

Informationally Efficient Multi-user communication

Yi Su

Advisor: Professor Mihaela van der Schaar

Electrical Engineering, UCLA

Outline

- Motivation and existing approaches
- Informationally efficient multi-user communication
 - Vector cases
 - Convergence conditions with decentralized information
 - Improve efficiency with decentralized information
 - Scalar cases
 - Achieve Pareto efficiency with decentralized information
- Conclusions

Multi-user communication networks

- Resources
 - Bandwidth, power,spectrum, etc.
- Information
 - Real-time
 - Local observation

- Resources
 - Bandwidth, power,spectrum, etc.
- Information
 - Real-time
 - Local observation
 - Exchanged message

- Resources
 - Bandwidth, power,spectrum, etc.
- Information
 - Real-time
 - Local observation
 - Exchanged message
 - Non-real-time
 - A-priori information about inter-user coupling, protocols, etc.

- Resources
 - Bandwidth, power,spectrum, etc.
- Information
 - Real-time
 - Local observation
 - Exchanged message
 - Non-real-time
 - A-priori information about inter-user coupling, protocols, etc.

Goal: multi-user communication without information exchange

A standard strategic game formulation

Consider a tuple

$$\Gamma = \langle \mathcal{N}, \mathcal{A}, u \rangle$$

- The set of players : $\mathcal{N} = \{1, 2, \dots, N\}$
- The set of actions: $\mathcal{A} = imes_{n \in \mathcal{N}} \mathcal{A}_n$ and $\mathcal{A}_n \subseteq \mathcal{R}^K$
- Utility function: $u = \times_{n \in \mathcal{N}} u_n$ and $u_n : \mathcal{A} \to \mathcal{R}$
- Utility region: $\mathcal{U} = \{(u_1(\mathbf{a}), \dots, u_N(\mathbf{a})) | \exists \mathbf{a} \in \mathcal{A} \}$ In communication networks, different operating

points in $\,\mathcal{U}\,$ can be chosen based on the information

availability

Existing approaches

Local observation

$$\max_{\mathbf{a}_n \in \mathcal{A}_n} u_n(\mathbf{a}_n, \mathbf{a}_{-n})$$

Nash equilibrium

Existing approaches

Local observation

$$\max_{\mathbf{a}_n \in \mathcal{A}_n} u_n(\mathbf{a}_n, \mathbf{a}_{-n})$$

Nash equilibrium

Exchanged messages

$$\max_{\mathbf{a} \in \mathcal{A}} \sum_{n=1}^{N} u_n(\mathbf{a})$$

$$\Rightarrow \frac{\partial u_n(\mathbf{a})}{\partial a_n^k} + \sum_{m \neq n} \frac{\partial u_m(\mathbf{a})}{\partial a_n^k}$$

Pareto optimality

Existing approaches

Local observation

$$\max_{\mathbf{a}_n \in \mathcal{A}_n} u_n(\mathbf{a}_n, \mathbf{a}_{-n})$$

Nash equilibrium

Exchanged messages

$$\max_{\mathbf{a} \in \mathcal{A}} \sum_{n=1}^{N} u_n(\mathbf{a})$$

$$\Rightarrow \frac{\partial u_n(\mathbf{a})}{\partial a_n^k} + \sum_{m \neq n} \frac{\partial u_m(\mathbf{a})}{\partial a_n^k}$$

Pareto optimality

Existing results usually assume some specific action and utility structures!

- Results with specific action and utility structures
 - Pure Nash equilibrium
 - Concave games

Use gradient play to find NE

i) \mathcal{A}_n : convex and compact; ii) $u_n(\mathbf{a}_n,\mathbf{a}_{-n})$: quasi-concave in \mathbf{a}_n

- Results with specific action and utility structures
 - Pure Nash equilibrium
 - Concave games

Use gradient play to find NE

i)
$$\mathcal{A}_n$$
: convex and compact; ii) $u_n(\mathbf{a}_n,\mathbf{a}_{-n})$: quasi-concave in \mathbf{a}_n

Potential games [Shapley]

Use best response to find NE

$$\forall (m,n) \in \mathcal{N}^2, m \neq n, \ \frac{\partial^2 (u_n - u_m)}{\partial \mathbf{a}_n \partial \mathbf{a}_m} = 0$$

- Results with specific action and utility structures
 - Pure Nash equilibrium
 - Concave games

Use gradient play to find NE

- i) \mathcal{A}_n : convex and compact; ii) $u_n(\mathbf{a}_n,\mathbf{a}_{-n})$: quasi-concave in \mathbf{a}_n
- Potential games [Shapley]
 Use best response to find NE $\forall (m,n) \in \mathcal{N}^2, m \neq n, \ \frac{\partial^2 (u_n - u_m)}{\partial \mathbf{a}_n \partial \mathbf{a}_m} = 0$

• Super-modular games [Topkis] Use best response to find NE i)
$$\mathcal{A}_n$$
 is a lattice; ii) $\forall (m,n) \in \mathcal{N}^2, m \neq n, \frac{\partial^2 u_n}{\partial \mathbf{a}_n \partial \mathbf{a}_m} \geq 0$

- Results with specific action and utility structures
 - Pure Nash equilibrium
 - Concave games

Use gradient play to find NE

- i) \mathcal{A}_n : convex and compact; ii) $u_n(\mathbf{a}_n,\mathbf{a}_{-n})$: quasi-concave in \mathbf{a}_n
- Potential games [Shapley]
 Use best response to find NE $\forall (m,n) \in \mathcal{N}^2, m \neq n, \ \frac{\partial^2 (u_n - u_m)}{\partial \mathbf{a}_n \partial \mathbf{a}_m} = 0$

• Super-modular games [Topkis] Use best response to find NE i)
$$\mathcal{A}_n$$
 is a lattice; ii) $\forall (m,n) \in \mathcal{N}^2, m \neq n, \frac{\partial^2 u_n}{\partial \mathbf{a}_n \partial \mathbf{a}_m} \geq 0$

- Pareto optimality
 - Network utility maximization [Kelly]
 - Convexity is the watershed

Applications	Tools
CDMA uplink power control	S-modular games
Distributed interference compensation	S-modular games
Power control	Potential games
Spectrum sharing	Repeated games
End-to-end congestion control	Pricing
CDMA uplink power control	Pricing
End-to-end flow control	Pricing
Joint congestion and power control	Pricing
Energy efficient power and rate control	Equilibrium analysis
Power control in DSL systems	Equilibrium analysis
Uplink power control for cellular radio	Equilibrium analysis
Selfish users in Aloha	Equilibrium analysis
Non-cooperative optimal flow control	Equilibrium analysis
	CDMA uplink power control Distributed interference compensation Power control Spectrum sharing End-to-end congestion control CDMA uplink power control End-to-end flow control Joint congestion and power control Energy efficient power and rate control Power control in DSL systems Uplink power control for cellular radio Selfish users in Aloha

Game theory

The focus is on strategic interactions among users

- Equilibrium characterization
- Incentive design
- Optimization theory

Information is usually costless

- Computational complexity
- Distributed algorithms
- Information theory

Decentralization is not the focus

- Fundamental limits
- Encoding and decoding schemes

But in many communication systems, information is constrained and no message passing is allowed!

