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Outline

 Motivation and existing approaches

e Informationally efficient multi-user
communication

— Vector cases

« Convergence conditions with decentralized information
e Improve efficiency with decentralized information

— Scalar cases

e Achieve Pareto efficiency with decentralized information

e Conclusions
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Multi-user communication networks

Power control

J Distributed routing

— | 7]
bl oy
R
[ ]
- 1

etc...
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Constraints in communication networks

e« Resources
— Bandwidth, power,
spectrum, etc.
e Information

— Real-time

e Local observation
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Constraints in communication networks

e« Resources
— Bandwidth, power,

spectrum, etc. g % !.

e Information ‘ t

— Real-time
e Local observation
« Exchanged message ____"!
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Constraints in communication networks

e Resources

— Bandwidth, power, T 1
spectrum, etc. l‘:‘ T )
« Information P

— Real-time t t

« Local observation Y )

« Exchanged message ,‘\ "

— Non-real-time 1

« A-priori information about ;
inter-user coupling, protocols, etc.
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Constraints in communication networks

e Resources

- Bandwidth, power, %’I‘T T
spectrum, etc. % | Tg%
o Information )

— Real-time ‘__t

« Local observation fi‘ v
« Exchanged message "‘ ol
— Non-real-time et ;
o A-priori information about ‘
inter-user coupling, protocols, etc. # v

Goal: multi-user communication without information exchange
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A standard strategic game formulation

e Consider a tuple
I'= (N, A, u)
— The set of players: N = {1,2,..., N}
— The set of actions: A = X,en Ay and A, C R
— Utility function: ©v = X,enu, and u, : A — R
— Utility region: U = {(uq(a),...,uny(a))| Fac A}
In communication networks, different operating

points in {/ can be chosen based on the information
availability

UCLA Multimedia Communications and Systems Laboratory 8



Existing approaches

e Local observation

MaXa, cA, Un(an,a—p)

Nash equilibrium

UCLA Multimedia Communications and Systems Laboratory 9



UCLA

Existing approaches

e Local observation

MaXa, cA, Un(an,a—p)

Nash equilibrium

« Exchanged messages

N
a
2y 2 (e)

Pareto optimality
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Existing approaches

Existing results usually assume some

e Local observation specific action and utility structures!

MaXa, e A, Un(an,a_p) % } fff
Nash equilibrium Ij

« Exchanged messages t t

= 4+ ! Price!
dak dak ‘
MF#N. - - - - -%

Pareto optimality
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Existing approaches (cont’d)

e Results with specific action and utility structures

— Pure Nash equilibrium

« Concave games Use gradient play to find NE
i) A, : convexand compact; ii)u,, (a,,a_, ): quasi-concave in a,
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Existing approaches (cont’d)

e Results with specific action and utility structures

— Pure Nash equilibrium

« Concave games Use gradient play to find NE
i) A, : convexand compact; ii)u,, (a,,a_, ): quasi-concave in a,
« Potential games [Shapley] Use best response to find NE
V(m,n) € N3, m #n. O (un — tm) — 0
da,0a,,
>
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Existing approaches (cont’d)

e Results with specific action and utility structures

— Pure Nash equilibrium

« Concave games Use gradient play to find NE

i) A, : convexand compact; ii)u,, (a,,a_, ): quasi-concave in a,
« Potential games [Shapley] Use best response to find NE

20y —
V(m,n) € N, m #n, O (tn — tm) _ 0
. Oa,dap,

e Super-modular games [Topkis] Use best response to find NE

i) A, is alattice; ii) Y(m,n) € N2 m £, O un >0

Oa,oa, ~
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Existing approaches (cont’d)

e Results with specific action and utility structures

— Pure Nash equilibrium

« Concave games Use gradient play to find NE

i) A, : convex and compact; ii)un(am a_n): quasi-concave in a,,
« Potential games [Shapley] Use best response to find NE

V(m,n) € N3, m #n. O (un — tm) — 0
da,0a,,

o Super-modular games [Topkis] Use best response to find NE

i) A, is alattice; ii) Y(m,n) € N?,m #n, 85 g; >0

— Pareto optimality e

o Network utility maximization [Kelly]

« Convexity is the watershed >|
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Existing approaches (cont’d)

Researchers Applications Tools

Altman CDMA uplink power control S-modular games
Berry Distributed interference compensation S-modular games
Barbarossa Power control Potential games
Tse Spectrum sharing Repeated games
Kelly End-to-end congestion control Pricing

Goodman CDMA uplink power control Pricing

Low End-to-end flow control Pricing

Chiang Joint congestion and power control Pricing

Poor Energy efficient power and rate control Equilibrium analysis
Cioffi Power control in DSL systems Equilibffym analysis
Yates Uplink power control for cellular radio Equﬁ})riu /alysis
Wicker Selfish users in Aloha Equili a Sis
Lazar Non-cooperative optimal flow control Equilibriu4ﬁ analysis
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Existing approaches (cont’d)

e (Game theory The focus is on strategic
o _ . interactions among users
— Equilibrium characterization

— Incentive design

e Optimization theory Information is usually costless
— Computational complexity
— Distributed algorithms

e Information theory Decentralization is not the focus

— Fundamental limits
— Encoding and decoding schemes

UCLA Multimedia Communications and Systems Laboratory 17



Existing approaches (cont’d)

