A Unified Framework for Delay-Sensitive Communications

Fangwen Fu
fwfu@ee.ucla.edu
Advisor: Prof. Mihaela van der Schaar
Motivation

- Delay sensitive multimedia applications are booming over a variety of time-varying networks (e.g. sensor networks, WiMax, Wireless LAN, etc.)

- Existing dynamic distributed network environments cannot provide adequate support for delay-sensitive multimedia applications

- This problem has been investigated for a decade, but we still do not have efficient solutions for it.

Sensor networks VOIP Wireless video phone Video conference In-home streaming
• **Challenge 1**: Unknown time-varying environments
 – Time-varying data arrivals and channel conditions
 – Lack of statistic knowledge of dynamics

• **Challenge 2**: Heterogeneity in the data to transmit (e.g. media data)
 – Different delay deadlines, importance, and dependencies

• **Challenge 3**: Coupling in multi-user transmission
 – Mutual impact due to dynamically sharing of the same network resources (e.g. bandwidth, transmission opportunities) by multiple users
Existing solutions-1

- Minimize average delay for *homogeneous traffic* in point-to-point communications

- **Information theory** [Shannon and beyond] – *Challenge 1*
 - Water-filling algorithms
 - Maximize the throughput without delay constraints

- **Control theory** – *Challenge 1*
 - Markov decision process (MDP) formulation [Berry 2002, Borkar 2007, Krishnamurthy 2006]
 - Statistic knowledge of the underlying dynamics is required
 - Online learning [Krishnamurthy 2007, Borkar 2008]
 - Slow convergence and large memory requirement
 - Queue is stable, but delay performance is suboptimal (for low delay applications)
Existing solutions-2

- Maximize quality of delay-sensitive applications with *heterogeneous traffic*
- **Multimedia communication theory** — *Challenge 2*
 - Observes and then optimizes (i.e. myopic optimization)
 - Explicitly considers importance, delay deadlines and dependencies of packets
 - Linear transmission cost (e.g. not suitable for energy-constrained transmission)
 - No learning ability in unknown environments
 - *Both solutions only explore the heterogeneity in the media data, but do not explore the network dynamics (e.g. time-varying channel conditions) and resource constraints.*
Existing solutions-3

- Multi-user transmission by sharing network resources

- Network optimization theory
 - Network utility maximization [Chiang 2007, Katsaggelos 2008] – *Challenge 3*
 - Uses static utility function without considering the network dynamics
 - No delay guarantee
 - No learning ability in unknown environments
 - Queue is stable, but delay performance is suboptimal (for low-delay applications)
 - Does not consider heterogeneous media data
A unified foresighted optimization framework

<table>
<thead>
<tr>
<th>Challenges</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>dynamic systems</td>
<td>Foresighted optimization framework</td>
</tr>
<tr>
<td>Unknown dynamics</td>
<td>Online learning</td>
</tr>
<tr>
<td>Learning efficiency</td>
<td>Separation principles</td>
</tr>
<tr>
<td>Heterogeneity</td>
<td></td>
</tr>
<tr>
<td>Multi-user coupling</td>
<td></td>
</tr>
</tbody>
</table>

\[
\max_y \{ u(s, y) \} + \mathbb{E}_w V(f(s, y, w)) \\
\text{State: } s' = f(s, y, w)
\]

Queue length
Channel condition
Heterogeneity
Key accomplishments

<table>
<thead>
<tr>
<th></th>
<th>Previous state-of-art methods</th>
<th>Improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy-efficient data transmission*</td>
<td>Stability constrained optimization [Neely 2006]</td>
<td>Reduce the delay by 70% (at low delay region)</td>
</tr>
<tr>
<td>Wireless video transmission</td>
<td>Rate-distortion optimization [Chou 2001]</td>
<td>Improve up to 5dB in video quality</td>
</tr>
<tr>
<td>Multi-user video transmission</td>
<td>Network utility maximization [Chiang 2007]</td>
<td>Improve 1~3dB in video quality</td>
</tr>
</tbody>
</table>

*minimize the average delay
Roadmap

- Separation principle 1 (improving learning efficiency)
 - Post-decision state-based formulation
 - Structure-aware online learning with adaptive approximation

- Separation principle 2 (Separating the foresighted decision for heterogeneous media data transmission)
 - Context-based state
 - Priority-based scheduling

