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Motivation

Sensor networks Wireless video phone

• Delay sensitive multimedia applications are booming over a variety of 
time-varying networks (e.g. sensor networks, WiMax, Wireless LAN, etc.)

• Existing dynamic distributed network environments cannot provide
adequate support for delay-sensitive multimedia applications

• This problem has been investigated for a decade, but we still do not have 
efficient solutions for it. 
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Challenges

Transmitter Receiver

Transmitter Receiver

Channel state

Data arrival

• Challenge 1: Unknown time-varying environments

– Time-varying data arrivals and channel conditions

– Lack of statistic knowledge of dynamics

• Challenge 2: Heterogeneity in the data to transmit (e.g. media data)

– Different delay deadlines, importance, and dependencies

• Challenge 3: Coupling in multi-user transmission

– Mutual impact due to dynamically sharing of the same network resources 
(e.g. bandwidth, transmission opportunities) by multiple users
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Existing solutions-1

• Minimize average delay for homogeneous traffic in point-to-point 
communications

• Information theory [Shannon and beyond] –Challenge 1

– Water-filling algorithms

– Maximize the throughput without delay constraints

• Control theory – Challenge 1

– Markov decision process (MDP) formulation [Berry 2002, Borkar 2007, Krishnamurthy 
2006]

• Statistic knowledge of the underlying dynamics is required

– Online learning [Krishnamurthy 2007, Borkar 2008]

• Slow convergence and large memory requirement

– Stability-constrained optimization for single-user transmission [Tassiulas 1992,2006,  
Neely 2006, Kumar 1995, Stolyar 2003]

• Queue is stable, but delay performance is suboptimal (for low delay applications)

Transmitter Receiver
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Existing solutions-2

• Maximize quality of delay-sensitive applications with heterogeneous 

traffic

• Multimedia communication theory –Challenge 2

– Cross-layer optimization [van der Schaar 2001, 2003, 2005, Katsaggelos 2002]

• Observes and then optimizes (i.e. myopic optimization)

– Rate distortion optimization (RaDiO) [Chou, 2001, Frossard 2006, Girod 2006, Ortega 

2009]

• Explicitly considers importance, delay deadlines and dependencies of packets

• Linear transmission cost (e.g. not suitable for energy-constrained transmission)

• No learning ability in unknown environments

– Both solutions only explore the heterogeneity in the media data, but do not explore the 

network dynamics (e.g. time-varying channel conditions) and resource constraints. 

Transmitter Receiver
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Existing solutions-3

• Multi-user transmission by sharing network resources

• Network optimization theory 

– Network utility maximization [Chiang 2007, Katsaggelos 2008] –Challenge 3

• Uses static utility function without considering the network dynamics

• No delay guarantee

• No learning ability in unknown environments

– Stability-constrained optimization for multi-user transmission [Tassiulas 1992, 

2006,  Neely 2006, 2007, Kumar 1995, Stolyar 2003] - Challenges 1 and 3

• Queue is stable, but delay performance is suboptimal (for low-delay applications)

• Does not consider heterogeneous media data

Transmitter Receiver

Transmitter Receiver
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A unified foresighted optimization 

framework

Current time slot Next time slot

u(s, y) V (f(s, y, w))Ewmaxy{ }+

Current utility State-value function

Challenges Solutions

dynamic systems Foresighted optimization framework

Unknown dynamics Online learning

Learning efficiency

Heterogeneity

Multi-user coupling

State: s

Action: y

State: 

Dynamics: w

Separation principles

Queue length

Channel condition

Heterogeneity

s′ = f(s, y, w)
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Key accomplishments

Reduce the delay by 

70% (at low delay region)

Stability constrained optimization 

[Neely 2006]

Energy-efficient data 

transmission*

Improve up to 5dB in 

video quality

Rate-distortion optimization [Chou 

2001]

Wireless video 

transmission

Improve 1~3dB in video 

quality

Network utility maximization [Chiang 

2007]

