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Motivation

Sensor networks ~ VOIP  Wireless video phone  Video conference In-home streaming

« Delay sensitive multimedia applications are booming over a variety of
time-varying networks (e.g. sensor networks, WiMax, Wireless LAN, etc.)

e Existing dynamic distributed network environments cannot provide
adequate support for delay-sensitive multimedia applications

« This problem has been investigated for a decade, but we still do not have
efficient solutions for it.
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Challenges
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Data arrival — %Transmitter— Receiver

A

— %Transmitter— Receiver

e Challenge 1: Unknown time-varying environments
— Time-varying data arrivals and channel conditions
— Lack of statistic knowledge of dynamics

e Challenge 2: Heterogeneity in the data to transmit (e.g. media data)
— Different delay deadlines, importance, and dependencies

e Challenge 3: Coupling in multi-user transmission

— Mutual impact due to dynamically sharing of the same network resources
(e.g. bandwidth, transmission opportunities) by multiple users
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Existing solutions-1

« Minimize average delay for homogeneous traffic in point-to-point
communications

A
v

— %Transmitter— Receiver

e Information theory [Shannon and beyond] -Challenge 1
—  Water-filling algorithms
— Maximize the throughput without delay constraints

e Control theory — Challenge 1

— Markov decision process (MDP) formulation [Berry 2002, Borkar 2007, Krishnamurthy
2006]

» Statistic knowledge of the underlying dynamics is required
— Online learning [Krishnamurthy 2007, Borkar 2008]
« Slow convergence and large memory requirement

— Stability-constrained optimization for single-user transmission [Tassiulas 1992,2008,
Neely 2006, Kumar 1995, Stolyar 2003]

e Queue is stable, but delay performance is suboptimal (for low delay applications)
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Existing solutions-2

« Maximize quality of delay-sensitive applications with heterogeneous

traffic
*IEE _y

— %Transmitter— Receiver

A
v

e Multimedia communication theory —Challenge 2
— Cross-layer optimization [van der Schaar 2001, 2003, 2005, Katsaggelos 2002]

« Observes and then optimizes (i.e. myopic optimization)

— Rate distortion optimization (RaDiO) [Chou, 2001, Frossard 2006, Girod 2006, Ortega
2009]
« Explicitly considers importance, delay deadlines and dependencies of packets
« Linear transmission cost (e.g. not suitable for energy-constrained transmission)
e No learning ability in unknown environments

— Both solutions only explore the heterogeneity in the media data, but do not explore the
network dynamics (e.g. time-varying channel conditions) and resource constraints.
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Existing solutions-3

o Multi-user transmission by sharing network resources

d
<

—> %Transmitter— Receiver

A

—> %Transmitter— Receiver

« Network optimization theory

— Network utility maximization [Chiang 2007, Katsaggelos 2008] -Challenge 3
« Uses static utility function without considering the network dynamics
 No delay guarantee
« No learning ability in unknown environments
— Stability-constrained optimization for multi-user transmission [Tassiulas 1992,
2006, Neely 2006, 2007, Kumar 1995, Stolyar 2003] - Challenges 1 and 3
e Queue is stable, but delay performance is suboptimal (for low-delay applications)
» Does not consider heterogeneous media data
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A unified foresighted optimization
framework

Challenges Solutions
dynamic systems Foresighted optimization framework
Unknown dynamics Online learning

Learning efficiency

Heterogeneity Separation principles
Multi-user coupling

Current utility State-vilue function

maXy{u<s7y) + va<f<87y7w))}

Queue length

Channel condition State: s State: s’ = f(S, Y, w)

Heterogeneity Action: o
o Y  Dynamics: W o

Current time slot Next time slot
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Key accomplishments

Previous state-of-art methods Improvements
Energy-efficient data | Stability constrained optimization Reduce the delay by
transmission* [Neely 2006] 70% (at low delay region)
Wireless video Rate-distortion optimization [Chou Improve up to 5dB in
transmission 2001] video quality
Multi-user video Network utility maximization [Chiang | Improve 1~3dB in video
transmission 2007] quality

*minimize the average delay
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Roadmap

« Separation principle 1 (improving learning efficiency)
— Post-decision state-based formulation
— Structure-aware online learning with adaptive approximation

« Separation principle 2 (Separating the foresighted decision for
heterogeneous media data transmission)
— Context-based state
— Priority-based scheduling