Outline

- Motivation and existing approaches
- Informationally efficient multi-user communication
 - Vector cases
 - Convergence conditions with decentralized information
 - Improve efficiency with decentralized information
 - Scalar cases
 - Achieve Pareto efficiency with decentralized information
- Conclusions

A reformulation of multi-user interactions

Consider a tuple

$$\Gamma = \langle \mathcal{N}, \mathcal{A}, \mathcal{S}, s, u \rangle$$

- The set of players: $\mathcal{N} = \{1, 2, \dots, N\}$
- The set of actions: $\mathcal{A} = \times_{n \in \mathcal{N}} \mathcal{A}_n$
- State space: $\mathcal{S} = \times_{n \in \mathcal{N}} \mathcal{S}_n$
- State determination function:

$$s = \times_{n \in \mathcal{N}} s_n$$
 and $s_n : \mathcal{A}_{-n} \to \mathcal{S}_n$

– Utility function:

$$u = \times_{n \in \mathcal{N}} u_n$$
 and $u_n : \mathcal{S}_n \times \mathcal{A}_n \to \mathcal{R}$

It captures the structure of the coupling between action and state

A reformulation of multi-user interactions

Consider a tuple

$$\Gamma = \langle \mathcal{N}, \mathcal{A}, \mathcal{S}, s, u \rangle$$

- The set of players: $\mathcal{N} = \{1, 2, \dots, N\}$
- The set of actions: $\mathcal{A} = \times_{n \in \mathcal{N}} \mathcal{A}_n$ Many communication
- State space: $\mathcal{S} = imes_{n \in \mathcal{N}} \mathcal{S}_n$ networking applications have
- State determination function: simple \mathcal{S}_n , which captures

$$s = \times_{n \in \mathcal{N}} s_n \text{ and } s_n : \mathcal{A}_{-n}^{\text{the aggregate effects of }} \mathcal{A}_{-n}^{-n}$$

– Utility function:

$$u = \times_{n \in \mathcal{N}} u_n \text{ and } u_n : \mathcal{S}_n \times \mathcal{A}_n \to \mathcal{R}$$

It captures the structure of the coupling between action and state

In standard strategic game,

Communication games with simple states

Power control

aggregate interference

$$s_n = \sum_{m \neq n} h_{mn} P_m, \ u_n = \log_2 \left(1 + \frac{h_{nn} P_n}{\sigma_n + s_n}\right).$$

Communication games with simple states

Power control

aggregate interference

$$s_n = \sum_{m \neq n} h_{mn} P_m, \ u_n = \log_2 \left(1 + \frac{h_{nn} P_n}{\sigma_n + s_n}\right).$$

Flow control

remaining capacity

$$s_n = \sum_{m \neq n} \psi_m, \quad u_n = \frac{\psi_n}{\mu - \psi_n - s_n}.$$

Communication games with simple states

Power control

aggregate interference

$$s_n = \sum_{m \neq n} h_{mn} P_m, \ u_n = \log_2 \left(1 + \frac{h_{nn} P_n}{\sigma_n + s_n}\right).$$

Flow control

remaining capacity

$$s_n = \sum_{m \neq n} \psi_m, \quad u_n = \frac{\psi_n}{\mu - \psi_n - s_n}.$$

Random access

idle probability

$$s_n = \prod_{m \neq n} (1 - p_m), \quad u_n = p_n \cdot s_n.$$

Outline

- Motivation and existing approaches
- Informationally efficient multi-user communication
 - Vector cases
 - Convergence conditions with decentralized information
 - Improve efficiency with decentralized information
 - Scalar cases
 - Achieve Pareto efficiency with decentralized information
- Conclusions

Definition

– A multi-user interaction $\Gamma = \langle \mathcal{N}, \mathcal{A}, u \rangle$ in which

A1: $\forall n \in \mathcal{N}$, action set \mathcal{A}_n is defined to be

$$\mathcal{A}_n = \{(a_n^1, \dots, a_n^K) | a_n^k \in [a_{n,k}^{\min}, a_{n,k}^{\max}] \text{ and } \sum_{k=1}^K a_n^k \leq M_n. \}$$

Definition

– A multi-user interaction $\Gamma = \langle \mathcal{N}, \mathcal{A}, u \rangle$ in which

A1: $\forall n \in \mathcal{N}$, action set \mathcal{A}_n is defined to be

$$\mathcal{A}_n = \{(a_n^1, \dots, a_n^K) | a_n^k \in [a_{n,k}^{\min}, a_{n,k}^{\max}] \text{ and } \sum_{k=1}^K a_n^k \leq M_n. \}$$

Structure of the action set: resource is constrained

- Definition
 - A multi-user interaction $\Gamma = \langle \mathcal{N}, \mathcal{A}, u \rangle$ in which

A2: The utility function satisfies

$$u_n(\mathbf{a}) = \sum_{k=1}^K \left[h_n^k (a_n^k + f_n^k(\mathbf{a}_{-n})) - g_n^k(\mathbf{a}_{-n}) \right],$$

in which $h_n^k(\cdot): \mathcal{R} \to \mathcal{R}$ is an increasing and strictly concave function. Both $f_n^k(\cdot): \mathcal{A}_{-n} \to \mathcal{R}$ and $g_n^k(\cdot): \mathcal{A}_{-n} \to \mathcal{R}$ are twice differentiable.

- Definition
 - A multi-user interaction $\Gamma = \langle \mathcal{N}, \mathcal{A}, u \rangle$ in which

A2: The utility function satisfies
$$u_n(\mathbf{a}) = \sum_{k=1}^K \left[h_n^k \big(a_n^k + f_n^k(\mathbf{a}_{-n}) \big) - g_n^k(\mathbf{a}_{-n}) \right],$$
 in which $h_n^k(\cdot) : \mathcal{R} \to \mathcal{R}$ is an increasing and strictly

concave function. Both $f_n^k(\cdot): \mathcal{A}_{-n} \to \mathcal{R}$ and $g_n^k(\cdot): \mathcal{A}_{-n} \to \mathcal{R}$ are twice differentiable.

- Definition
 - A multi-user interaction $\Gamma = \langle \mathcal{N}, \mathcal{A}, u \rangle$ in which

Structure of the utility:

additive coupling between action and state

A2: The utility function satisfies

ne utility function satisfies
$$u_n(\mathbf{a}) = \sum_{k=1}^K \left[h_n^k (a_n^k + f_n^k (\mathbf{a}_{-n})) - g_n^k (\mathbf{a}_{-n}) \right],$$

in which $h_n^k(\cdot):\mathcal{R} o \mathcal{R}$ is an increasing and strictly concave function. Both $f_n^k(\cdot): \mathcal{A}_{-n} \to \mathcal{R}$ and $g_n^k(\cdot): \mathcal{A}_{-n} \to \mathcal{R}$ are twice differentiable.

- Definition
 - A multi-user interaction $\Gamma = \langle \mathcal{N}, \mathcal{A}, u \rangle$ in which

Structure of the utility:

additive coupling between action and state

A2: The utility function satisfies

diminishing return $u_n(\mathbf{a}) = \sum_{k=1}^K \left[h_n^k \left(a_n^k + f_n^k(\mathbf{a}_{-n}) \right) - g_n^k(\mathbf{a}_{-n}) \right],$ per invested action

in which $h_n^k(\cdot):\mathcal{R} o\mathcal{R}$ is an increasing and strictly

concave function. Both $f_n^k(\cdot):\mathcal{A}_{-n} o\mathcal{R}$ and

 $g_n^k(\cdot):\mathcal{A}_{-n} o\mathcal{R}$ are twice differentiable.