General models

e.g. concave/potential
/supermodular games

)

/
Specific multi-user,
munication appligations

u, |

Pareto boundary

/ Global information

5

Nash equilibrium

But in many communication systems, information is Y:
constrained and no message passing is allowed!
UCLA Multimedia Communications and Systems Laboratory 18



Our goals

If information is constrained and

no message passing is allowed...

u,

General models

e.g. concave/potential
/supermodular games

New classes of
communication
games

Specific multi-user,
munication appligations

UCLA

a

Pareto boundary
Global (exchanged) information

Nash equilibrium
Decentralized (limited) informatiqn

Multimedia Communications and Systems Laboratory
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Our goals

If information is constrained and

no message passing is allowed...

u,

General models

e.g. concave/potential
/supermodular games

a

Pareto boundary
Global (exchanged) information

When will it canverge
to a NE ? And how fast ?

UCLA
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Our goals

If information is constrained and

no message passing is allowed...

u,

General models

e.g. concave/potential
/supermodular games

a

Pareto boundary
Global (exchanged) information

How to improve an inefficient
NE without message bassing ?

UCLA
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Our goals

If information is constrained and

no message passing is allowed...

u,

General models

e.g. concave/potential
/supermodular games

a

Pareto boundary
Global (exchanged) information

/ Arid can we still achieve

Pareto optimality ?

UCLA

Multimedia Communications and Systems Laboratory 22



Outline

« Motivation and existing approaches

nformationally efficient multi-user

communication

— Vector cases

« Convergence conditions with decentralized information
e Improve efficiency with decentralized information

— Scalar cases

e Achieve Pareto efficiency with decentralized information

e Conclusions

UCLA
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A reformulation of multi-user interactions

e Consider a tuple
I'=(N,A,S, s, u)
— The set of players: V' = {1,2,...,N}
— The set of actions: 4 = x,,en A

— Statespace: S = X,enSn
— State determination function:

S = XTLENS’TL and S’TZ . A—n — n
In standard strategic game,

— Utility function: S, = A_,

U = XpeNUp and u, | S, X A, — R

It captures the structure of the coupling between action and state

UCLA Multimedia Communications and Systems Laboratory 24



A reformulation of multi-user interactions

e Consider a tuple
I'=(N,A,S, s, u)
— The set of players: V' = {1,2,...,N}
— The set of actions: 4 = x,,enAn

Many communication
— State Space. 8 — XnE./\/'Sn networking applications have

— State determination function: simple &, which captures

the aggregate effects of A,
S = XneNSn and s, : A_,, = 5, .

In standard strategic game,

— Utility function: S, = A_,

U = XpeNUp and u, | S, X A, — R

It captures the structure of the coupling between action and state
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Communication games with simple states

e Power control

aggregate interference

_ }2’?'1,?1 P?’L
Sn = Zm;ﬁn hpn Py Un = 10g2(1 | On+Sn )

t o - t

\ /
N,

H

hfabile m hfabile n
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Communication games with simple states

e Power control

aggregate interference

_ }2’?'1,?1 P?’L
Sn = Zm;ﬁn hpn Py Un = 10g2(1 | On+Sn )

e Flow control
remaining capacity

_ _ wn W
Sn = Zm#n Vm,s Up = i, —5,° - ]

(Ol A&

H B
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Communication games with simple states

e Power control

aggregate interference

_ }2’?'1,?1 P?’L
Sn = Zm;ﬁn hpn Py Un = 10g2(1 | On+Sn )

e Flow control U

remaining capacity

Sn — Zm#n Vm, Up = u_wn'_sn- ‘w

« Random access u .E |

idle probability et . —

Sn — Hfm;én(l - pm)a Un = Pn " Sn.

UCLA Multimedia Communications and Systems Laboratory
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Outline

« Motivation and existing approaches

nformationally efficient multi-user

communication

— Vector cases

« Convergence conditions with decentralized information

e Improve efficiency with decentralized information

— Scalar cases

e Achieve Pareto efficiency with decentralized information

e Conclusions

UCLA
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Additively Coupled Sum Constrained Games

e Definition
— A multi-user interaction I' = (N, A, u) in which
Al:Vn € N action set A,, is defined to be
A, ={(al,....a®)| af € [a ﬂ”f %] and Zf:l ak < M,.}
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Additively Coupled Sum Constrained Games

e Definition
— A multi-user interaction I' = (N, A, u) in which
Al:Vn € N, action set A,, is defined to be
A, =1(ak,. .. al)] ak € [uﬁ“f %] and Z‘f:l ak < M,.}
|

Structure of the action set:
resource is constrained

UCLA Multimedia Communications and Systems Laboratory 31



Additively Coupled Sum Constrained Games

e Definition

— A multi-user interaction I' = (N, A, u) in which

A2: The utility function satisfies
K

un(a) = Z [hﬁ (aﬁ T f.ff (a—*n)) — Qﬁ(a—n)] ;
k=1
in which h%(-) : R — R is an increasing and strictly

concave function. Both f*(.): A_, — R and

gr(-): A_, — R are twice differentiable.

UCLA Multimedia Communications and Systems Laboratory 32



Additively Coupled Sum Constrained Games

e Definition

— A multi-user interaction ' =

A2: The utility function satisfies P
Z {hn an T fn (a—n)) H|

U, n

states

N

(N, A, u) in which

(Jxﬁ (a—p)

|

cost

in which h% () : 72 — R is anincreasing and strictly
concave function. Both f*(.): A_, — R and
gr(-): A_, — R are twice differentiable.