Multi-user video 

transmission

ImprovementsPrevious state-of-art methods

*minimize the average delay
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Roadmap

• Separation principle 1 (improving learning efficiency)

– Post-decision state-based formulation

– Structure-aware online learning with adaptive approximation

• Separation principle 2 (Separating the foresighted decision for 

heterogeneous media data transmission)

– Context-based state

– Priority-based scheduling

• Separation principle 3 (decomposing multi-user coupling )

– Multi-user Markov decision process formulation

– Post-decision state value function decomposition
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Energy-efficient data transmission

Transmitter Receiverat

xt yt
ht

• Point-to-point time-slotted communication system

• System variables

– Backlog (queue length): 

– Channel state:          Finite state Markov chain (e.g. Rayleigh fading)

– Data arrival process: 

• Decision at each time slot

– Amount of data to transmit (transmission rate): 

– Energy consumption: 

xt

ht

yt, 0 ≤ yt ≤ xt

ρ(ht, yt), convex in yt, e.g. ρt(ht, yt) = σ2 (2
yt−1)
ht

.

at: i.i.d.

What is the optimal (queueing) delay and energy trade-off?
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Foresighted optimization formulation

• Foresighted optimization (MDP)  formulation

– State: 

– Action:

– Policy:

– Utility function:  

• Objective (optimize the trade-off between delay and energy consumption)

– State value function:

• Bellman’s equations

– Policy iteration

(xt, ht)
yt
π : (xt, ht)→ yt
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Optimal trade-off

Constant energy

α ∈ [0, 1) is discount factor.max
π
E

∞∑

t=0

αt {u(xt, ht, π(xt, ht))}

u(xt, ht, yt) = −(xt − yt + λρ(ht, yt)).

V (xt, ht) = max
π
E

∞∑

k=t

α(k−t) {u(xk, hk, π(xk, hk))}

V (x, h) = max
π
{u(x, h, π(x, h)) + αEa,h′|hV (x− π(x, h) + a, h

′)}
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Challenges for solving the Bellman’s 

equations

• Lack of statistical knowledge of the underlying dynamics

– Unknown traffic characteristics

– Unknown channel (network) dynamics

• Coupling between the maximization and expectation

• Curses of dimensionality

– Large state space

• Intractable due to large memory and heavy computation requirements

Bellman’s equation:

V (x, h) = max
π
{u(x, h, π(x, h)) + αEa,h′|hV (x− π(x, h) + a, h

′)}
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Conventional online learning methods

• Decision and dynamics

• Foresighted optimization

• Online learning

– Learn Q-function (Q-learning):

(xt, ht) (xt+1, ht+1)

…Exogenous dynamicsDecision yt
at, ht+1

Normal state Normal state

V (xt, ht) V (xt+1, ht+1)

State-value functionState-value function

V (x, h) = max
0≤y≤x

{u(x, h, y) + αEa,h′|hV (x− y + a, h′)}

Q(x, h, y)

Q(x, h, y)

Low convergence, high space complexity
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Our approach- separation via post-decision 

state

(xt, ht) (xt+1, ht+1)

V (xt, ht) V (xt+1, ht+1)U(x̃t, ht)

Post-decision
state-value function

…

State-value functionState-value function

Post-decision state separates foresighted decision from dynamics.

U(x, h) = Ea,h′|hV (x+ a, h′)V (x, h) = max
y
{u(x, h, y) + αU(x− y, h)}

Exogenous dynamicsDecision yt
at, ht+1

Foresighted decision

Expectation over dynamics

Foresighted decision Expectation over dynamics

Normal stateNormal state
(xt − yt, ht)

Post-decision state
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Post-decision state-based online learning

• Online learning

e.g. βt = 1/t

Vt(x, ht) = max
y∈Y

{u(x, ht, y) + αUt−1(x− y, ht)}

Ut(x, ht−1) = (1− βt)Ut−1(x, ht−1) + βtVt(x, ht)

Foresighted decision

Online update

U(x, h) = Ea,h′|hV (x+ a, h′)

V (x, h) = max
y
{u(x, h, y) + αU(x− y, h)}

Expectation is independent of backlog x → batch update (fast convergence).

