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Research agenda

Sequential resource sharing/exchange in multi-agent systems

e Sequential:
e Agentsinteract over a long time horizon
e Agents’ current decisions affect future
e Agents aim to maximize long-term payoffs
e Different from standard myopic optimization problems
e Multi-agent:
e Multiple agents influencing each other
e Different from standard Markov decision processes (MDPs)

New tools and formalisms!



Research dimensions

Interactions

agents interact with all other agents
agents interact in pairs

Externalities

one’s action affects the others’ payoffs directly and negatively
one’s action affects the others’ payoffs directly and positively
one’s action does not affect the others’ payoffs, but is coupled
with the others’ actions through constraints

Monitoring

perfect / imperfect

State

none (system stays the same) / public / private

Deviation-proof

no / yes



Resource sharing with strong negative externality

Interactions

everybody interacts with everybody
agents interact in pairs

Externalities

one’s action affects the others’ payoffs directly and negatively
one’s action affects the others’ payoffs directly and positively
one’s action does not affect the others’ payoffs, but is coupled
with the others’ actions through constraints

Monitoring

perfect / imperfect

State

none (system stays the same) / public / private

Deviation-proof

no / yes



A general resource sharing problem

’U,Ti (throughput) . .
A general resource sharing scenario:
[ Agent 1 }

e Aresource shared by agents 1, ..., N
e Timeisslottedt=0,1, 2, ...

at t .
1 Y e At each time slot t:
(power leivel) | (interference) . .
v 1. Agentichooses action a}
~ Resource 2. Receives monitoring signal
(wireless spectrum) 3. Receives payoff u: — u; (ag, at_z)
1 e Strategy:
at, y* mi: (Y0¥ ) = a
(power lgvel) | (interferencg) Lone-term pavoff:
| g-term payoft:
TR 00 ot ¢
[ Agent N } Uj ﬂ-’ivﬂ'—’&') — 4"{(1 _ 5) Zt:O 0 uz}

’u,ﬁv (throughput)



Design optimal resource sharing policies

Designh problem:

maxX, W(Ul (71'), cooy UN (7!')) <€— Social welfare function

s.t. Uz(ﬂ') > v;, Vi € N < Minimum payoff

guarantees

7 is deviation — proof

Formally, 7 is deviation-proof, if for all 2 € N/, we have

Uz'(ﬂ-z'sﬂ-—i) > Uz'(ﬂ',,':,‘?'l'_z'), Vﬂ-;



A special (but large) class of problems

Resource sharing with strong negative externalities

Definition of Strong Negative Externalities (Intuitive)

Negative Externalities: a”’ <0, ¥Vj#£i
rﬂu,—

Strong Negative Externalities: B3, is large

<—— Time-varying resource usage levels

> Agent 1’s payoff



Many resource sharing scenarios

Communication networks

e power control N
u; = log, (1 + 2#953 ;707 )
 Medium Access Control (MAC)
w; = a; - [[;;(1 —aj5), Vi: a; €[0,1]
 flow control n
o Bi . .
Ui = 0y (l‘ D it G’J)

Residential demand-side management, etc.



Engineering literature - |

Network Utility Maximization
(F. Kelly, M. Chiang, S. Low, etc.)

« No externality U;(a;),
or U;(a) jointly concave

e Short-term performance

Inefficient

e Myopic optimization (find
the optimal action)

Our work

Negative externality,
not jointly concave in general

Long-term performance

Foresighted optimization (find
the optimal policy)



Engineering literature - Il

Markov decision processes
(D. Bertsekas, J. Tsitsiklis, E. Altman, etc.)

« Single agent

« Stationary policy is optimal

Our work

Multiple agents

Nonstationary policy

10



Economics literature

Existing theory Our work
(Fudenberg, Levine, Maskin 1994)

e Folk theorem-type results Constructive

Not constructive
« Cardinality of feedback e Binary feedback regardless of
signals proportional to the the cardinality of action sets
cardinality of action sets (exploit strong externality)
High overhead
« Discount factor 2 1 « Discount factor lower bounded

e Interior e Pareto boundary
11



Challenge 1 — Why not round-robin TDMA?

Why not simply use round-robin TDMA
to achieve the Pareto boundary?