UCLA Multimedia Communications and Systems Laboratory
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Ad

ditively Coupled Sum Constrained Games

e Definition

UCLA

— A multi-user interaction I' = (N, A, u) in which

Structure of the utility:
additive coupling between
action and state

A2: The utility function satisfies  states
K

™~
up(a) = Z {h,ﬁ (aﬁ f,}f(an/))' - g,ﬁ(a—n)]a
k=1

. . Z{/) . . . cost .
in which 1. () : R — R is anincreasing and strictly

concave function. Both f*(.): A_, — R and

gr(-): A_, — R are twice differentiable.
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Additively Coupled Sum Constrained Games

e Definition

— A multi-user interaction I' = (N, A, u) in which

Structure of the utility:
additive coupling between
action and state

A2: The utility function satisfies  states

/' \
diminishing return Un Z [h ﬁ fn a—n)) l| gﬁ(a—n)]a
per invested actlon\ —1 oot

in which h%(-) : R — R is an increasing and strictly
concave function. Both f*(.): A_, — R and
gr(-): A_, — R are twice differentiable.
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Examples of ACSCG

e Power control in interference channels

User 1 :!\ R " -

[ ! .1": / | | .

User 2 R N =

. (VA VA
User 3 | }

upstream central
office

Y

Y
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Examples of ACSCG

e Power control in interference channels

ot
'
HE
Y -~— J_l @4’&%
1 SR P 4 U1
ﬂ' ~ - - - e
Hiy ° T~ -7 7
~ _“/"‘a. //
i S~ T ik =1 ¢
N H>, -~ ~ Hao g ~ A
9 SN N ,’@4’ Y2
. S ,>’/ i .
: TSR T :
¢ l - ~ e ®
- ,’/ N“x \\ #
/// "“-H“\
Lk .“ ok
ROy

Y

Y

-
-

central
office
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Examples of ACSCG

e Power control in interference channels
_Ip — (p! K\ Pk~ () . K pk
A-n_. — {P = (P”_.J Ce e Prl‘k )‘ Pn. > () and Zﬁ; Pk < Pma\}

n —
k k
?n E 1”2-32 (l —|— J{e HTIHP JI‘ ! )
On + Zm-,,-n Hnm *Dm
K
— lo H’I‘ P’E‘ — Jogp HE
— Q»Z mmn m -h? mn m '
=1 m=1 mM==n
fE(a_n) hy () gn(a_n)
k
Zrn;"—n %&iﬂi l*-*%g(”i + Hj;n"i-') l{}gg[ﬁi + an__,—*_—'n H::in-Pri; :I
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Examples of ACSCG (cont’d)

e Delay minimization in Jackson networks

UCLA Multimedia Communications and Systems Laboratory
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Examples of ACSCG (cont’d)

e Delay minimization in Jackson networks

LS )‘3”20
and Zk YR > \IJ“"“}

dn () =) - !

k=1 Hn — Zm 1 mn, l/)m

hi [’:' Hi(a—n)

Z “amn 1:.1;&- -7 U
mzn U:-'fn L ‘5?; F""‘*.r':lﬂ '
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Examples of ACSCG (cont’d)

e Delay minimization in Jackson networks
”_{ql H""f )‘3”20
and Zk YR > \IJ“"“}

dn () =) - !

k=1 Mn — Zm 1 mn, l/)m
I — Rk)_la ;U-rlf'm — [Tk]nm-

0
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Nash equilibrium in ACSCG

e Existence of pure NE

— A subclass of concave games

« When is the NE unique? When does best
response converges to such a NE?

— Existing literatures are not immediately applicable
« Diagonal strict convexity condition [Rosen]

« Use gradient play and stepsizes need to be carefully chosen
e Super-modular games [Topkis]
« Action space is not a lattice

. Sufficient conditions for specific A*(-) and £*(-) [Yul]

UCLA Multimedia Communications and Systems Laboratory
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Best response dynamics

e Best response iteration

-1 _ _
fﬁ% (at—’rl ) ’f%(at—nl) o o o f’!{{ (at—ﬂl)
t—1 — -1

SN 7

un(a) = Z [h,.ﬁ (a,f; + f_ff(a_.n_)) — g_fi(a_n_)}

K
1 2 K k min _max k y
Ay, = {(a..n_.,a.n, ceay) | ay € [an, apd] and E a, < ]\-[n}.

k=1 —————
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Best response dynamics

e Best response iteration

UCLA

Ty &

? OhE () 1 RN L
it 2 [{ P T ) et

(‘) T ( min

T,k

in which )\ is chosen such that
K k.t
—1 Un — M,,.
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Best response dynamics

sum constraint

« Best response iteration / additive coupling

L k’ _ / a3
L. Ohy ()Y 1 @y
e BNCVE (A Cr)

\ mn,k

state

in which )\ is chosen such that
k.t
Zé(:l an” = M,.

A competition scenario in which every user
aggressively uses up all his resources

UCLA Multimedia Communications and Systems Laboratory
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Best response dynamics

sum constraint

« Best response iteration/ additive coupling

L k’ _ / a3
L. Ohy ()Y 1 @y
e BNCVE (A Cr)

T,k

in which )\ is chosen such that
k.t
Zé(:l an” = M,.