Examples of ACSCG

Power control in interference channels

Examples of ACSCG

Power control in interference channels

Examples of ACSCG

Power control in interference channels

$$\mathcal{A}_n = \left\{ \mathbf{P} = (P_n^1, \dots, P_n^K) | P_n^k \ge 0 \text{ and } \sum_{k=1}^K P_n^k \le \mathbf{P_n^{max}} \right\}$$

$$r_n(\mathbf{P}) = \sum_{k=1}^K \log_2 \left(1 + \frac{H_{nn}^k P_n^k}{\sigma_n^k + \sum_{m \neq n} H_{mn}^k P_m^k} \right)$$

$$= \sum_{k=1}^{K} \left(\log_2(\sigma_n^k + \sum_{m=1}^{N} H_{mn}^k P_m^k) - \log_2(\sigma_n^k + \sum_{m \neq n} H_{mn}^k P_m^k) \right).$$

$f_n^k(\mathbf{a}_{-n})$	$h_n^k(x)$	$g_n^k(\mathbf{a}_{-n})$
$\sum_{m \neq n} \frac{H_{mn}^k}{H_{nn}^k} P_m^k$	$\log_2(\sigma_n^k + H_{nn}^k x)$	$\log_2(\sigma_n^k + \sum_{m \neq n} H_{mn}^k P_m^k)$

Examples of ACSCG (cont'd)

Delay minimization in Jackson networks

Examples of ACSCG (cont'd)

Delay minimization in Jackson networks

Examples of ACSCG (cont'd)

Delay minimization in Jackson networks

Nash equilibrium in ACSCG

- Existence of pure NE
 - A subclass of concave games
- When is the NE unique? When does best response converges to such a NE?
 - Existing literatures are not immediately applicable
 - Diagonal strict convexity condition [Rosen]
 - Use gradient play and stepsizes need to be carefully chosen
 - Super-modular games [Topkis]
 - Action space is not a lattice
 - Sufficient conditions for specific $\,h_n^k(\cdot)\,$ and $f_n^k(\cdot)\,$ [Yu]

Best response iteration

Best response iteration

$$a_n^{k,t} \triangleq \left[\left\{ \frac{\partial h_n^k(x)}{\partial x} \right\}^{-1}(\lambda) - f_n^k(\mathbf{a}_{-n}^{t-1}) \right]_{a_{n,k}^{\min}}^{a_{n,k}^{\max}}$$

in which λ is chosen such that

$$\sum_{k=1}^{K} a_n^{k,t} = M_n.$$

• Best response iteration

$$a_n^{k,t} \triangleq \left[\left\{\frac{\partial h_n^k(x)}{\partial x}\right\}^{-1}(\lambda) - f_n^k(\mathbf{a}_{-n}^{t-1})\right]_{a_{n,k}^{\min}}^{a_{n,k}^{\max}}$$
 in which λ is chosen such that

sum constraint

additive coupling

$$\sum_{k=1}^{K} a_n^{k,t} = M_n.$$

A competition scenario in which every user aggressively uses up all his resources

• Best response iteration

$$a_n^{k,t} \triangleq \left[\left\{ \frac{\partial h_n^k(x)}{\partial x} \right\}^{-1} (\lambda) \left(- f_n^k(\mathbf{a}_{-n}^{t-1}) \right) \right]_{a_{n,k}^{\min}}^{a_{n,k}^{\max}}$$

in which λ is chosen such that

$$\sum_{k=1}^{K} a_n^{k,t} = M_n.$$

- When does it converges?
 - By intuition, the weaker the mutual coupling is, the more likely it converges
 - How to measure and quantify this coupling strength?

A measure of the mutual coupling

Define

$$[\bar{\mathbf{T}}^{\max}]_{mn} \triangleq \begin{cases} \max_{\mathbf{a} \in \mathcal{A}, k'} \sum_{k=1}^{K} \left| \frac{\partial f_n^k(\mathbf{a}_{-n})}{\partial a_m^{k'}} \right|, & \text{if } m \neq n \\ 0, & \text{otherwise.} \end{cases}$$

 $\max_{\mathbf{a}\in\mathcal{A},k'}\sum_{k=1}^K \left|\frac{\partial f_n^k(\mathbf{a}_{-n})}{\partial a_m^{k'}}\right|$ represents the maximum impact that user m's action can make over user n's state

Theorem 1: If

$$\rho(\bar{\mathbf{T}}^{\max}) < \frac{1}{2},$$

then best response dynamics converges linearly to a unique pure NE for any set of initial conditions.

Theorem 1: If

$$\rho(\bar{\mathbf{T}}^{\max}) < \frac{1}{2},$$

then best response dynamics converges linearly to a unique pure NE for any set of initial conditions.

Contraction mapping

$$a_n^{k,t} \triangleq \left[\left\{ \frac{\partial h_n^k(x)}{\partial x} \right\}^{-1} (\lambda) - f_n^k(\mathbf{a}_{-n}^{t-1}) \right]_{a_{n,k}^{\min}}^{a_{n,k}^{\max}}$$

Theorem 1: If

$$\rho(\bar{\mathbf{T}}^{\max}) < \frac{1}{2},$$

then best response dynamics converges linearly to a unique pure NE for any set of initial conditions.

Contraction mapping

$$a_n^{k,t} \triangleq \left[\left\{ \frac{\partial h_n^k(x)}{\partial x} \right\}^{-1} (\lambda) - f_n^k(\mathbf{a}_{-n}^{t-1}) \right]_{a_{n,k}^{\min}}^{a_{n,k}^{\max}}$$

- The contraction factor $\,
 ho({f {f T}}^{max}) \,$ is a measure of the overall coupling strength
- If $f_n^k(\mathbf{a}_{-n})$ is affine, the condition in Theorem 1 is not impacted by M_n ; otherwise it may depend on M_n .

$$\max_{\mathbf{a}\in\mathcal{A},k'}\sum_{k=1}^{K}\left|\frac{\partial f_n^k(\mathbf{a}_{-n})}{\partial a_m^{k'}}\right|$$
 is a constant for affine $f_n^k(\mathbf{a}_{-n})$

• If $\frac{\partial f_n^k(\mathbf{a}_{-n})}{\partial a_m^{k'}}$ have the same sign, $\forall m \neq n, k, k', \mathbf{a} \in \mathcal{A}$, the condition in Theorem 1 can be relaxed to

$$\rho(\bar{\mathbf{T}}^{\max}) < 1$$

- This is true in many communication scenarios
 - Increasing power causes stronger interference
 - Increasing input rate congests the server

• If $\frac{\partial f_n^k(\mathbf{a}_{-n})}{\partial a_m^{k'}}$ have the same sign, $\forall m \neq n, k, k', \mathbf{a} \in \mathcal{A}$, the condition in Theorem 1 can be relaxed to

$$\rho(\bar{\mathbf{T}}^{\max}) < 1$$

- This is true in many communication scenarios
 - Increasing power causes stronger interference
 - Increasing input rate congests the server

Strategic complements (or strategic substitutes)

$$\frac{\partial^2 u_n}{\partial a_n \partial a_m} \ge 0 \text{ (or } \frac{\partial^2 u_n}{\partial a_n \partial a_m} \le 0)$$

A special class of $h_n^k(\cdot)$

For $\alpha_n^k \in \mathcal{R}$ and $F_{nn}^k > 0$, define [Walrand]

$$h_n^k(x) = \begin{cases} \frac{(\alpha_n^k + F_{nn}^k x)^{\theta + 1}}{\theta + 1}, & \text{if } -1 < \theta < 0, \\ \log(\alpha_n^k + F_{nn}^k x), & \text{if } \theta = -1. \end{cases}$$

 $\theta = -1$: proportional fairness;

 $\theta = -2$, harmonic mean fairness;

 $\theta = -\infty$, max-min fairness.

