
University of California

Los Angeles

Towards a Systematic Approach for Modeling

and Optimizing Distributed and Dynamic

Multimedia Systems

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical Engineering

by

Brian Foo

2008

© Copyright by

Brian Foo

2008

 ii

The dissertation of Brian Foo is approved.

__

Richard Wesel

__

Mani Srivastava

__

Mario Gerla

__

Mihaela van der Schaar, Committee Chair

University of California

2008

 iii

To my parents …

who reminded me to take care of myself

whenever I became absent-minded

from thinking too much.

 iv

Table of Contents

CHAPTER 1 Introduction .. 1

1.1 Motivation .. 1

1.2 Thesis goal ... 3

1.3 Thesis Outline and Contributions .. 4

CHAPTER 2 Analytical Rate-Distortion-Complexity Modeling for

Wavelet Video Coders ...10

2.1 Introduction .. 10

2.2 Overview of Wavelet Video Coders .. 13
2.2.1 Temporal Decomposition ... 13

2.2.2 Embedded Quantization ... 13

2.2.3 Coding of the Significance Maps and Coefficients .. 14

2.3 Estimating Block Significance Probabilities in Quadtree Decompositions 16
2.3.1 Source Models for Wavelet Coefficients ... 16

2.3.2 Probability of Block Significance at Bitplane b .. 20

2.3.3 Probability of Finding a Newly Significant Block at Bitplane b 21

2.4 Rate Approximation of Intra-band Embedded Coding .. 23
2.4.1 Rate of Significance-map Coding for High-frequency Subbands 24

2.4.2 Block and Refinement-coding Rate in High-frequency Subbands............................... 26

2.4.3 Coding Rate of Low-frequency Subbands ... 28

2.5 Distortion Estimation for MCTF Wavelet Coding .. 30
2.5.1 Distortion of Decoding followed by Inverse Spatial DWT .. 30

2.5.2 Distortion for MCTF Reconstruction ... 32

2.6 Complexity of Entropy Decoding and IDWT .. 32
2.6.1 Generic Complexity Modeling for Video Decoding .. 32

2.6.2 Entropy Decoding Complexity ... 33

2.6.3 Complexity of the Inverse Spatial DWT .. 34

2.7 Simulation Results ... 36

2.8 Conclusions .. 40

CHAPTER 3 A Model-based Approach to Processor Power Adaptation

for Video Decoding Systems ...42

3.1 Introduction .. 42

3.2 Stochastic Modeling of Application Workload ... 45
3.2.1 Challenges and Previous Works for Complexity Modeling ... 45

3.2.2 Deriving and Modeling the Service Distribution for Jobs ... 46

3.3 Evaluating the Optimality of DVS Algorithms ... 52

 v

3.3.1 Formulation of the Goal of Real-time DVS ... 52

3.3.2 The Operational Lower Bound for DVS .. 53

3.4 Online Robust Linear Programming DVS ... 56
3.4.1 Consideration of Stochastic Complexity .. 56

3.4.2 Extension to Variable Communication .. 58

3.5 Online Queuing-based DVS Algorithm ... 59
3.5.1 Delay Analysis ... 59

3.5.2 Queuing-based DVS Algorithms ... 63

3.6 Quality-aware Priority Scheduling-based DVS ... 66
3.6.1 Incoming Traffic Model and Service Model .. 66

3.6.2 Proposed DVS Service Policy and Model .. 68

3.6.3 Delay and Idle Time Analysis .. 69

3.6.4 Priority Scheduling Optimization Problems and Algorithms 70

3.7 Experimentation and Results ... 73
3.7.1 Experimental Setup .. 73

3.7.2 Optimality Study .. 74

3.7.3 Quality-aware Priority Scheduling DVS Implementation and Results 75

3.8 Conclusions .. 77

CHAPTER 4 Informationally-Decentralized System Resource

Management for Multiple Multimedia Tasks ..79

4.1 Introduction .. 79

4.2 The Message Exchange Protocol ... 83
4.2.1 Formal Representation of the Message Exchange Protocol ... 83

4.2.2 An Illustrative Example of MEP Implementation: The Social Welfare Maximizing

Algorithm .. 86

4.3 MEP-based Algorithms for Energy Minimization ... 88
4.3.1 An Energy-Minimizing Solution for an Always-Active System 88

4.3.2 Energy-constrained SWM for Multi-processor Systems with Sleep Modes 90

4.4 MEP-based Algorithms for Miscellaneous System Objectives 91
4.4.1 Assigning tasks to PEs using tax functions .. 91

4.4.2 Power Scheduling for Interdependent Multimedia Jobs .. 93

4.4.3 Summary of MEP Algorithm Design Requirements .. 94

4.5 Efficient Resource Allocation for Temporally-correlated Quality Functions 95
4.5.1 Modeling the Quality Functions for Dynamic Video Applications 95

4.5.2 Informational Requirement for Single Iteration Adaptation, and Optimal Step Sizes . 97

 vi

4.5.3 A Fixed Cost Algorithm ... 98

4.6 Simulations and Results ... 99
4.6.1 SWM and FCA Behavior for Dynamic Quality Functions .. 99

4.6.2 EEM Convergence and Tradeoff Parameter λ.. 100

4.6.3 Allocation Behavior for the Processor Assigning Algorithm..................................... 101

4.6.4 Joint SWMEM and Scheduling Simulation ... 102

4.7 Conclusion ... 105

CHAPTER 5 Resource-constrained Configuration of Classifier Cascades

in Distributed Stream Mining Systems ..107

5.1 Introduction .. 107

5.2 Model for Binary Chain of Classifiers ... 110

5.3 Minimizing Misclassification Cost in Binary Classifier Trees 112
5.3.1 Binary Classifier Tree Model and Misclassification Cost .. 112

5.3.2 Resource Consumption and Constraints .. 114

5.3.3 Discussion: Single versus Multiple Operating Points per Classifier 115

5.4 Experimental Results ... 117
5.4.1 Application Scenario: Classifying Sports Images .. 117

5.4.2 The Effect of Resource Constraints on Classifier Configurations 118

5.4.3 Effect of Unequal Costs on Classifier Configurations ... 120

5.5 Conclusion and Motivation for Learning Solutions .. 121

CHAPTER 6 Learning Solutions for Configuring Chains of Classifiers

in Distributed Environments ..122

6.1 Motivation and Introduction of Learning Solutions .. 122

6.2 A Review of Related Works for Decision-making in Dynamics 125

6.3 A Delay-sensitive Utility Function for a Chain of Classifiers 126

6.4 Informationally-Distributed Utility Calculation .. 128
6.4.1 Distributed Information Gathering ... 128

6.4.2 Optimization Framework using Distributed Information ... 130

6.5 A Distributed Learning Algorithm for Static Streams ... 131
6.5.1 Safe Experimentation for Discrete Configuration Sets .. 131

6.5.2 Combining Safe Experimentation with Randomized Local Search 133

6.5.3 A Distributed Algorithm without Information Exchange .. 134

6.5.4 Summary of Algorithms, and Non-stationary Dynamics ... 135

6.6 A Rules-based Framework for Choosing Algorithms ... 136
6.6.1 States, Algorithms, and Rules .. 136

6.6.2 State Spaces and Markov Modeling for Algorithms .. 137

 vii

6.6.3 An Adaptive Solution for Finding the Optimal Pure Rule ... 139

6.6.4 Tradeoff between Accuracy and Convergence Rate .. 141

6.7 Extensions of the Rules-based Framework .. 143
6.7.1 Evolving a New Rule from Existing Rules .. 143

6.7.2 A Decomposition Approach for Complex Sets of Rules ... 146

6.8 Simulation Results ... 149
6.8.1 Application: Classification of Speech Signals ... 149

6.8.2 Performance of Safe experimentation in Static Environments 150

6.8.3 State Space, Algorithms, and Rules used in Simulations under Dynamics 153

6.8.4 Comparison of Algorithms under Different Levels of Dynamics 154

6.8.5 Evaluation of the Markov Assumption for Algorithms .. 157

6.8.6 Evolution of a New Rule .. 158

6.9 Conclusions .. 159

CHAPTER 7 Summary, Broader Impact, and Future Directions160

Appendix A: Proof of Proposition 1 .. 164

Appendix B: Proof of convergence of SPERO .. 165

Bibliography 167

 viii

List of Tables

Table 1 Ratio of correlation between neighboring coefficients to the average coefficient

variance for the LL subband of L-frames of Foreman, Coastguard, Silent, and

Mobile after a 2 temporal level-4 spatial level decomposition. 17

Table 2 Examples of subband variances as well as the variance of the correlation  (for

block sizes of 4 4) formed across the spatio-temporal MCTF subbands of

sequence Foreman, along with the corresponding bitrates for several values of minB .

.. 19

Table 3. Examples of the number of 8 8 blocks encoded at each bitplane (symbols)

and the average rate of encoding each block significance (rate is measured in bits-

per-symbol), using the coder of [30]. Note that the rate per symbol increases as the

bitplane decreases and approaches one bit-per-symbol. .. 27

Table 4. Example comparison between the actual encoded rate (―Encoded size‖ using

the coder of [30]), the conventional approximation from prior work, and the

proposed approximation of (30) for an 44x38 LL subband of an L -frame in the

Foreman sequence. .. 30

Table 5 Affine transform coefficients for the entropy decoding complexity in 4 level

MCTF. .. 50

Table 6 Obtaining the waiting time distribution and probability of violating a delay

deadline. ... 63

Table 7 Comparisons of performances of various quality-aware priority scheduling

algorithms in terms of the percentage of deadlines met for various priority classes

for 4 temporal level decomposition (0f indicates the minimum processor power.).77

Table 8 Comparisons of average energy consumption and quality levels for algorithm 2

and quality-energy adaptation points of algorithm 3 for the Coastguard and Stefan

sequences decoded a bit rate 768kbps. The average frame rates (frames per second)

over all GOPs are given for different adaptation points for algorithm 3. 77

Table 9 Sleep Mode Initialization for SWM.. 105

Table 10 Average number of cycles per frame for task to PE Allocations (4 iterations of

the PA algorithm). .. 105

Table 11: Comparison of SWMEM-S and rate monotonic (normalized)

complexity/energy allocations for various time intervals. 105

Table 12 Processing complexity per image for each classifier. 118

Table 13 Costs of algorithms under different resource constraints and classifier

placements.. 119

Table 14 Costs associated with various algorithms under different cost functions. 120

Table 15: Summary of parameter types and a few examples. 130

Table 16 Summary comparing the different algorithms and the various criteria 135

 ix

Table 17 Performance comparison for synthetic data, normalized to the global

maximum. .. 151

Table 18 Performance comparison for speech data test set. .. 151

Table 19 Average confusion matrices per time interval for a dynamic stream. 156

Table 20 Probabilities of using local rules by each classifier for the distributed large rule

space. .. 156

Table 21 Average distance between a first order and second order Markov model. 158

 x

List of Illustrations

Figure 1 Summary of the Proposed Resource Management Framework 2

Figure 2 Block diagram of intra-band coding process of state-of-the-art wavelet-based

coders encompassing quadtree and block coding of the significance maps. 15

Figure 3 Experimental examples that the Gaussian assumption for the low-frequency

wavelet coefficients of the MCTF-based decomposition (with four spatio-temporal

levels) is accurate. .. 17

Figure 4 The discrete wavelet transform of an H frame of temporal level two (top left)

and plots of the doubly-stochastic (Laplacian) model and simulation data for

several H frames of different spatio-temporal resolutions. 19

Figure 5 Plot of: erf()x vs. erf()/erf(2)x x (left), and  16erf()x vs.  16erf()/erf(2)x x (right).

.. 22

Figure 6 Simulation and model prediction of significance and newly-significance of

4 4 blocks in various high-frequency spatio-temporal subbands. 22

Figure 7 Simulation and model prediction of significance and newly-significance of

4 4 blocks in LL subbands of L frames... 23

Figure 8. Rate-distortion plots for different configurations of the spatio-temporal

decomposition parameters. .. 39

Figure 9. Entropy decoding complexity vs. distortion plots for different spatio-temporal

decomposition parameters, where ―S‖ and ―T‖ indicate the number of spatial and

temporal levels (respectively). ... 39

Figure 10. IDWT complexity vs. distortion plots for different spatio-temporal

decomposition parameters, where ―S‖ and ―T‖ indicate the number of spatial and

temporal levels (respectively). ... 39

Figure 11 Rate and entropy decoding complexity curves for 720x480 Mobile sequence.

The cases of 4 and 2 temporal decomposition levels are presented. Both encodings

use 3 spatial decomposition levels. .. 40

Figure 12: (a) Periodic 3 temporal level MCTF structure (with dotted lines indicating

motion compensation operations), (b) Job decomposition for each soft decoding

deadline, (c) Corresponding workloads for the jobs in sequences Stefan and

Coastguard. .. 47

Figure 13 The total service time distribution for various classes of jobs (out of a total of

8 classes) in 4 temporal level MCTF for (a) all training sequences at bit rate

1152kbps, (b) at bit rate 320kbps. (c) The Coastguard sequence complexity shape,

(d) Stefan sequence complexity shape. .. 48

Figure 14 Normalized entropy decoding complexity for various L and H frames in a 4

temporal level MCTF GOP for (a) all training sequences at bit rate 1152kbps and

(b) at bit rate 320kbps. (c) The Coastguard sequence complexity shape, (d) Stefan

sequence complexity shape. ... 50

 xi

Figure 15 DVS problem formulation ... 53

Figure 16 Adaptation intervals... 54

Figure 17 Different voltage scheduling orderings ... 54

Figure 18 Dynamic adjust of prediction for rLP .. 58

Figure 19: Queuing model for Deadline Driven DVS. .. 60

Figure 20: An example of discrete service, vacation, and waiting times for cyclic service

and 2 classes per GOP. Jobs of each class arrive at multiples of 2N , with the first

job of class 1 arriving at time 0. ... 61

Figure 21: Queuing model for Priority Scheduling based DVS. 65

Figure 22: (a) Job decomposition based on deadlines for 3 level MCTF. (b) Job

decomposition based on quality-aware priority classes. .. 66

Figure 23 Example of total complexity per arriving ED GOC for various frames in a 4

temporal level MCTF GOP. The statistics are averaged over several sequences. ... 69

Figure 24 Energy and miss rate ... 75

Figure 25 An overview of the system stack, with the resource manager and resource

model.. 83

Figure 26 a) Variances and covariances and b) autocorrelation coefficient  for quality

perturbations in the Coastguard, Mobile, and Foreman sequences. c-d) Gaussian

fits to the PSNR distributions (in dB) for Mobile and Coastguard when operating at

particular complexity levels. The complexity is the number of entropy decoding

and inverse transform cycles per GOP. .. 96

Figure 27 The (a) convergence of decentralized allocation qualities to centralized

solutions, (b) the corresponding fraction of resources allocated to each task, and (c)

the costs are shown for SWM-U. (d-f) show corresponding plots for the fixed cost

algorithm (FCA)... 103

Figure 28 (a-c) The convergence of quality and computational resource allocation of

EEM with energy function 2E x 103

Figure 29 (a) The energy-quality curves for video sequences in the EEM algorithm

compared against the fair share scheduling algorithm. (b) The plot of the sum of

qualities (social welfare). ... 104

Figure 30 The energy-quality curves for video sequences using Nash product fairness,

compared against the fair share scheduling algorithm. .. 104

Figure 31 (a) Resulting processor resource distribution after 4 iterations of the PA

algorithm. (b) Energy-quality curves for the PA algorithm and the optimal

SWMEM solution. ... 105

Figure 32 A hierarchical classifier system that identifies several different sports

categories and subcategories. ... 109

Figure 33 Classifier chain with probabilities labeled on each edge. 110

Figure 34 Example of a depth-2 tree of classifiers with 3 terminal classes. 112

Figure 35 Pictorial representations of the configuration choices based on algorithms A-

D. .. 117

Figure 36 Placement of classifiers (a) to minimize cross-talk between nodes, and (b) to

ensure some level of failure resiliency. Note that different nodes have different

 xii

processing constraints. The constraints are measured in terms of the processor

speed (in cycles/second). ... 119

Figure 37 Comparison of prior approaches and the proposed rules-based framework. 125

Figure 38 The various parameters in relation to iv . .. 129

Figure 39 Flow diagram for updating parameters in Solution 1. 141

Figure 40 Rule distribution update in SPERO for 8 pure rules (see Section 6.8). 141

Figure 41 Comparison of utility versus iteration for load-shedding, distributed, and safe

experimentation algorithms under: (a) synthetic data, low load and low delay-

sensitivity, (b) synthetic data, high load and high delay-sensitivity, (c) the real

speech data stream. The exploration rates in these experiments were set to 1/ t .