Discounting (impatience, delay-sensitivity)

Agent 1’s payoff

12



Challenge 1 — lllustrating Example

A simple example abstracted from wireless communication:
* 3 homogeneous agents, discount factor 0.7

e maximum payoff of each agentis 1

* max-min fairness: max min; U; -2 optimal (1/3, 1/3, 1/3)

Round-robin TDMA policies (and variants):
e cycle length of 3: 123 123 123 - 0.18 (46% loss)

e cycle length of 4: 1233 1233 1233 - 0.26 (22% loss)
o cycle length of 8: 12332333 - 0.29 (13% loss)

UY\.— \.—Ilb\- 45

M @

Longer cycles to approach the optimal policy?

13



Computational Complexity

Longer cycles to approach the optimal nonstationary policy?

# of non-trivial policies (each user has at least one slot)
grows exponentially with # of users!
Lower bounded by NV (N: # of users, L: cycle length)

In the 3-user example, to achieve within ~10% of optimal
nonstationary policy, we need a cycle length 8 > 5796 policies

Under moderate number of users (N=10), for a good performance
(L=20), more than 10° (ten billion!) policies

Optimal nonstationary policy: complexity /inear with # of users

14



Moral:
— Optimal policy is not cyclic

Good news:

- We construct a simple, intuitive and general
algorithm to build such policies

- Complexity: linear vs exponential of round-robin

15



Challenge 2 — Imperfect monitoring

How to make the schedule deviation-
proof?
(e.g. 122 122 122 may be,

but 1122222 1122222 may not)

Revert to an inefficient Nash equilibrium
when deviation is detected?

Punishment will be triggered due to
imperfect monitoring.

Agent 1’s payoff

16



The design framework

A

Agent 2’s payoff

[ Step 1: Identify the set of Pareto optimal
equilibrium payoffs

:
| Challenging!

Step 2: Select the optimal operating point

Relatively easy given step 1.

.~

Challengl ng

Agent 1’s payoff

17




A typical scenario

e Action set: compact or finite

* Agent i’s preferred action profile: a* = arg max, u;(a)

N uj(&i) =0, Vj #1

e Strong negative externality: for any action profile
a # a', Vi, the payoff vector u(a) lies below the hyperplane
determined by u(a?), Vi

A Agent 2’s payoff

Agent 1’s payoff

> 18



A typical scenario

e Action set: compact or finite

* Agent i’s preferred action profile: a* = arg max, u;(a)

N 'u,j(&i) =0, Vj #1

e Strong negative externality: for any action profile
a # a', Vi, the payoff vector u(a) lies below the hyperplane
determined by u(a?), Vi

* u;(a) increasing in g¢; and decreasing in a;

* Binary noisy signal:

B { 1, f(a)+ e > threshold

0, otherwise

f(a): resource usage status, increasing in each a;

€ : noise, infinite support
19



Step 1 — Identification

When agent 1 is active, agent 7’s relative benefit from deviation:

o 2 sy » Uy (a:',-a&f_j)—uj (@*) Payoff gain from deviation
“J Pa/#a! p(y=1la’;,a* ;)—p(y=1|@*) Probability of detecting deviation

Theorem (Analytical identification of Pareto optimal equilibrium payoffs)

The set of Pareto optimal equilibrium payoffs is

P ={v: Zv,—f'.?,- =1, vj/Vi = pj}, where p; = I‘:_’l;}?{crg- [1 —ply = 1|5’-}} .
i

and any payoff in 27, can be achieved if the discount factor ¢ satisfies

1
1_ T
N—1+>;>ajply =1[a")
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Step 1 — Identification

When agent 1 is active, agent 7’s relative benefit from deviation:

o 2 sy » Uy (a:',-a&f_j)—uj (@*) Payoff gain from deviation
“J Pa/#a! p(y=1la’;,a* ;)—p(y=1|@*) Probability of detecting deviation

Theorem (Analytical identification of Pareto optimal equilibrium payoffs)

Hyperplane (strong externalities) w# Constraints = Part of hyperplane (easily computed)

’_ _N ’_\
s N /7 N\
P ={vE> vi/vi=Dv/7 > pp, where pj £ maxay - [1 —ply = 1|5'}} )
— T ,/ \\ ,/ i#]

and any payoff in 22,, can be achieved if the discount factor & satisfies
Conditions on the discount factor (delay sensitivity):

1
1_ T
N—1+>;>ajply =1[a")

21



Step 1 - Key ideas

Decompose the target payoff profile [v,...,v%]|T by a
- decomposition: vf = (1—6) - us(a) +4 - [T p(yla)y(y)|

Target payoff Instantaneous payoff Continuation payoff
— incentive constraints (IC): for all a} , we have

of > (1-0) - wi(a},a—i) +8- |3y pylaj, a—i)w(w)]

Comparison with Bellman equations in MDPs

MDPs Repeated Games
one agent = actions multi-agent = action profiles
values value profiles

value functions single-valued value functions set-valued

22



Step 1 - APS

Consider a set W C IR™ and a discount factor ¢ .