- Separation principle 3 (decomposing multi-user coupling)
 - Multi-user Markov decision process formulation
 - Post-decision state value function decomposition
Roadmap

• Separation principle 1 (improving learning efficiency)
 – Post-decision state-based formulation
 – Structure-aware online learning with adaptive approximation

• Separation principle 2 (Separating the foresighted decision for heterogeneous media data transmission)
 – Context-based state
 – Priority-based scheduling

• Separation principle 3 (decomposing multi-user coupling)
 – Multi-user Markov decision process formulation
 – Post-decision state value function decomposition
Energy-efficient data transmission

- Point-to-point time-slotted communication system
- System variables
 - Backlog (queue length): x_t
 - Channel state: h_t Finite state Markov chain (e.g. Rayleigh fading)
 - Data arrival process: a_t: i.i.d.
- Decision at each time slot
 - Amount of data to transmit (transmission rate): $y_t, 0 \leq y_t \leq x_t$
 - Energy consumption: $\rho(h_t, y_t)$, convex in y_t, e.g. $\rho_t(h_t, y_t) = \sigma^2 \frac{(2y_t - 1)}{h_t}$.

What is the optimal (queueing) delay and energy trade-off?
Foresighted optimization formulation

- Foresighted optimization (MDP) formulation
 - State: \((x_t, h_t)\)
 - Action: \(y_t\)
 - Policy: \(\pi : (x_t, h_t) \rightarrow y_t\)
 - Utility function:
 \[u(x_t, h_t, y_t) = -(x_t - y_t + \lambda \rho(h_t, y_t)). \]

- Objective (optimize the trade-off between delay and energy consumption)
 \[\max_{\pi} \mathbb{E} \sum_{t=0}^{\infty} \alpha^t \{ u(x_t, h_t, \pi(x_t, h_t)) \} \] \(\alpha \in [0, 1) \) is discount factor.
 - State value function: \(V(x_t, h_t) = \max_{\pi} \mathbb{E} \sum_{k=t}^{\infty} \alpha^{(k-t)} \{ u(x_k, h_k, \pi(x_k, h_k)) \} \)

- Bellman’s equations

\[V(x, h) = \max_{\pi} \{ u(x, h, \pi(x, h)) + \alpha \mathbb{E}_{a, h'} | h V(x - \pi(x, h) + a, h') \} \]
 - Policy iteration
Challenges for solving the Bellman’s equations

Bellman’s equation:

\[V(x, h) = \max_\pi \{ u(x, h, \pi(x, h)) + \alpha \mathbb{E}_{a, h'} h V(x - \pi(x, h) + a, h') \} \]

- Lack of statistical knowledge of the underlying dynamics
 - Unknown traffic characteristics
 - Unknown channel (network) dynamics

- Coupling between the maximization and expectation

- Curses of dimensionality
 - Large state space
 - Intractable due to large memory and heavy computation requirements
Conventional online learning methods

- Decision and dynamics

Normal state \((x_t, h_t) \)

\[V(x_t, h_t) \]

State-value function

\[V(x_{t+1}, h_{t+1}) \]

Normal state \((x_{t+1}, h_{t+1}) \)

Decision \(y_t \)

Exogenous dynamics \(a_t, h_{t+1} \)

\[V(x_{t+1}, h_{t+1}) \]

State-value function

- Foresighted optimization

\[V(x, h) = \max_{0 \leq y \leq x} \left\{ u(x, h, y) + \alpha \mathbb{E}_{a, h'}|h V(x - y + a, h') \right\} \]

- Online learning
 - Learn Q-function (Q-learning): \(Q(x, h, y) \)

Low convergence, high space complexity
Our approach- separation via post-decision state

Normal state

\((x_t, h_t)\)

Post-decision state

\((x_t - y_t, h_t)\)

Normal state

\((x_{t+1}, h_{t+1})\)

\begin{align*}
V(x_t, h_t) &\quad U(\tilde{x}_t, h_t) &\quad V(x_{t+1}, h_{t+1}) \\
\text{State-value function} &\quad \text{Post-decision state-value function} &\quad \text{State-value function}
\end{align*}

Foresighted decision

\[
V(x, h) = \max_y \{u(x, h, y) + \alpha U(x - y, h)\}
\]