.. 151

Figure 42 Comparison of adaptation times for exploration rates (a) 1/t , (b) 31/ t , and

(c) /50tt . .. 152

Figure 43 Dynamic adaptation results of Safe-Experimentation with exploration rate
/50tt for non-stationary streams. Vertical lines indicate the arrival of new stream

characteristics. .. 152

Figure 44 Comparison of utilities achieved by different rule spaces under different levels

of dynamics. ... 155

Figure 45 Comparison of delays for the 3 approaches. Each point is an average delay

over 100 intervals. .. 157

Figure 46 Comparison of utility achieved by the best rule in the original space, and the

evolved rule. ... 158

 xiii

ACKNOWLEDGEMENTS

 I would like to start by thanking my advisor Mihaela van der Schaar for her

enthusiasm and support through the course of my PhD. She has always encouraged me

to look outside the details of specific problems and to see the big picture. Under her

guidance, I was able to complete many papers on a wide range of research topics. Her

breadth and creativity have been constant sources of inspiration for me throughout my

stay here at UCLA.

 I would also like to thank Professors Rick Wesel, Mani Srivastava, and Mario

Gerla for their interest in my work, and their time invested to be part of my committee.

During my qualifying exam, each of them have provided useful feedback to guide the

direction of my work toward meaningful directions.

 I would also like to thank my labmates Fangwen Fu, Hyunggon Park, Nick

Mastronarde, Peter Hsiang, Yi Su, and Zhichu Lin for helping me to think through many

of my research ideas, and for helping to peer review my papers before submission. I will

also treasure the personal times spent with each of them, and how they have enriched my

life through both meaningful and fun conversations.

 I would also like to thank my supervisor at IBM, Deepak Turaga, as well as

Olivier Verscheure, and my manager Lisa Amini, for giving me the opportunity to do

very interesting research with them in their stream processing group. I would also like to

thank the members of the Marvel image classification group, Rong Yan and John Smith,

for their collaboration with us, which has led to numerous papers and even a patent. The

employees and interns at IBM have made the internship a wonderful experience.

 I would also like to thank Professor Lei He and his student Zhen Cao, with

whom I‘ve recently spent time thinking deeply about both theoretical and practical

problems in dynamic voltage scaling. Our discussions have lead to a great paper, and I

hope to continue cooperating with them in the future.

 Finally, I must thank my family, my mom and dad, and my brother Peter, for

their continued love and support for me during the course of my PhD career. Through

 xiv

thick and thin, they have been there to give me both guidance and prayer. I would like to

dedicate my thesis to my family.

 xv

VITA

1980 Born in Tallahassee, Florida, USA

2003 Bachelor of Science, University of California, Berkeley.

2004 Master of Science, Electrical Engineering, Communications,

UCLA.

2005 Teaching Assistant, Electrical Engineering Dept., UCLA.

 Joined the Multimedia Communications and Systems Laboratory

under Professor Mihaela van der Schaar.

2006 Teaching Assistant, Electrical Engineering Dept., UCLA.

2007 Internship at IBM Watson Research Center, Hawthorne, NY.

 xvi

PUBLICATIONS

Z. Cao, B. Foo, L. He, M. van der Schaar, ―Optimality and Improvement of Dynamic

Voltage Scaling Algorithms for Multimedia Applications,‖ Design Automation Conference

(DAC), 2008. (Nominated for best paper award)

B. Foo, Y. Andreopoulos, M. van der Schaar. ―Analytical Complexity Modeling of Wavelet-

based Video Coders.‖ ICASSP 2007.

B. Foo, Y. Andreopoulos, M. van der Schaar. ―Analytical Rate-Distortion-Complexity

Modeling of Wavelet-based Video Coders.‖ IEEE Trans. on Signal Processing, Vol. 56, No.

2, Feb. 2008.

B. Foo, D. Turaga, O. Verscheure, M. van der Schaar, L. Amini, ―Configuring Trees of

Classifiers in Distributed Stream Mining Systems,‖ IBM Austin Center for Advanced Studies,

2008.

B. Foo, D. Turaga, O. Verscheure, M. van der Schaar, L. Amini. ―Resource Constrained

Stream Mining with Classifier Tree Topologies,‖ IEEE Signal Processing Letters, May 2008.

B. Foo, M. van der Schaar. ―A Queuing Theoretic Approach to Processor Power Adaptation

for Video Decoding Systems.‖ IEEE Trans. on Signal Processing, Vol 56, No. 1, Jan. 2008.

B. Foo, M. van der Schaar, ―Distributed optimization for real-time multimedia stream mining

systems,‖ SPIE Multimedia Content Access, Jan. 2008. (Invited paper)

B. Foo, M. van der Schaar, ―Joint Scheduling and Resource Allocation for Multiple Video

Decoding Tasks,‖ SPIE Multimedia Communications and Networking, 2008.

B. Foo, M. van der Schaar, ―Queuing-theoretic Processor Power Adaptation for Video

Decoding Systems.‖ International Conference on Image Processing, 2007.

 xvii

ABSTRACT OF THE DISSERTATION

Towards a Systematic Approach for Modeling and

Optimizing Distributed and Dynamic Multimedia Systems

by

Brian Foo

Doctor of Philosophy in Engineering

University of California, Los Angeles, 2008

Professor Mihaela van der Schaar, Chair

Recent advances in low-power, multi-core and distributed computing technologies have

opened up exciting research opportunities, as well as unique challenges, for modeling,

designing, and optimizing multimedia systems and applications. First, multimedia

applications are highly dynamic, with source characteristics and workloads that can

change significantly within milliseconds. Hence, systems need to be able to optimally

adapt their scheduling, resource allocation, and resource adaptation strategies on-the-fly

to meet the multimedia applications' time-varying resource demands within the delay

constraints specified by each application. Second, systems often need to support multiple

concurrent multimedia applications and thus, (Pareto) efficient and fair resource

management solutions for dividing processing resources among the competing

applications need to be designed. Finally, some applications require distributed

computing resources or processing elements, which are located across different

autonomous sites. These different sites can collaborate in order to jointly process the

multimedia data by exchanging information about their specific system

implementations, algorithms and processing capabilities. However, exchanging this

information among these autonomous entities may result in unacceptable delays or

 xviii

transmission overheads. Moreover, they may even refuse to share this information due to

proprietary or legal restrictions. Thus, information-decentralization can present a major

obstacle for optimizing the performance of delay-sensitive multimedia applications that

require coordination and cooperation between distributed, autonomous sites.

 This dissertation addresses the above challenges by providing a systematic

framework for modeling and optimizing multimedia systems in dynamic, resource-

constrained, and informationally-distributed environments. In particular, we propose a

stochastic modeling approach to capture the dynamically changing utilities and

workload variations inherent in multimedia applications. This approach enables us to

determine analytical solutions for optimizing the performance of applications on

resource-constrained systems. Furthermore, the problem of information-decentralization

can be addressed in our framework by systematically decomposing the joint multi-

applications and multi-site optimization problems, and designing corresponding

mechanisms for exchanging model parameters, which characterize the utilities,

constraints and features of the autonomous entities. This systematic decomposition

enables entities to autonomously coordinate and collaborate under informational and

delay constraints. Finally, to optimize the performance of the multimedia applications or

systems in these distributed environments, we deploy multi-agent learning strategies,

which enable individual sites or applications to model the behaviors of its competitors or

peers and, based on this, select their optimal parameters, configurations, and algorithms

in an autonomous manner. Summarizing, our framework proposes a unified approach

combining stochastic modeling, systematic information exchange mechanisms, and

interactive learning solutions for optimizing the performance of a wide range of

multimedia systems.

 A unique and distinguishing feature of our approach is the extent of multimedia

algorithms and systems domain specific knowledge used in developing the proposed

framework for modeling, and optimizing the interacting system components and

applications. This is in contrast to existing distributed optimization or game theoretic

approaches, which use simplistic utility - resource functions, and often ignore the

 xix

dynamics and constraints experienced in actual multimedia systems. Instead, our

developed modeling and optimization framework is directly shaped by the specific

characteristics, constraints and requirements of multimedia systems. Specifically, the

proposed framework provides pragmatic implementation solutions for (i) the

optimization of dynamic voltage scaling algorithms for multimedia applications, (ii)

energy-aware resource management for multiple multimedia tasks, and (iii) resource-

constrained adaptation for cascaded classifier topologies in distributed stream mining

systems.

 1

CHAPTER 1

Introduction

1.1 Motivation

With the advent of networked multimedia applications such as Internet/web TV,

YouTube, peer-to-peer multimedia streaming, videoconferencing, on-line gaming,

remote surveillance and monitoring, distributed data mining etc., multiple multimedia

applications need to be executed simultaneously and are required to share the available

resources of various heterogeneous and distributed systems. In order to efficiently utilize

such systems, the different properties of (each of) the processor(s), the power

consumption, the processor usage and load balancing etc. must be taken into account.

 To develop an efficient and fair solution for multiple concurrent delay-critical

multimedia tasks, the design of a resource management framework, which coordinates

the scheduling and allocation of resources, becomes of paramount importance. This

holds for resource-constrained embedded devices as well as powerful general purpose

processors and distributed systems. In a New York Times article published in [1], the

development of efficient system software is cited as the main challenge for the

successful deployment of powerful emerging processors, which have as primary drivers

futuristic multimedia applications.

 Existing system software tries to insulate multimedia applications from the system

implementation without providing them incentives to adapt their algorithms to

effectively use the available hardware resources or to consider other tasks‘ requirements.

There is currently no systematic support for trading resources among the simultaneously

running tasks in order to enforce utility-dependent fairness rules defined by the system,

end user(s) or service provider. Thus, current solutions result in an inefficient resource

 2

usage, as they do not provide incentives to multimedia algorithms to adapt their

realizations to operate at the optimal point in the resource-utility space. Note that for

multimedia applications to efficiently utilize system resources, utilities need to be

explicitly modeled by considering the multimedia content characteristics and delay

constraints of the applications, which is often time-varying.

 In summary, existing application-agnostic resource management solutions result in a

non-scalable and inefficient system implementation for the various concurrently-running

multimedia applications. Thus, a rigorous methodology for joint system resource

management and strategic inter-task optimization is necessary in order to allow the

successful and fair deployment of multiple delay-sensitive multimedia applications on

the same system. This also needs to be complemented by strategic learning and

adaptation of multimedia algorithms such that they can take advantage of the available

resources (see Figure 1).

Dynamic

Source/Workload

Characteristics

Stochastic/analytic

Models

Private Application

Utility Functions

RDC Modeling for

Wavelet Coders

Model-based

DVS for Video Decoding

Decentralized

Optimization

(Information Exchange)

Challenges
Proposed

Res. Mgmt.

Framework

Decentralized Algs.

for Resource Mgmt. of

Multiple Applications

Collaboration between

Distributed and

Autonomous Sites

Multi-agent learning

Safe Exp./Local Search

for Distr. Classification

Rules-based

Decision Making

for Distr. Classification

Ch. 2

Ch. 3

Ch. 5

Ch. 6

Multiple Apps,

Multiple Processors

Modeled

Parameters

Info. about

Other Sites

Configuring Cascades

of Classifiers

Ch. 4

Applications

Dynamic

Source/Workload

Characteristics

Stochastic/analytic

Models

Private Application

Utility Functions

RDC Modeling for

Wavelet Coders

Model-based

DVS for Video Decoding

Decentralized

Optimization

(Information Exchange)

Challenges
Proposed

Res. Mgmt.

Framework

Decentralized Algs.

for Resource Mgmt. of

Multiple Applications

Collaboration between

Distributed and

Autonomous Sites

Multi-agent learning

Safe Exp./Local Search

for Distr. Classification

Rules-based

Decision Making

for Distr. Classification

Ch. 2

Ch. 3

Ch. 5

Ch. 6

Multiple Apps,

Multiple Processors

Modeled

Parameters

Info. about

Other Sites

Configuring Cascades

of Classifiers

Ch. 4

Applications

Figure 1 Summary of the Proposed Resource Management Framework

 3

1.2 Thesis goal

To address the above challenges, in this dissertation, we propose a modeling and

optimization framework for multimedia applications in dynamic, resource-constrained,

and informationally-distributed environments, and discuss practical implementations of

the framework for optimizing a variety of multimedia systems (see Figure 1). In

particular, we propose a stochastic modeling approach to capture the dynamically

changing utilities and workload variations inherent in multimedia applications. This

approach enables us to determine analytical solutions for optimizing the performance of

applications on resource-constrained systems. Furthermore, the problem of information-

decentralization can be addressed in our framework by systematically decomposing the

joint multi-applications and multi-site optimization problems, and designing

corresponding mechanisms for exchanging model parameters, which characterize the

utilities, constraints and features of the autonomous entities. This systematic

decomposition enables entities to autonomously coordinate and collaborate under

informational and delay constraints. Finally, to optimize the performance of the

multimedia applications or systems in these distributed environments, we deploy multi-

agent learning strategies, which enable individual sites or applications to model the

behaviors of its competitors or peers and, based on this, select their optimal parameters,

configurations, and algorithms in an autonomous manner. Summarizing, our framework

combines stochastic modeling, systematic information exchange mechanisms, and

interactive learning solutions to optimize the performance of a wide range of multimedia

systems.

 A unique and distinguishing feature of our approach is the extent of multimedia

algorithms and systems domain specific knowledge used in developing the proposed

framework for modeling, and optimizing the interacting system components and

applications. This is in contrast to existing distributed optimization or game theoretic

approaches, which use simplistic utility - resource functions, and often ignore the

dynamics and constraints experienced in actual multimedia systems. Instead, our

developed modeling and optimization framework is directly shaped by the specific

 4

characteristics, constraints and requirements of multimedia systems. Specifically, the

proposed framework provides pragmatic implementation solutions for (i) the

optimization of dynamic voltage scaling algorithms for multimedia applications, (ii)

energy-aware resource management for multiple multimedia tasks, and (iii) resource-

constrained adaptation for cascaded classifier topologies in distributed stream mining

systems.

1.3 Thesis Outline and Contributions

Our framework uses stochastic modeling to accurately predict the dynamic workload

and quality fluctuations of multimedia applications. Modeling the workload enables us

to make probabilistic guarantees on meeting stringent application delay deadlines, and to

reallocate/reconfigure system resources accordingly to guarantee high application

performance. Some practical implementations of our modeling framework include

bitstream shaping using rate-distortion-complexity tradeoff models (Chapter 2), and

proactive dynamic voltage scaling (DVS) algorithms for real-time multimedia tasks

(Chapter 3). Secondly, modeling resource demands and utilities for multiple applications

enables us to exchange parameters between applications to efficiently communicate

information (Chapter 4). This low-complexity scheme of exchanging modeled

parameters enables the system to implement decentralized resource management

solutions that converge quickly to efficient and fair centralized resource allocation

solutions. Next, we introduce a solution for configuring trees of classifiers on distributed

stream mining systems to improve classification performance (Chapter 5). We then

extend this problem to configuring cascades of classifiers, where each classifier may be

located across different administrative domains (Chapter 6). The extension requires

using our proposed framework to address the challenge of distributed resources and

analytics by multi-agent modeling, where autonomous sites can utilize both locally

observable and exchanged information to model the behaviors of other sites, and learn

the dynamic characteristics of the processed stream. This approach enables distributed

 5

sites to reconfigure their algorithms to jointly optimize the performance of an

application, even when very little information can be exchanged between the sites.