A pair (v, a) is admissible with respect toWw and ¢, if Iy(y)e W :

v = (1-6) - us(@) +6- |3y g plyla)n(y)
> (1-6) - wiag, a—s) + 8- | ;o pylal, a—i)(y)]

Bs(W) = {v : exists a such that (v, a) admissible}

W self-generating: W c B(W)

—> All payoffs in the self-generating set are equilibrium payoffs!

By Abreu, Pearce, Stacchetti 1990 (APS)

23



Step 1 — APS is not constructive

APS proposed a set-valued value iteration to compute W:

Given a discount factor § : «<— |s it even feasible??
choose an initial Wy € R™  all equilibrium payoffs C Bs(Wp) C Wy
W, = Bg(Wo) «——— How?? How??

Woo = BJ(WQO)

—
- wmm
—
- L

’3”)7(29)€W0 w= (1= ) wa(a) + 6 [zy_op(ma)%(yi‘ TTees
> (1-9) - ui(aj,a—) +4- X, _Up<y|az,a_a)m>]

—-—
-—
—
—
-—
___———————————_-—_

A feasibility checking problem; May explore entire action space

~~
—
L]
—_-

Even if we could compute W, how to construct the policy??

24



Step 1 — Our approach

We analytically determine W!

Consider W of the following form:
Pu={v:) ;vi/v; =1,v[v; > p;}
4 Agent 2’s payoff

25



Step 1 — Our approach

We analytically determine W!

Consider W of the following form:
f@” — {’U : Zz ’U-_;,/’t_Jz' = 1,'05,/’172' > p,,,;}

- - -
- ~\

~~——_—

v; = (1—0)-ui(a)+4- [Z,IFO p(yla)%-(y)] linear constraints
> (1-9) - wilaj, @) + 8- |y o plai, a-i)wi(w)]

Find the lower bound on § :

é,,b = MaXye 2, Miljcy MAXje N Pij (v)

26



Step 1 — lllustrate self-generating sets

Decompose the target payoff profile [v7F, ..., vt

, of = (1-0) - ui(a®) + 8- [0 P}
4‘Agent 2’s payoff

continuation payoff when yo =0 -

(when no distress signal received): . _ .
Agent 2 has no incentive to deviate,

T
/[ 71(0)  72(0) | __:>because of lower continuation
continuation payoff when y¥ =1 payoff when 9% =1
‘(w/hen distress signal received):

[ (1) 7@ ]

—

Self-generating set

decomposed by @’ = a!

>
Agent 1’s payoff 27




Step 1 — lllustrate self-generating sets

Decompose the target payoff profile [vF,...,v5]T:

*x 1_6 - U 0 5 1 B 0].-0 ; 0
reent zsompr U= 8 @) 48 [Tho p0 I % ()|

A

- - -
’_

Both continuation payoff vectors
in the self-generating set.

~—————_—

They should also be decomposable!
_______ = Recursive decomposition

1
v |
Self-generating set N [ . |

decomposed by @’ = a!

>
Agent 1’s payoff 28




A

Step 1 — lllustrate self-generating sets

Agent 2’s payoff

~2

i?mposed bya'! =a

d

For example, decompose| 71(0) 72(0) ]T :

%(0) = (1—8) - wi(a?) + 8- |Lyig p(y'la) (")

continuation payoff when ¥ = 0:

/ [ 71(0)  72(0)

]T

continuation payoff when y! = 1:

EAOIEAORS

continuation payoff when y! = 0:

[0 %0 1"

>

Agent 1’s payoff

29



Step 2 — Select optimal operating point

e Designer selects optimal operating point v*:
v* = argmax, W(v1,...,un)
s.t. (’V_* S %:} <€— Linear equalities and inequalities

e B —

U’izyia VZEN

« The above problem is easy to solve

- W(v1,...,vnN) usually jointly concave = convex optimization
— Constraints are linear = dual decomposition, distributed algorithms

30



Step 3

SU 2’s payoff
A

Suppose that after Steps 1 and 2, we
have found the optimal operating point.