« When does it converges?
— By intuition, the weaker the mutual coupling is, the
more likely it converges

— How to measure and quantify this coupling
strength?

UCLA Multimedia Communications and Systems Laboratory 46



A measure of the mutual coupling

Define
K |9fF(a_,) -
N max / _ el tm#En
[TmaX]mn Iy { ac Ak Zk—l ‘ dafn #
0, otherwise.
8f?§(a—n)

K
MaXae Ak D je] Jak’ represents the
maximum impact that user m’s action can

make over user n’s state

UCLA Multimedia Communications and Systems Laboratory
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Convergence conditions

Theorem 1: If - nax 1
then best response dynamics converges linearly to a

uniqgue pure NE for any set of initial conditions.

UCLA Multimedia Communications and Systems Laboratory
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Convergence conditions

Theorem 1: If 1

p(TIHaX) < —.

2
then best response dynamics converges linearly to a

uniqgue pure NE for any set of initial conditions.

Contraction mappi

kit A H Ohy, () }l(/\)

n Oxr

ng

ki t—1
| — f-n. (a—-n.

max
a’n K

min
‘1
i,k

UCLA Multimedia Communications and Systems Laboratory
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Convergence conditions

Theorem 1: If - nax 1
then best response dynamics converges linearly to a

uniqgue pure NE for any set of initial conditions.
Contraction mapping

) "1‘? ¥ ’ max
bt o [fORE(2) ! I
u""'l'i = [{ 5 " } (/\)' o fﬂ. (af— n

min
(1

T,k

« The contraction factor p(T"*") is a measure of the
overall coupling strength

. If f¥(a_,)is affine, the condition in Theorem 1 is not
impacted by M/,,; otherwise it may depend on M, .

max SR 0Ly @ _n)
ac Ak’ k=1 Dar’

UCLA Multimedia Communications and Systems Laboratory 50
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Convergence conditions

k(a n)

0
o If have the same sign, vim £ n, k. k' a € A,
the condltlon in Theorem 1 can be relaxed to

p(TIHaX) < 1

e This is true in many communication scenarios
— Increasing power causes stronger interference

— Increasing input rate congests the server

UCLA Multimedia Communications and Systems Laboratory 51



Convergence conditions

8 & —n .
e |f gi; ) have the same sign, vim £ n, k. k' a € A,

the condition in Theorem 1 can be relaxed to

p(TIHaX) < 1

e This is true in many communication scenarios
— Increasing power causes stronger interference

— Increasing input rate congests the server

Strategic complements (or strategic substitutes)
0t > () (or 52k < 0)

da,,0a,, da,0a,, —
(! g 1 m
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A special class of 1 (-)

For of € Rand F* > 0, define [Walrand]

mnmn
4
Wk FE )0+ o
. (0t o) if —1<6<0,
h’n (I) — < e
l()O(a + B ox), it 0= —1,

0 = —1: proportional fairness:;
¢ = —2. harmonic mean fairness:
0 = —oo, max-min fairness.
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A special class of 1 (-)

For of € Rand F* > 0, define [Walrand]

nn
r’
Fk p)0+1 .
: (0t o) if —1<6<0,
h’n (I) — < I -
Define | log(agy + Fy ), if 0= —1.
K L 1yl
Z ('F?ﬂﬂl) 7 K qul. ﬂ } .
_ = max { Sk - ‘( F;f}” ) }, if m #n
[Smm]mn = S (Fk)'T ac AR @m mm |
k=1
0, otherwise.
A measure of the similarity between users’ parameters F,/’,‘N
SImax Tax T Hlan( nn/ mm)
[S ]mn < Cmn ) [ ]mna Cfrn'n = [17 .

Hlink( nn/ mm)
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Convergence conditions

Th 2: If _
eorem p(SlnaX) < 1’

then best response dynamics converges linearly to a
uniqgue pure NE for any set of initial conditions.

UCLA Multimedia Communications and Systems Laboratory
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Convergence conditions

Th 2: If _
eorem p(SlnaX) < 1’

then best response dynamics converges linearly to a

uniqgue pure NE for any set of initial conditions.
Contraction mapping

>

Cmn < Q’VT n 7£ n

Theorem 2

In general \
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Conclusion so far...

Concave games

Power control,
Flow control

+ Pareto boundary

If Information is constrained and
no message passing is available...

When will it converge
to a NE ? And how fast ?

Nash equilibrium

UCLA

Multimedia Communications and Systems Laboratory
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COﬂCl USion SO fa r... If Information is constrained and

no message passing is available...

+ Pareto boundary
u,

- When will it converge

Concave games to a NE ? And how fast ?

