Order Conditions
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Second Order Condition

The second order condition is implied by our assumption on the
semi-elasticities:

@

@v

log (u (1,m, v)� u (0,m, v)) >
@

@v

log
✓
@

@m

u (x ,m, v)

◆
= constant



Impossibility of Ex Post Implementation

When m

S ,mB are interior and efficiency requires randomization,
then generically no mechanism is ex-post incentive compatible,
individually rational, and implements efficient trade.



Conclusion

Eliciting money holdings.

Public good provision.
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Conclusion

Efficient trade is possible in a natural class of environments.