How to achieve it?

Step 3: Construct the optimal spectrum
sharing policy

Challenging!

>

SU 1’s payoff

31



Step 3 — Low-complexity online algorithm

The low-complexity online algorithm run by each user:
e A longest-“distance”-first (LDF) scheduling
e No message exchanges are needed at run-time

Input: the target payoff v* € 22,, the discount factor § > 4

Initialization: Set t =0, v(0) = v*. Define “distance from target”
repeat /
. i vi(t) /Wi —p, .
Distance from target” di(t) = — Y7 SR s E) Wi
i* £ argmaxjep di(t), a(t) = a' < User with the longest distance transmits

if y* = 0 (indicating no deviatiun} then
- (2 +1) = v e —

- ajejply =1)@")) - v

_11531"Y . . i £ i*

EIS:,{r+ =7l +I: V- civiply =1|a ) VI £1 Distances updated
Vis(t+1) = v;- (1) — (2 —1) - (1 - =8 ZHE, aip(y = 0|a")) - 7~ [ analytically
Vr{r+1)_ (1) + (1 — 1} LE :P{}’_U|ﬂ' )V

end if ]

t+—t+1

until v(t) = v*

Theorem: this algorithm achieves the desired Pareto optimal point v*



Convergence

Theorem: The algorithm converges to the desired Pareto optimal point
in logarithmic time.

_————~ ’

Details: {(1 — 5) Z s 07 Tu, - 'u*j < v* .(5t+1\ Distance decreases exponentially

-7 R \\ -’ > Convergence in log. time

Throughput achieved at time t  Target operating point

The cncmmwmienes NMisimatanti~s Armdim s A1 e ~Af A~cAmE~c AAA~ A~ + ~ffA ~+ & —~
11ICOUICIII. LJyIIdIIIIL. E”Lly d”u exit O1 gCIILb UUCb ||UL dlicClL LIic

convergence rate of existing agents!

33



Implementation

Message exchange before run-time

« Each userineeds to know:
— maximum payoffs of all the users: 17; }jen
— boundary of P&: {gj}jej\f
— relative benefits from deviation: {b:; }jen
_ probability of distress signal: {o(y = 1|p?) }ien
e Total amount: N2 42N
Message exchange at run-time

e None!

Total amount of message exchange bound
with time!
Other algorithms (e.g. NUM): O(N) x 4 _of steps to converge»

—y

- - N S ..
e ——

—ew e — mmn s =

unbounded

34



Applications

Nonstationary spectrum sharing -
Utility Maximization

Y. Xiao and M. van der Schaar, “Dynamic Spectrum Sharing Among Repeatedly
Interacting Selfish Users With Imperfect Monitoring,” JSAC special issue on
Cognitive Radio Systems, vol. 30, no. 10, pp. 1890-1899, Nov. 2012.

35



System Model - lllustration

Macro-cell

!.ff Interference among femto-cells

Femto-cell Femto-cell

Spectrum sharing among femto-cells
— each femto-cell maximizes its own
payoff (e.g. throughput)
— subject to interference temperature
constraints imposed by the macro-cell

36



Simulation results - benchmarks

Constant policies: transmit at fixed power levels simultaneously

Jianwei Huang, Randall Berry, and Michael Honig, “Distributed interference compensation for
wireless networks,” IEEE JSAC, 2006.

C. W. Tan and Steven Low, “Spectrum management in multiuser cognitive wireless networks:
Optimality and algorithm,” IEEE JSAC, 2011.

Punish-forgive (PF) policies:
« deviation-proof
« same as constant policies when no distress signal
« transmit at maximum power levels forever once distress signal received

R. Etkin, A. Parekh, and David Tse, “Spectrum sharing for unlicensed bands,” JSAC, 2007.

Y. Wu, B. Wang, Ray Liu, and T. C. Clancy, “Repeated open spectrum sharing game with cheat-
proof strategies,” IEEE Trans. Wireless Commun., 20009.