 In Chapter 2, we present a novel rate-distortion-complexity (R-D-C) analysis for

state-of-the-art wavelet video coding methods based on stochastic source models. This

analysis is obtained by explicitly modeling aspects found in a broad class of operational

wavelet video coders, i.e. embedded quantization, quadtree decompositions of block

significance maps and context-adaptive entropy coding of subband blocks. Importantly,

the proposed modeling approach derives for the first time analytical estimates of the

expected number of operations (complexity) of a broad class of wavelet video coding

algorithms based on stochastic source models, the coding algorithm characteristics and

the system parameters. Analytical modeling of the performance of video coders is

essential in a variety of applications, such as complexity-driven bitstream shaping [11],

where an accurate estimation of rate, distortion and complexity is required. The accuracy

of the proposed analytical R-D-C expressions is justified against experimental data

obtained with a state-of-the-art motion-compensated temporal filtering based wavelet

video coder, and several new insights are revealed on the different tradeoffs between

rate-distortion performance and the required decoding complexity.

 In Chapter 3, we present novel approaches to DVS algorithms for multimedia

applications that relies on building stochastic models for video decoding complexity.

Previous works on video-related voltage scaling algorithms often lacked a good

complexity model of multimedia applications, and thus could not achieve energy-

efficient performance on battery-limited devices. Our contribution in these sections are

threefold. First, based on workload traces, we determine using an offline linear

programming (LP) method the minimum (optimal) energy consumption for processing

multimedia tasks under stringent delay deadlines. This lower bound enables us to

evaluate the efficiency of various existing DVS algorithms. Second, we propose a

classification-based complexity model that explicitly considers the video source

characteristics, the encoding algorithm, and platform specifics to predict job execution

times. In particular, separate models are presented for different types of decoding jobs

 6

(e.g. entropy decoding, inverse transform, motion compensation) and different classes of

sequences. Based on the models, we construct two online voltage scaling algorithms to

process decoding jobs such that they meet their display deadlines with high probability.

The first DVS algorithm is based on a robust linear programming (rLP) approach,

adapted from the offline LP solution. Simulation results from decoding over a wide

range of video sequences shows that on average, both the queuing-based DVS algorithm

and the rLP DVS algorithm perform close to optimal, with the queuing-based algorithm

consuming roughly 4% more energy than optimal, and the robust LP algorithm 1% more

than optimal. This is contrasted with other state-of-the-art DVS algorithms which

consume roughly 16% or more energy under the same miss rates. Finally, we propose a

joint voltage scaling and quality-aware priority scheduling algorithm that decodes jobs

in order of their distortion impact, such that by setting the processor to various power

levels and decoding only the jobs that contribute most to the overall quality, efficient

quality and energy tradeoffs can be achieved. We show experimentally that under heavy

resource constraints, the priority-based scheduling algorithm achieves a much higher

quality than conventional earliest-deadline-first (EDF) scheduling algorithms.

 In Chapter 4, we discuss fair and efficient resource allocation schemes for multiple

multimedia applications sharing a system. Because multimedia tasks can achieve

different utilities (e.g. video qualities) under different amounts of system resources (e.g.

Chapter 2), various algorithms have been proposed to determine resource allocation

schemes that maximize the social welfare of all applications. However, these approaches

often require a resource manager that can obtain a centralized model of the utilities and

resource demands for each application, which can lead to intolerable computational

complexity and information exchange overhead. Moreover, autonomous multimedia

applications owned by different companies may have incentives to hide information

about their algorithms and utilities from the system, or from other competing

applications. Hence, to optimally allocate resources in an informationally-decentralized

environment, we present a novel, low-complexity resource management solution that

does not require the resource manager to know the applications‘ utility functions.

 7

Instead, by allowing applications to negotiate with a resource manager through simple

control messages, we implement informationally-decentralized algorithms that optimally

achieve a variety of centralized resource allocation solutions, such as maximizing the

social welfare of the applications, minimizing system energy consumption, manipulating

the workload to achieve a desired distribution of tasks on processing elements, and

performing power scheduling for multimedia tasks. Our analysis and simulation results

reveal that these algorithms converge quickly to their respective optimal solutions.

Furthermore, we show that by modeling changes in the applications‘ resource

requirements, the resource manager can communicate messages to applications and

guarantee near optimal resource allocation in dynamic environments.

 In Chapter 5, we discuss a novel methodology for configuring cascaded classifier

topologies, specifically binary classifier trees, in resource-constrained, distributed

multimedia stream mining systems. Binary classifier trees enable stream mining

applications to successively identify and dynamically filter different attributes in data

content, and have been shown to outperform single classifier systems. Inherent in such a

topology is the need to model the (average) performance of the classifier system using

an appropriate cost/utility metric, and to model the relationships of analytics between the

classifiers. In contrast with traditional load shedding, our approach configures classifiers

with optimized operating points after jointly considering the misclassification cost of

each end-to-end class of interest in the tree, the resource constraints for every classifier,

and the confidence level of each data object that is classified. The proposed approach

allows for both intelligent load shedding as well as data replication across branches of

the tree based on the available system resources. Both a centralized solution, and

distributed solutions that enable each classifier in the tree to reconfigure itself based on

local information exchanges, are provided. We evaluate the centralized and distributed

algorithms based on a sports video concept detection application and identify huge cost

savings over load shedding alone. We also analyze the associated tradeoffs between

convergence time, information overhead, and the performance of results achieved by

each of the proposed distributed algorithms.

 8

 In Chapter 6, we introduce an additional challenge involved in optimizing a

cascade of classifiers for real-time, distributed stream mining applications; in particular,

when the classifiers themselves are placed across sites located in different administrative

or autonomous domains. Such sites may be unwilling to share their proprietary datasets

or analytics, nor capable of providing a repository to store an entire collection of data

across multiple sites. As opposed to the problem introduced in Chapter 6, where the

performance of an entire classifier system could be analytically modeled based on

known relationships between classifiers, the distributed nature of analytics (e.g. utilized

models or stored data sets) severely limits the amount of information available for

jointly optimizing, much less modeling, the performance of a cascade of distributed

classifiers. To address this problem, we introduce three novel approaches: 1) We

formulate an average utility metric based on classification and queuing theoretic models

to capture both the performance and delay of a chain of classifiers. 2) We introduce a

low-complexity framework for estimating system utility in a distributed fashion, where

local performance metrics are exchanged between classifiers to obtain an estimate of the

overall utility at any time instant. Additionally, this message exchange mechanism has

very low communications overhead, and does not require classifiers to reveal sensitive

information about their analytics. 3) We introduce a distributed, multi-agent learning

algorithm (i.e. safe experimentation and local search) to enable each classifier site to

reconfigure itself autonomously, such that in spite of the limited information exchanged,

each classifier eventually converges to a configuration that maximizes the overall stream

processing application utility under fixed stream characteristics. We perform

experiments to measure the value of exchanging limited information between classifiers

by comparing the utility of the learning solution to a solution without information

exchange, i.e. relying only on locally and independently optimizing each classifier.

Furthermore, we analyze performance and convergence rate tradeoffs between different

learning rates for the multi-agent solution.

 Additionally, we also introduce a rules-based decision-making framework, which

uses a more sophisticated learning solution for adaptively choosing algorithms to

 9

reconfigure classifiers in dynamic environments (i.e. when stream characteristics are

rapidly changing). In particular, while the experimentation solution enables classifiers to

converge to the optimal configurations for static streams, streams with time-varying

characteristics necessitate frequent reconfiguration of classifier elements to ensure

acceptable end-to-end performance and delay under resource constraints. In such

dynamic environments, utilizing a fixed algorithm for classifier reconfiguration can

often lead to poor performance. Hence, we propose a novel optimization framework

aimed at developing rules for choosing among multiple algorithms, the best algorithm to

reconfigure the classifier system under different system conditions. This framework

involves an adaptive, Markov model-based solution for learning the optimal rule when

stream dynamics are initially unknown. Furthermore, we also discuss how rules can be

decomposed across multiple sites, such that each site can individually learn near optimal

rules based on local models. Finally, we propose a method for evolving new rules from a

set of existing rules. Simulation results for both Chapters 7 and 8 are presented for a

speech classification system for both static and dynamic streams.

 The thesis concludes with Chapter 7, which presents the design ―philosophy‖ (principles

and methods) discovered during the duration of this thesis for developing systematic resource

management solutions for multimedia applications. This chapter also discusses the possible

impact of the techniques presented in this thesis.

 10

CHAPTER 2

Analytical Rate-Distortion-Complexity Modeling for

Wavelet Video Coders

2.1 Introduction

Energy consumption is an important issue in mobile devices. In the case of multimedia,

the battery life of such devices has been shown to be directly linked to the complexity of

coding algorithms [4] [5] [9]. For this reason, recent advances in scalable coding

algorithms that provide schemes enabling a variety of rate-distortion-complexity (R-D-

C) tradeoffs with state-of-the-art performance [3] are very appealing frameworks for

such resource constrained systems. This flexibility in video encoding and decoding is

also very suitable for the increasing diversity of multimedia implementation platforms

based on embedded systems or processors that can provide significant tradeoffs between

video coding quality and energy consumption [4] [5]. In order to select the optimal

operational point for a multimedia application in a particular system, accurate modeling

of the source, algorithm and system (implementation) characteristics is required. Such

modeling approaches are important because they can also serve as the driving

mechanism behind the design of future complexity-scalable coders.

 Two methods have been used to determine the rate-distortion and the complexity

characteristics of operational video coders. The first is an empirical approach, where

analytical formulations are fitted to experimental data to derive an operational model

suitable for a particular class of video sequences and a particular instantiation of a

compression algorithm in a fixed implementation architecture; see [18] [19] for such

examples of R-D models and [4]-[8] for such examples of complexity modeling. While

this modeling approach is simple, the obtained rate-distortion-complexity (R-D-C)

 11

expressions cannot be generalized because their dependency on the sequence, algorithm

and system parameters is not explicitly expressed via the model. As a result, while

current state-of-the-art multimedia compression algorithms and standards provide

profiles for rate control [1] [5] [7], they lack analytical methods to determine the

complexity tradeoffs between different coding operations that can be exploited for

different systems.

 The second approach is a theoretical approach, where stochastic models are used for

pixels or transform coefficients. Using this approach, analytical expressions can be

derived for the R-D-C behavior of a particular system or class of systems processing a

broad category of input sources in function of the sources‘ statistics; see [10] [13] [14]

for such examples of R-D models and [11] [12] [15] for complexity modeling using

operational source statistics and off-line or on-line training to estimate (learn) the

algorithm and system parameters. We remark that, although there is a significant volume

of work in modeling of transform-domain statistics [27] [28] [29] and also in the

efficiency analysis of coding mechanisms [18], there is significantly less literature on

rate-distortion modeling for state-of-the-art operational video coders, and (to the best of

the authors‘ knowledge) scarcely any work exists on complexity modeling for such

systems in function of stochastic source models and algorithm characteristics. We

emphasize that, while the derived theoretical expressions of such approaches are

typically more complex than the expressions derived from the first category, the

dependencies on the source and system modeling parameters are explicitly indicated via

the derived analytical framework. This is of great importance to several cross-layer or

resource optimization problems [4] [9] [11] that need to judicially balance the network

or system resources in order to accommodate the viewer preferences in the most

efficient manner. In addition, the explicit dependency of the derived R-D-C estimation

on source, algorithm and system parameters facilitates the application of the derived

framework for a variety of input video source classes. Moreover, various algorithms and

systems of interest are accommodated in this way. Finally, a rigorous, analytical R-D-C

formulation methodology can be easily extended to model properties of various other

 12

coding algorithms based on input source and algorithm parameters. In this way,

analytical comparisons of the R-D-C efficiency for particular algorithms can accompany

experimental testing in order to facilitate system design decisions and options.

 For these reasons, we follow the second category of approaches and provide a

unified R-D-C modeling framework for motion-compensated temporal filtering (MCTF)

based wavelet video coders [3] [23] [26] [30]. Two aspects are typically required for

unified R-D-C modeling of video coding: i) modeling of the temporal prediction process

[16] [17]; ii) modeling of the quantization and coding process [10] [13]. Since the

motion-compensation complexity of the MCTF process has been studied in detail in

prior work [8] [12], we focus on the second part and assume that the transform-domain

statistics of the intra and error frames produced by the temporal decomposition are

available. Unlike the existing theoretical work [10] [13] in this area, the proposed R-D-C

model is based on a thorough analysis of different coding operations (quadtree coding,

coefficient significance and refinement coding) and as a result can encompass many

state-of-the-art wavelet video coders found in the literature.

 Consequently, this chapter extends prior R-D modeling of block-based wavelet video

coders to a broader class of coding mechanisms. Perhaps more importantly, we propose

an analytical derivation of complexity estimates for the entropy decoding and the inverse

spatial transform, thereby complementing some of our prior work on complexity

estimation [8] [11] [12].

 Based on the derived theoretical results and their experimental validation, we

explore the R-D-C space of achievable operational points for state-of-the-art wavelet

video coders and derive several interesting properties for the interrelation of rate-

distortion performance and the associated decoding and inverse spatial transform

complexity.

 This chapter is organized as follows. Section 2.2 introduces the types of quantization

and coding schemes analyzed in this chapter. Some important nomenclature is also

provided. Section 2.3 presents the utilized wavelet coefficient models and derived

probability estimates for a variety of coding/decoding operations. These probabililities

 13

will be used to determine the average rate, distortion and complexity (Sections 2.4-2.6,

respectively) for decoding a video sequence. Section 2.7 displays theoretical and

experimental R-D-C results that validate the proposed models and discusses several

interesting R-D-C properties of operational video coders. Section 2.8 draws some

conclusions based on what was discussed in this chapter.

2.2 Overview of Wavelet Video Coders

In this section, we introduce a basic overview of state-of-the-art wavelet coding

schemes. They involve temporal decomposition via MCTF, spatial discrete wavelet

transform (DWT) decomposition, embedded quantization, and the entropy coding

process.

2.2.1 Temporal Decomposition

Recent state-of-the-art scalable video coding schemes are based on motion compensated

temporal filtering [3]. During MCTF, the original video frames are filtered temporally in

the direction of motion [3] [16], prior to performing the spatial transformation and

coding. Video frames are filtered into L (low-frequency or average) and H (high-

frequency or error) frames [3]. The process is applied initially in a group of pictures

(GOP) and also to all the subsequently-produced L frames thereby forming a total of

MCTFT temporal levels. After the temporal decomposition, the derived L and H

temporal frames are spatially decomposed in a hierarchy of spatio-temporal subbands.

Quantization and entropy coding are applied to these subbands to form the final

compressed bitstream.

2.2.2 Embedded Quantization

An important category of quantizers used in image and video coding is the family of

embedded double-deadzone scalar quantizers [20]. For this family, each input wavelet

coefficient x is quantized to:

     2
sign , if 1; 0, otherwise

2
b
x

b b

x
Q x x


      

, (1)

 14

where  a denotes the integer part of a ; 0  is the basic quantization step size (basic

partition interval size) of the quantizer family; b   indicates the quantizer level

(granularity), with higher values of b indicating coarser quantizers. In general, b is

upper bounded by a value maxB , selected to cover the dynamic range of the input signal.