A special class of $h_n^k(\cdot)$

For $\alpha_n^k \in \mathcal{R}$ and $F_{nn}^k > 0$, define [Walrand]

$$h_n^k(x) = \begin{cases} \frac{(\alpha_n^k + F_{nn}^k x)^{\theta + 1}}{\theta + 1}, & \text{if } -1 < \theta < 0, \\ \log(\alpha_n^k + F_{nn}^k x), & \text{if } \theta = -1. \end{cases}$$

 $[\bar{\mathbf{S}}^{\max}]_{mn} \triangleq \begin{cases} \frac{\sum\limits_{k=1}^{K} (F_{mm}^{k})^{1+\frac{1}{\theta}}}{\sum\limits_{k=1}^{K} (F_{nn}^{k})^{1+\frac{1}{\theta}}} \max_{\mathbf{a} \in \mathcal{A}, k'} \left\{ \sum\limits_{k=1}^{K} \left| \frac{\partial f_{n}^{k}(\mathbf{a}_{-n})}{\partial a_{m}^{k'}} \right| \left(\frac{F_{nn}^{k'}}{F_{mm}^{k'}} \right)^{1+\frac{1}{\theta}} \right\}, & \text{if } m \neq n \\ 0, & \text{otherwise.} \end{cases}$

A measure of the similarity between users' parameters ${\cal F}^k_{nn}$

$$[\bar{\mathbf{S}}^{\max}]_{mn} \le \zeta_{mn} \cdot [\bar{\mathbf{T}}^{\max}]_{mn}, \ \zeta_{mn} \in \left[1, \frac{\max_k (F_{nn}^k / F_{mm}^k)^{1 + \frac{1}{\theta}}}{\min_k (F_{nn}^k / F_{mm}^k)^{1 + \frac{1}{\theta}}}\right].$$

Define

Theorem 2: If

$$\rho(\bar{\mathbf{S}}^{\max}) < 1,$$

then best response dynamics converges linearly to a unique pure NE for any set of initial conditions.

Theorem 2: If

$$\rho(\bar{\mathbf{S}}^{\max}) < 1,$$

then best response dynamics converges linearly to a unique pure NE for any set of initial conditions.

Conclusion so far...

If Information is constrained and no message passing is available...

Conclusion so far...

If Information is constrained and no message passing is available...

Power control as an ACSCG

Power control in interference channels

$$r_n(\mathbf{P}) = \sum_{k=1}^K \log_2 \left(1 + \frac{H_{nn}^k P_n^k}{\sigma_n^k + \sum_{m \neq n} H_{mn}^k P_m^k} \right)$$

Performance comparison

- Solutions without information exchange
 - Iterative water-filling algorithm [Yu]

Solutions with information exchange

$$\max \sum_k \omega_k R_k$$

Performance comparison

Solutions without information exchange

Outline

- Motivation and existing approaches
- Informationally efficient multi-user communication
 - Vector cases
 - Convergence conditions with decentralized information
 - Improve efficiency with decentralized information
 - Scalar cases
 - Achieve Pareto efficiency with decentralized information
- Conclusions

How to model the mutual coupling

- A reformulation of the coupling
 - State space $\mathcal{S} = \times_{n \in \mathcal{N}} \mathcal{S}_n$
 - Utility function $u_n:\mathcal{S}_n imes\mathcal{A}_n o\mathcal{R}$
 - State determination function $s_n:\mathcal{A}_{-n} \to \mathcal{S}_n$
 - Belief function $\widetilde{s}_n:\mathcal{A}_n o\mathcal{S}_n$
 - Conjectural Equilibrium (CE): a configuration of belief functions $(\tilde{s}_1^*,\cdots,\tilde{s}_N^*)$ and joint action $a^*=(a_1^*,\cdots,a_N^*)$ satisfying

$$ilde{s}_n^*\left(a_n^*
ight) = s_n(\mathbf{a}_{-n}^*) \quad ext{ and } a_n^* = rg\max_{a_n \in \mathcal{A}_n} u_n\left(ilde{s}_n^*\left(a_n
ight), a_n
ight)$$

How to model the mutual coupling

- A reformulation of the coupling
- it captures the aggregate effect of
- State space $\mathcal{S} = \times_{n \in \mathcal{N}} \mathcal{S}_n$

$$S = \times_{n \in \mathcal{N}} S_n$$

- Utility function $u_n:\mathcal{S}_n\times\mathcal{A}_n \to \mathcal{R}$ the other users' actions
- State determination function $s_n:\mathcal{A}_{-n} \to \mathcal{S}_n$
- **Belief function** $\widetilde{s}_n: \mathcal{A}_n \to \mathcal{S}_n$ it models the aggregate effect of the other users' actions
- Conjectural Equilibrium (CE): a configuration of belief functions $(\tilde{s}_1^*, \dots, \tilde{s}_N^*)$ and joint action $a^* = (a_1^*, \dots, a_N^*)$ satisfying

$$ilde{s}_n^*\left(a_n^*
ight) = s_n(\mathbf{a}_{-n}^*) \quad ext{ and } a_n^* = rg\max_{a_n \in \mathcal{A}_n} u_n\left(ilde{s}_n^*\left(a_n
ight), a_n
ight)$$

How to model the mutual coupling

- A reformulation of the coupling
- it captures the

- State space $\mathcal{S} = \times_{n \in \mathcal{N}} \mathcal{S}_n$

$$S = \times_{n \in \mathcal{N}} S_n$$

- aggregate effect of
- Utility function $u_n:\mathcal{S}_n\times\mathcal{A}_n \to \mathcal{R}$ the other users' actions
- State determination function $s_n:\mathcal{A}_{-n} \to \mathcal{S}_n$
- **Belief function** $\widetilde{s}_n: \mathcal{A}_n \to \mathcal{S}_n$ it models the aggregate effect of the other users' actions
- Conjectural Equilibrium (CE): a configuration of belief functions $(\tilde{s}_1^*, \dots, \tilde{s}_N^*)$ and joint action $a^* = (a_1^*, \dots, a_N^*)$ satisfying

$$\tilde{s}_n^*\left(a_n^*\right) = s_n(\mathbf{a}_{-n}^*)$$
 and $a_n^* = \arg\max_{a_n \in \mathcal{A}_n} u_n\left(\tilde{s}_n^*\left(a_n\right), a_n\right)$ each user behaves optimally beliefs are realized

CE in power control games [SuTSP'09]

- One leader and multiple followers
- State space
 - I_n^k : the interference caused to user n in channel k
- Utility function

$$R_n = \sum_{k=1}^{K} \log_2 \left(1 + \frac{P_n^k}{\sigma_n^k + I_n^k} \right)$$