Sufficient conditions that
guarantee linear convergencsg

Power control,

Flow control Nash equilibrium
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Power control as an ACSCG

e Power control in interference channels

r ( P

User 2

UCLA

K
) = ZlogQ (1 +
k=1

User 1 :!\ ~

Hk

mnn

k
Pn

k k
O-n T Zm =N Hmn

)

Y

Y

User 3 :!/ o

upstream

-
-

central
office
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Performance comparison

e Solutions without information exchange

— Iterative water-filling algorithm [Yu]

f(0) [ (0) f(1 f(1
PV =B p/M o, Pl

« Solutions with information exchange

max Z . wy, Ry,

UCLA Multimedia Communications and Systems Laboratory
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Performance comparison

e Solutions without information exchange

— |tera s ‘
@ 1.6 =G : .
é ’W (OSB)| 0SB = Optimal
< 1.4
g ASB Spectrum
© 1.2B\ﬂ\ .
P Balancing
5
= 08 Best Availa \ ASB = Autonomous
est Availa
0.6 P Spectrum
0.4 Balancing
* SO|UtIC 02 1 2 3 4 5 6 7 8
User 4’s Rate (Mbps)
max » _ . wy, Ry,
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Outline

« Motivation and existing approaches

nformationally efficient multi-user

communication

— Vector cases

« Convergence conditions with decentralized information

« Improve efficiency with decentralized information
— Scalar cases

e Achieve Pareto efficiency with decentralized information

e Conclusions
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How to model the mutual coupling

« A reformulation of the coupling
— State space S =X,cnvS,
— Utility function wu, : S, x A — R
— State determination function s, : A, — S,
— Belief function 3,:A4, — S,

— Conjectural Equilibrium (CE) : a configuration of
belief functions (5{,---,5y) and joint action a* = (a;,---,ay)
satisfying

i (an)=s,(a*,) anda* = arg max u, <§; (an),an>
a, €A,
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How to model the mutual coupling

o Areformulation of the coupling

it captures the
— State space S = X e N Sn aggregate effect of

— Utility function u, : S, x A — R/}he other users’ actions

— State determination function s, : A, — S,
it models the aggregate effect

- Belief function 5, : 4, = & of the other users’ actions

— Conjectural Equilibrium (CE) : a configuration of
belief functions (5{,---,5y) and joint action a* = (a;,---,ay)
satisfying

S (an)=s,(a*,) anda* = arg max u, (3'; (an),an>
a, €A,
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How to model the mutual coupling

o Areformulation of the coupling

it captures the
— State space S = X e N Sn aggregate effect of

— Utility function u, : S, x A — R/}he other users’ actions

— State determination function s, : A, — S,
it models the aggregate effect

_ i i 5 S
Belief function s, A” O of the other users’ actions
— Conjectural Equilibrium (CE) : a configuration of
belief functions (5{,---,5y) and joint action a* = (a;,---,ay)
satisfying
i (an)=s,(a*,) anda* = arg max u, (3'; (an),an> \

a, €A,
l each user behaves optimally

beliefs are realized according to its expectation
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CE in power control games [SUTSP’09]

e One leader and multiple followers
e State space

— 1" : the interference caused to user n in channel k

« Utility function

K Pk
R =S log, |1+ ——=
B

e State determination function
A Y\ k pk
. . ]n_ Zizl,z’xn Cth-
o Belief function (linear form)
[~1k: _ g _Wkplk

actual play

conceived play

UCLA Multimedia Communications and Systems Laboratory
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Why Linear belief?

7. . : : ol :
L is piece-wise linear; —-=0, j =k, if the
OP, op;

number of frequency bins is sufficiently large.

— Linear belief is sufficient to capture the
interference coupling!

UCLA Multimedia Communications and Systems Laboratory
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Why Linear belief?

7. . : : ol :
L is piece-wise linear; —-=0, j =k, if the
OP, op;

number of frequency bins is sufficiently large.

— Linear belief is sufficient to capture the
interference coupling!

user 2’s spectrum
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Why Linear belief?

7. . : : ol :
L is piece-wise linear; —-=0, j =k, if the
OP, op;

number of frequency bins is sufficiently large.

— Linear belief is sufficient to capture the
interference coupling!

user 2’s spectrum user 2’s spectrum
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Why Linear belief?

7. . : : ol :
L is piece-wise linear; —-=0, j =k, if the
OP, op;

number of frequency bins is sufficiently large.

— Linear belief is sufficient to capture the
interference coupling!

user 2’s spectrum

user 2’s spectrum

UCLA Multimedia Communications and Systems Laboratory

70



Why Linear belief?

7. . : : ol :
L is piece-wise linear; —-=0, j =k, if the
OP, op;

number of frequency bins is sufficiently large.

— Linear belief is sufficient to capture the
interference coupling!

user 2’s spectrum

Pk(Pt—l) _ [l o O-frkz o Z Hﬁm Pk:,t—l}

user 2’s spectrum

—+00

—n L L m
A Hrm s Hn;n,
m=£n

0
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Main results

o Stackelberg equilibrium
— Strategy profile (e, NE(q)] that satisfies
Uy (af,NE(af)) > 1 (al,NE(al)),Val c A

« NE and SE are special CE

A
R;: Rate of the

NE: g" = Zaﬁpfﬁk =0 preseleduser R 7 ‘N'fffj;if;_,,,,
SE: gFr=1"—-pF.—L b —-_—"L
1 1 a Plk Y 8P1k

« Infinite set of CE
Open sets of CE that contain

NE and SE may exist
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Achieving the desired CE

e Conjecture-based rate maximization (CRM)

User 1 |eader

User 2,---,N followers

State I

N

Tkt — Z

i=1iw=n 1

k pht

n : ok k ki Dk
Belief function 3,7y, < Update, ([-1 ‘P, ;)

gn : 'An - SN ﬁ'f — ___.:;}:" _ Hr.:"plf“-f

Fht _ gkt _ N b phit
In - In — Z;‘:'{,g‘zn a"énps'