Expectation over dynamics

\[
U(x, h) = \mathbb{E}_{a, h' \mid h} V(x + a, h')
\]

Post-decision state separates foresighted decision from dynamics.

\[
\pi, V \quad U
\]

Foresighted decision
Post-decision state-based online learning

\[U(x, h) = \mathbf{E}_{a,h'|h} V(x + a, h') \]

\[V(x, h) = \max_y \{ u(x, h, y) + \alpha U(x - y, h) \} \]

- Online learning

\[U_t(x, h_{t-1}) = (1 - \beta_t) U_{t-1}(x, h_{t-1}) + \beta_t V_t(x, h_t) \quad \text{e.g. } \beta_t = 1/t \]

Theorem:
Online adaptation converges to the optimal solution when \(t \to \infty \)

Expectation is independent of backlog \(x \to \text{batch update} \) (fast convergence).

Batch update incurs high complexity. 😞
Structural properties of optimal solution

\[
U(x, h) = \mathbf{E}_{a, h'|h} V(x + a, h') \\
V(x, h) = \max_{y} \{ u(x, h, y) + \alpha U(x - y, h) \}
\]

- Structural properties of optimal solution
 - Assumption: \(u(x, h, y) \) is jointly concave and supermodular* in \((x, y)\)

* \(u(x', h, y') - u(x', h, y) \geq u(x, h, y') - u(x, h, y) \) if \(x' \geq x, y' \geq y \)

How can we utilize these structural properties in online learning?
For each channel state h, we approximate the post-decision state-value function such that \[\min_{i=1,\ldots,n} \max_{\delta_i} \delta_i \leq \delta \text{ (threshold)}. \]
Online learning with adaptive approximation

\[\hat{U}_t(x, h_{t-1}) = A_\delta \{ (1 - \beta_t) \hat{U}_{t-1}(x, h_{t-1}) + \beta_t V_t(x, h_t) \} \]

Theorem: Online learning with adaptive approximation converges to an \(\varepsilon \)-optimal solution, where

\[\varepsilon = \frac{\delta}{1 - \alpha} \]

Variant: Update \(U(x, h) \) and \(\pi(x, h) \) every \(T \) time slots
Performance of learning with approximation

Rayleigh fading channel
Average channel gain $\frac{h^2}{\sigma^2} = 0.14$ \#channel state=8 $\alpha = 0.95$
Comparison with stability-constrained optimization

- Stability-constrained optimization [Neely, 2006]
 - Minimize the trade-off between Lyapunov drift and energy consumption
 \[
 \min \lambda \rho(h_t, y_t) + \left(x_t - y_t \right)^2 - x_t^2
 \]
 - Lyapunov drift
 \[
 \max_{y_t \in Y} \left(x_t - y_t + \lambda \rho(h_t, y_t) \right) + x_t - y_t - (x_t - y_t)^2 + x_t^2
 \]
 - Utility function
 - Post-decision state value function
 - Do not consider the effect of the utility function on post-decision state value function
 - Do not consider the time-correlation of the channel states
 - Only ensure queue stability, but result in poor delay performance
Comparison to stability-constrained optimization

Stability constrained optimization
• Minimize Lyapunov drift ≠ Minimize delay

Our proposed solution
• Minimize queue size = Minimize delay

Channel: Markov chain
(generated MA model)
Comparison to Q-learning

- Markovian Rayleigh fading channel
- Q-learning: update the state-value function one state at each time slot (learn over 50000 time slots)
- Online learning with adaptive approximation: T=10, learn over 5000 time slots
Roadmap

• Separation principle 1 (improving learning efficiency)
 – Post-decision state-based formulation
 – Structure-aware online learning with adaptive approximation

• Separation principle 2 (Separating the foresighted decision for heterogeneous media data transmission)
 – Context-based state
 – Priority-based scheduling

• Separation principle 3 (decomposing multi-user coupling)
 – Multi-user Markov decision process formulation
 – Post-decision state value function decomposition
Heterogeneous media data

Media data representation:

Each DU has the following attributes:
- Arrival time: time at which the DU is ready for processing: t^i
- Delay deadline: d^i
- Size: L^i in packets
- Distortion impact: q^i per packet
- Interdependency between DUs: expressed by Directed Acyclic Graph (DAG)
Context