State determination function

$$I_n^k = \sum_{i=1, i \neq n}^N \alpha_{in}^k P_i^k \qquad \text{actual play}$$

Belief function (linear form)

$$\tilde{I}_1^k = \beta^k - \gamma^k P_1^k$$

conceived play

$$\frac{\partial I_1^k}{\partial P_1^k}$$
 is piece-wise linear; $\frac{\partial I_1^k}{\partial P_1^j}=0,\,j\neq k$, if the

number of frequency bins is sufficiently large.

$$\frac{\partial I_1^k}{\partial P_1^k}$$
 is piece-wise linear; $\frac{\partial I_1^k}{\partial P_1^j}=0,\,j\neq k$, if the

number of frequency bins is sufficiently large.

$$\frac{\partial I_1^k}{\partial P_1^k}$$
 is piece-wise linear; $\frac{\partial I_1^k}{\partial P_1^j}=0,\,j\neq k$, if the

number of frequency bins is sufficiently large.

$$\frac{\partial I_1^k}{\partial P_1^k}$$
 is piece-wise linear; $\frac{\partial I_1^k}{\partial P_1^j}=0,\,j\neq k$, if the

number of frequency bins is sufficiently large.

$$\frac{\partial I_1^k}{\partial P_1^k}$$
 is piece-wise linear; $\frac{\partial I_1^k}{\partial P_1^j}=0,\,j\neq k$, if the

number of frequency bins is sufficiently large.

Main results

- Stackelberg equilibrium
 - Strategy profile $\left(a_1^*, NE\left(a_1^*\right)\right)$ that satisfies

$$u_1\left(a_1^*, NE\left(a_1^*\right)\right) \ge u_1\left(a_1, NE\left(a_1\right)\right), \forall a_1 \in \mathcal{A}_1$$

NE and SE are special CE

NE:
$$\beta^k = \sum_{i=2}^{N} \alpha_{i1}^k P_i^k, \gamma^k = 0$$

NE:
$$\beta^k = \sum_{i=2}^N \alpha_{i1}^k P_i^k, \gamma^k = 0$$

SE: $\beta^k = I_1^k - P_1^k \cdot \frac{\partial I_1^k}{\partial P_1^k}, \gamma^k = -\frac{\partial I_1^k}{\partial P_1^k}.$

 Infinite set of CE Open sets of CE that contain NE and SE may exist

Achieving the desired CE

Conjecture-based rate maximization (CRM)

	User 1 leader	User $2, \dots, N$ followers
State I_n^t	$I_n^{k,t} = \sum\nolimits_{i=1,i\neq n}^N \alpha_{in}^k P_i^{k,t}$	
Belief function $ ilde{s}_n: \mathcal{A}_n ightarrow \mathcal{S}_n$	$eta_t^k, \gamma_t^k \leftarrow \mathbf{Update_1}\left(I_1^{k,t}, P_1^{k,t} ight) \ ilde{I}_1^{k,t} = eta_t^k - \gamma_t^k P_1^{k,t}$	$\tilde{I}_n^{k,t} = I_n^{k,t} = \sum_{i=1, i \neq n}^N \alpha_{in}^k P_i^{k,t}$
Action a_1^t, \dots, a_K^t	$oldsymbol{P}_1^{t+1} \leftarrow \mathbf{Update_2}\left(oldsymbol{P}_1^t, ilde{oldsymbol{I}}_1^t ight)$	$\boldsymbol{P}_{k}^{t} = \arg\max_{\boldsymbol{P}_{n}^{\prime} \in \mathcal{A}_{n}} \sum_{k=1}^{K} \log_{2} \left(1 + \frac{P_{n}^{\prime k}}{\sigma_{n}^{k} + \tilde{I}_{n}^{k,t}} \right)$
Dynamic updates of the play		

$$\beta_t^k = \left(I_1^k - P_1^k \cdot \frac{\partial I_1^k}{\partial P_1^k}\right|_{\boldsymbol{P}_1 = \boldsymbol{P}_1^t} \text{ and } \gamma_t^k = -\frac{\partial I_1^k}{\partial P_1^k}\bigg|_{\boldsymbol{P}_1 = \boldsymbol{P}_1^t} \qquad \max_{\left\{P_1^k\right\}} \sum_{k=1}^K \log_2\left(1 + \frac{P_1^k}{\sigma_1^k + \beta_t^k - \gamma_t^k P_1^k}\right)$$

$$\max_{\{P_1^k\}} \sum_{k=1}^K \log_2 \left(1 + \frac{P_1^k}{\sigma_1^k + \beta_t^k - \gamma_t^k P_1^k} \right)$$

solvable using dual method

Discussion about CRM

- Essence of CRM
 - local approximation of the computation of SE
- Advantages
 - the structure of the utility function is explored
 - only local information is required
 - it can be applied in the cases where N>2
 - if it converges, the outcome is a CE

Simulation results

Average rate improvements:

2-user case: 24.4% for user 1; 33.6% for user 2

3-user case: 26.3% for user 1; 9.7% for user 2&3

$$\left(\sum_{k} \left| \alpha_{ij}^{k} \right|^{2} = 0.5, i \neq j \right)$$
$$\left(\sum_{k} \left| \alpha_{ij}^{k} \right|^{2} = 0.33, i \neq j \right)$$

Conclusions so far...

If Information is constrained and no message passing is allowed

Conclusions so far...

If Information is constrained and no message passing is allowed

Outline

- Motivation and existing approaches
- Informationally efficient multi-user communication
 - Vector cases
 - Convergence conditions with decentralized information
 - Improve efficiency with decentralized information
 - Scalar cases
 - Achieve Pareto efficiency with decentralized information
- Conclusions

Linearly coupled games

- A non-cooperative game model
- Users' states are linearly impacted by their competitor's actions
- Contributions
 - Characterize the structures of the utility functions
 - Explicitly compute Nash equilibrium and Pareto boundary
 - A conjectural equilibrium approach to achieve Pareto boundary without real-time information exchange

Definition

A multi-user interaction is considered a *linearly* coupled game if the action set $A_n \subseteq \mathcal{R}_+$ is convex and the utility function u_n satisfies

$$u_n(\mathbf{a}) = a_n^{\beta_n} \cdot s_n(\mathbf{a}),$$

in which $\beta_n > 0$. In particular, the basic assumptions about $s_n(\mathbf{a})$ include:

States are linearly impacted by actions

A1: $s_n(\mathbf{a})$ is non-negative;

A2: $s_n(\mathbf{a})$ is strictly linearly decreasing in $a_m, \forall m \neq n$;

 $s_n(\mathbf{a})$ is non-increasing and linear in a_n .

Definition (cont'd)

Denote
$$s'_{nm}(\mathbf{a}) = \frac{\partial s_n(\mathbf{a})}{\partial a_m}$$
.

A3: $\frac{s_n(\mathbf{a})}{s'_{nm}(\mathbf{a})}$ is an affine function, $\forall n \in \mathcal{N} \setminus \{m\}$.