; ~ K Pf!rt'
Action al.---.ak P/ — Update, (P'. 1! P! = arg max log, |1+ S
137" UK 1 p 2( 1 1) ~ * & pl rA; 82 ok 4 IH
/ Dynamic updates of the play \
. 71 . o0l N 1
= 1F — pF. and ~F = — ! ma.xZ:log2 l+——— —
t I l )Pf{’ t )Pk {Pk} o v _|_ ’} Voo Ay vP v
U p=p “lp-p ) gy LT 05 = h

UCLA

solvable using dual method
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Discussion about CRM

e Essence of CRM

— local approximation of the computation of SE

« Advantages
— the structure of the utility function is explored
— only local information is required
— it can be applied in the cases where N>2
— if it converges, the outcome is a CE
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Simulation results

Average rate improvements:
2-user case: 24.4% for user 1; 33.6% for user 2 (Zk
3-user case: 26.3% for user 1; 9.7% for user 2&3 (Zk

k

2
=0.5, 1 = j)

k

? 20.33, i = j)

UCLA Multimedia Communications and Systems Laboratory 75



COnCI usions SO fa r If Information is constrained and

no message passing is allowed

+ Pareto boundary
u,

How to improve an inefficient
NE without message passing ?

Concave games

Power control
Nash equilibrium
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Conclusions so far...

Concave games

Power control

u,

If Information is constrained and
no message passing is allowed

. Pareto boundary

How to improve an inefficient

Overall efficiency
may be improved!

NE without message passing ?

Nash equilibrium
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Outline

« Motivation and existing approaches

nformationally efficient multi-user

communication

— Vector cases

« Convergence conditions with decentralized information
e Improve efficiency with decentralized information

— Scalar cases

e Achieve Pareto efficiency with decentralized information

e Conclusions

UCLA
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Linearly coupled games

« A non-cooperative game model

o Users’ states are linearly impacted by their
competitor’s actions

e Contributions
— Characterize the structures of the utility functions

— Explicitly compute Nash equilibrium and Pareto
boundary

— A conjectural equilibrium approach to achieve
Pareto boundary without real-time information
exchange
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Definition

A multi-user interaction is considered a linearly
coupled game if the action set A, C R+ is convex and
the utility function u,, satisfies

un(a) = al - s,(a),

in which 3, > 0 . In particular, the basic assumptions

about s, (a) include:
_ ] States are linearly impacted by actions
Al: s,(a) is non-negative; :
A2: s,(a) is strictly linearly decreasing in a,,,Vm # n;

sp(a) is non-increasing and linear in a,,.
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Definition (cont’d)

8 'n,
Denote ¢,,.(a) = gﬁ%

A3: - (()) is an affine function, Vn € N\ {m}.

Ad: suld) _ ald) vy ke A\ {m)s

=0 or B YA m

l

Actions are linearly coupled at NE and PB

UCLA Multimedia Communications and Systems Laboratory
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Two basic types

« For the games satisfying A1-A4, the utility
functions can take two types of fOrm:“'U u
— Type | [SUJSAC’10] > ‘: -

up(a) = a'gn * H (Hm — Timam) g u \
m##n _,:- | L.:E

« e.g.random access y,, (p) = p,, Hm#n(l — Dm)
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Two basic types

e For the games satisfying A1-A4, the utility
functions can take two types of form:

— Type | [SUJSAC’10]
up(a) = f”f?: ‘ H (Hm — Tm@m)

M=="n
» e.g. random access y, (p) = p, [ Loz (1 = D)
— Type Il [SUTR’ 09] <—Q— ~—

Uy (a) (pr — E TmGm)

/
m=1 server
e e.g. rate control un(’g/)) — ’l/)nn (,u — Zﬁzl l/)m)
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Type | games: wireless random access

e Player set: T RX,
- o ©

— nodes in a single cell
. Action set: R @

— transmission probability ® ® Txx

. O

 Payoff: - R%,

— throughput w.(p)=pr ] 1 -p).

e Key issues

— stability, convergence, throughput, and fairness
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Conjecture-based Random Access

 Individual conjectures
P actual play

— state: s, = H-ieftf"‘x{k}(l — i) o conceived play
— linear belief:  uiGiwo.o0 =pe| TT =47 = arle—piY)]

. i\ {k}
e« Two update mechanisms
— Best response T (1 -y
ph ey (=P ) |
ph. = arg max uy.(55(pr), pr) = min {“ + <A ‘{;,} : ,l}
t T prePy 2 2ay,

— Gradient play

- Ouy (57 (pr))
—1 _ IS )
Pl =P+
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Main results Protocol design: how to

. achieve efficient outcomes?
 Existence of CE

— all operating points in action space are CE

« Stability and convergence

— sufficient conditions

e Th roug h o ut pe rfo rmance —— Pareto boundary
) Locally stable
conjectural equilibria

Nash equilibria

— the entire throughput region can
be achieved with stable CE

N — (:In!mll}-' t.:unvelrgenrt
conjectural equilibria

e Fairness issue

— conjecture-based approaches
attain weighted fairness
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How to select suitable a,?