Theorem: 

Online adaptation converges to the optimal solution when t→∞

Time-average

Batch update incurs high complexity. �
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Structural properties of optimal solution

• Structural properties of optimal solution

– Assumption:                     is jointly concave and supermodular* in              

.

U(x, h) = Ea,h′|hV (x+ a, h′)

V (x, h) = max
y
{u(x, h, y) + αU(x− y, h)}

Foresighted decision

Expectation over dynamics

is monotonic in xπ(x, h) is concave in xU(x, h)

u(x, h, y) (x, y)

How can we utilize these structural properties in online learning?

* u(x′, h, y′)− u(x′, h, y) ≥ u(x, h, y′)− u(x, h, y) if x′ ≥ x, y′ ≥ y
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For each channel state h, we approximate the post-decision 

state-value function such that                                (threshold).

Piece-wise linear approximation

• How to compactly represent post-decision state-value function and 

monotonic policy?

x1 x2 x4x3

1δ

2δ

1δ

3δ

2δ

1, ,
min max i
n i n

δ δ
=

≤
⋯

U(x, h)
π(x, h)

x1 x2 x4x3
AδAdaptive approximation operator (     )
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Online learning with adaptive 

approximation

δ

Ût(x, ht−1)

1

δ
ε

α
=
−

Vt(x, ht) = max
y∈Y

{u(x, ht, y) + αÛt−1(x− y, ht)}

Ût(x, ht−1) = A{(1− βt)Ût−1(x, ht−1) + βtVt(x, ht)}

Foresighted decision

Online update

π(x, ht)

Theorem: Online learning with adaptive approximation 

converges to an ε-optimal solution, where

Variant: Update                  and                 every T time slotsU(x, h) π(x, h)

Ût−1(x, h)
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Performance of learning with 

approximation

#channel state=8
Rayleigh fading channel

α = 0.95Average channel gain h2

σ2
= 0.14
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Comparison with stability-constrained 

optimization

• Stability-constrained optimization [Neely, 2006]

– Minimize the trade-off between Lyapunov drift and energy consumption

– Do not consider the effect of the utility function on post-decision state value 

function

– Do not consider the time-correlation of the channel states

– Only ensure queue stability, but result in poor delay performance

Lyapunov drift

minλρ(ht, yt) + (xt − yt)
2 − x2t

Post-decision state value functonUtility function

max
yt∈Y

−(xt − yt + λρ(ht, yt)) + xt − yt − (xt − yt)
2 + x2t

u(xt, ht, yt) U(xt − yt, ht)
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Comparison to stability-constrained 

optimization

Stability constrained optimization

• Minimize Lyapunov drift ≠Minimize delay

Our proposed solution

• Minimize queue size = Minimize delay

Channel: Markov chainChannel: long-term correlation
(generated MA model)
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Comparison to Q-learning

• Markovian Rayleigh fading channel

• Q-learning: update the state-value function one state at each time slot (learn over 

50000 time slots)

• Online learning with adaptive approximation: T=10, learn over 5000 time slots
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Roadmap

• Separation principle 1 (improving learning efficiency)

– Post-decision state-based formulation

– Structure-aware online learning with adaptive approximation

• Separation principle 2 (Separating the foresighted decision for 

heterogeneous media data transmission)

– Context-based state

– Priority-based scheduling

• Separation principle 3 (decomposing multi-user coupling )

– Multi-user Markov decision process formulation

– Post-decision state value function decomposition
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Heterogeneous media data

Data Unit (DU)

Media data representation:

• Each DU has the following attributes:

– Arrival time: time at which the DU is ready for processing: 

– Delay deadline: 