A4:
$$\frac{s'_{nm}(\mathbf{a})}{s_n(\mathbf{a})} = \frac{s'_{km}(\mathbf{a})}{s_k(\mathbf{a})}, \forall n, k \in \mathcal{N} \setminus \{m\};$$
$$\frac{s'_{mm}(\mathbf{a})}{s_m(\mathbf{a})} = 0 \text{ or } \frac{s'_{nm}(\mathbf{a})}{s_n(\mathbf{a})}, \ \forall n \neq m.$$

Actions are linearly coupled at NE and PB

Two basic types

- For the games satisfying A1-A4, the utility functions can take two types of form:
 - Type I [SuJSAC'10]

$$u_n(\mathbf{a}) = a_n^{\beta_n} \cdot \prod_{m \neq n} (\mu_m - \tau_m a_m)$$

• e.g. random access $u_n(\mathbf{p}) = p_n \prod_{m \neq n} (1 - p_m)$

Two basic types

- For the games satisfying A1-A4, the utility functions can take two types of form:
 - Type I [SuJSAC'10]

$$u_n(\mathbf{a}) = a_n^{\beta_n} \cdot \prod_{m \neq n} (\mu_m - \tau_m a_m)$$

• e.g. random access
$$u_n(\mathbf{p}) = p_n \prod_{m \neq n} (1 - p_m)$$

Type II [SuTR'09]

$$u_n(\mathbf{a}) = a_n^{\beta_n} \cdot (\mu - \sum_{m=1}^N \tau_m a_m)$$

• e.g. rate control $u_n(\psi) = \psi_n^{\beta_n} (\mu - \sum_{m=1}^N \psi_m)$

Type I games: wireless random access

- Player set:
 - nodes in a single cell
- Action set:
 - transmission probability
- Payoff:

- throughput
$$u_k(\mathbf{p}) = p_k \prod_{i \in \mathcal{K} \setminus \{k\}} (1 - p_i).$$

- Key issues
 - stability, convergence, throughput, and fairness

Conjecture-based Random Access

- Individual conjectures $-\text{ state: } s_k = \prod_{i \in \mathcal{K} \setminus \{k\}} (1-p_i) \\ -\text{ linear belief: } u_k^t(\tilde{s}_k^t(p_k), p_k) = p_k \Big[\prod_{i \in \mathcal{K} \setminus \{k\}} (1-p_i^{t-1}) a_k(p_k-p_k^{t-1})\Big]$ $i \in \mathcal{K} \setminus \{k\}$
- Two update mechanisms
 - Best response

$$p_k^t = \arg\max_{p_k \in P_k} u_k^t(\tilde{s}_k^t(p_k), p_k) = \min\left\{\frac{p_k^{t-1}}{2} + \frac{\prod_{i \in \mathcal{K} \setminus \{k\}} (1 - p_i^{t-1})}{2a_k}, 1\right\}$$

Gradient play

$$p_k^t = p_k^{t-1} + \gamma_k \frac{\partial u_k^t(\tilde{s}_k^t(p_k))}{\partial p_k} \bigg|_{p_k = p_k^{t-1}}.$$

Main results

Protocol design: how to achieve efficient outcomes?

- Existence of CE
 - all operating points in action space are CE
- Stability and convergence
 - sufficient conditions
- Throughput performance
 - the entire throughput region can be achieved with stable CE
- Fairness issue
 - conjecture-based approaches attain weighted fairness

How to select suitable a_k ?

- Adaptively alter a_k when the network size changes
- Adopt aggregated throughput or "idle interval" as the indicator of the system efficiency
- Advantages
 - No need of a centralized solver
 - Throughput efficient with fairness guarantee
 - Stable equilibrium
 - Autonomously adapt to traffic fluctuation

Engineering interpretation

- DCF vs. the best response update
 - re-design the random access protocol

$$\begin{split} p_k^t &= \arg\max_{p_k \in P_k} u_k^t (\tilde{s}_k^t(p_k), p_k) = \min\left\{\frac{p_k^{t-1}}{2} + \frac{\prod_{i \in \mathcal{K} \backslash \{k\}} (1 - p_i^{t-1})}{2a_k}, 1\right\} \\ p_k^t &= \frac{1}{2} \mathrm{E}\{p_k^{t-1} \mathbf{1}_{\{T_{-k}^{t-1} = 1\}} | \mathbf{p}^{t-1}\} + \frac{1}{2a_k} \mathrm{E}\{\mathbf{1}_{\{T_{-k}^{t-1} = 0\}} \mathbf{1}_{\{T_k^{t-1} = 0\}} | \mathbf{p}^{t-1}\} \\ &+ \frac{1}{2} (1 + \frac{1}{a_k}) \mathrm{E}\{\mathbf{1}_{\{T_{-k}^{t-1} = 0\}} \mathbf{1}_{\{T_k^{t-1} = 1\}} | \mathbf{p}^{t-1}\} \end{split}$$

Engineering interpretation

- DCF vs. the best response update
 - re-design the random access protocol

$$\begin{split} p_k^t &= \arg\max_{p_k \in P_k} u_k^t(\tilde{s}_k^t(p_k), p_k) = \min\left\{\frac{p_k^{t-1}}{2} + \frac{\prod_{i \in \mathcal{K} \backslash \{k\}} (1 - p_i^{t-1})}{2a_k}, 1\right\} \\ p_k^t &= \underbrace{\frac{1}{2} \mathbb{E}\{p_k^{t-1} \mathbf{I}_{\{T_{-k}^{t-1} = 1\}} | \mathbf{p}^{t-1}\}}_{\{T_{-k}^{t-1} = 0\}} \mathbf{I}_{\{T_{-k}^{t-1} = 0\}} \mathbf{I}_{\{T_{-k}^{t-1} = 0\}} \mathbf{I}_{\{T_{k}^{t-1} = 0\}} \mathbf{I}_{\{T_{k}^{t-1} = 0\}} \mathbf{p}^{t-1}\} \\ &+ \underbrace{\frac{1}{2} (1 + \frac{1}{a_k}) \mathbb{E}\{\mathbf{I}_{\{T_{-k}^{t-1} = 0\}} \mathbf{I}_{\{T_{k}^{t-1} = 1\}} | \mathbf{p}^{t-1}\}}_{\mathbf{p}^{t-1}} \mathbf{similar} \quad \mathbf{different} \\ &- \underbrace{\frac{1}{2} (1 + \frac{1}{a_k}) \mathbb{E}\{\mathbf{I}_{\{T_{-k}^{t-1} = 0\}} \mathbf{I}_{\{T_{k}^{t-1} = 1\}} | \mathbf{p}^{t-1}\}}_{\mathbf{p}^t_k = p_k^{t-1}/2} \mathbf{p}^t_k = p_k^{t-1}/2 \\ &- \underbrace{\frac{1}{2} (1 + \frac{1}{a_k}) \mathbb{E}\{\mathbf{I}_{\{T_{-k}^{t-1} = 0\}} \mathbf{I}_{\{T_{k}^{t-1} = 1\}} | \mathbf{p}^t_k = p_k^{t-1}/2}_{\mathbf{p}^t_k = p_k^{t-1}/2} \mathbf{p}^t_k = p_k^{t-1}/2 \\ &- \underbrace{\frac{1}{2} (1 + \frac{1}{a_k}) \mathbb{E}\{\mathbf{I}_{\{T_{-k}^{t-1} = 0\}} \mathbf{I}_{\{T_{-k}^{t-1} = 1\}} | \mathbf{p}^t_k = p_k^{t-1}/2}_{\mathbf{p}^t_k = p_k^{t-1}} \mathbf{p}^t_k = p_k^{t-1}} \\ &- \underbrace{\frac{1}{2} (1 + \frac{1}{a_k}) \mathbb{E}\{\mathbf{I}_{\{T_{-k}^{t-1} = 0\}} \mathbf{I}_{\{T_{-k}^{t-1} = 1\}} | \mathbf{p}^t_k = p_k^{t-1}/2}_{\mathbf{p}^t_k = p_k^{t-1}} \mathbf{p}^t_k = p_k^{t-1}} \\ &- \underbrace{\frac{1}{2} (1 + \frac{1}{a_k}) \mathbb{E}\{\mathbf{I}_{\{T_{-k}^{t-1} = 0\}} \mathbf{I}_{\{T_{-k}^{t-1} = 1\}} | \mathbf{p}^t_k = p_k^{t-1}/2}_{\mathbf{p}^t_k = p_k^{t-1}/2} \mathbf{p}^t_k = p_k^{t-1}/2}_{\mathbf{p}^t_k = p_k^{t-1}/2} \mathbf{p}^t_k = p_k^{t-1}} \\ &- \underbrace{\frac{1}{2} (1 + \frac{1}{a_k}) \mathbb{E}\{\mathbf{I}_{\{T_{-k}^{t-1} = 0\}} \mathbf{I}_{\{T_{-k}^{t-1} = 1\}} | \mathbf{p}^t_k = p_k^{t-1}/2}_{\mathbf{p}^t_k = p_k^{t-1}/2} \mathbf{p}^t_k = p_k^{t-1}}_{\mathbf{p}^t_k = p_k^{t-1}/2} \mathbf{p}^t_k = p_k^{t-1}_{\mathbf{p}^t_k = p_k^{t-1}/2} \mathbf{p}^t_k = p_k^{t-1}_{\mathbf{p}^t_k = p_k^{t-1}/2} \mathbf{p}^t_k = p_k^{t-1}}_{\mathbf{p}^t_k = p_k^{t-1}/2} \mathbf{p}^t_k = p_k^{t-1}_{\mathbf{p}^t_k = p_k^{t-1}/2} \mathbf{p}^t_k \mathbf{p}^t_k = p_k^{t-1$$

