Efficient Bilateral Trade

Rod Garratt Marek Pycia FRBNY UCLA

SoCal NEGT, November 2014

Is Efficient Bilateral Trade Possible?

Buyer and seller privately know their values for an indivisible good Either of the two agents may have the higher value

Is Efficient Bilateral Trade Possible?

Buyer and seller privately know their values for an indivisible good Either of the two agents may have the higher value

Myerson and Satterthwaite (1983): efficient trade is not possible

• no Bayesian incentive-compatible, interim individually-rational, budget-balanced mechanism is ex-post Pareto efficient.

Is Efficient Bilateral Trade Possible?

Buyer and seller privately know their values for an indivisible good Either of the two agents may have the higher value

Myerson and Satterthwaite (1983): efficient trade is not possible

• no Bayesian incentive-compatible, interim individually-rational, budget-balanced mechanism is ex-post Pareto efficient.

This negative answer presumes quasilinear utilities.

Beyond Quasilinearity

- Risk aversion
- Wealth effects
- Risk of bankruptcy

Beyond Quasilinearity

Paper:

- Normal goods: each agent's reservation price for the good increases with the agent's money holding (Cook and Graham, 1977).
- The semi-elasticities of the marginal utilities of money and good with respect to private information are well-behaved.

Talk:

• Separable example:

$$u(x,m;v)=vx+U(m)$$

where U' > 0 > U''.

Contribution

• Efficient trade is possible if agents' utilities are not too responsive to their private information.

Contribution

- Efficient trade is possible if agents' utilities are not too responsive to their private information.
- Away from quasilinearity, efficient trade is possible even if utilities are highly responsive to private information.

Contribution

- Efficient trade is possible if agents' utilities are not too responsive to their private information.
- Away from quasilinearity, efficient trade is possible even if utilities are highly responsive to private information.
- Technology for mechanism design with normal goods.

Literature on Efficient Trade

- Disjoint domains of types (Myerson and Sattherwaite 1983)
- Infinite risk-aversion (Chatterjee and Samuelson 1983)
- Correlated types (McAfee and Reny 1992)
- Many agents (Wilson 1985, Makowski and Ostroy 1989, Makowski and Mezzetti 1994, Rustichini, Satterthwaite, and Williams 1994, Reny and Perry 2006, Cripps and Swinkels 2006)
- Budget-breakers and large ex ante gains from trade (McAfee 1991, Riley 2012)
- Divisible good initially co-owned by both agents (Cramton, Gibbons, and Klemperer 1987)
- Many goods (Jackson and Sonnenschein 2007, Jackson, Sonnenschein, and Xing 2014)

Literature on Mechanisms and Efficiency Beyond Quasilinearity

Deterministic Mechanisms

• Holt (1980), Matthews (1983), Maskin and Riley (1984), Morimoto and Serizawa (2014)

Pareto frontier for normal goods

- Garratt (1999)
- Baisa (2014)

Example 1: Log Utility

Utility $u(x, m; v) = vx + \log m$ where

x = 1 if the agent has the good, or x = 0 otherwise;

 $m \ge 0$ money holdings of the agent;

initial money holdings m_S , m_B such that the median types of buyer and seller have the same utility;

 $v \geq 0$ agent's privately known type; v^S and v^B distributed iid uniformly on [2,100]

Example 1: Log Utility

Utility $u(x, m; v) = vx + \log m$ where

x = 1 if the agent has the good, or x = 0 otherwise;

 $m \ge 0$ money holdings of the agent;

initial money holdings m_S , m_B such that the median types of buyer and seller have the same utility;

 $v \geq 0$ agent's privately known type; v^S and v^B distributed iid uniformly on [2,100]

Efficient trade is then possible!

Example 1: Pareto Frontier

Seller's utility

Example 1: Log Utility

• at point S the seller's money holdings are

$$m^{\mathsf{S}}(v^{\mathsf{s}},v^{\mathsf{b}}) = \frac{v^{\mathsf{b}}}{v^{\mathsf{s}} + v^{\mathsf{b}}}M$$

• at point *B* the buyer's money holdings are

$$m^{B}(v^{s},v^{b})=\frac{v^{s}}{v^{s}+v^{b}}M$$

Example 1: Log Utility

• at point S the seller's money holdings are

$$m^{\mathcal{S}}(v^{s},v^{b}) = \frac{v^{b}}{v^{s} + v^{b}}M$$

• at point *B* the buyer's money holdings are

$$m^B(v^s, v^b) = \frac{v^s}{v^s + v^b} N$$

Efficient money holdings do not depend on who has the good: $M - m^{S}(v^{s}, v^{b}) = m^{B}(v^{s}, v^{b}).$