– Size :           in packets

– Distortion impact:        per packet

– Interdependency between DUs: expressed by Directed Acyclic Graph (DAG)

ti

di

qi
Li
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Context

• Fixed GOP (i.e. group of DUs) structure

• Context (   ) at each time slot t

– Include the DUs whose deadlines are within a time window W

• Context transition is deterministic

DU 1

DU 2

DU 3

DU 4

DU 5

DU 1

DU 2

DU 3
…………

t

DU 1

DU 2

DU 3

DU 2

DU 3

DU 4

DU 5

DU 4

DU 5

DU 4

DU 5

DU 1

e.g. W = 3

1 2 3 4

c1 c2 c3 c4

ct

d1 d2, d3 d4, d5
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Foresighted optimization

• Multi-DU Foresighted decision

– Which DU should be transmitted first?

– How much data should be transmitted for each DU?

DU 2

DU 3

DU 4

DU 5

ct

State: (ct,xt, ht)

Current utility Post-decision state-value function

max
yit,i∈ct

{
∑

i∈ct

ui(x
i
t, h

i
t, y

i
t) + αU(ct,xt − yt, ht)

}

DU 4

DU 5

ct+1

xt = (x2t , x
3
t , x

4
t , x

5
t )
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Priority-based scheduling

• Prioritization

– Based on distortion impacts, delay deadlines and dependencies

DU 2

DU 3

DU 4

DU 5

ct

DU 2

DU 3

DU 4

DU 5

Priority graph
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Separate foresighted decision across DUs

• Priority-based scheduling

– If there is only one DU with the highest priority, transmit the data in this DU 

by solving the foresighted optimization;

– If there are multiple DUs that have same priorities, solve the foresighted 

optimization for each DU, transmit the data from the DU with highest long-

term utility.

DU 2

DU 3

DU 4

DU 5

V it = max
yit∈Y(ht)

{ũi(x
i
t, ht,

∑

j⊳i

yj∗t , y
i
t) + αUi(ct, x

i
t − y

i
t, ht)}

Single-DU foresighted decision:

Multi-DU foresighted decision →→→→ Multiple single-DU foresighted decision

One dimensional concave function

given       and       .ct ht

It can be updated using the proposed 

online learning.

: DU j has higher priority than DU i.j ⊳ i
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Simulation results for single-user 

transmission

Foreman Coastguard

Channel: Rayleigh fading, modeled as 8-state Markov chain
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Roadmap

• Separation principle 1 (improving learning efficiency)

– Post-decision state-based formulation

– Structure-aware online learning with adaptive approximation

• Separation principle 2 (Separating the foresighted decision for 

heterogeneous media data transmission)

– Context-based state

– Priority-based scheduling

• Separation principle 3 (decomposing multi-user coupling )

– Multi-user Markov decision process formulation

– Post-decision state value function decomposition
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Delay-sensitive multi-access 

communications

Transmitter

Transmitter h1t

x1t

xMt

hMt

y1t

yMt

a1t

aMt

…

s.t. [y1t , · · · , y
M
t ] ∈ Π(ht),∀t ≥ 0

Resource constraint (e.g. transmission 

time  constraint in TDMA)

max
yt,∀t

E

∞∑

t=0

αt
M∑

i=1

ui(x
i
t, h

i
t, y

i
t)
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Foresighted optimization formulation

• Formulate as Multi-user MDP (MUMDP) and perform foresighted decision

tCurrent allocation Future allocation

User i

i−User

Resource 

allocation

Resource

allocation

Resource 

allocation

,i i
t tx h

,i i
t tx h− −

Network coordinator

Time slot

1 1,i i
t tx h− −
+ +

1 1,i i
t tx h+ +

Resource requirement information Resource allocation

V (xt,ht) = max
yt∈Π(ht)

{
M∑

i=1

ui(x
i
t, h

i
t, y

i
t) + αU(xt − yt,ht)}

Depends on all users state

Our goal: decouple the post-decision state value function across users
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Decomposition of post-decision state-

value function

• Relax the resource constraints (e.g. TDMA-like access)

• Introduce scalar resource price      , and compute post-decision state-value 

function                       individually based on single-user MDP.