The signal reconstruction is performed by:

              1 1
2sign 2 , if 0; 0 if 0b

b b b b b bQ Q x Q x Q x Q x Q x       (2)

where the reconstructed value   1
b bQ Q x is placed in the middle of the corresponding

uncertainty interval (partition cell), and  bQ x is the partition cell index, which is

bounded by a predefined value for each quantizer level. For example,

 0 1b bQ x M   , for each b , with
max 0 2BM M   and 1  for the popular

case of successive approximation quantization (SAQ) [20]. If the b least-significant bits

of  0Q x are not available, one can still dequantize at a lower level of quality using the

inverse quantization formula given in (2). SAQ can be implemented via thresholding, by

applying a monotonically decreasing set of thresholds of the form 1 /2b bT T  , with

max 1B b  and
max quant maxBT x  , where maxx is the highest coefficient magnitude in

the input wavelet decomposition, and quant is a constant that is taken as quant 1/2  .

By using SAQ, the significance of the wavelet coefficients with respect to any threshold

bT is indicated in a corresponding binary map, called the significance map. Coding of

max min, ,B B significance maps corresponds to coding the max min 1B B  most

significant bitplanes of each wavelet coefficient x .

2.2.3 Coding of the Significance Maps and Coefficients

In all state-of-the-art wavelet coders [20]-[26], the coding process exploits intra-band

dependencies following a block-partitioning process within each transform subband.

This coding process is performed for every bitplane b . As indicated in Figure 2, several

coding passes that identify coefficient significance (―Significance Pass‖) or refine

wavelet coefficients (―Refinement Pass‖) with respect to the current SAQ threshold are

performed either within quadtree coding [23] [24] or within block coding [20]. Several

 15

state-of-the-art embedded image coders invoke both approaches, i.e. the quadtree coding

partitions the input subbands until a minimum block size, which is then coded with the

block coding module [21] [22].

 We analyze such intra-band coders that use quadtrees to decompose subbands into

non-overlapping blocks of dyadically-decreasing sizes followed by block coding for the

blocks of the maximally decomposed quadtree [21] [22]. In particular, the initial

subbands are hierarchically split in K quadtree levels using several coding passes, with

blocks at quadtree level K having the smallest size. The significance information (i.e.

whether the block contains significant coefficients) is encoded using depth-first-search

along the quadtree, where the significance of a block at quadtree level k is encoded only

if its parent block at quadtree level 1k  is found to be significant. For the blocks found

significant at the bottom of the quadtree (level K), the block coding is invoked. Block

coding performs raster scan to obtain the significance of each coefficient. The

coefficients found significant are then placed in a refinement list to be refined at the next

finer quantization level.

Figure 2 Block diagram of intra-band coding process of state-of-the-art wavelet-based coders

encompassing quadtree and block coding of the significance maps.

 The produced symbols from each coding pass, from block significance information

to coefficient significance, refinement, and sign information, are then encoded using

context-based adaptive arithmetic coding [34] [35]. This technique exploits the

dependencies between the symbols to be encoded and the neighboring symbols (the

context) [34]. Context conditioning reduces the entropy and improves the coding

performance. An example of context-based entropy coding is to use several arithmetic

coder models with different initial probabilities to encode coefficients based on the

significance of their neighbors, since a coefficient with significant neighboring

Quadtree
Coding

SAQ

Input MCTF frames

significance
maps

Block
Coding

minimum
blocks

truncation
points

Coding Passes
(block or coefficient significance, refinement)

DWT

fully-scalable
bitstream

subbands
of each

resolution

Coding process for every bitplane b

 16

coefficients has a larger probability to be significant than coefficients with insignificant

neighboring coefficients. Using these separate arithmetic coder models for different

―contexts,‖ context-based coding schemes achieve better performance than simply

compressing all symbols using a single arithmetic coder [34] [35].

2.3 Estimating Block Significance Probabilities in Quadtree

Decompositions

In this section, we introduce the utilized stochastic source model for wavelet

coefficients. We then derive probabilities of significance for quadtree decompositions

over quantized spatio-temporal subbands. These probabilities form the core of the rate

and complexity estimation derived in the remaining sections of this chapter as they

provide the means of establishing the percentage of blocks that are expected to be coded

or decoded at a given distortion bound, expressed by the terminating SAQ threshold

minBT . In addition, the percentage of significant areas within the spatio-temporal

subbands along with the percentage of non-zero coefficients are the two features (or

―decomposition functions‖ [12]) that express the complexity of the inverse DWT.

2.3.1 Source Models for Wavelet Coefficients

The R-D characteristics of low-frequency wavelet coefficients are typically modeled

using the high-rate uniform quantization assumption [10] [20] for independent zero-

mean Gaussian random variables. This model will be accurate if the low-frequency

coefficients exhibit sufficiently low correlation. We investigate this in Table 1, which

displays the ratio of the average correlation between neighboring coefficients to the

average coefficient variance. In Figure 3 we validated that the Gaussian distribution for

low-frequency spatio-temporal subband coefficients was accurate.

 While low-frequency spatio-temporal subbands account for a large percentage of the

video coding rate, the high-frequency spatio-temporal subbands also contribute a

significant amount to the overall coding rate and complexity [14]. Thus, accurate

modeling of the high-frequency spatio-temporal subband statistics is also very important

 17

for precise R-D-C modeling of wavelet video coders. When applied to image or residual

frame data, typical wavelet filters tend to produce decorrelated coefficients in the high-

frequency subbands. However, dependencies remain among coefficients within the same

scale and across different scales [27]. Certain highly-popular wavelet filter-banks, such

as the Daubechies 9/7 filter-pair, have further properties that can reduce most of the

interscale dependencies, leaving only dependencies among neighboring coefficients

within the same subband [27].

Table 1 Ratio of correlation between neighboring coefficients to the average coefficient variance for

the LL subband of L-frames of Foreman, Coastguard, Silent, and Mobile after a 2 temporal level-4

spatial level decomposition.

 Foreman Coastguard Silent Mobile

Autocorrelation Coefficient 0.5340 0.6733 0.5100 0.3763

0 200 400 600 800 1000 1200

10
-1

10
0

Threshold Value

P
ro

b
.

o
f

C
o
e
f.

 S
ig

n
if
ic

a
n
c
e

Foreman GOP 12, LL Subband of an L frame

LL experimental

LL Gaussian model

0 200 400 600 800 1000

10
-1

10
0

Threshold Value

P
ro

b
.

o
f

C
o
e
f.

 S
ig

n
if
ic

a
n
c
e

Foreman GOP 3, LL Subband of an L frame

LL experimental

LL Gaussian model

Figure 3 Experimental examples that the Gaussian assumption for the low-frequency wavelet

coefficients of the MCTF-based decomposition (with four spatio-temporal levels) is accurate.

In order to capture the experimentally-observed heavy-tailed non-Gaussian distribution

of wavelet coefficients within each subband, we model high-frequency wavelet

coefficients as a doubly-stochastic process, i.e. a Gaussian distribution parameterized by

 , which is exponentially distributed with parameter 2 :

1
2

2

1
~ ()p e 







  (3)

In this case, each high-frequency wavelet coefficient x can be modeled by a random

variable X with marginally Laplacian distribution and variance 2 [37]:

2 1

22
1

| |2
2

0 0

1 1 1
() (|) ()

22

x xX p x p x p d e e d e 


   
 

 
     (4)

where  p x indicates the probability density function (PDF). Figure 4 demonstrates the

accuracy of the doubly-stochastic model of (4) for different spatio-temporal high-

 18

frequency subbands. In addition, Table 2 presents the change in the subband statistics for

different spatio-temporal levels across the MCTF decomposition and the corresponding

rate for terminating the coding of the wavelet coefficients of each spatio-temporal level

at several bitplanes. The coder of [30] was used for the examples of this section. While

we focused on 4x4 blocks in Table 2, similar results can be shown for larger block sizes

(e.g. 8x8), since, for natural images or error frames, wavelet coefficients within such

small areas of high-frequency subbands are modeled accurately with the same local

parameter  .

 Based on the results of Table 2 we conclude that there is significant variation in the

rate associated with each spatio-temporal level, ranging from 0 bpp to almost 1 bpp for

low-rate coding (min 7B  in Table 2) and from 0.15 bpp to almost 5 bpp for medium

and high rate coding (min 3B  in Table 2). Furthermore, the higher (coarser) spatio-

temporal high-frequency subbands exhibit significant variance and the correlation of the

subband statistics (parameter ) varies significantly as well. Consequently, there is a

significant portion of the coding rate attributed to them for a variety of quantization

thresholds; thus, accurate modeling of the rate-distortion-complexity characteristics of

high-frequency spatio-temporal subbands is important for predicting the overall R-D-C

behavior. Finally, although the results of Table 2 reveal certain trends between the

spatio-temporal subband rate and the model parameters (2 and ), the overall rate

contribution of each subband depends not only on the statistics of the input but also on

the details of the invoked coding algorithm. Hence, a detailed theoretical analysis of the

coding operations as a function of the source model is of paramount importance for

precise R-D-C estimations, and intuitive models based on the source statistics and

experimental observations do not suffice.

 19

0 20 40 60 80 100 120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold Value

P
ro

b
.

o
f

C
o
e
f.

 S
ig

n
if
ic

a
n
c
e

Foreman Temporal Level 3, Spatial Level 3

LH experimental

LH Laplacian model

HL experimental

HL Laplacian model

0 5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Threshold Value

P
ro

b
.

o
f

C
o
e
f.

 S
ig

n
if
ic

a
n
c
e

Foreman Temporal Level 2, Spatial Level 1

LH experimental

LH Laplacian model

HL experimental

HL Laplacian model

0 50 100 150 200 250

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold Value

P
ro

b
.

o
f

C
o
e
f.

 S
ig

n
if
ic

a
n
c
e

Foreman Temporal Level 4, Spatial Level 3

LH experimental

LH Laplacian model

HL experimental

HL Laplacian model

Figure 4 The discrete wavelet transform of an H frame of temporal level two (top left) and plots of

the doubly-stochastic (Laplacian) model and simulation data for several H frames of different

spatio-temporal resolutions.

Table 2 Examples of subband variances as well as the variance of the correlation  (for block sizes

of 4 4) formed across the spatio-temporal MCTF subbands of sequence Foreman, along with the

corresponding bitrates for several values of minB .

Temporal(T)

-Spatial(S)

level

Subband variance 2 , [variance of ] Rate for various decoded bitplanes minB

LH HL HH, LL (if exists) 7 6 5 4 3

1T-1S 3.18, [12.1] 1.87, [9.1] 1.61. [7.8] 0 0 0.002 0.026 0.149

2T-2S 6.59, [37.5] 5.55, [22.8] 4.46, [25.7] 0.002 0.022 0.122 0.391 1.026

3T-3S 18.2, [60.3] 14.8, [70.1] 11.7, [63.1] 0.118 0.421 0.963 1.707 2.712

4T-4S 39.7, [241] 33.2, [496]
{26.0,[144]},

{53.1, 690]}
0.970 1.732 2.672 3.793 4.934

We denote the minimum decoded bitplane threshold level as min
min

2BBT  . In addition,

we define the following parameters for all bitplanes b :

 b
b
T




 (5)

 2 b
b e   (6)

where b describes the ratio of the threshold of bitplane b to the variance of each

wavelet coefficient, and b is the probability of significance of a wavelet coefficient

under a certain b under the model of (4).

 20

2.3.2 Probability of Block Significance at Bitplane b

We begin this section by introducing some notation. We define the significance test of a

block of n coefficients with respect to a threshold bT as sig(,) {0,1}bT n  , where

sig(,) 1bT n  if at least one coefficient within the block is found significant with respect

to the threshold bT , and sig(,) 0bT n  otherwise. We also define the newly significance

test as newsig(,) {0,1}bT n  , which returns one if the block was found to be significant at

bitplane b and insignificant at bitplane 1b  , i.e. sig(,) 1bT n  and 1sig(,) 0bT n  . For

notational abbreviation, the probability of a block being significant or newly-significant

at bitplane b is indicated by band
,bv n and band

,bv n , respectively, with band {low,high}

indicating the frequency subband that the block belongs to. Note that these metrics

depend on b , which is a function of the bitplane b as well as the variance of subband

coefficients, 2 . Let us first consider a high-frequency spatio-temporal subband, which

may be any subband of an error (H) frame, or any high-frequency subband of an L

frame. The probability that a block of n wavelet coefficients is found significant during

(or before) the significance pass at bitplane b , high
,b n , is no more than the probability that

at least one coefficient in the block is found significant when compared to 2bbT  . Thus,

we have:

  high
, Pr sig(,) 1 1 Pr{| | }
b n b bT n T     X (7)

where  1,..., nX XX is a length-n random vector of variables iX (1 i n ) for

coefficients in the same block, and | | is the infL norm. Considering that block sizes are

generally small enough to capture local variances, we follow the doubly stochastic

model in equation (3). Given  , the conditional joint distribution of X is then a

uncorrelated Gaussian random vector. Given that the variance of the subband

coefficients is 2 , the probability density function of X is:

2 2 2
1 22

1 1
(...)

2
2 2

0 0

1 1
() () (|)

(2)

nx x x

np p p d e e d


    
 

 
    

 

   x x (8)

where 1 2(, ,...,)nx x xx is a vector of coefficient values, and  p x is the n-dimensional

PDF of X .

 21

Proposition 1: The probability that a block of size n is significant compared to threshold

bT can be approximated by:

2

high
, 1.296exp

ln() 0.166b

b
n

n





        
 (9)

Proof: See Appendix A of [62] for details. ■

For low-frequency subbands, assuming sufficiently-decorrelated Gaussian distributed

coefficients, the probability of block significance is simply the n -dimensional Gaussian

tail probability along one of the orthogonal axes:

  low
, erfc

2b

n
b

n


     
 (10)

where    erfc 1 erf
2 2
b b 

  , and  erf
2
b can be piecewise approximated by (11):

  
0.2 (4.4)

erf .98
2

1

b b

b

 


  

, 0 2.2

,2.2 2.6

, 2.6

b

b

b







 

 



 (11)

in order to avoid numerical integrations during the model calculation.

2.3.3 Probability of Finding a Newly Significant Block at Bitplane b

In order to model the number of operations performed during the significance pass at

each bitplane, it is necessary to derive the probability that a block is found significant at

bitplane b , but not at any higher bitplanes. This is due to the fact that in all coding

algorithms using quadtrees of wavelet coefficients, once a block is found significant at

bitplane b , it is moved into the refinement list and its significance is not encoded at the

subsequent bitplanes min1, ,b B  .

Proposition 2: The probability that a block of n coefficients in a high-frequency

subband is found significant at bitplane b , but it is insignificant at bitplane max1, ,b B  ,

is:

 high high high
, , ,Pr newsig(,) 1 (1)
b b bn b n nT n        (12)

Proof: See Appendix A of [62] for details.

■

 22

 We note that our proof only specifies the existence of a large enough n for the

approximation above, but it does not give the exact lower bound for n . To verify the

accuracy of this estimate for typical blocks during the quadtree significance passes, we

did a qualitative comparison of plotted curves for erf()/erf(2)x x raised to various powers.

For the minimum block size 16n  used in practical coders [21] [25] [26] the match is

approximately equal (Figure 5). The fit only improves for a larger n .

 For low-frequency subbands, we will assume decorrelated coefficients. Our result is

given below.

Proposition 3: The probability that a block of n coefficients in a low-frequency subband is

found significant at bitplane b , but it is insignificant at bitplane max1, ,b B  is:

         
     1

low
,

low low
, ,

erfc erfc 2 erf 2 erf
2 2

erf 2 1 erfc (1)
2

b

b b

n nn nb b
n b b

nn b
b n n



 

 
  


  



            
         

 (13)

Proof: The approximation of (13) is a straightforward result of Lemma 2 in [62]. ■

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

erf(x)

erf(x)/erf(2x)

0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
n=16

erf(x)n

(erf(x)/erf(2x))n

Figure 5 Plot of: erf()x vs. erf()/erf(2)x x (left), and  16erf()x vs.  16erf()/erf(2)x x (right).