Example 1: Mechanism

 The probability that the seller gets the item if the seller reports v^s and the buyer reports v^b is

$$\pi(v^{s}, v^{b}) = \frac{1}{2} + \frac{1}{98} \int_{51}^{v^{s}} \frac{\log(100 + x) - \log(2 + x)}{x} dx + \frac{1}{98} \int_{51}^{v^{b}} \frac{-\log(100 + x) + \log(2 + x)}{x} dx.$$

 This mechanism is Bayesian incentive compatible, individually rational, and Pareto efficient

Example 2: Shifted Cobb-Douglas

Utility U(x, m; v) = (1 + vx) m where

x = 1 if the agent has the good, or x = 0 otherwise;

 $m \ge 0$ money holdings of the agent; m_S , m_B initial money holdings;

 $v \ge 0$ agent's privately known type; v^S and v^B distributed arbitrarily (correlation allowed but not needed).

Example 2: Pareto Frontier

Example 2: IR Set on the Pareto Frontier

Example 2: Efficient Mechanism

Give the good and all money to the seller with probability $\frac{m_S}{m_S+m_B}$, Give the good and all money to the buyer with probability $\frac{m_B}{m_S+m_B}$.

Example 2: Efficient Mechanism

Give the good and all money to the seller with probability $\frac{m_S}{m_S+m_B}$, Give the good and all money to the buyer with probability $\frac{m_B}{m_S+m_B}$.

• Incentive compatible and efficient.

Example 2: Efficient Mechanism

Give the good and all money to the seller with probability $\frac{m_S}{m_S+m_B}$, Give the good and all money to the buyer with probability $\frac{m_B}{m_S+m_B}$.

- Incentive compatible and efficient.
- Individually rational for the seller:

$$\frac{m_S}{m_S+m_B}\left(1+v^S\right)\left(m_S+m_B\right)\geq \left(1+v^S\right)m_S.$$

• Individually rational for the buyer:

$$\frac{m_B}{m_S+m_B}\left(1+v^B\right)\left(m_S+m_B\right)\geq m_B.$$

An Aside: Do People Use Such Lottery Mechanisms?

- Betting the farm.
- Poker tournaments.

Model

Endowments (total amount of money M fixed):

- seller's: the indivisible good and money m^{S} .
- buyer's: money $m^B = M m^S$.

Utility u(x, m; v)

- strictly increasing in x, m, and v,
- strictly concave in *m*, and
- twice differentiable in m and v.

Privately known types v^S , v^B ; arbitrary continuous distribution.

Model

Endowments (total amount of money M fixed):

- seller's: the indivisible good and money m^{S} .
- buyer's: money $m^B = M m^S$.

Utility u(x, m; v)

- strictly increasing in x, m, and v,
- strictly concave in *m*, and
- twice differentiable in m and v.

Privately known types v^S , v^B ; arbitrary continuous distribution.

Separable example: u(x, m; v) = vx + U(m)

Normality

Normality

The indivisible good is normal for v if for any $m, p, \epsilon > 0$:

 $u(0, m; v) = u(1, m-p; v) \implies u(0, m+\epsilon; v) < u(1, m+\epsilon-p; v).$

Normality

The indivisible good is normal for v if for any $m, p, \epsilon > 0$:

$$u(0, m; v) = u(1, m-p; v) \implies u(0, m+\epsilon; v) < u(1, m+\epsilon-p; v).$$

Seller's utility

A Condition on Semi-Elasticities

A Condition on Semi-Elasticities

$$\frac{\partial}{\partial v} \log \left(u \left(1, m, v \right) - u \left(0, m, v \right) \right) > \frac{\partial}{\partial v} \log \left(\frac{\partial}{\partial m} u \left(x, m, v \right) \right) = \text{constant}$$

Main Theorem

Fix $u^{s}(\cdot, \cdot; v^{*})$, $u^{b}(\cdot, \cdot; v^{*})$, and any initial money endowments but one. There is $\Delta > 0$ such that if

$$\max_{x\in\{0,1\}, m\in[0,M], v} \left| u^{\theta}(x,m,v) - u^{\theta}(x,m,v^{*}) \right| < \Delta,$$

then there is an incentive-compatible and individually-rational mechanism that generates efficient trade.

Alternative Formulation

Fix any $u^{s}(\cdot, \cdot; \cdot)$, $u^{b}(\cdot, \cdot; \cdot)$, any v^{*} , and any initial money endowments but one. There is an interval $(\underline{v}, \overline{v}) \ni v^{*}$ such that:

 for any distribution of agents' types on [v, v] × [v, v], there is an incentive-compatible, individually-rational mechanism that generates efficient trade.