Round-robin TDMA policies

37




Simulation results

Fixed minimum throughput guarantees: 0.5 bits/s/Hz

S
\ —v— Constant, PF
\ —8— Round-robin
a - ~— Proposed

w

N

—

Triple the spectrum efficiency

%\\\\\\*f\“\“:*;
0 \Vvv\ﬁﬂaaaau
4 . 2 10

12 14

Avg. throughput (bit/s/Hz)

Number of users
38



Extensions

A framework of cost minimization:

« Each agent ¢ incurs a cost ¢;(a;)

e Each agent minimizes its cost subject to minimum
payoff requirement

Design problem:

min,, W(Cl (ﬂ'), c ooy ON (ﬂ')) €—— Social welfare function

s.t. Uq,(ﬂ') > v, Vi e N < Minimum payoff

guarantees

7 is deviation — proof

39



NOT a trivial extension

Agent 2’s payoff

Step 1: Identify the set of feasible operating
A feasible operating point points achievable by deviation-proof policies

' Even more challenging!

Step 2: Select the optimal operating point
Relatively easy given step 1.

Minimum payoff requirements

Step 3: Construct the optimal resource
sharing policy

S S Same challenges as before.

- __—_\ )

Agent 1’s payoff

40



Applications

Nonstationary spectrum sharing —
Energy consumption minimization

Y. Xiao and M. van der Schaar, “Energy-efficient nonstationary spectrum sharing,”
Accepted by IEEE Transactions on Communications. Available at: http://arxiv.org/
abs/1211.4174

41



Energy efficiency

Benchmarks:

1. Stationary policies: transmit at fixed power levels simultaneously

Jianwei Huang, Randall Berry, and Michael Honig, “Distributed interference compensation for
wireless networks,” IEEE JSAC, 2006.

R. Etkin, A. Parekh, and David Tse, “Spectrum sharing for unlicensed bands,” JSAC, 2007.

Y. Wu, B. Wang, Ray Liu, and T. C. Clancy, “Repeated open spectrum sharing game with cheat-
proof strategies,” IEEE Trans. Wireless Commun., 2009.

C. W. Tan and Steven Low, “Spectrum management in multiuser cognitive wireless networks:
Optimality and algorithm,” IEEE JSAC, 2011.

S. Sorooshyari, C. W. Tan, and Mung Chiang, “Power control for cognitive radio networks:
Axioms, algorithms, and analysis”, ACM/IEEE Trans. Netw., 2012.

2. Round-robin TDMA policies

42




Energy efficiency

1 BS with minimum throughput requirement of 1 bit/s/Hz
2-15 femto-cells with minimum throughput requirement of 0.5 bit/s/Hz

Small number of femto-cells:

N
ol

—w=— Stationary
—&— Round-robin
~* Proposed

N
o

=
o1

50% energy saving

=
o

ol

Avg. energy consumption (mW)

10 12
Number of femto-cells 43



Energy efficiency

1 BS with minimum throughput requirement of 1 bit/s/Hz
2-15 femto-cells with minimum throughput requirement of 0.5 bit/s/Hz

Large number of femto-cells:

1400 -
—H— Round-robin
—

= 1200 Proposed

=

S

S 1000 -

o

S 90% energy saving

s 800-

wn

c

3

- 600 -

<

c

S 400-

S

>

<

N

o

o
|

- e B

I | | | |
12 12.5 13 13.5 14 14.5 15
Number of femto-cells
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The general scenario

e Action set: compact or finite

* Agent i’s preferred action profile: a* = arg max, u;(a)

eu;(@) =0, Vj#1 Notnecessary

e Strong negative externality: for any action profile
a # a', Vi, the payoff vector u(a) lies below the hyperplane
determined by u(a?), Vi

* u;(a) increasing in a; and decreasing ina; Not necessary

* Binary noisy signal:

{ 1, f(a)+ e > threshold i
Yy = More general, still binary

0, otherwise

f(a): resource usage status, increasing in each a;
€ : noise
45



Conclusions so far

Proposed
* Optimal nonstationary resource sharing policies
e Efficiency is achieved even under binary feedback with errors

Huge performance gain in spectrum sharing
e 3x spectrum efficiency
* 90% energy saving

Solutions applicable to many engineering systems
e Decentralized users sharing a common resource
* Imperfect knowledge about the resource usage status

46



Resource exchange with imperfect monitoring

* |nteraction
e everybody interacts with everybody
e agents interact in pairs

e Externality
e one’s action affects the others’ payoffs directly and negatively
e one’s action affects the others’ payoffs directly and positively
e one’s action does not affect the others’ payoffs, but is coupled
with the others’ actions through constraints

e Monitoring
e perfect /imperfect
e State
 none (the system stays the same) / public / private

e Deviation-proof

e no/yes
47



A resource exchange problem

A resource exchange scenario:
* Anonymous agents 1, ..., N
e Timeisslottedt=0,1, 2, ...