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Coastguard sequence, HH2 subband of Temporal Level 4

bit-plane level b

p
ro

b
.

s
ig

n
if
ic

a
n
t

b
lo

c
k
s

sig. blocks simulation

sig. blocks model

newly sig. blocks sim.

newly sig. blocks model

0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Foreman sequence, HL3 subband of Temporal Level 3

bit-plane level b

p
ro

b
.

s
ig

n
if
ic

a
n
t

b
lo

c
k
s

sig. blocks simulation

sig. blocks model

newly sig. blocks sim.

newly sig. blocks model

0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Silent Sequence, HH3 subband of Temporal Level 2

bit-plane level b

p
ro

b
.

s
ig

n
if
ic

a
n
t

b
lo

c
k
s

sig. blocks simulation

sig. blocks model

newly sig. blocks sim.

newly sig. blocks model

Figure 6 Simulation and model prediction of significance and newly-significance of 4 4 blocks in

various high-frequency spatio-temporal subbands.

 23

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
HL3 subband

bit-plane level b

p
ro

b
.

s
ig

n
if
ic

a
n
t

b
lo

c
k
s

sig. blocks simulation

sig. blocks model

newly sig. blocks sim.

newly sig. blocks model

0 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Foreman sequence, LL subband

bit-plane level b

p
ro

b
.

s
ig

n
if
ic

a
n
t

b
lo

c
k
s

sig. blocks simulation

sig. blocks model

newly sig. blocks sim.

newly sig. blocks model

0 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Silent Sequence, LL subband

bit-plane level b

p
ro

b
.

s
ig

n
if
ic

a
n
t

b
lo

c
k
s

sig. blocks simulation

sig. blocks model

newly sig. blocks sim.

newly sig. blocks model

Figure 7 Simulation and model prediction of significance and newly-significance of 4 4 blocks in

LL subbands of L frames.

To verify the accuracy of the proposed model of (9) and (12), Figure 6 demonstrates the

model prediction of the probability of block significance and newly-significance (with

16n ) for several high-frequency subbands belonging to various temporal levels in

MCTF-decomposed frames of video sequences. Similarly, we plot several examples that

validate the proposed model of (10) and (13) (low-frequency spatio-temporal subbands)

in Figure 7. The experimentally-derived significance and newly-significance for low and

high-frequency spatio-temporal subbands are in agreement with the theoretical

derivations for a large variety of cases, as shown by these experiments. In addition, the

model validation reveals several interesting properties. Firstly, the approximation (13)

for the significance probability of blocks in the low-frequency spatio-temporal subbands

suggests that most of the blocks within the subband will be found newly-significant at

the same bitplane, or at most at two consecutive bitplanes. This observation can be

intuitively explained due to the removal of high-frequency (detail) information based on

the repetitive application of the low-pass analysis filter. Experimental validation is given

in Figure 7, where most of the blocks become significant within bitplanes {10,9}b  .

Secondly, the high-frequency spatio-temporal subbands exhibit a heavy-tail distribution

based on the doubly-stochastic model of (4) and therefore the probability of significance

(and newly-significance) is more skewed, as seen in Figure 6.

2.4 Rate Approximation of Intra-band Embedded Coding

In this section, we derive rate estimations for an embedded coding scheme using a

quadtree decomposition structure followed by block-coding for the maximum depth of

 24

the quadtree. This follows the system model outlined in Figure 2. Using the high-

frequency and low-frequency wavelet coefficient models and the previously-derived

probability estimates from Proposition 1-Proposition 3 in Section 2.3, we derive the rate

of quadtree coding, block coding, and coefficient refinement coding. The derived rate

estimates can be modified to fit a variety of wavelet coding schemes consisting of

subsets of the general structure of Figure 2, i.e. quadtree-based coders [23] [24], and

block-based coders [20] [25] [26].

2.4.1 Rate of Significance-map Coding for High-frequency Subbands

In most video frames, the probability of block significances at various levels in the

quadtree varies considerably depending on the spatio-temporal subband statistics and the

block size, since small blocks encapsulate small areas while large blocks represent large

areas within each subband. For most practical wavelet video coders, we can simplify our

analysis by assuming that the significance map encoding of quadtree structures remains

virtually uncompressed. An example that strongly suggests this property is given in

Table 3, where operational measurements from the coder of [30] were used for a variety

of input video sequences. Note that while the rate is not identically 1 bit per quadtree

symbol encoded, the difference in size between quadtrees leads to a distribution that

cannot be well compressed, especially for lower bitplanes. In the remainder of this

chapter, we assume that the rate of significance-map coding for blocks in the quadtree

structure is approximately equal to the number of times significance-map symbols are

encoded. We additionally assume that coefficients in blocks of all sizes are sufficiently

correlated so that the i.i.d. joint Gaussian distribution with a fixed local variance  can

be used to model them.

 The significance of a block in the quadtree decomposition may be encoded in two

cases: i) If the block is found newly significant at bitplane b , its significance will be

encoded at that moment and it will never be encoded again; ii) if the block‘s parent is

found to be significant at bitplane b even though the block itself is non-significant, it

will be coded continuously until the block is found newly significant. Condition (ii) is

 25

added in most state-of-the-art coders to exploit intra-band spatial correlation of wavelet

coefficients.

 Under the above-stated two conditions, we now derive the probability of block

significance, which corresponds to the rate of block significance coding. In general, if a

block at quadtree level k , 2 k K  , has n coefficients, its parent block at level 1k 

has 4n coefficients
1
. The number of symbols (or rate) used to encode the significance of

a block of size n found significant at bitplane b depends on the probability that its

parent is found significant at higher bitplanes b r , 0r  (which means that the block

significance will be coded a total of 1r  times). Given the subband variance 2 , this

can be formulated as:

max

block_newsig
0

(,) Pr{sig(,4) 1 | newsig(,) 1}
B b

b b r b
r

R n T n T n





   (14)

Averaging the rates over all bitplanes min max, ,B B , we get the following rate estimate:

max

min

min

max max

min

block_sig block_newsig

band
,

0

(,) Pr{newsig(,) 1} (,)

Pr{sig(, 4) 1 | newsig(,) 1}
b

B

B b b
b B

B B b

n b r b
b B r

R n T n R n

T n T n

 








 

 

  



 
 (15)

where band {low,high} depending on the type of frequency subband we are interested

in. The probability within the summation of (14) can be estimated by obtaining the local

distribution of parameter  given the newly-significant child block at bitplane b , and

then determining the probability of a significant coefficient (in the other 3 child blocks)

at bitplane b r , thereby deriving the conditional probability of significance for the

parent block of 4n coefficients:

    Pr newsig(,) 1 | sig(,4) 1 Pr newsig(,) 1 |b b r bT n T n T n     (16)

where:

  
 

 

  2
4

1
2

band
,4

1
1 erf

2Pr sig(, 4) | ()
| sig(, 4)

Pr sig(, 4)
b r

n
b r

b r
b r

b r n

T
e

T n p
p T n

T n






  





 






         
   (17)

Thus, (16) becomes:

1 In the subsequent derivations of this chapter, whenever blocks of size n and 4n appear in the same expression, it is

implied that the first is the child block at quadtree level k while the second is the parent block at quadtree level

1k  .

 26

   

     2

0

4
1

2band
, 0

Pr newsig(,) 1 | Pr{ | newsig(, 4)} Pr newsig(,) 1 | ,newsig(, 4)

1 1
1 erf erf erf

2 2 2
b

b b r b b r

n n n
b r b b

n

T n T n T n T n d

T T T
e d





 

  


  



 



  



    

                         





(18)

Note that  erf(/) nT x can be approximated by an indicator function. Hence, we

approximate the integral of (18) by treating the two multiplicative erf() terms as an

indicator and a step function to obtain:

  
4 2

1.2961 erf I
2 ln(4) 0.166

n
b r b rT T

n



             

 (19)

    
22

1 1
1.296 1.296erf erf I

2 2 ln() 0.166 ln() 0.166

n n
b bb bT TT T

n n


 
                    

 (20)

where I is the indicator function. Based on (19) and (20), we can approximate (18) by:

 1

band band
,4 ,bandband ,, ,

1

1

b r b

bb

n n
nn r

 


 


 

  

22

1.296 1.296,
ln() 0.166 ln(4) 0.166

,otherwise

b rb TT

n n


  (21)

Combining (15), (19)–(21) together, we obtain the final expression:

max max

min

min

band band
block_sig , , ,

0

(,)
b b

B B b

B n n r
b B r

R n    


 

   (22)

The average rate per coefficient is block_sig(,)/bR T n n . If we let n be the smallest block

size, then we must sum up the rates for K levels of the quadtree decomposition in the

subbands of each spatial resolution to obtain the total rate for quadtree encoding:

 min

min

1
block_sig

quadtree
0

(,4)
()

4

K k
B

B k
k

R n
R

n








  (23)

2.4.2 Block and Refinement-coding Rate in High-frequency Subbands

In this subsection, we estimate the rate of encoding both the significance and the

refinement of coefficients based on the quantization level (or minimum bitplane level)

minBT .

 27

Table 3. Examples of the number of 8 8 blocks encoded at each bitplane (symbols) and the

average rate of encoding each block significance (rate is measured in bits-per-symbol), using the

coder of [30]. Note that the rate per symbol increases as the bitplane decreases and approaches one

bit-per-symbol.

H frames, temporal level 3, spatial

level 2

16bT  32bT  64bT 

Symbols Rate Symbols Rate Symbols Rate

Coastguard, HL 2254 0.97 1556 0.85 447 0.73

Foreman, HL 1056 0.87 571 0.79 284 0.79

Silent, HL 1787 0.91 1046 0.81 348 0.79

 First, we consider the significance rate. In block-based coders like JPEG2000 [20] or

ESCOT [26] (i.e. intra-band coders that do not employ quadtree decompositions), a

subband is simply divided into blocks, which are then coded independently. In these

algorithms, the significance of each coefficient within the block is encoded. If a

coefficient is significant, then its refinement bits are also encoded. The significance of a

coefficient relative to the threshold
minBT is a binary value. Hence, the rate from

independently encoding the significance of each coefficient can be expressed by the

binary entropy function  
min

H B , where
minB is the probability that the coefficient is

significant compared to
minBT . However, when context-based entropy decoding is

employed, dependencies between neighboring coefficients can be exploited, such that

the rate (based on the doubly-stochastic model) is [10]:

   
2

2
min

min min min

1
1.407

ZC 2
0

1
(,) H erf H() 0.6707

2
B

B B B
T

R n e d e
 



   



 



   (24)

A common weakness of using only block-coding methods without quadtree coding [20]

[25] [26] is that the spatial distribution of local variances in the spatio-temporal

subbands is not exploited, since the same context-conditioning scheme is utilized for all

blocks. Coders combining quadtree coding and block-coding techniques [21] [22]

exploit the spatial correlation of local variances by using the quadtree decomposition

which inherently assigns fewer symbols to the insignificant areas: if all coefficients

within a certain block are insignificant, quadtree-based coders return a single ―0‖ for that

block and do not encode the coefficients within that block. However, for (minimum-

sized) blocks that are significant, context coding is used for the coefficients in the block.

Hence, the effective significance coding rate for the blocks resulting at the maximum

 28

quadtree depth depends on the probability of the smallest blocks being significant, and

the context coding rate conditioned on the block being significant:

min min min

min min min

ZC,QB

0

(,) H(sig(,1) | sig(,),)

() Pr{sig(,)| } H(Pr{sig(,1) | sig(,), })

B B B

B B B

R n T T n

p T n T T n d




   




 

  
 (25)

where
min

sig(,1)BT indicates the significance test at bitplane minB for an individual coefficient

within a wavelet subband. The probability of coefficient significance given block significance

and local variance  can be solved using Bayes rule:

min

min min min

min min
minmin

1 erf
Pr{sig(,)|sig(,1), }Pr{sig(,1)| } 2

Pr{sig(,1)|sig(,), }= =
Pr{sig(,)| }

1 erf
2

B

B B B
B B n

BB

T
T n T T

T T n
TT n

  




    
        

 (26)

The resulting expression is:

min
2

2 min

min
min

1

ZC,QB 2
0

1 erf
1 2(,) 1 erf H

2
1 erf

2

B
n

B
B n

B

T
T

R n e d
T






 









                                               

 (27)

Notice that the expression is parametrical to the number of coefficients per smallest

block, n . A minimum block size of approximately 16n  has been shown to achieve

the most savings over pure context-based coding.

 Consider now the rate of refinement-coding for significant coefficients. For a given

error subband, the rate of quantizing a significant coefficient X based on its

neighborhood information X can be estimated as [10]:

 min

min

min min min

2
refinement 2 0.8

log1 0.2988
(() |) 1 log (1)

1 (0.9773)
B

B
B B B

R Q X X


  
    

 
 (28)

Therefore, the total coding rate can be estimated as:

min min min min minhigh quadtree ZC,QB refinement() () (,) (() |)B B B B BR R R n R Q X X       (29)

2.4.3 Coding Rate of Low-frequency Subbands

Following the independent Gaussian model assumption for the low-frequency subbands

of L frames, we derived the following rate estimate for the coding of low-frequency

wavelet coefficients.

 29

Proposition 4: The rate of encoding a low-frequency coefficient can be approximated as

follows:

       
2

minmin min min min
min

min

low 2 222 2 2

2
() H erf erfc log erfc exp()log

2
B B B BB

B
B

e
R e

   


 

      
 (30)

Proof: We use the estimation method of Mallat and Falzon [29] for the rate in the low-

rate (high distortion) region:

 

min min min min min

min

min min min

H(()) H() ()H(() | ())

H(erf ()H(() | ())
2

B B B B B

B
B B B

Q X X T p X T Q X X T

p X T Q X X T


    

   
 (31)

For significant coefficients, we use the high-resolution hypothesis from [20], which is:

min min2H(()) H() logB BQ X X   (32)

This gives us:

min min min min
2 2

minmin min

min
2

min

min
min

mi

2

2 2
2 2

2 2

22
2 22

2

H(() | ()) H(| ()) log ()

exp() exp()
2 log log ()

erfc() 2 erfc() 2

exp()2
log (erfc()) log ()

erfc() 2

B B

B

B

B

B

B B B B

x x

Bv v

v
x

v
v

B v

Q X X T X X T

dx

x e dx




 


 


   

          


 



n
2

2min
minmin

min min
min

min
2
min

minmin

min
min

2 2
2 22

2 2

2
2 22

2

exp() exp()2
log (erfc()) log ()

erfc() 2 erfc() 2

exp()2
log (erfc()) log

erfc() 2

B

B

B B

B

B

B

B

x
v B

v v
B v

v B
v

B

e dx

e






  


 



          
         





e

 (33)

The proof follows from substituting (33) into (31). ■

(In order to avoid integrations in (30), we use the approximation for  min

2
erf B given in

(11).)

Notice that, for high-rate (low distortion) regions where the variance of each coefficient

is significantly larger than the quantization stepsize (i.e.
minB is small),  minerfc 1

2
B  ,

and the rate estimate of (30) becomes the well-known high-rate approximation [20]:

min minlow 2 2() log 2 logB BR e    (34)

Table 4 gives an example of the accuracy of (30) as a function of quantization step. We

also present the results with the more conventional model of (34) used in prior work [10]

in order to indicate the superior approximation achieved with the proposed estimation of

(30). Notice from Table 4 that, although the proposed model still remains relatively

 30

inaccurate when only the highest 2-3 bitplanes are decoded, it becomes increasingly

accurate as the number of decoded bitplanes increases.

Table 4. Example comparison between the actual encoded rate (“Encoded size” using the coder of

[30]), the conventional approximation from prior work, and the proposed approximation of (30) for

an 44x38 LL subband of an L -frame in the Foreman sequence.