- Fixed GOP (i.e. group of DUs) structure
- Context \((c_t) \) at each time slot \(t \)
 - Include the DUs whose deadlines are within a time window \(W \)

 e.g. \(W = 3 \)

- Context transition is deterministic
Foresighted optimization

State: \((c_t, x_t, h_t) \quad x_t = (x^2_t, x^3_t, x^4_t, x^5_t)\)

- Multi-DU Foresighted decision

\[
\max_{y^i_t, i \in c_t} \left\{ \sum_{i \in c_t} u_i(x^i_t, h^i_t, y^i_t) + \alpha U(c_t, x_t - y_t, h_t) \right\}
\]

- Which DU should be transmitted first?
- How much data should be transmitted for each DU?
Priority-based scheduling

- Prioritization
 - Based on distortion impacts, delay deadlines and dependencies

Priority graph
Separate foresighted decision across DUs

- Priority-based scheduling
 - If there is only one DU with the highest priority, transmit the data in this DU by solving the foresighted optimization;
 - If there are multiple DUs that have same priorities, solve the foresighted optimization for each DU, transmit the data from the DU with highest long-term utility.

Single-DU foresighted decision:

\[
V_t^i = \max_{y_t^i \in \mathcal{Y}(h_t)} \left\{ \tilde{u}_i(x_t^i, h_t, \sum_{j \sqsupset i} y_t^j, y_t^i) + \alpha U_i(c_t, x_t^i - y_t^i, h_t) \right\}
\]

\(j \sqsubset i \): DU \(j \) has higher priority than DU \(i \).

One dimensional concave function given \(c_t \) and \(h_t \).

It can be updated using the proposed online learning.

Multi-DU foresighted decision → Multiple single-DU foresighted decision
Simulation results for single-user transmission

Channel: Rayleigh fading, modeled as 8-state Markov chain
Roadmap

• Separation principle 1 (improving learning efficiency)
 – Post-decision state-based formulation
 – Structure-aware online learning with adaptive approximation

• Separation principle 2 (Separating the foresighted decision for heterogeneous media data transmission)
 – Context-based state
 – Priority-based scheduling

• Separation principle 3 (decomposing multi-user coupling)
 – Multi-user Markov decision process formulation
 – Post-decision state value function decomposition
Delay-sensitive multi-access communications

\[
\max_{y_t, \forall t} \mathbb{E} \sum_{t=0}^{\infty} \sum_{i=1}^{M} \alpha^t u_i(x^i_t, h^i_t, y^i_t)
\]

\[
s.t. \ [y^1_t, \ldots, y^M_t] \in \Pi(h_t), \forall t \geq 0
\]

Resource constraint (e.g. transmission time constraint in TDMA)
Foresighted optimization formulation

- Formulate as Multi-user MDP (MUMDP) and perform foresighted decision

\[
V(x_t, h_t) = \max_{y_t \in \Pi(h_t)} \left\{ \sum_{i=1}^{M} u_i(x_t^i, h_t^i, y_t^i) + \alpha U(x_t - y_t, h_t) \right\}
\]

Depends on all users state

Our goal: decouple the post-decision state value function across users
Decomposition of post-decision state-value function

- Relax the resource constraints (e.g. TDMA-like access)

\[
\sum_{i=1}^{M} \frac{y_{k}^i}{R(h_{k}^i)} \leq 1, \forall k = t + 1, \cdots \quad \Leftrightarrow \quad \sum_{k=t+1}^{\infty} \alpha^k \sum_{i=1}^{M} \frac{y_{k}^i}{R(h_{k}^i)} \leq \frac{1}{1-\alpha}
\]

Access time

- Introduce scalar resource price \(\lambda \), and compute post-decision state-value function \(U_i^\lambda(x_t^i, h_t^i) \) individually based on single-user MDP.

\[
U_i^\lambda(x_t^i, h_t^i) = \max_{0 \leq y^i \leq x^i} \left\{ u_i(x_t^i, h_t^i, y^i) - \lambda y^i / R(h_t^i) + \alpha U_i^\lambda(x_t^i - y^i, h_t^i) \right\}
\]

- Upper bound
Resource allocation

• Post-decision state value function decomposition

\[U(x_t, h_t) \approx \sum_{i=1}^{M} U_i^\lambda(x_t^i, h_t^i) \]