Engineering interpretation

- DCF vs. the best response update
 - re-design the random access protocol

Simulation results

- Throughput
- Stability and convergence

P-MAC Best response Gradient play 33.5 33 32.5 32 31.5 31 100 200 300 400 500 600

DCF: low throughput;

P-MAC: needs to know the number of nodes

P-MAC: instability due to the online estimation

Conventional solutions in Type II games

Utility function

$$u_n(\mathbf{a}) = a_n^{\beta_n} \cdot (\mu - \sum_{m=1}^N \tau_m a_m).$$

Nash equilibrium

$$a_n^{NE} = \frac{\beta_n \mu}{\tau_n (1 + \sum_{m=1}^N \beta_m)}, \forall n \in \mathcal{N}$$

Pareto boundary

$$\max_{\mathbf{a}} \sum_{n=1}^{N} \omega_n \log[u_n(\mathbf{a})] \to a_n^{PB} = \frac{\omega_n \beta_n \mu}{\tau_n (1 + \sum_{m=1}^{N} \omega_m \beta_m)}, \forall n \in \mathcal{N}$$

Efficiency loss

$$(1 + \sum_{n=1}^{N} \omega_n \beta_n) \cdot \log \frac{(1 + \sum_{n=1}^{N} \omega_n \beta_n)^2}{(1 + \sum_{n=1}^{N} \omega_n^2 \beta_n)(1 + \sum_{n=1}^{N} \beta_n)} < \sum_{n=1}^{N} \omega_n \log \frac{u_n(\mathbf{a}^{NE})}{u_n(\mathbf{a}^{PB})} < 0.$$

Best response dynamics in Type II games

Observed state

Linear belief

At stage t,

At stage
$$t$$
,
$$u_n^t(\tilde{s}_n^t(a_n),a_n)=a_n^{\beta_n}\cdot\left[\mu-\sum_{m=1}^N\tau_ma_m^{t-1}-\lambda_n(a_n-a_n^{t-1})\right]$$

 Theorem 5: A necessary and sufficient condition for the best response dynamics to converge is

$$\sum_{n=1}^{N} \frac{\tau_n \beta_n}{\lambda_n (1 + 2\beta_n)} < 1.$$

Determine the eigenvalues of the Jacobian matrix

Stability of the Pareto boundary

• Theorem 6: All the operating points on the Pareto boundary are globally convergent CE under the best response dynamics. The belief configurations $\{\lambda_n\}_{n=1}^N$ lead to Pareto-optimal operating points if and only if

$$\sum_{n=1}^{N} \frac{\tau_n}{\lambda_n} = 1$$

 $-\frac{\tau_n}{\lambda_n}$: the ratio between the immediate performance degradation and the conjectured long-term effect

Theorem 5 and expressions of Pareto boundary and CE

Pricing vs. conjectural equilibrium

- Pricing mechanism in communication networks [Kelly][Chiang]
 - Users repeatedly exchange coordination signals
- Conjectural equilibrium for linearly coupled games
 - Coordination is implicitly implemented when the participating users initialize their belief parameters
 - Pareto-optimality can be achieved solely based on local observations on the states
 - No message passing is needed during the convergence process
 - The key problem is how to design belief functions

Conclusions so far...

Can we still achieve Pareto optimality?

The optimal way of designing the beliefs and updating the actions based on conjectural equilibrium is addressed

Conclusions so far...

Can we still achieve Pareto optimality?

The optimal way of designing the beliefs and updating the actions based on conjectural equilibrium is addressed

Conclusions

- We define new classes of games emerging in multi-user communication networks and investigate the information and efficiency trade-off
 - Provide sufficient convergence conditions to NE
 - Suggest a conjectural equilibrium based approach to improve efficiency
 - Quantify the performance improvement

References

- J. Rosen, "Existence and uniqueness of equilibrium points for concave n-person games," *Econometrica*, vol. 33, no. 3, pp. 520-534, Jul. 1965.
- D. Monderer and L. S. Shapley, "Potential games," *Games Econ. Behav.*, vol. 14, no. 1, pp. 124-143, May 1996.
- D. Topkis, *Supermodularity and Complementarity*. Princeton University Press, Princeton, 1998.
- F. Kelly, A. K. Maulloo, and D. K. H. Tan, "Rate control in communication networks: shadow prices, proportional fairness and stability," *Journal of the Operational Research Society*, vol. 49, pp. 237-252, 1998.
- M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, "Layering as optimization decomposition: A mathematical theory of network architectures," *Proc. of the IEEE*, vol. 95, no. 1, pp. 255-312, January 2007.

References (cont'd)

- W. Yu, G. Ginis, and J. Cioffi, "Distributed multiuser power control for digital subscriber lines," *IEEE J. Sel. Areas Commun.*, vol. 20, no. 5, pp. 1105-1115, June 2002.
- J. Mo and J. Walrand, "Fair end-to-end window-based congestion control," *IEEE Trans. on Networking*, vol. 8, no. 5, pp. 556-567, Oct. 2000.

References (cont'd)

- Y. Su and M. van der Schaar, "Structural solutions for additively coupled sum constrained games," UCLA technical Report, 2010.
- Y. Su and M. van der Schaar, "Conjectural equilibrium in multiuser power control games," *IEEE Trans. Signal Processing*, vol. 57, no. 9, pp. 3638-3650, Sep. 2009.
- Y. Su and M. van der Schaar, "A new perspective on multiuser power control games in interference channels," *IEEE Trans. Wireless Communications*, vol. 8, no. 6, pp. 2910-2919, June 2009.
- Y. Su and M. van der Schaar, "Linearly coupled communication games," UCLA technical Report, 2009.
- Y. Su and M. van der Schaar, "Dynamic conjectures in random access networks using bio-inspired learning," *IEEE JSAC* special issue on Bio-Inspired Networking, May 2010.