Quantization

step size (bT)

Encoded size

(bits)

Conventional

approximation [10]

Error Proposed

approximation

Error

1024 1336 3289 146.2% 941 -29.6%

512 3208 4513 40.7% 3019 -5.9%

256 5032 5920 17.7% 5128 1.9%

128 6816 7507 10.1% 7053 3.5%

64 8472 9080 7.2% 8856 4.5%

32 10096 10661 5.6% 10595 4.9%

Based on the derived estimations of (29) and (34), the average coding rate per pixel over

all subbands of MCTF-based wavelet video coding is:

min

3

total low, ,0 high, ,
1 1

() 4 4
J

J j
B J j m

j m

R R R  

 

  (35)

where  band, ,j m indicates which model band={low,high} is used to determine the rate

of the subband of the thm orientation in the thj scale of the wavelet frame

decomposition, with 1j  indicating the finest resolution, and j J indicating the

coarsest resolution (lowest frequency). low, ,0JR indicates the coarsest LL subband.

2.5 Distortion Estimation for MCTF Wavelet Coding

In this section we determine the distortion of the various coding passes mentioned

previously for the different subbands, and a general formulation of the average distortion

for the combined decoding followed by MCTF reconstruction is derived.

2.5.1 Distortion of Decoding followed by Inverse Spatial DWT

As mentioned in Section 2.2, SAQ followed by the accumulation of all coding passes up

to any bitplane minB corresponds to a double-deadzone uniform quantization of wavelet

coefficients. In other words, once the produced bitstream is truncated at bitplane minB ,

we have a quantizer of the form given in (1) with min
min

2BBT   . The average distortion

 31

of a high-frequency subband when a uniform quantizer with this deadzone is applied is

[10]:

    min min min min min

2
high

2 22 2 2

ˆE[()]

1/ 2 1 / 1B B B B B

D X X

     

 

     
 (36)

where 2 is the variance of the Laplacian-distributed coefficients. We now derive the

distortion of the low-frequency subband of an L frame.

Proposition 5: The estimated distortion for the low-frequency spatio-temporal subband

is:

    
2
minmin min min2

min

2
2

low
2

erf erfc
122 2

BB B B
BD e

  
 




        
 (37)

Proof: Based on the procedure in [29], we separate the distortion calculation lowD into

the distortion of non-significant coefficients (deadzone), and the distortion of significant

coefficients. The deadzone distortion is the variance of a truncated Gaussian at
minBT ,

which can be shown to be  
2
min min2

minlow,zero
2

1 /erf
2

B B
BD e

 



  using integration by

parts. For significant coefficients, we use the high-rate assumption [20] [29],

min

2
2

low,nonzero 12
BD


 . Hence, the total distortion is the weighted sum of the two metrics,

or:

    min min
low low,zero low,zero low,nonzero low,nonzero low,zero low,nonzeroerf erfc

2 2
B BD p D p D D D
 

   

 (38)

which gives us (37).

 ■

Notice that, similar to the corresponding rate estimation of (30), for low-distortion (high-

rate) regions where the variance of each coefficient is significantly larger than the

quantization stepsize (i.e.
minB is small),  minerfc 1

2
B  , and the distortion estimate of

(37) converges to the well-known high-rate approximation of min

2
2

12
B

lowD


 .

For all the different subbands at all scales of the DWT, we get an average distortion:

3

low, ,0 high, ,
1 1

4 4
J

J j
J J j j m

j m

G D G D 

 

   d (39)

 32

where jG is the synthesis gain of the wavelet filter at the j th scale level, and band, ,j mD is

the expected distortion of the m th type subband at the j th scale level, with

band={low,high} .

2.5.2 Distortion for MCTF Reconstruction

For generalized MCTF filtering, distortion takes on a linear combination of each L and

H frame produced by the decomposition [10] [31]:

MCTFMCTF

MCTF MCTF MCTF
MCTF

1
(0) () () () (1) ()() () ()

1
1 1 1

[, ,...,][,...,]
k TT

k T T Tk j j T
TL L LH H H

k j j

B A A


  

                 
  d d d d d d   (40)

The last derivation of (40) is valid because the weight of each H -frame at each temporal

level is a function of only the average number of connected pixels in the GOP. However,

we note that this approximation can also be applied across several GOPs if the motion

between GOPs is similar. In our experiments, linear minimum mean square error

(MMSE) fitting is used to determine the weights of L -frames and H -frames and predict

the distortion associated with the sequence.

2.6 Complexity of Entropy Decoding and IDWT

2.6.1 Generic Complexity Modeling for Video Decoding

Since many multimedia decoders today typically reside in a variety of handheld (Video

iPod, 3G cellphones, etc) and portable devices (notebooks, PDAs) that have stringent

power and processing constraints, they are in general more resource-constrained than

encoders. Hence, while a similar complexity estimation framework can be likewise

derived for the encoder, we opt to focus on the decoding complexity. A second (and

more algorithm-related) reason is that the encoding complexity is strongly dominated by

the motion estimation complexity rather than the coding operations. Hence, accurate

modeling of embedded encoding per-se is of a lesser importance for the R-D-C analysis

of the encoder, as it is for the decoder.

 In order to represent different decoder (receiver) architectures in a generic manner at

the encoder (server) side, in our recent work [11] [12] we have deployed a concept that

 33

has been successful in the area of computer systems, namely, a virtual machine. The key

idea of the proposed paradigm is that the same bitstream will require/involve different

resources/complexities on various decoders. We adopt a generic complexity model that

captures the abstract/generic complexity metrics (GCMs) of the employed decoding or

streaming algorithm depending on the content characteristics and transmission bitrate.

GCMs are derived by computing or estimating the average number of times the different

operations are executed, such as the number of read symbols during entropy decoding,

the number of multiply-accumulate operations performed during inverse transform, the

number of motion compensation operations per pixel or coefficient, and the frequency of

invocation of fractional pixel interpolation. The value of each GCM may be determined

at encoding time for each adaptation unit q (e.g. the q -th video frame, or the q -th

macroblock) following experimental or modeling approaches [11]. The previous chapter

demonstrated that the mapping of the derived GCMs to execution time provides a very

accurate and straightforward manner of predicting the real (system-specific) complexity

[36]. The added advantage of GCMs however is that they are not system-specific and

they are also not restricted to a particular coding structure (predictive or MCTF-based).

This makes them applicable for a broad class of motion-compensated video decoders. In

this section, we focus on the derivation of entropy decoding and inverse transform

GCMs based on stochastic models that analytically express the dependencies on the

source characteristics and the algorithm operations.

2.6.2 Entropy Decoding Complexity

The complexity of decoding the quadtree significance at bitplane b depends on the size

of the quadtree before the significance pass. Since the quadtree is virtually

uncompressed for the vast majority of cases, the complexity is of the order of the

quadtree significance map encoding rate:

min minquadtree quadtree(,) (,)B BC n R n  (41)

 34

with
minquadtree(,)BR n given by (23) based on Proposition 1-Proposition 3. This includes

both the number of read symbols (RS) associated with quadtree coding, and writing the

significances into the quadtree structure.

Concerning block coding, we group together the number of symbols read from

significance coding and refinement. Notice that, as long as the coefficient is in a

significant block at bitplane b or higher, its significance will be coded, or it will be

refined at bitplane b . Summing up all symbols read in the passes until bitplane minB we

have:

max max

min

min min

1 low 1 high
block , ,() 4 4

b b

B B
K K

B n n
b B b B

C n n    

 

   (42)

where 14K n is the number of coefficients in the subband. Notice that the combination

of (41) and (42) predicts the number of RS operations during entropy coding/decoding

of a low or high-frequency spatio-temporal subband to a certain bitplane minB . Since

each subband is encoded independently, the complexity metrics must first be estimated

for each subband and then summed in the same weighted fashion as the rate calculation.

In other words, for a given frame i , 1 i N  , we have:

min min min

3

op op, ,0 op, ,
1 1

() 4 () 4 ()
J

i J j
B J B j m B

j m

C v C C  

 

  (43)

where  op quadtree,block and
minop, , ()j k BC  is the quadtree and block coding

complexity for each subband at spatial resolution j . Having obtained the RS estimates

for quadtree and block coding, the expression
min minquadtree quadtree block block() ()i i
B BC v C v 

derives an estimate of the real complexity for frame i , where op is an approximate

algorithmic (and platform dependent) complexity associated with each symbol used to

perform operation op . See [36] for extended examples of adaptive generation of

weighting factors for mapping GCM estimates to platform-specific complexity.

2.6.3 Complexity of the Inverse Spatial DWT

The complexity of the inverse DWT depends on the number of taps of the filter used as

well as on the implementation method (convolution or lifting). In [12], the transform-

 35

related complexity of a coding system that processes N video frames is modeled by

expressing it as a decomposition into two functions relating to: i) the percentage of non-

zero coefficients for a given SAQ threshold bT (function nonzero); ii) the sum of run-

lengths of zero wavelet coefficients (function runlen). The motivation behind (i) is that in

an input-adaptive implementation, the number of non-zero multiply-accumulate

operations in the synthesis filter-bank is directly proportional to the percentage of non-

zero coefficients. Moreover, the distribution of the zeros within the transform subbands

(as expressed by the sum of run-lengths) affects the number of consecutive filtering

operations that can be avoided altogether. Once an estimate of nonzero and runlen is

derived, the complexity of the inverse spatial DWT (non-zero MAC operations) is

formulated as [12]:

 nonzero nonzero runlen runlen dec_constFCN N N N N N     C C C 1  (44)

with nonzero
N and runlen

N the N -element vectors of the corresponding functions and the

parameter vectors nonzero
NC and runlen

NC can be estimated based on linear regression and

off-line training [12]. In this chapter, two main differences exist in the derivation of the

non-zero MAC operations of the IDWT in comparison to [12]. Firstly, linear MMSE

fitting is used to determine nonzero
NC , runlen

NC and predict the number of non-zero MAC

operations associated with the sequence. This is equivalent to the process performed for

the derivation of the final MCTF distortion in (40) (Section 2.5.2.5.2). More

importantly, we present an analytical calculation of the decomposition functions

mentioned above based on stochastic source models. In this way, the proposed analytical

derivations create a clear link between the source parameters (variances of the

distributions) and the derived complexity estimates. The decomposition function nonzero

for the high-frequency spatio-temporal subbands is derived by (6), while for the low-

frequency spatio-temporal subbands it is derived by:

  min
nonzero 2

erfc B (45)

with  min

2
erf B approximated as in (11). In addition, runlen is derived by the percentage

of non-significant blocks for a certain SAQ threshold
minBT , expressed by:

min min

band
runlen ,Pr{sig(,) 0} 1

BB nT n     (46)

 36

with
min

band
,B n estimated by (9) for the high-frequency temporal subbands and by (10) for

the LL subband of the L frames. Following the lifting dependencies of popular wavelet

filter-pairs, we set an average of 64n  since a window of 7 7 coefficients and 9 9

coefficients is used in the lifting steps of the inverse DWT for the low and high-

frequency subbands [20].

 Additionally, note that the number of taps also affects memory usage in the system.

While memory usage is another concern in battery-limited devices, in this chapter we

are primarily concerned with time-based complexity, as this more greatly affects the

performance of delay-sensitive applications.

2.7 Simulation Results

In this section we validate the derived analytical R-D-C expressions by presenting

experiments with three common interchange format (CIF) resolution sequences

(Coastguard, Foreman, Silent) that encapsulate a variety of motion and texture

characteristics. Apart from validating the theoretical modeling of rate-distortion and

complexity-distortion, the interplay of rate and complexity for achieving the same video

quality under different coding structures is discussed.

 For validation purposes, we utilize the spatial-domain MCTF version of the coder of

[30] that performs multihypothesis MCTF decomposition with a variety of temporal

filters and intra-band quadtree-based coding of the significance maps, and block-based

intra-band coding after a block size of 4 4 coefficients is reached in the quadtree

decomposition. Figure 8–Figure 10 present our results for a variety of spatial (S) and

temporal (T) decomposition levels. Distortion, as estimated by (36)–(40) in Section 2.5,

is converted into peak signal to noise ratio (PSNR). The entropy-decoding complexity is

quantified by the number of read symbols per second. For the inverse transform, we plot

the number of non-zero MAC operations per second (FC/s). The results demonstrate that

the proposed R-D-C modeling predicts the experimental behavior of the advanced

MCTF-based wavelet video coder accurately for all the different cases under

investigation. Different choices for MCTF (temporal) levels and spatial decomposition

 37

levels lead to different tradeoffs in rate and complexity for the same distortion in the

decoded video.

 Since the proposed models of Sections 2.3–2.6 enable accurate estimation of rate and

complexity for a variety of decoding distortion, the derived framework can be used in a

variety of applications where rate or complexity tradeoffs are of paramount importance

(see [4] [8] [9] [11]). For example, the R-C curve may be used to optimize post-

encoding bitstream shaping, where an encoded bitstream may be truncated and

transmitted at a lower rate based on decoder-specified complexity bounds.

 There are several interesting aspects to note from our results. For example, for good

quality video decoding (PSNR range of 32 dB–40 dB) there is typically an overhead of

about 300 to 500 kbps when one uses two temporal levels instead of four and an

overhead of about 600 to 900 kbps when one uses two temporal and two spatial levels.

Notice that the exact overhead is both sequence and bitrate dependent and the proposed

theoretical modeling captures this behavior accurately. Apart from the rate overhead,

there is also an increase in the number of entropy decoding operations by about 52.5 10

to 55 10 RS/s and 610 to 62 10 RS/s for the ―2T-4S‖ and ―2T-2S‖ cases (respectively)

in comparison to the ―4T-4S‖ case. However, concerning the IDWT complexity, Figure

10 demonstrates that a large variation exists in the performance of the different

approaches depending on the sequence and bitrate region. The case of ―2T-2S‖ is the

best in terms of operations per second, followed by the ―4T-4S‖ case and by the ―2T-4S‖

case, since the two latter require more spatial reconstruction levels. The fact that the

―2T-4S‖ case appears to be worse than the ―4T-4S‖ case can be explained by the

increase in the non-zero coefficients due to the fact that the ―2T‖ case includes four

times more L frames as compared to the ―4T‖ case, and L frames contain a higher

percentage of non-zero coefficients in comparison to H frames (for the same

quantization parameters). It is also interesting to notice that, for the low to medium rate

coding of the Coastguard sequence, the ―4T-4S‖ case is the most efficient both in R-D

and C-D performance. The proposed modeling approach agrees with all these

 38

observations, a fact that validates the importance of analytical R-D-C modeling methods

that adapt based on both source and algorithm statistics.

 It is also interesting to note that, if one ignores the coding bitrate and focuses on the

complexity-distortion tradeoffs, Figure 9 and Figure 10 reveal that, for the same number

of entropy decoding operations, the ―4T-4S‖ case can provide gains of 2 to 8 dB in

comparison to the other alternatives. On the other hand, the ―2T-2S‖ case may

outperform the other decompositions by 2.5 to 10 dB for the same number of non-zero

MAC operations during the IDWT. On different platforms where each entropy decoding

operation and IDWT MAC operation may have different respective computational

workloads and/or energy consumption levels, the significant tradeoffs between the

different types of decoding complexities can be exploited to optimally configure coder

parameters to run on a specific system.

 Finally, it is interesting to investigate how rate and complexity change for different

coding parameters for a higher resolution video, e.g. in sequences of Standard Definition

(SD) format. The entropy decoding results for the 720x480 Mobile sequence (30

frames/sec) are presented in Figure 11. As seen in the figure, our theoretical

approximations are fairly accurate in predicting the large performance gain of 4

temporal levels over 2 temporal levels of decomposition. Interestingly, this gain is not so

prominent for CIF sequences, as indicated by Figure 8 and Figure 9. One reason is that

the MCTF process can better exploit the correlation between neighboring pixels and

coefficients in SD sequences due to the decrease of spatio-temporal aliasing in

comparison to CIF sequences. Hence, the percentage of non-zero coefficients in the

high-frequency subbands is decreased. Consequently the number of read symbols

(entropy decoding complexity) and the required bitrate to encode H-frames are reduced

when using more temporal levels.