« Separation principle 3 (decomposing multi-user coupling )
— Multi-user Markov decision process formulation
— Post-decision state value function decomposition
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Roadmap

« Separation principle 1 (improving learning efficiency)
— Post-decision state-based formulation
— Structure-aware online learning with adaptive approximation

UCLA Multimedia Communications and Systems Laboratory

10



Energy-efficient data transmission

Yt
at — %Transmitter—

e Point-to-point time-slotted communication system

<
<

Lt

hy

e System variables
— Backlog (queue length): Tt

— Channel state: h; Finite state Markov chain (e.g. Rayleigh fading)

— Data arrival process: a;: 1.1.d.

e Decision at each time slot

UCLA

— Amount of data to transmit (transmission rate): ¥z, 0 < y < ¢

— Energy consumption: p(ht,yt), convex in y;, e.g. pt(ht,yt) =N

What is the optimal (queueing) delay and energy trade-off?
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Foresighted optimization formulation

<) « — Constant
« Foresighted optimization (MDP) foﬁr? > onstant enerey
— State: <$t,ht) %4 | .
— Action: ¢ 5 AT onstant rate
. ©
- Policy: m: (24, he) — vy ~Optimal trade-oft
— Utility function: % 30 35 40 45

ergy consumption

w(@e, he, yr) = — (20 — ye + Ap(he, yt)e)n

o Objective (optimize the trade-off between delay and energy consumption)
©.@)

mng Zat {u(xs, he, w(xe, he))} @ € 0,1) is discount factor.

t=0 o0
— State value function: V' (x4, hy) = max E Z o\ * =) Ly, i, (s, hi))}

« Bellman’s equations k=t
V(z,h) = max{u(z, h,7(z, h)) + aEq p 3V (x — 7 (2, h) + a, h')}

— Policy iteration
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Challenges for solving the Bellman’s
equations

Bellman’s equation:

V(z,h) = max{u(x, h,m(x,h)) + aEa’h,mV(a} —m(z,h) +a,h’)}

o Lack of statistical knowledge of the underlying dynamics
— Unknown traffic characteristics
— Unknown channel (network) dynamics

e Coupling between the maximization and expectation

e Curses of dimensionality

— Large state space
» Intractable due to large memory and heavy computation requirements
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Conventional online learning methods

e Decision and dynamics

Normal state Normal state
(x4, ht) (xt41, het1)
Decision Exogenous dynamics ]
V(a¢, he) U M1 Y (g hey)
State-value function State-value function

o Foresighted optimization
V(CB, h’) — Inax {’UJ(SE, ha y) + aEa,h’|hV(x —Y + a, h/)}

0<y<z ~— T~ —

Q(z,h,y)

e Online learning
— Learn Q-function (Q-learning): Q(ﬂ% h, y)

Low convergence, high space complexity
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Our approach- separation via post-decision

state
Normal state Post-decision state Normal state
(xt, ht) (e = e, he) (Tt4+1, hat1)
Decision y; Exogenous dynamics:O o
at, ht+1
V(xg, hy)v U(Zg, hy) v V(xts1, het1)
State-value function Post-decision State-value function
state-value function
Foresighted decision Expectation over dynamics

V(ZC, h) — man{’LL(ZC, h7 y) + OzU(:Ij — Y, h>} U(ili‘, h) — ]Ea,h’|h‘/<aj + a, h,)

Post-decision state separates foresighted decision from dynamics.

Expectation over dynamics

TN

.V U
v\—/

Foresighted decision
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Post-decision state-based online learning

U(z,h) =Eq ppV(z+a,h)
V(z,h) = max{u(z, h,y) + aU(z —y,h)}
Y

e Online learning
Ui(z,hi—1) = (1 — B)Us—1(x, he—1) + B Vi(z, he) | eg. By = 1/t

Online update Time-average

R

m, V U
‘\_—/
Foresighted decision
‘/t(x7 ht) — r:;lea)%c{u(x, ht7 y) + 04(]15—1@j — Y, ht)}

Theorem:
Online adaptation converges to the optimal solution when ¢t — oo

Expectation is independent of backlog x — batch update (fast convergence).
Batch update incurs high complexity. ®
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Structural properties of optimal solution

U(z,h) =Eq ppV(z+a,h)
V(z,h) = max{u(z, h,y) + aU(z —y,h)}
Y

« Structural properties of optimal solution

— Assumption: u(z, h,y) is jointly concave and supermodular* in(x, y)

Expectation over dynamics

TN

7T(:13, h) iSs monotonicinx mV U U(:U, h) is concave in z
~_

Foresighted decision

How can we utilize these structural properties in online learning?