Pareto Frontier

CRRA Example $u(x, m; v) = vx + m^r$

CRRA Example $u(x, m; v) = vx + m^r$

Separable Example u(x, m; v) = vx + U(m)

$$\frac{\partial \pi \left(v^{s}, v^{b} \right)}{\partial v^{s}} = -\frac{\partial U \left(m^{S} \left(v^{s}, v^{b} \right) \right)}{\partial m} \frac{\partial m^{S} \left(v^{s}, v^{b} \right)}{\partial v^{s}}$$

Separable Example u(x, m; v) = vx + U(m)

$$\frac{\partial \pi \left(v^{s}, v^{b} \right)}{\partial v^{s}} = -\frac{\partial U \left(m^{S} \left(v^{s}, v^{b} \right) \right)}{\partial m} \frac{\partial m^{S} \left(v^{s}, v^{b} \right)}{\partial v^{s}}$$

CRRA utility of money $U(m) = m^r$

$$m^{S}(v^{s}, v^{b}) = \frac{(v^{b})^{\frac{1}{1-r}}}{(v^{s})^{\frac{1}{1-r}} + (v^{b})^{\frac{1}{1-r}}}M$$

Proof of the Main Theorem

Seller's utility

Proof: How to Elicit Types?

Mechanism: agents obtain allocation $S(v^s, v^b)$ with probability $\pi(v^s, v^b)$ and allocation $B(v^s, v^b)$ with probability $1 - \pi(v^s, v^b)$.

Proof: How to Elicit Types?

Mechanism: agents obtain allocation $S(v^s, v^b)$ with probability $\pi(v^s, v^b)$ and allocation $B(v^s, v^b)$ with probability $1 - \pi(v^s, v^b)$.

Challenge: find function $\pi(v^s, v^b)$ such that agents report their true types in a Bayesian Nash equilibrium.

Proof: How to Elicit Types?

Mechanism: agents obtain allocation $S(v^s, v^b)$ with probability $\pi(v^s, v^b)$ and allocation $B(v^s, v^b)$ with probability $1 - \pi(v^s, v^b)$.

Challenge: find function $\pi(v^s, v^b)$ such that agents report their true types in a Bayesian Nash equilibrium.

Step 1: we solve the agents' first order condition to find π

Step 2: we verify the agents' second order condition.

$$\mathbb{E}_{v^{b}|v^{s}}\left[S_{1}\left(v^{s},v^{b}\right)\frac{\partial}{\partial v^{s}}\pi\left(v^{s},v^{b}\right)+S_{2}\left(v^{s},v^{b}\right)\pi\left(v^{s},v^{b}\right)\right] = \phi\left(v^{s}\right)$$
$$\mathbb{E}_{v^{s}|v^{b}}\left[B_{1}\left(v^{s},v^{b}\right)\frac{\partial}{\partial v^{b}}\pi\left(v^{s},v^{b}\right)+B_{2}\left(v^{s},v^{b}\right)\pi\left(v^{s},v^{b}\right)\right] = \psi\left(v^{b}\right)$$

$$\begin{split} S_{1}\left(v^{s},v^{b}\right) &= u\left(1,m^{S}\left(v^{s},v^{b}\right),v^{s}\right) - u\left(0,M-m^{B}\left(v^{s},v^{b}\right),v^{s}\right)\\ B_{1}\left(v^{s},v^{b}\right) &= u\left(1,m^{B}\left(v^{s},v^{b}\right),v^{b}\right) - u\left(0,M-m^{S}\left(v^{s},v^{b}\right),v^{b}\right)\\ S_{2}\left(v^{s},v^{b}\right) &= \left[\frac{\partial}{\partial m}u\left(1,m^{S}\left(v^{s},v^{b}\right),v^{s}\right)\right]\left[\frac{\partial}{\partial v^{s}}m^{S}\left(v^{s},v^{b}\right)\right]\\ &+ \left[\frac{\partial}{\partial m}u\left(0,M-m^{B}\left(v^{s},v^{b}\right),v^{s}\right)\right]\left[\frac{\partial}{\partial v^{b}}m^{B}\left(v^{s},v^{b}\right)\right]\\ B_{2}\left(v^{s},v^{b}\right) &= \left[\frac{\partial}{\partial m}u\left(1,m^{B}\left(v^{s},v^{b}\right),v^{b}\right)\right]\left[\frac{\partial}{\partial v^{b}}m^{B}\left(v^{s},v^{b}\right)\right]\\ &+ \left[\frac{\partial}{\partial m}u\left(0,M-m^{S}\left(v^{s},v^{b}\right),v^{b}\right)\right]\left[\frac{\partial}{\partial v^{b}}m^{S}\left(v^{s},v^{b}\right)\right] \end{split}$$