Clients: Servers: e At each time slot t:
[Agentl Agent 1} 1. Random matching into pairs
2. Server chooses “serve” or “not”
[Agentz Agentz} 3. Client monitors with errors
e Anonymity, random matching
[Agenw Agentﬂ - rating mechanisms

* Propose the first rating mechanism
that achieves social optimum under
monitoring errors

* Nonstationary
48



Resource sharing with dynamic private states

* |nteraction
e everybody interacts with everybody
e agents interact in pairs

e Externality
e one’s action affects the others’ payoffs directly and negatively
e one’s action affects the others’ payoffs directly and positively
e one’s action does not affect the others’ payoffs, but is couple
d with the others’ actions through constraints

e Monitoring
e perfect /imperfect
e State
e none (the system stays the same) / public / private

e Deviation-proof

* no/yes
49



A resource sharing problem

. u'i (throughput)

81 } A resource sharing scenario:
Agent 1
(traffic)[ ° e Aresource shared by agents 1, ..., N

e Timeisslottedt=0,1, 2, ...

* Ateachtimeslott:

1. Agentiobserves state st

2. Agentichooses action a?

3. Receives payoff ut = u;(st, at)

aj

(bandwidth)

Resource
(total bandwidth)

1 e Strategy:
at s st — at
N it S5 ;
(bandwidth) e Long-term pavoff:
t O r J

(%’){ Agent N } U’i(ﬂ"iv W—i) = L {(1 — 5) Zzo 6tu$}
traftic

e Optimal Multi-user MDP

t
UHr (throuput)
N 50



Final conclusions

Three classes of resource sharing/exchange problems
Optimal policies are often nonstationary = new tools
Future works

 Different interactions

e Network topologies

e Different state transition dynamics

e Learning

e Many other dimensions

Thank youl!

o1



Backup Slides



Engineering literature - Il

Distributed optimization/consensus Our work
(A. Ozdaglar, A. Nedich, etc.)

e Jointly concave payoff e Not jointly concave in general

(not suitable for resource
sharing)

e Myopic optimization (find

« Foresighted optimization (find
the optimal action)

the optimal policy)

53



lllustration — Stationary policies

A simple network with three homogeneous users:

Direct channel gains: 1
S< 7- Rx 1 Cross channel gains: 0.25
NN <
\ ><// Noise power at both users’ receivers: 5 mW
A ~
AN ~ | R Both users discount throughput and energy
7 P X 2 .
~ N consumption by § = 0.6.
y; >‘/\
é// o \\§ Min. average throughput requirement: 1.5 bits/s/Hz
—] Rx2
X Channel gains are fixed. No PU.

State: channel conditions (fixed), PU activity (always idle)

Action: transmit power levels

Stationary policy : Both users transmit at fixed power levels simultaneously

Instantaneous power levels: (186, 186, 186) mW
Average energy consumption: (186, 186, 186) mW

o4



lllustration — Simple nonstationary policies

A simple nonstationary policy: round-robin TDMA (cycle = 3)
Transmit schedule: 123 123 123 ..
(Actions are time dependent)

Instantaneous power levels: (33, 144, 1432) mW
Power levels increase with the delay (the position in the cycle)

Average energy consumption: (17, 44, 263) mW

User 1: 33 - ﬁ; =17
User 2: 144 - ﬁ = 44
User 3: 1432 - =5 = 263

Better....

55



lllustration — Simple nonstationary policies

Performance improvement by increasing the cycle length

Round-robin (cycle = 4):
Optimal transmit schedule: 1233 1233 1233...

Instantaneous power levels: (43, 212, 249) mW
Power levels increase with the delay (the position in the cycle)

But the difference between user 2 and user 3 is small (user 3 has two slots)

Average energy consumption: (20, 58, 66) mW

. 1 —
User 1: 43 - 110162133 — 20

User 2: 212 - 1+5+‘§§2+5—3 = 08
User 3: 249 - 1+gi§3153 = 66
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lllustration — Optimal nonstationary policies

The optimal policy is NOT cyclic
Transmit schedule: 123323213231...
Instantaneous power levels: (108, 108, 108) mW

Performance gains (total average energy consumption reduction):
80% compared to stationary policy;

67% compared to round-robin TDMA of cycle 3;

25% compared to round-robin TDMA of cycle 4.