*ul@' h,y) —ul@ hy) >ulz, hy) —ulz,hy) ife’ >z,9 >y
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Piece-wise linear approximation

« How to compactly represent post-decision state-value function and
monotonic policy?

Adaptive approximation operator (Aé)

For each channel state h, we approximate the post-decision
state-value function such that min max ¢, < 6 (threshold).

1=1,--n
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Online learning with adapt
approximation

Up(z, hi—1) = A{(1 - Be)Ui—1(z, he—1) + BeVi(w, he)}

Online u%\ 4
m(x, hy) p

m, V U

lve

Uy (a(hy b))

> Foresighted decision

o

»

Vi(z, hy) = I;leaagc{u(w, he,y) + aUi—1(z — y, he)}

Theorem: Online learning with adaptive approximation
converges to an €-optimal solution, where ¢ =

1l -«

Variant: Update U(x, h) and 7(z, h) every T'time slots
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Performance of learning with

approximation
Rayleigh fading channel

2

Average channel gain % = (0.14  #channel state=8

UCLA

6

a=0.95

] [ FN n
T T T T

Average delay ( x 10ms)

—
I

——T=1
——T=5
——T=10
——T=20
——T=30
—v—T=40

28 30 3 3 3 38 40
Average energy consumption {mdJ)

42
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Comparison with stability-constrained
optimization

o Stability-constrained optimization [Neely, 2006]
— Minimize the trade-off between Lyapunov drift and energy consumption

min A\p(he, ye) + (T — ye)° — 7

- /)
YT

Lyapunov drift
max —(z: — y¢ + Ap(he, ye)) + @ — ye — (w0 — ye)® + @7

Yt Gy\ PR )
~ ~
Utility function Post-decision state value functon
(¢, he, Yt) Uzt — ye, he)
— Do not consider the effect of the utility function on post-decision state value

function
— Do not consider the time-correlation of the channel states
— Only ensure queue stability, but result in poor delay performance
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Comparison to stability-constrained

optimization

Channel: Muagkiermheonrelation
(generated MA model)

151 —e—Online learning with adaptive approximation| |
— —+— Stability constrained optimization
g 14+
-
x 12_
L
% 10+
S o
Q
2 o
9 4
<
2_
% 30 20 50 50 70 30 90
Average energy consumption (md)
Stability constrained optimization Our proposed solution

* Minimize Lyapunov drift #Minimize delay  * Minimize queue size = Minimize delay
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Comparison to Q-learning

« Markovian Rayleigh fading channel

« Q-learning: update the state-value function one state at each time slot (learn over
50000 time slots)

e Online learning with adaptive approximation: T=10, learn over 5000 time slots

4 O T T T T

—e—Online learning with adaptive approximation (5000 time slots) |
—=—Q-learning (50000 time slots)

[rs]
imn
T

Average delay ( x 10ms)

on
T
|

i

2|5 3|O 3|5 40 45
Average energy consumption (mJ)

P
L]
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Roadmap

« Separation principle 2 (Separating the foresighted decision for
heterogeneous media data transmission)
— Context-based state
— Priority-based scheduling
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Heterogeneous media data

Media data representation:

N

« Each DU has the following attributes:

— Arrival time: time at which the DU is ready for processing: ¢?
— Delay deadline: {*
~ Size: L' in packets

00—

P e
i | Data Unit (DU)

D —e T

0 —== T

— Distortion impact: qi per packet
— Interdependency between DUs: expressed by Directed Acyclic Graph (DAG)
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Context

DU1

DU 2 DU 4 DU 2
DU 1 < DU 1
DU 3 DUS5 DU 3
dl |d27d3 |d47d5 >
1 2 3 4
o Fixed GOP (i.e. group of DUs) structure
« Context (c;) at each time slot ¢
Include the DUs whose deadlines are within a time window W
eg W =3
/DUZ DU 2 DU 4 DU 4 DU 4
\ DU 1
DU 3 DU 3 DUS5 DUS5 DUS5
C1 C2 C3 Cq

e Context transition is deterministic

UCLA
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Foresighted optimization

DU 2 DU 4 DU 4
DU 3 DU 5 DU 5
Cy Ct41

State: (ct,X¢, he) x¢ = (a7, 23, 2}, 27)

« Multi-DU Foresighted decision

max ¢ Y wi(w}, by, yh) + aU(c, X — ye, he)
y;,ZECt ’I:ECt

~— —
——

Current utility Post-decision state-value function

— Which DU should be transmitted first?
— How much data should be transmitted for each DU?
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Priority-based scheduling

e Prioritization
— Based on distortion impacts, delay deadlines and dependencies

DU 2 DU 4 DU2[*" —-DU4

7y 7y |::> ? ?