$$\begin{split} \phi\left(v^{s}\right) &= E_{v^{b}}\left\{\left[\frac{\partial}{\partial m}u\left(0, M - m^{B}\left(v^{s}, v^{b}\right), v^{s}\right)\right]\left[\frac{\partial}{\partial v^{s}}m^{B}\left(v^{s}, v^{b}\right)\right]\right\}\\ \psi\left(v^{b}\right) &= E_{v^{s}}\left\{\left[\frac{\partial}{\partial m}u\left(1, m^{S}\left(v^{s}, v^{b}\right), v^{b}\right)\right]\left[\frac{\partial}{\partial v^{b}}m^{S}\left(v^{s}, v^{b}\right)\right]\right\}\end{split}$$

$$\mathbb{E}_{v^{b}|v^{s}}\left[S_{1}\left(v^{s},v^{b}\right)\frac{\partial}{\partial v^{s}}\pi\left(v^{s},v^{b}\right)+S_{2}\left(v^{s},v^{b}\right)\pi\left(v^{s},v^{b}\right)\right] = \phi\left(v^{s}\right)$$
$$\mathbb{E}_{v^{s}|v^{b}}\left[B_{1}\left(v^{s},v^{b}\right)\frac{\partial}{\partial v^{b}}\pi\left(v^{s},v^{b}\right)+B_{2}\left(v^{s},v^{b}\right)\pi\left(v^{s},v^{b}\right)\right] = \psi\left(v^{b}\right)$$

$$\mathbb{E}_{v^{b}|v^{s}}\left[S_{1}\left(v^{s},v^{b}\right)\frac{\partial}{\partial v^{s}}\pi\left(v^{s},v^{b}\right)+S_{2}\left(v^{s},v^{b}\right)\pi\left(v^{s},v^{b}\right)\right] = \phi\left(v^{s}\right)$$
$$\mathbb{E}_{v^{s}|v^{b}}\left[B_{1}\left(v^{s},v^{b}\right)\frac{\partial}{\partial v^{b}}\pi\left(v^{s},v^{b}\right)+B_{2}\left(v^{s},v^{b}\right)\pi\left(v^{s},v^{b}\right)\right] = \psi\left(v^{b}\right)$$

Solution

$$\pi\left(\mathbf{v}^{s},\mathbf{v}^{b}\right)=b\left(\mathbf{v}^{b}\right)\pi^{B}\left(\mathbf{v}^{s},\mathbf{v}^{b}\right)+s\left(\mathbf{v}^{s}\right)\pi^{S}\left(\mathbf{v}^{s},\mathbf{v}^{b}\right)$$

where π^B and π^S solve

$$S_{1}\left(\mathbf{v}^{s},\mathbf{v}^{b}\right)\frac{\partial}{\partial\mathbf{v}^{s}}\pi^{B}\left(\mathbf{v}^{s},\mathbf{v}^{b}\right)+S_{2}\left(\mathbf{v}^{s},\mathbf{v}^{b}\right)\pi^{B}\left(\mathbf{v}^{s},\mathbf{v}^{b}\right) = 0$$
$$B_{1}\left(\mathbf{v}^{s},\mathbf{v}^{b}\right)\frac{\partial}{\partial c}\pi^{S}\left(\mathbf{v}^{s},\mathbf{v}^{b}\right)+B_{2}\left(\mathbf{v}^{s},\mathbf{v}^{b}\right)\pi^{S}\left(\mathbf{v}^{s},\mathbf{v}^{b}\right) = 0$$

Second Order Condition

The second order condition is implied by our assumption on the semi-elasticities:

$$\frac{\partial}{\partial v} \log \left(u \left(1, m, v \right) - u \left(0, m, v \right) \right) > \frac{\partial}{\partial v} \log \left(\frac{\partial}{\partial m} u \left(x, m, v \right) \right) = \text{constant}$$

Impossibility of Ex Post Implementation

When m^S , m^B are interior and efficiency requires randomization, then generically no mechanism is ex-post incentive compatible, individually rational, and implements efficient trade.

Conclusion

Eliciting money holdings.

Conclusion

Eliciting money holdings.

Public good provision.

Conclusion

Efficient trade is possible in a natural class of environments.