 39

500 1000 1500 2000 2500 3000 3500 4000 4500

26

28

30

32

34

36

38

40

42

Rate (kbps)

P
S

N
R

(d
B

)

Coastguard Sequence

sim 4T-4S

sim 2T-4S

sim 2T-2S

model 4T-4S

model 2T-4S

model 2T-2S

500 1000 1500 2000 2500 3000 3500 4000

25

30

35

40

Rate (kbps)

P
S

N
R

 (
d
B

)

Foreman Sequence

sim 4T-4S

sim 2T-4S

sim 2T-2S

model 4T-4S

model 2T-4S

model 2T-2S

500 1000 1500 2000 2500 3000 3500 4000

26

28

30

32

34

36

38

40

42

44

46

Rate (kbps)

P
S

N
R

 (
d
B

)

Silent Sequence

sim 4T-4S

sim 2T-4S

sim 2T-2S

model 4T-4S

model 2T-4S

model 2T-2S

Figure 8. Rate-distortion plots for different configurations of the spatio-temporal decomposition

parameters.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
6

24

26

28

30

32

34

36

38

40

42

Entropy Decoding Complexity (RS/s)

P
S

N
R

 (
d
B

)

Coastguard Sequence

sim 4T-4S

sim 2T-4S

sim 2T-2S

model 4T-4S

model 2T-4S

model 2T-2S

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

20

25

30

35

40

45

Entropy Decoding Complexity (RS/s)

P
S

N
R

 (
d
B

)
Foreman Sequence

sim 4T-4S

sim 2T-4S

sim 2T-2S

model 4T-4S

model 2T-4S

model 2T-2S

0.5 1 1.5 2 2.5 3 3.5 4

x 10
6

25

30

35

40

45

Entropy Decoding Complexity (RS/s)

P
S

N
R

 (
d
B

)

Silent Sequence

sim 4T-4S

sim 2T-4S

sim 2T-2S

model 4T-4S

model 2T-4S

model 2T-2S

Figure 9. Entropy decoding complexity vs. distortion plots for different spatio-temporal

decomposition parameters, where “S” and “T” indicate the number of spatial and temporal levels

(respectively).

2.5 3 3.5 4 4.5 5

x 10
7

25

30

35

40

45

IDWT Complexity (FC/s)

P
S

N
R

 (
d
B

)

Coastguard Sequence

sim 4T-4S

sim 2T-4S

sim 2T-2S

model 4T-4S

model 2T-4S

model 2T-2S

2.5 3 3.5 4 4.5

x 10
7

24

26

28

30

32

34

36

38

40

42

IDWT Complexity (FC/s)

P
S

N
R

 (
d
B

)

Foreman Sequence

sim 4T-4S

sim 2T-4S

sim 2T-2S

model 4T-4S

model 2T-4S

model 2T-2S

2 2.5 3 3.5 4

x 10
7

28

30

32

34

36

38

40

42

IDWT Complexity (FC/s)

P
S

N
R

 (
d
B

)

Silent Sequence

sim 4T-4S

sim 2T-4S

sim 2T-2S

model 4T-4S

model 2T-4S

model 2T-2S

Figure 10. IDWT complexity vs. distortion plots for different spatio-temporal decomposition

parameters, where “S” and “T” indicate the number of spatial and temporal levels (respectively).

 40

0 0.5 1 1.5 2 2.5

x 10
4

22

24

26

28

30

32

34

36

38

Rate (kbps)

P
S

N
R

 (
d
B

)

Mobile Sequence (SD)

Sim 4T-3S

Sim 2T-3S

Model 4T-3S

Model 2T-3S

0 0.5 1 1.5 2 2.5

x 10
7

22

24

26

28

30

32

34

36

38

Entropy Decoding Complexity (RS/s)

P
S

N
R

 (
d
B

)

Mobile Sequence (SD)

Sim 4T-3S

Sim 2T-3S

Model 4T-3S

Model 2T-3S

Figure 11 Rate and entropy decoding complexity curves for 720x480 Mobile sequence. The cases of 4

and 2 temporal decomposition levels are presented. Both encodings use 3 spatial decomposition

levels.

2.8 Conclusions

This chapter presents an analytical modeling framework that derives rate, distortion and

(decoding) complexity predictions for wavelet-based video coders. Our analysis

encapsulates a broad variety of coding techniques found in state-of-the-art coding

schemes. By analytically deriving probabilities for block and coefficient significance

according to the quantization threshold (for both low and high-frequency temporal

subbands), we are able to establish analytical models that approximate well the R-D-C

behavior of a state-of-the-art wavelet-based video coder. In this way, this chapter

complements prior work on operational rate-distortion modeling for video coders by

extending its applicability to a broader coding paradigm. At the same time, it

complements complexity modeling frameworks proposed in earlier work by deriving

analytically the input statistics used in these approaches. As such, the modeling

framework in this chapter bridges the gap between the operational measurements used in

prior complexity modeling work and stochastic estimates common in rate-distortion

modeling work.

 The theoretical R-D-C analysis presented in this chapter may guide the construction

of more efficient intra-band coding mechanisms targeting error frames in particular. An

open question concerns the efficiency of quadtree coding versus block coding

mechanisms (both compression-wise and implementation-wise) and the optimal setting

 41

(e.g. minimum block size or combination of coding passes) for a coder that encodes

error frames using both schemes in succession. Perhaps more importantly, the proposed

R-D-C analysis allows for the efficient exploration of complexity and rate tradeoffs for

different video qualities and resolutions. As indicated by our results with CIF and SD-

resolution videos, a careful selection of coder parameters is important for optimizing the

performance in a complexity-distortion or rate-distortion sense. A thorough investigation

of the theoretical R-D-C tradeoffs between different coder parameters for different video

resolutions is an interesting topic for future research.

 42

CHAPTER 3

A Model-based Approach to Processor

Power Adaptation for Video Decoding

Systems

3.1 Introduction

 Dynamic voltage scaling (DVS) has been proposed as a solution for processing real-

time tasks while reducing energy consumption on processors that support multiple

operating frequencies [38][39][40]. In CMOS circuits, power consumption is given

by 2
effPower V C f   , where , ,effV C f denote the voltage, effective capacitance and

operating frequency, respectively. The energy spent on one task is proportional to the

time spent for completing that task and time is inversely proportional to frequency.

Hence, the energy is proportional to the square of the voltage, i.e., 2
effEnergy V C . The

energy spent on one process can be reduced by decreasing the voltage, which will

correspondingly increase the delay. Based on statistical estimates of the cycle

requirement (i.e. complexity or execution time) for each job, a DVS algorithm assigns

an operating level (i.e. power and frequency) for processing that job while meeting delay

requirements for that job.

 In the past few years, a wide variety of DVS algorithms have been proposed for

delay-sensitive applications [41]-[48],[50][51]. Some DVS algorithms perform

optimization over only one or two tasks, such that the processor power level is

determined on the fly to meet imminent (soft) deadlines while considering either the

worst case execution time (WCET) [42][43], or the average case execution time (ACET)

 43

[47]. While these approaches have very low computational complexity, the

performances are limited in that future tasks with imminent deadlines may require

extremely high processing power to finish in time after the completion of the current

task. On the other hand, more robust DVS algorithms, such as the cycle-conserving and

look-ahead earliest deadline first DVS [41], and Feedback Control-based DVS [44],

schedule the power based on multiple future task deadlines. The complexity of such

approaches can become huge for large job buffer sizes, since many job deadlines must

be jointly considered in such scheduling schemes. This may often be the case for

multimedia where video packet arrivals over a network are nondeterministic, and many

packets are required to decode each video frame. Consequently, various lower-

complexity DVS approaches were proposed, where the number of tasks released for

execution (and hence, the number of deadlines to consider in the DVS algorithm) could

be controlled by adjusting various parameters, such as the ―aggressiveness‖ factor in

[48].

 In spite of the wide variety of algorithms proposed, current DVS approaches are

limited in several ways:

 Current DVS algorithms lack simple yet accurate complexity models for multimedia

tasks. Many DVS algorithms are often optimized in an application-agnostic or ad-

hoc manner, or otherwise they add significant overhead to online complexity

adaptation [44][48][11][36]. Other more formal, stochastic DVS approaches

[52][53][77] for generic applications use models that are not well-suited toward the

highly time-varying video decoding complexity.

 Current DVS algorithms often use worst-case or average case complexity

measurements (e.g. [42][43][47]), which neglect the fact that multimedia

compression algorithms require time-varying resources that differ significantly

between jobs. Moreover, ―worst-case‖ and ―average-case‖ metrics do not exploit the

information stored by the second moment of job execution times, or by the execution

time distributions themselves. Without such information, it is hard to make analytical

miss rate guarantees under different voltage scheduling policies.

 44

 Current DVS algorithms do not cooperate with multimedia applications to obtain

complexity statistics, which may vary across different coders, different sequences,

and different bit rates.

 While the generic framework of imprecise computation has been considered as an

approach for loss-tolerant applications such as multimedia [54][55], these algorithms

do not take full advantage of the properties of the multimedia algorithm to optimize

the quality or energy savings by jointly adapting the power level and the workload.

Moreover, there is either no explicit consideration of the distortion impact in loss

tolerant multimedia processing, or else an unrealistic model is used for distortion.

To address the limitations above, we propose the following solutions in this chapter:

 We construct a complexity model that not only explicitly considers coder operations

and frame dependencies (i.e. task deadlines), but can also be characterized by only a

few parameters. Importantly, we show that complexity statistics can be decomposed

into the sum of complexity metrics that follow simple, well-known distributions. By

using offline training sequences, we derive complexity distributions for different

classes of sequences and encoded frame types, such that the encoder/server can

transmit these parameters online with very low overhead whenever the sequence

characteristics or coder parameters change [11][36]. This enables the decoder to

adapt its model based on these parameters, such that the decoding system can

optimally plan its use of resources based on a priori transmitted complexity traffic

characteristics.

 We propose an offline linear programming (LP) solution to analyze the optimality of

DVS algorithms by deriving an operational lower bound for energy consumption,

subject to processing all jobs before their delay deadlines (i.e. zero miss rate).

Moreover, this linear programming solution provides the optimal offline scheduling

solution regardless of leakage power.

 Based on the online complexity distribution adaptation scheme, we propose two

DVS algorithms. First, we introduce an online robust linear programming (rLP)

solution for DVS that takes advantage of modeled parameters such as the means and

 45

variances of different classes of jobs. Second, we propose a queuing theoretic model

driven DVS algorithm, which allows the processing frequency to be smoothed across

time-varying workloads. Both DVS approaches are shown to greatly reduce energy

consumption compared to existing algorithms, and can both analytically adapt their

algorithms for different target job miss rate and energy consumption levels.

 We propose a quality-aware DVS algorithm based on priority scheduling, where jobs

are decomposed based on their dependencies and contributions to overall video

quality, such that more important jobs are processed first. In this way, the video

stream can be decoded at various quality levels given different power levels, even if

the average power is insufficient for decoding all jobs before their deadlines. We

demonstrate experimentally that the quality-aware DVS algorithm can retain high

quality even if the available energy is reduced significantly.

The chapter is organized as follows. Section 3.2 introduces multimedia application-

specific stochastic models to determine workload characteristics. Section 3.3 introduces

the offline LP approach for calculating the lower bound of energy consumption for DVS

algorithms. Section 3.4 queuing model approach for deadline-driven DVS algorithms.

Section 3.6 introduces a quality-adaptive DVS via a priority scheduling approach, where

more important jobs are processed first. Section 3.7 provides performance comparisons

between the look-ahead DVS algorithm and our deadline-driven queuing-based DVS

algorithms, and shows different average power and quality tradeoffs achieved by

priority-based DVS. Finally, Section 3.8 concludes our work.

3.2 Stochastic Modeling of Application Workload

3.2.1 Challenges and Previous Works for Complexity Modeling

Modeling the complexity of state-of-the-art video coders is a challenging task due to the

complex group-of-pictures (GOP) structures that exist, where many neighboring video

frames are coded together. In addition, some advanced coders (e.g. MPEG4) allow the

GOP structure to change over time to adapt to changing video source characteristics, in

which case the complexity model must adapt by recapturing statistics whenever the GOP

 46

structure changes. As a result of these complex and potentially changing encoding

structures, research on complexity prediction and modeling have traditionally fallen into

two categories. The first category involves methods that ignore coder-specific

operations, such as coarse levels of empirical modeling for complexity [75], or the use

of a statistical sliding window [43]. The second category involves modeling complexity

at a fine granular level based on functions associated with the process of decoding (e.g.

entropy decoding, inverse transform, etc.). However, these works do not provide coder-

aware theoretical models [76], or else they are based on platform-independent ―virtual‖

complexities that can not be mapped into real complexity (time) in a straightforward

manner [11] [36]. In the following section, we propose an accurate, low-complexity

mixed online-offline modeling technique based on using well-known, analytical

distributions.

3.2.2 Deriving and Modeling the Service Distribution for Jobs

Based on our discussion above on mixing training data with analytical models, we show

an example using an MCTF coder with 4 temporal levels. In order to differentiate

between various jobs associated with each GOP, we define job classes 1,...,i I , where

a job belongs to class i if it is the thi job to be decoded in its associated GOP. For

example, in the MCTF structure shown in Figure 12, there are a total of 4 classes of jobs

which correspond to the decoding of the 0,0 0,1{ , }A A , 0,2 0,3{ , }A A , 0,4 0,5{ , }A A , and 0,6 0,7{ , }A A

frames in a GOP. For 4 temporal levels, we have 8 job classes. It is important to classify

these jobs in such a way because jobs in the same class are expected to have similar

complexities, and similar waiting times before being processed.

 We collected job execution times (offline) from a set of 11 training sequences with

16 GOPs each, decoded at 7 different bit rates. In Figure 13a-b, we show the complexity

distributions for various job classes, averaged over all sequences, decoded at bit rates

1152kbps and 320kbps. Here, tics indicate the value measured by the internal processor

clock counter. We noticed that the complexity distributions shared similar features, such

as the existence of peaks. We also explored the dependency of complexity distributions

 47

on various sequences by collecting data from different classes of jobs for particular

sequences over 7 different bit rates (from 200kbps to 1.5mbps) and normalizing the

measurements by their scales in order to obtain an average distribution shape for each

sequence. It was discovered that the shapes vary greatly between different sequences, as

shown in the comparison of the sequences Coastguard and Stefan in Figure 13c-d.

Figure 12: (a) Periodic 3 temporal level MCTF structure (with dotted lines indicating motion

compensation operations), (b) Job decomposition for each soft decoding deadline, (c) Corresponding

workloads for the jobs in sequences Stefan and Coastguard.