« Adaptively alter a, when the network size
changes

« Adopt aggregated throughput or “idle
interval” as the indicator of the system
efficiency

« Advantages
— No need of a centralized solver
— Throughput efficient with fairness guarantee
— Stable equilibrium
— Autonomously adapt to traffic fluctuation

UCLA Multimedia Communications and Systems Laboratory
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Engineering interpretation

« DCF vs. the best response update
— re-design the random access protocol

ph. = arg max uk. (5% (pr), pr) = min

UCLA

P

— : t—1
{PE . n H-s:ekfx{;;}(l —Pi

[

Z 2(1.]{(

.E.:E E

l

1 PR -
SEP; Mgy [pf l}+EE{1{j~:120}1{1~£—1:0}|p‘ '}

S B .
(1+ECJE{1{1“1;1:0}1{’1‘;‘1:1}|PT )
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Engineering interpretation

« DCF vs. the best response update

— re-design the random access protocol
: —1
IE . n H-@E;‘C"x‘{k}(l - Pg )51}

1 i t r~t .
. — are max 4.l s\ pPe-). Pr) = 111111 -
Pk g max ACAVISNTS { 5 2a,

1 1) _ | Ny -
Pk = ?E{PE; 1{"1*?:1}|l-"r l}—l—HE-{l{rj~:120}l{]~§—1:0}|pr )

é(lJral; ]E{l{jiglzo}l{w_z:l- ipt_l}/similar /different
CBRA T=r=1 - 1;7"=0
T =1 Pr =Dy /2 Py ; P /2
T =0 pr=1/241/2ar | pr =1/2ax
DCF 1= =1 ;"' =0
T =1 Pr =D /2 Pk =P
J_'i; F =0 ph = pmex P = py
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Engineering interpretation

« DCF vs. the best response update
— re-design the random access protocol

Pl = arg max ub (5% (pr). pr) = min {
C L

Pr<

L

3= kN I ]_ - t 1
_|_ Hich.x‘{ﬂ}( ),l}

2(1-,1;

1 1) - ! -
Pl =GB A gy P g, Bl oy Lo P

+% 1+—)E{l.1t oLy (P - 1}/similar
CBR\ T7="=1 17=1=0
T =1 Pr =Dy /2 Pr =Dy /2
1" T l =0 | pr =1/24+1/2ax | pi = 1/2ax
DC-F 7, =1 T.-"=0
% =1 ph=pp /2 Pk = D)
J_'E_I_Ll =0 ph = P™ o= p};_l

different
A

CBRA makes use

of 4-bit information,
while DCF only uses
2 bits
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Simulation results
« Stability and convergence

« Throughput

| I T T T T T
| | | | | | |
| () | | | | | |
| 0N 1 | | | | |
! € @, I | | | |
| m.p | | | | | |
| 0 = | | | | | |
o o % I I I I I I
”\Atum \”\\ - L __r___1r___1___1____]
=g s
” omO ”
I _ * — I
| |
| |
| |
I

551 - --

x
—— |EEE 8

T T
| |
" I I
c I I
I I
i S Li___ L1 __L__po__]
5 | | |
I I I
nm% I I I
= I I I
=}
- L | | |
\m. DO [-+---F--—d-=——+-—-Ff-=1---+
[=)] 2N a] | | I
3 m1 | | |
o T g | | |
c [CIRE I I
e 549, I |
e ﬁo I e T A
e ') | |
= = I I
i< m I |
@] O ! !
|

— P-MAC

(sdqn) indybnouyy aaireINWNIIY
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400

100

P-MAC: instability due to the online estimation

25
Number of nodes

DCF: low throughput;

20
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Conventional solutions in Type |l games

o Utility function N
un(a) = a’ - (u — Z Trnlm ) -

. Nash equilibrium met

3. 11 . .
a ;:* B _ — ”'_’;, —, vn € N
ﬂ-(l + Zmzl -"'jm-)
e Pareto boundary
— - PB Wi On 2 A
max Z wp logluy(a)] — a7 = : ~ —,Vn €N
p— Tn.(l + Zmzl ‘?’Jm.-"jm)
o Efficiency loss
N VE
(J' + Z L‘-‘Jll,-'.iii-'.!) ) l(:l'g J‘ + Zn 1 """i'l H < Z We ll:l"‘ HI } < D
—~ 1+ 26)1+Y 68, = i (a
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Best response dynamics in Type Il games

Observed state Linear belief
o At stage t, T !
u:z.(';fz(a"?l)v G 1’? — [/” o Z Tm a, m An ” no— ”'-1;1_1)]

m=1

« Theorem 5: A necessary and sufficient
condition for the best response dynamics to
converge is

fn

}‘H l—|_ )jﬂ

Determine the eigenvalues of the Jacobian matrix
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Stability of the Pareto boundary

« Theorem 6: All the operating points on the
Pareto boundary are globally convergent CE
under the best response dynamics. The belief
configurations {)\,}_, lead to Pareto-optimal

operating points if and only if

- %: the ratio between the immediate
performance degradation and the conjectured

long-term effect
Theorem 5 and expressions of Pareto boundary and CE

UCLA Multimedia Communications and Systems Laboratory
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Pricing vs. conjectural equilibrium

e Pricing mechanism in communication networks
[Kelly][Chiang]

— Users repeatedly exchange coordination signals

o Conjectural equilibrium for linearly coupled games

— Coordination is implicitly implemented when the
participating users initialize their belief parameters

— Pareto-optimality can be achieved solely based on local
observations on the states

— No message passing is needed during the convergence
process

— The key problem is how to design belief functions

UCLA Multimedia Communications and Systems Laboratory
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Conclusions so far...

u,

Concave games

Random Access,
Rate control

a

Can we still achieve

Pareto optimality ?