• Resource allocation

\[
\max_{y_t \in \Pi(h_t)} \sum_{i=1}^{M} \left\{ u_i(x_t^i, h_t^i, y_t^i) + \alpha U_i^\lambda(x_t^i - y_t^i, h_t^i) \right\}
\]

 – Gradient-based allocation

• Lower bound
Resource price update

- Subgradient method to update resource price

The resource price is updated by

$$\lambda^{k+1} = [\lambda^k + \beta^k (\sum_{i=1}^{M} Z^i - \frac{1}{1-\alpha})]^+$$

where Z^i is the expected consumed resource by user i and is individually computed by user i.
Relationship of different solutions

- Single-user MDP (Low-complexity online learning)
- Decentralized MUMDP (dynamic and foresighted optimization)
 - Symmetric users
 - Relax future resource constraint
 - Provide upper/lower bound
- Centralized MUMDP (dynamic and foresighted optimization)
 - \(\alpha = 0 \)
 - Repeated NUM (static and myopic optimization)
- Proposed method
- Stability-constrained optimization (dynamic optimization)

Approximate the state-value function with Lyapunov function.
Simulation results for multi-user transmission

1. Each user uses multiple queues to represent video data;
2. Markov chain model for Rayleigh fading channel
3. TDMA-type channel access

Users experienced with average channel conditions of 28dB
Other applications developed in our lab

• Cross-layer optimization via layer separation [Fu 2009, Zhang 2010]
 – Each layer performs dynamic optimization individually
 – Message exchange across layers

• Media-TCP [Shiang 2010]
 – Context-based congestion control

• Dynamic voltage scaling for video decoding [Mastronarde 2009]
 – Post-decision state-based formulation
 – Context-based scheduling

• Wireless video network with cooperation [Mastronarde 2010]
 – Structure-aware online learning
Summary: separation principle 1

- Foresighted optimization framework

\[
\max_y \{u(s, y) + E_w V(f(s, y, w))\}
\]

Current time slot \hspace{1cm} Next time slot

\[
\max_y u(s, y) + U(g(s, y)) \quad \text{Post-decision state} \quad \tilde{s} = g(s, y)
\]

Current time slot \hspace{1cm} Next time slot

\[
U(\tilde{s}) = E_w V(g'(\tilde{s}, w))
\]

- **Separation principle 1**
 - Post-decision state-based foresighted optimization formulation: separation between foresighted decision and dynamics
 - Structure-aware online learning
 - Low complexity, fast convergence and achieving \(\varepsilon\)-optimal solutions
Summary: separation principle 2

- Foresighted optimization framework

\[
\max_y u(s, y) + U(g(s, y))
\]

- **Separation principle 2**
 - Context-based state to capture heterogeneity in data units at each time slot
 - Priority graph-based scheduling: separation across data units

DU: data unit
Summary: separation principle 3

- Foresighted optimization framework

\[
\max_{y \in \Pi} \sum_{i=1}^{M} u^i(s^i, y^i) + U(g(s, y))
\]

- **Separation principle 3**
 - Decomposition of post-decision state value function: separation across users
Future research

• Extend the unified framework to
 – Multi-hop delay-sensitive data transmission
 – Non-collaborative multi-user data transmission
 – Energy-efficient parallel data processing in media systems
Related Journal Publications

[Fu10a] Fangwen Fu, Mihaela van der Schaar, “Structural solutions for cross-layer optimization of wireless multimedia transmission,” In submission.

Acknowledgements

• PhD committee: Professor Mihaela van der Schaar, Lixia Zhang, Jason Speyer, Lieven Vandenberghe, and Gregory J. Pottie

• Labmates: Brian Foo, Hyunggon Park, Nick Mastronarde, Brian Foo, Xiaolin Tong, Yi Su, Yu Zhang, Shaolei Ren, Jaeok Park, Khoa Tran Phan, Zhichu Lin, and Yuanzhang Xiao

• Intern mentors: Dr. Deepak Turaga, Dr. Olivier Verscheure, and Dr. Ulas Kozat

• Collaborators: Dr. Tudor Stoenescu, Dr. Ulrich Berthold, Dr. Ahmad Fattahi

• Family: my wife, parents, sister and brother