Linear convergence

• A sequence $x^{(k)}$ with limit x^* is linearly convergent if there exists a constant $c \in (0,1)$ such that

$$|x^{(k)} - x^*| \le c|x^{(k-1)} - x^*|$$

for k sufficiently large.

Users aim to solve

$$\max_{\mathbf{a} \in \mathcal{A}} \sum_{n=1}^{N} u_n(\mathbf{a})$$
user n's impact over user m's utility

They can pass coordination messages

$$\pi_{mn}^k(a_m, \mathbf{a}_{-m}) = -\frac{\partial u_m(\mathbf{a})}{\partial a_n^k}$$

and user n behaves according to

$$\max_{\mathbf{a}_n \in \mathcal{A}_n} u_n(\mathbf{a}) - \sum_{k=1}^K a_n^k \left(\sum_{m \neq n} \pi_{mn}^k \right)$$

• Gradient play $\pi_{mn}^{k,t-1} = -\frac{\partial u_m(\mathbf{a}^{t-1})}{\partial a_n^k}$

$$a_n^{k,t} = a_n^{k,t-1} + \kappa \left(\frac{\partial u_n(a_n, \mathbf{a}_{-n}^{t-1})}{\partial a_n^k} - \sum_{m \neq n} \pi_{mn}^{k,t-1} \right).$$

$$\mathbf{a}_{n}^{t} = \left[a_{n}^{1,t} a_{n}^{2,t} \cdots a_{n}^{K,t}\right] = \left[a_{n}^{'1,t} a_{n}^{'2,t} \cdots a_{n}^{'K,t}\right]_{\mathcal{A}_{n}}^{\|\cdot\|_{2}}$$

Theorem 3: If $\forall n, k, \mathbf{x}, \mathbf{y} \in \mathcal{A}_{-n}$,

$$\inf_{x} \frac{\partial^{2} h_{n}^{k}(x)}{\partial^{2} x} > -\infty, \text{ and } \left\| \bigtriangledown g_{n}^{k}(\mathbf{x}) - \bigtriangledown g_{n}^{k}(\mathbf{y}) \right\| \leq L' \|\mathbf{x} - \mathbf{y}\|,$$

gradient play converges for a small enough stepsize.

Lipschitz continuity and gradient projection algorithm

• Jacobi update $\pi_{mn}^{k,t-1} = -\frac{\partial u_m(\mathbf{a}^{t-1})}{\partial a_n^k}$ $B(\mathbf{a}_{-n}^{t-1}) = \arg\max_{\mathbf{a}_n \in \mathcal{A}_n} u_n(\mathbf{a}, \mathbf{a}_{-n}^{t-1}) - \sum_{k=1}^K a_n^k \left(\sum_{m \neq n} \pi_{mn}^{k,t-1}\right)$ $a_n^{k,t} = a_n^{k,t-1} + \kappa \left\{ [B(\mathbf{a}_{-n}^{t-1})]_n^k - a_n^{k,t-1} \right\}$

Theorem 4: If
$$\inf_{x} \frac{\partial^2 h_n^k(x)}{\partial^2 x} > -\infty$$
, $\sup_{x} \frac{\partial^2 h_n^k(x)}{\partial^2 x} < 0$,

and $\left\| \nabla g_n^k(\mathbf{x}) - \nabla g_n^k(\mathbf{y}) \right\| \le L' \|\mathbf{x} - \mathbf{y}\|,$

Jacobi update converges for a small enough stepsize.

Lipschitz continuity, descent lemma, and mean value theorem

- Convergence to an operating point that satisfies the KKT conditions is guaranteed
- Total utility is monotonically increasing
- Global optimality is guaranteed if the original problem is convex, otherwise not
- Developed for general non-convex problem in which convex NUM solutions may not apply in general

Stackelberg equilibrium

- Definition
 - Leader (foresighted): only one
 - Follower (myopic): the remaining ones
 - Strategy profile $\left(a_n^*, NE\left(a_n^*\right)\right)$ that satisfies

$$u_n\left(a_n^*, NE\left(a_n^*\right)\right) \ge u_n\left(a_n, NE\left(a_n\right)\right), \forall a_n \in \mathcal{A}_n$$

 Existence and computation of SE in the power control games [SuTWC'09]

A two-user formulation

Bi-level Programming

$$\begin{array}{ll} \textit{upper} \\ \textit{level} \\ \textit{problem} \end{array} \begin{cases}
& \max_{k=1}^{K} \sum_{k=1}^{K} \ln \left(1 + \frac{P_1^k}{N_1^k + \alpha_2^k P_2^k} \right) \\
& s.t. \quad \sum_{k=1}^{K} P_1^k \leq P_1^{\max}, P_1^k \geq 0,
\end{array} \tag{a}$$

where
$$N_1^k = \sigma_1^k / \left| H_{11}^k \right|^2, \alpha_1^k = \left| H_{12}^k \right|^2 / \left| H_{22}^k \right|^2, N_2^k = \sigma_2^k / \left| H_{22}^k \right|^2, \alpha_2^k = \left| H_{21}^k \right|^2 / \left| H_{11}^k \right|^2$$

Problems with the SE formulation

- Computational complexity
 - intrinsically hard to compute
- Information required for playing SE
 - Global information

$$\left\{ lpha_{ij}^{k} \right\}, \left\{ \sigma_{i}^{k} \right\}, \left\{ \mathbf{P_{i}^{max}} \right\}$$

- Realistic assumption
 - Local information

$$\sum\nolimits_{n=2}^{N}\alpha_{n1}^{k}P_{n}^{k}+\sigma_{1}^{k},\mathbf{P_{1}^{max}}$$

– Any appropriate solutions other than SE and NE?

Weighted Fairness

- Priority-based fair medium access control
 - Traffic classes with positive weights

$$SU_i = p_i \cdot (1 - p_i)^{|f_i| - 1} \cdot \prod_{j \neq i} (1 - p_j)^{|f_j|}$$

$$\forall i, j \in \{1, \dots n\}, \quad \frac{SU_i}{\phi_i} = \frac{SU_j}{\phi_j}$$

$$\iff \forall i, j \in \{1, \dots n\}, \quad \frac{p_i (1 - p_j)}{\phi_i} = \frac{p_j (1 - p_i)}{\phi_j}$$

Conjecture-based protocol

$$\forall i, j \in \{1, 2, \dots, N\}, \phi_i p_i (1 - p_i) = \phi_j p_j (1 - p_j) \Rightarrow \frac{\phi_i p_i}{1 - p_i} \approx \frac{\phi_j p_j}{1 - p_j}$$

Some distributed iterative algorithms

Best response

$$\mathbf{a}_n^{BR,t} = \arg\max_{\mathbf{a}_n \in \mathcal{A}_n} u_n(\mathbf{a}_n, \mathbf{a}_{-n}^{t-1})$$

Jacobi update

$$\mathbf{a}_n^{JU,t} = (1 - \kappa)\mathbf{a}_n^{t-1} + \kappa\mathbf{a}_n^{BR,t}$$

Gradient play stepsize

$$\mathbf{a}_n^{GP,t} = \mathbf{a}_n^{t-1} + \kappa \nabla_n u_n(\mathbf{a}_n, \mathbf{a}_{-n}^{t-1})$$