• Upper bound

Current allocation Future allocation

User i

i−User

Resource 

allocation

,i i
t tx h

,i i
t tx h− −

1 1,i i
t tx h+ +

1 1,i i
t tx h+ +

Resource price         λ

Resource price         λ

Network coordinator

Access time

λ
Uλi (x

i
t, h

i
t)

⊂⊂⊂⊂

Resource

allocation

Resource 

allocation

1 1,i i
t tx h− −
+ +

Uλi (x
i, hi) = max

0≤yi≤xi
{ui(x

i, hi, yi)− λyi/R(hi) + αUλi (x
i − yi, hi)}

∑M

i=1
yik

R(hi
k
)
≤ 1,∀k = t+ 1, · · ·

∑∞
k=t+1 α

k
∑M

i=1
yik

R(hi
k
)
≤ 1

1−α
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Resource allocation

• Post-decision state value function decomposition

• Resource allocation

– Gradient-based allocation

• Lower bound

t

Current allocation Future allocation

User i

i−User

Resource 

allocation

,i i
t tx h 1 1,i i

t tx h+ +

,i i
t tx h− −

1 1,i i
t tx h+ +

Resource price         λ

Resource price         λ

Network coordinator

max
yt∈Π(ht)

M∑

i=1

{ui(x
i
t, h

i
t, y

i
t) + αUλi (x

i
t − y

i
t, h

i
t)}

Gradient information

U(xt, ht) ≈
∑M

i=1 U
λ
i (x

i
t, h

i
t)
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• Subgradient method to update resource price

λk+1 = [λk + βk(

M∑

i=1

Zi −
1

1− α
)]+

Resource price update

The resource price is updated by

subgradient

where          is the expected consumed resource by 

user i and is individually computed by user i.
Zi
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Relationship of different solutions
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Simulation results for multi-user 

transmission

1. Each user uses multiple queues to represent video data;

2. Markov chain model for Rayleigh fading channel

3. TDMA-type channel access

Users experienced with average 

channel conditions of 28dB

Foreman

Coastguard

Mobile

Upper bound

Lower bound
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Other applications developed in our lab

• Cross-layer optimization via layer separation [Fu 2009, Zhang 2010]

– Each layer performs dynamic optimization individually

– Message exchange across layers

• Media-TCP [Shiang 2010]

– Context-based congestion control

• Dynamic voltage scaling for video decoding [Mastronarde 2009]

– Post-decision state-based formulation

– Context-based scheduling

• Wireless video network with cooperation [Mastronarde 2010]

– Structure-aware online learning
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Summary: separation principle 1

• Foresighted optimization framework

• Separation principle 1

– Post-decision state-based foresighted optimization formulation: 
separation between foresighted decision  and dynamics

– Structure-aware online learning

• Low complexity, fast convergence and achieving ε-optimal solutions

Current time slot Next time slot

u(s, y) V (f(s, y, w))Ewmaxy{ }+

Current time slot Next time slot

max
y
u(s, y) + U(g(s, y)) U(s̃) = EwV (g

′(s̃, w))Post-decision state

s̃ = g(s, y)
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Summary: separation principle 2

• Foresighted optimization framework

• Separation principle 2

– Context-based state to capture heterogeneity in data units at each 

time slot

– Priority graph-based scheduling: separation across data units

context

DU 1

DU 2

DU 3

DU 4

DU 5

max
y
u(s,y) + U(g(s,y))

DU: data unit
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Summary: separation principle 3

• Foresighted optimization framework

• Separation principle 3

– Decomposition of post-decision state value function: separation 

across users

si s̃i

User i

i−User

Resource 

constraint

Resource

constraint

Resource 

constraint

s−i s̃−i
Current state Post-decision state

max
y∈Π

M∑

i=1

ui(si, yi) + U(g(s,y))
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Future research

• Extend the unified framework to

– Multi-hop delay-sensitive data transmission

– Non-collaborative multi-user data transmission

– Energy-efficient parallel data processing in media systems
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