/  Pareto boundary
Global (exchanged) information

Nash equilibrium
Decentralized (limited) inform

The optimal way of designing the beliefs and updating the t
actions based on conjectural equilibrium is addressed
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Conclusions so far... Can we stil achieve

Pareto optimality ?

u, 1 /  Pareto boundary
Global (exchanged) information

Concave £22ans

Pareto optimality
can be achieved!

Random Access,
Rate control

Nash equilibrium
Decentralized (limited) inform

The optimal way of designing the beliefs and updating the
actions based on conjectural equilibrium is addressed
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Conclusions

« We define new classes of games emerging in
multi-user communication networks and

investigate the information and efficiency
trade-off

— Provide sufficient convergence conditions to NE

— Suggest a conjectural equilibrium based approach
to improve efficiency

— Quantify the performance improvement
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Linear convergence

. Asequence z*) with limit 2™ is linearly

convergent if there exists a constant ¢ € (0, 1)
such that

‘l‘(k)—l‘*‘ < c\ﬂ;(k_l)—a;*\

for k sufficiently large.
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Solutions with information exchange

e Users aim to solve

n=1 . ore
user n’s impact over user m’s utility

e They can pass coordination messages

L Oy, (a)
ﬂ_mn (amv a—m) o 8 a,ﬁ
and user n behaves according to
K
max Up(a) — Z aﬁ( Z Wﬁm>
n CAn k=1 m=£n
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Solutions with information exchange

O (al™1)
6?(Lk

Gradient play %=1 = —

Ou, (a
! ﬂf,t A t—1 n\=n,“<—n A t—1
a,, + R ( — E ‘mn )

Oa
T?l T

L . , /9 , ]2
1t 2t h,t] _ [a 1.t Ix,t}

t = la,"a" - a a*t.. .q
A--n

T

a

n mn mn T T 1 T

Theorem 3:If Vn,k,x,y € A_,,
2
1gfa gg( r)
gradient play converges for a small enough stepsize.

Lipschitz continuity and gradient projection algorithm

> —o0, and H Vg (x) — Vgﬁ(Y)H <Ll|x-y

?
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Solutions with information exchange

: Oy (a1
e Jacobi update rhi=t = _— m(@ ")
dak
t—1 o s ki1
B(al,) = arg max u,(a Zan( > )
k=1 m#n
kot _ kt 1 k ke t—1
An T K/{ a_, )]n Ap,
82}, T 2 k(p
Theorem 4: If inf L”(m > —00, sup 0 hn(x) <0,

and H 7 (%) — v.gﬁ(y)H <Ll|x-y
Jacobi update converges for a small enough stepsize.

Lipschitz continuity, descent lemma, and mean value theorem
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Solutions with information exchange

« Convergence to an operating point that satisfies the
KKT conditions is guaranteed

« Total utility is monotonically increasing

o Global optimality is guaranteed if the original
problem is convex, otherwise not

e Developed for general non-convex problem in which
convex NUM solutions may not apply in general
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Stackelberg equilibrium

e Definition
— Leader (foresighted): only one
— Follower (myopic): the remaining ones
— Strategy profile (e,,NE(q,)) that satisfies

U, (a:,NE(a:)) > u, (an,NE(an)>,Van c A,

e Existence and computation of SE in the
power control games [SuTWC’09]
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A two-user formulation

e Bi-level Programming

, p’f
upper
;Ziel max Z In|1 Nk o (a)
problem | s.t. Zk— Plk < leaX, Plk > 0, <b>
lower | P = arg max Z In|1 Pz,k (c)
level 2 7o Nk +afplk
problem | sty BE<EOBE >0 (d)

2 2 2
where le = Uf/‘Hlkl 7045 — ‘H§1‘ /‘Hﬁ‘

2 9
E ok k
Ny = 02/‘]']22

2
ko |k k
» —‘Hu‘ /‘Hn
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Problems with the SE formulation

« Computational complexity

— intrinsically hard to compute

« Information required for playing SE

— Global information

CIRCIRt

e Realistic assumption

— Local information

N E pk k yymax
an2anlpn +oy, P

— Any appropriate solutions other than SE and NE?
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Weighted Fairness

« Priority-based fair medium access control

— Traffic classes with positive weights

SUi =pi- (L—p)"1=0 - [ = p) !

J#1
SU; SU;
Vi,7 € {1, ---n}, — = J
j el n}, =
> Vi,j€{l,---n}, Pil y Pi) — 2] .- Pi)
| @y oF

e Conjecture-based protocol

_ Pipi - Q;jP;
1 — Pi 1 — P

Vij e {12, N}.owi(l - pi) = dpi (1 — pj) =
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Some distributed iterative algorithms

 Best response

BRt t—1
a, =~ =argmax, cA Up(a,,a’ ")

e Jacobi update

JU L BR
an ’ (]_ T Ii)at 1} ,{an

« Gradient play stepsize

GPt _ t—1 t—1
a, a, T KV z,un,(am aA_, )
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