DU 3 DU 5 DU3[* — 7IDU5
Ct Priority graph
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Separate foresighted decision across DUs

e Priority-based scheduling
— If there is only one DU with the highest priority, transmit the data in this DU
by solving the foresighted optimization;

— If there are multiple DUs that have same priorities, solve the foresighted
optimization for each DU, transmit the data from the DU with highest long-

term utility.

Single-DU foresighted decision:
V;iz = max {u% xtahtazyt 7yt —|—Oél{ (Ctaxt ytaht)}

ytEy(ht) §<i
J <Vu:DU jhas higher priority than DU i.  gpe dimensional concave function
given ¢t and Nt .
DU2[* —-|DU4 :
- - It can be updated using the proposed
' ' online learning.
DU3[* —-|DUS

Multi-DU foresighted decision — Multiple single-DU foresighted decision
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Simulation results for single-user
transmission

34 T T T T T T 3.5
33k E b
32k
3051+
M
a vl 30 .
T z
o 30
z <
o @ 25
2+
29r
2B
—+— Praopoged solution
s —#— Proposed solution H BEF "Distortion impact"-based solution
"Distortion-impact™-based solution —&— Rate-distortion optimization ignoring time-varying channel
—— Fate-disartion optimization ignaring time-varying channel
25 L L L L L L 28 ! ! L L ! ! ! 1
u 0.1435 02870 0.4305 05733 07174 0.8609 1.004 0 01146 02292 03438 04585 05731 0677 08023 09169
Consumed energy Consumed energy
Foreman Coastguard

Channel: Rayleigh fading, modeled as 8-state Markov chain
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Roadmap

« Separation principle 3 (decomposing multi-user coupling )
— Multi-user Markov decision process formulation
— Post-decision state value function decomposition

UCLA Multimedia Communications and Systems Laboratory
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Delay-sensitive multi-access

communications
Tl oy
aM—»
° \ 4 M
. Transmitter*ﬁf
517% 1 e
a%—» Yt 'A
v ',/

UCLA

Transmitter!” h%

maXES o S w; (xt, b, yb)

yt,\V/t

s.L. [yzga s Yt ] = H(ht)7Vt >0

Resource constraint (e.g. transmission
time constraint in TDMA)
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Foresighted optimization formulation

—i p—i . .
X =} —1
e !$t+1aht+1

User —; Q x FO = =O.. I

Py : : P : '} :
. Resource I Resource Resource
Network coordinator allocation | allocation allocation

User ¢ O Y I’O - ’OJ v .,

70 ) i
Ty, by | Ti 1, M
_ Timeslot . .
Current allocation ! Future allocation t
°°°°°° » Resource requirement information =P Resource allocation

e Formulate as Multi-user MDP (MUMDP) and perform foresighted decision

Depends on all users state

M
V 7h — 7 i) ia ! U _ 7h
(%, hy) ytrgggflt){;u(wt Lyl + aU(xe — yi, he )}

Our goal: decouple the post-decision state value function across users
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Decomposition of post-decision state-
value function

| i
z ' hy ! 51%@11}/%911
user—i Or——>O—w—O; L B
"‘ = “¢Resburce price )\ ‘4 .
Network coordinator Resource |- Resource Resource
allocation |l allecation{— allecation
" : Wprlce .W .
' . ; Ik .. w w
User 1 O f\ ¥ ’O Yy
zi b | xm,hm
Current allocation Future allocation
o Relax the resource constraints (e.g. TDMA-like access)
M _ ok 1
Zz 1 R(hz) < 1 \V/k t+ ]‘ E@ Zkz t—|—1 Zz 1 R(hz — 11—«

Access time

e Introduce scalar resource price ), , and compute post-decision state-value
function U2 (z¢, ht) individually based on single-user MDP.