Longer cycles to approach the optimal nonstationary policy?

o7



Step 1 — Recursive decomposition

e Recursive decomposition:

— continuation payoffs [v1(y),...,Y~n(y)

() 1 8. T i e Y (it )]
- YW =1 —-0)-u(a)+5-[X, (]P\U 1a)v;\y')] Vy—O 1

Yi(y) =2 (1—90) - ui(aj,a_;) + 6 - [Z 1—0 p(y' Iaz,a_J'y’(y )J Va

7

Different continuation payoff function ’Y;
-> different decomposition

-> Nonstationary policy!

]Tcan be decomposed,

Self-generating set: a set of payoff vectors in which every payoff
vector can be decomposed by an action profile, and the

continuation payoff vector lies in the set
All payoffs in the self-generating set are equilibrium payoffs!
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Publications

5 journal papers accepted as the first author

Y. Xiao and M. van der Schaar, “Optimal foresighted multi-user wireless
video,” Accepted subject to minor revision by JSTSP, special issue on Visual
Signal Processing for Wireless Networks.

Y. Xiao and M. van der Schaar, “Energy-efficient nonstationary spectrum
sharing,” Accepted by IEEE Trans. Commun.. Available at arXiv.

Y. Xiao and M. van der Schaar, “Dynamic Spectrum Sharing Among
Repeatedly Interacting Selfish Users With Imperfect Monitoring,” JSAC
special issue on Cognitive Radio Systems, Nov. 2012.

Y. Xiao, J. Park, and M. van der Schaar, “Repeated Games With Intervention:
Theory and Applications in Communications,” IEEE Trans. Commun., Oct.
2012.

Y. Xiao, J. Park, and M. van der Schaar, “Intervention in Power Control
Games with Selsh Users,” IEEE JSTSP, Special issue on Game Theory In Signal
Processing, Apr. 2012.

59



Publications

3 journal papers submitted as the first author

e Y. Xiao and M. van der Schaar, “Foresighted Demand Side Management,"
Submitted. Available at: http://arxiv.org/abs/1401.2185
e Y. Xiao and M. van der Schaar, “Socially-Optimal Design of Service Exchange

Platforms with Imperfect Monitoring,” Submitted. Available at:
http://arxiv.org/abs/1310.2323

e Y. Xiao, W. Zame, and M. van der Schaar, “Technology Choices and
Pricing Policies in Public and Private Wireless Networks,” Submitted.
Available at: http://arxiv.org/abs/1011.3580

60



Publications

Other journal papers as the 2" or 3™ quthor

M. Alizadeh, Y. Xiao, A. Scaglione, and M. van der Schaar, “Dynamic Incentive Design for
Participation in Direct Load Scheduling Programs,” Submitted. Available at:
http://arxiv.org/abs/1310.0402

L. Song, Y. Xiao, and M. van der Schaar, “A Repeated Game Framework

For Demand Side Management in Smart Grids,” Submitted. Available:
http://arxiv.org/abs/1311.1887

M. van der Schaar, Y. Xiao, and W. Zame, “Designing Ecient Resource Sharing For Impatient
Players Using Limited Monitoring,” Submitted. Available at: http://arxiv.org/abs/1309.0262

J. Xu, Y. Andreopoulos, Y. Xiao and M. van der Schaar, “Non-stationary Resource Allocation
Policies for Delay-constrained Video Streaming: Application to Video over Internet-of-Things-
enabled Networks,” Accepted by IEEE JSAC, Special Issue on Adaptive Media Streaming.

L. Canzian, Y. Xiao, W. Zame, M. Zorzi, M. van der Schaar, “Intervention with Private
Information, Imperfect Monitoring and Costly Communication: Design Framework," IEEE Trans.
Commun., Aug. 2013.

1 CAan2ian V Vian~ \Al 7A W\I\ |\/| 7~ NN famm Aar CArlhaar “Nntarmiantinnm s H Pr\mn +A nA
L. \AJIILIGII, . ANldU, VvV, £dlliIC, 1VI. LUILI, 1VI. VC|II uc<i oulliaai, IIILCIVCIILIUII VVILII CUI p LT U
Incomplete Information: Application to Flow Control,” IEEE Trans. Commun., Aug. 2013.

61