UMa',h') = max {w;(z',h",y") — Ay’ /R(h") + aU (" — y', h")}

0<yi<lzg?

e« Upper bound
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Resource allocation

« Post-decision state value function decomposition

U(xe, he) = S, U (i, hi)

e Resource aIIocation

e Lower bound

UCLA

7 y 7;7 : + UA 7hl
R Do) 0 )

Gradient-based allocation Gradient information

:lﬁt ) h’t I xtz-i-l? h’tz-i-l
o o >
User —i O ;& |'O ) % g
.'4 = Resource price \

Network coordinator | Resource |
allocation |; -
X — | Resource price A

User 1 Q Y |>© _' ’O

: . . 7 7
xi, hy | L1 M4

v C “'

Current allocation Future allocation
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Resource price update

e Subgradient method to update resource price

The resource pric is updated bv
)\k+1 [)\k _|_Bk Zzz

where Z* isthe expected consumed resource by
user ¢ and is individually computed by user <.

M subgradient

1l — «

Network coordinator

Update A based on
subgradient mathod

zl A E A E_-I;f A

¥

User 1 User ¢ User M
Solving local MDP Solving local MDP Solving local MDP
given A given A given A
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Relationship of different solutions

Single-user MDP
(Low-complexity
online learning)

|
|
|
|
| Decentralized
|
|
|

Relax future

MUMDP | Lesource constraint CEHEHEZ;{::GMEL,{EDP Stab{;"?ﬁ;';fiﬁinm
(dynamic and (dy : . - - P :
foresighted fnfeglgh!ed Approximate thle {tliyrjam‘lc
optimization) Provide upper/ optimization) _state_.»-value function optimization)
NE—— i‘ _______ lowerbound . _ _ i _____ — | with Lyapunov
. function
Symmetric users a=0
Repeated NUM
LQPHR (static and myopic
optimization)
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Simulation results for multi-user
transmission

Foreman

36

I

PSNR (dB)
5 bS] & '3 =]

)
o
T

ha
=

Lower bound

Coastguard

Upper bound

24+

Users experienced with average

UCLA

1
2 3
Users

Proposed solution

14 g A
Y v P ad ;

— — - Repeated NUM

dser 1, Foreman

T User 3, Mobile

channel conditions of 28dB

1
100

|
150
#Frames

I 1
200 250

1. Each user uses multiple queues to represent video data;
2.  Markov chain model for Rayleigh fading channel

3. TDMA-type channel access
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Other applications developed in our lab

Cross-layer optimization via layer separation [Fu 2009, Zhang 2010]

— Each layer performs dynamic optimization individually
— Message exchange across layers

Media-TCP [Shiang 2010]
— Context-based congestion control

Dynamic voltage scaling for video decoding [Mastronarde 2009]

— Post-decision state-based formulation
— Context-based scheduling

Wireless video network with cooperation [Mastronarde 2010]

— Structure-aware online learning

UCLA Multimedia Communications and Systems Laboratory
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Su

mmary: separation principle 1

e Foresighted optimization framework

EwV(f(S, Y, w))}
O

Next time slot

max, {u(s,y) +
G

Current time slot

max u(s, y) + U(g(s, y)) Post-dedision state U<§) — EwV(g’(§, w))
Yy

5=4(s,v)
O— O »O

Current time slot : Next time slot

e Separation principle 1

UCLA

— Post-decision state-based foresighted optimization formulation:
separation between foresighted decision and dynamics

— Structure-aware online learning
« Low complexity, fast convergence and achieving €-optimal solutions

Multimedia Communications and Systems Laboratory
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Summary: separation principle 2

o Foresighted optimization framework
maxu(s,y) + U(g(s,¥))

1
\
— DU
.
.
Sa

A __--7

DU 1

“Npu s|

context DU: data unit
o Separation principle 2
— Context-based state to capture heterogeneity in data units at each
time slot
— Priority graph-based scheduling: separation across data units
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Summary: separation principle 3

o Foresighted optimization framework

max Y u'(s",y") +U(g(s,y))

yell
=1
; I
User % Q — :>O x =O x >
" Resource™ :— - |=Resource = = | Resource
constralnt constraint constraint

User —; Q t I’O v ;O v s
s * '
Current state PostSdeC|5|on state
e Separation principle 3

— Decomposition of post-decision state value function: separation
across users
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Fu

ture research

e Extend the unified framework to

UCLA

— Multi-hop delay-sensitive data transmission
— Non-collaborative multi-user data transmission

— Energy-efficient parallel data processing in media systems
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