1 2 3 4
0

1

2

3

4

5

6

7

8

9
x 10

9

Job #

C
o
m

p
le

x
it
y
 (

in
 c

y
c
le

s
)

Comparison of complexity of job types

Stefan

Coastguard

(c)

3,0L

3,0H

2,1H

1,1H

2,1L ,
2,0L

1,1L ,
1,0L

0,1A ,
0,0A

1,2H

0,3A ,
0,2A

2,0H

1,3H

1,0H

1,3L , 1,2L 0,3A , 0,7A

Job 1

Deadlines

0,5A ,
0,4A

Job 2

Job 3

Job decomposition

(a)

Job 4

 0  2 3 4
 (b)

0,1A 0,2A 0,3A 0,4A 0,5A 0,6A 0,7A 0,0A

1,0H 1,1L 1,1H 1,2L 1,2H 1,3L 1,3H 1,0L

2,0H 2,1L 2,1H 2,0L

3,0H 3,0L

Tlev 0

Tlev 1

Job 1 Job 2 Job 3 Job 4

Tlev 2

Tlev 3

 48

4 6 8 10 12

x 10
9

0

2

4

6

8
Class 1 Jobs

of tics

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

2 4 6 8

x 10
9

0

2

4

6

8
Class 5 Jobs

of tics

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

1 2 3 4 5

x 10
9

0

2

4

6
Class 3 Jobs

of tics

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

0 1 2 3

x 10
9

0

2

4

6

8
Class 2 Jobs

of tics

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

(a)

4 6 8 10

x 10
9

0

5

10

Class 1 Jobs

of tics

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

2 4 6 8

x 10
9

0

2

4

6
Class 5 Jobs

of tics

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

1 2 3 4 5

x 10
9

0

2

4

6

8
Class 3 Jobs

of tics

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

0 1 2 3

x 10
9

0

2

4

6

8
Class 2 Jobs

of tics

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

(b)

6 7 8 9

x 10
9

0

2

4

6
Class 1 Jobs

of tics

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

3.5 4 4.5 5 5.5

x 10
9

0

1

2

3

4
Class 5 Jobs

of tics

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

2.5 3 3.5 4

x 10
9

0

2

4

6
Class 3 Jobs

of tics

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

1.2 1.4 1.6 1.8 2

x 10
9

0

2

4

6
Class 2 Jobs

of tics

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

(c)

6 8 10 12

x 10
9

0

2

4

6

8
Class 1 Jobs

of tics

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

4.5 5 5.5 6 6.5

x 10
9

0

2

4

6
Class 5 Jobs

of tics
F

re
q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

2.5 3 3.5 4

x 10
9

0

2

4

6

8
Class 3 Jobs

of tics

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

1 1.5 2 2.5

x 10
9

0

2

4

6
Class 2 Jobs

of tics

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

(d)

Figure 13 The total service time distribution for various classes of jobs (out of a total of 8 classes) in

4 temporal level MCTF for (a) all training sequences at bit rate 1152kbps, (b) at bit rate 320kbps.

(c) The Coastguard sequence complexity shape, (d) Stefan sequence complexity shape.

In order to better model the complexity analytically, we investigated the complexities

contributed by different steps of a decoding process. Decoding jobs often involves

multiple different functions such as entropy decoding (ED), inverse transform (IT),

motion compensation (MC), and fractional pixel interpolation (FI). Hence, the total

complexity for class i for a sequence seq , seq
iC , is the sum of complexities associated

with each of the various decoding functions:

 ,ED ,IT ,MC ,FI
seq seq seq seq seq
i i i i iC C C C C    (47)

 49

where each ,op
seq
iC indicates the total complexity associated with one type of decoding step

for a job of class i . Since a job of class i is composed of decoding and reconstructing

various frames at various temporal levels, we can further decompose ,op
seq
iC ,

 , , ,op ED IT MC FI , into a sum of decoding steps performed at each temporal

decomposition level. For example, ED complexity of a class 1 job in 3-level MCTF, as

shown in Figure 12, consists of entropy decoding frames 3,0 3,0 2,1 1,1{ ,H ,H ,H }L . Likewise,

for  temporal level MCTF, the ED complexity for a class 1 job can be expressed as the

sum of complexities for all of its entropy decoding tasks:

 1,ED (),ED H(),ED
1

seq seq seq
LC C C 








  (48)

where (),
seq
fr EDC  is the entropy decoding complexity of decoding a frame of type fr at

temporal level  . We can finally model (),op
seq
frC  with simple distributions that require

only a few parameters, and sum up the distributions to form seq
iC . A particular

interesting example comes from entropy decoding, where the normalized complexity

distribution (),
ˆseq
fr EDC  is Poisson, i.e.

  ()

()
(), ()

!

seq
fr

nseq
frseq

fr ED

e
p n

n









 (49)

where n is a Poisson bin number, (), ()seq
fr EDp n is the probability that the normalized

complexity falls into bin n , and ()
seq
fr  is a shape parameter for the normalized

complexity distribution. The real entropy decoding complexity distribution can be

modeled by a shifted and scaled Poisson distribution, i.e.:

 (), () (), ()
ˆseq seq seq seq

fr ED fr fr ED frC a C b     (50)

where ()
seq
fra  and ()

seq
frb  are sequence and frame dependent constants. Figure 14 shows the

normalized ED complexities (),
ˆseq
fr EDC  for various L-frames and H-frames (a-b) averaged

over all sequences for bit rates 1152kbps and 320kbps, and (c-d) for particular sequences

Coastguard and Stefan. Notice that the distributions in Figure 14 denote a subset of the

complexities forming the distributions for different classes of jobs in Figure 13 using

(50), (48), and (47). Table 5 shows the coefficient values for the normalized entropy

 50

decoding complexity distribution averaged over all training sequences, along with

individual sequences Coastguard and Stefan. Note that in all 3 cases, the coefficients

seq
ia , seq

ib , and seq
i vary significantly for different sequences. Hence, in practice,

coefficients need to be estimated separately for different sequences. The same modeling

technique may be applied to inverse transforms and motion compensation.

0 5 10 15 20
0

10

20

30

40
ED complexity for L4 frames

Normalized Complexity

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

0 50 100 150
0

10

20

30
ED complexity for H3 frames

Normalized Complexity

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

0 50 100
0

20

40

60
ED complexity for H2 frames

Normalized Complexity

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

0 20 40 60 80
0

20

40

60

80
ED complexity for H1 frames

Normalized Complexity

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

data

poisson fit

data

poisson fit

data

poisson fit

data

poisson fit

(a)

0 5 10 15 20
0

20

40

60
ED complexity for L4 frames

Normalized Complexity

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

0 50 100 150
0

10

20

30
ED complexity for H3 frames

Normalized Complexity

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

0 50 100
0

20

40

60

80
ED complexity for H2 frames

Normalized Complexity

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

0 20 40 60 80
0

50

100
ED complexity for H1 frames

Normalized Complexity

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

data

poisson fit

data

poisson fit

data

poisson fit

data

poisson fit

(b)

0 5 10 15
0

10

20

30
ED complexity for L4 frames

Normalized Complexity

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

0 10 20 30
0

10

20

30
ED complexity for H3 frames

Normalized Complexity

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

0 50 100 150
0

20

40

60
ED complexity for H2 frames

Normalized Complexity

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

0 50 100 150
0

20

40

60
ED complexity for H1 frames

Normalized Complexity

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

data

poisson fit

data

poisson fit

data

poisson fit

data

poisson fit

(c)

0 20 40 60
0

5

10

15

20
ED complexity for L4 frames

Normalized Complexity

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

0 20 40 60
0

10

20

30
ED complexity for H3 frames

Normalized Complexity

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

0 20 40 60 80
0

20

40

60
ED complexity for H2 frames

Normalized Complexity

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

0 20 40 60 80
0

20

40

60
ED complexity for H1 frames

Normalized Complexity

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

data

poisson fit

data

poisson fit

data

poisson fit

data

poisson fit

(d)

Figure 14 Normalized entropy decoding complexity for various L and H frames in a 4 temporal

level MCTF GOP for (a) all training sequences at bit rate 1152kbps and (b) at bit rate 320kbps. (c)

The Coastguard sequence complexity shape, (d) Stefan sequence complexity shape.

Table 5 Affine transform coefficients for the entropy decoding complexity in 4 level MCTF.

Frame All Sequences (1152kbps) Coastguard Stefan
seq
ia seq

ib seq
i seq

ia seq
ib seq

i seq
ia seq

ib seq
i

L4 4.4e7 8.7e8 21 53e6 2.5e8 2.6 18e6 5.9e8 4.0

H3 1.1e7 0.9e8 9.4 16e6 1.5e8 7.8 7.0e6 2.7e8 7.4

H2 1.7e7 2.0e8 13 7.4e6 1.1e8 16 8.7e6 2.2e8 6.3

H1 3.1e7 4.8e8 8.7 5.0e6 0.9e8 19 7.6e6 1.5e8 8.1

 51

 While modeling complexity in this fashion is highly source dependent, our novelty

lies in the low complexity and high accuracy of updating the complexity model

whenever changes occur in the video source statistics. During long video sequences,

advanced coders may change GOP sizes, coding rates, and frame sizes many times due

to time-varying source statistics. Without a good complexity model, only loose bounds

for complexity can be derived based on coarse parameters, such as the mean and

variance of frame sizes and coding bit rates across entire sequences [68]. However,

using our complexity model, the encoder can update the decoder‘s information of the

video source by sending only a few complexity distribution parameters prior to a new

sequence or scene change, and the decoder can use these parameters to form accurate

complexity distributions (The reader is referred to [11] for more details on possible

implementations of how these parameters can be efficiently transmitted to the decoder.).

 Before moving into queuing theoretic DVS, we make an important remark about the

complexity model. The complexity distributions, which are measured and fitted to well-

known distributions, are also based on the algorithmic decoder operations. As shown in

the above example, entropy decoding complexity follows a simple shifted and scaled

Poisson distribution, which is the limiting distribution when there are only a few high

complexity tasks and many low complexity tasks. Indeed, algorithmically, entropy

decoding for video frames follows such a distribution, since only a few decoded bits are

used to reconstruct complex coder structures such as zero-trees, while most decoded bits

are used to decode and refine significant coefficients. On the other hand, inverse

transform followed a nearly constant complexity due to the particular implementation of

the coder. Bidirectional motion compensation complexity led to the existence of two

peaks, which occurred due to various macroblocks that required either a single

prediction, or two predictions. Due to the space constraint in our manuscript, we omit a

thorough analysis of each of these distributions. However, it should be noted that there is

good reason to analytically model complexity based on these specific distributions, since

they capture the underlying decoder implementation.

 52

3.3 Evaluating the Optimality of DVS Algorithms

In this section, we formalize the objective of DVS algorithms, and provide an offline

LP-based algorithm to determine the lower bound for energy consumption under 0% job

miss rate (more details can be found in [81]).

3.3.1 Formulation of the Goal of Real-time DVS

For our real-time deadline-driven multimedia DVS problem, we are given a sequence of

decoding jobs. For each job (which can be one frame or a pair of frames depending on the GOP

structure), we are given its complexity, arrival time and display deadline. The goal of a DVS

algorithm is to find a scheduling solution, which consists of the time and the operating voltage

for each switch, to minimize total energy consumption. The constraint is that the decoder can

only start decoding a job after it arrives, and each job should be finished before its display

deadline.

 Given M decoding jobs, let C = {C1,…,CM} , T = {T1,…,TM}, D = {D1,…,DM} be the

complexity, arrival time and display deadline of jobs, respectively; let F = {F0,…,Fk}, P

= {P0,…,Pk} (F0 and P0 for sleeping mode) be associated clock frequencies and powers

for K voltage levels, respectively; let S = {Ts, Vs, N} be the scheduling solution, where N

is the number of voltage switches, Ts={t0,…,tN, t0=0} and Vs={v0,…,vn} is the time and

voltage level for each switch. When the precise complexity of each job is known, the

constraints for the problem are given by deterministic Ci and Ti. However, when

uncertainties exist in the workload, Ci and Ti can be viewed as stochastic variables and

DVS scheduling algorithms cannot guarantee that all jobs will be decoded before their

deadlines. Hence, in the stochastic case, the hard deadline constraint can be replaced

with the constraint of keeping the miss rate for jobs within a tolerable range.

 53

Figure 15 DVS problem formulation

 We further illustrate the DVS problem in Figure 15 Here, the step function U(t) is the

accumulated complexity (i.e., total complexity in terms of clock circles) of decoding jobs

transmitted since time zero, and the widths of the steps are transmission times of jobs over

network. Another step function L(t) indicates the total complexity that needs to be processed by

time t in order to meet display deadlines. I.e.,

1 0
1

() (), , 1 , 0
k

j k k
j

U t C for T t T k M T


      (51)

1

1 0 0
0

() (), , 1 , 0, 0
k

j k k
j

L t C for D t D k M C D





       (52)

 Since the decoder cannot start decoding a job before it is received from network, and

it must finish the job before its deadline, a valid DVS solution is a piecewise linear curve

between U(t) and L(t). The slope of each piece indicates the associated clock frequency

of the selected voltage level and a corresponding power is associated with each

frequency.

 The arrival time intervals can vary between each job. As shown in Figure 3.1, the

transmission time for job 3 is larger than others. This can often occur when the network

bandwidth is time-varying, which is common in wireless networks.

3.3.2 The Operational Lower Bound for DVS

 In this section, we propose a method for evaluating offline, based on collected statistics about

the workloads of decoded jobs, the operational lower bound for energy consumption. This

allows us to evaluate retroactively the performance of our previously used online DVS scheme.

 54

In particular, in the offline scenario, we know the precise complexity and arrival time of each

decoding job, and hence we can obtain the optimal scheduling solution.

 We define a transition point as the time when a new job arrives (i.e. any Ti), or when

a job deadline is reached (i.e. any Di). We also define an adaptation interval as the time

period between two adjacent transition points. The adaptation intervals for sample U(t)

and L(t) curves are marked in dotted lines in Figure 16. We now prove an important

result for voltage scheduling.

Figure 16 Adaptation intervals

Theorem 1: Within a single adaptation interval (i.e. when U(t) and L(t) are constant), an

arbitrary ordering of any feasible voltage schedule is feasible and consumes the same

amount of energy.

Figure 17 Different voltage scheduling orderings

Proof: Suppose we have a voltage time allocation of each voltage level in this interval.

Then, the total energy consumption is the sum of each allocated time multiplies the

corresponding power. Similarly, the total complexity consumption is the sum of each

allocated time multiplies the corresponding frequency. Then, if the time allocation is

fixed, the energy consumption is fixed. Since the voltage scheduling solution is valid

 55

and U(t) and L(t) are stable within this interval, the piecewise linear solution curve will

not break the bound in spite of the ordering. As an example in Figure 4.2, the complexity

consumption of sequence 2,0,1,3,4 and 0,1,2,3,4 (where the numbers refer to the slopes)

is the same. 

 Theorem 4.1 is the key idea to map the DVS problem into a tractable LP problem.

Rather than finding the precise times for voltage switch, which would create an

intractable integer linear programming (ILP) problem as in [78], we instead solve the

percentage of time that the processor is operating at each voltage level within each

adaptation interval. The LP problem can be formulated as follows:

Problem Formulation 1: label the transition points as an ordered set I = {I0,…,IL}, where

I0=0 and IL = Tend, i.e. we have a total of L adaptation intervals. For these L intervals, we

have voltage level allocation vectors given by A = {A1,…,AL}, where Ai={Ai0,…,AiK}

and Aij is the allocation of voltage level j in adaptation interval i. Then, the DVS problem

is:

1

1 0

min (())
N K

ij j i i
i j

E A P I I 
 

    (53)

such that

0

0 1, 0 1
K

ij ij
j

A for j K and A


     (54)

1

1 0

() (()) (), 1
n K

n j ij i i n
i j

L I F A I I U I n L
 

        (55)

Here, the unknown is the voltage level allocation vectors given by A. The constraint

shown in (4.3) is that the valid DVS solution between U(t) or L(t) defined in (51) and

(52).

 One can easily prove that the problem defined in (53) to (54) is a linear programming

problem. Hence, with this formulation, solving this LP problem leads to the optimal

solution for offline DVS problem. Note that this formulation is pervasive: the operating

voltages can take on any set of discrete values, and there is no requirement for the

power-frequency model (no need for a convex power-frequency function). Furthermore,

this formulation is also applicable to other delay-sensitive DVS problems of real-time

applications.

 56

3.4 Online Robust Linear Programming DVS

For online multimedia applications, where jobs are received through a network, we often

do not know the precise complexity and arrival times of each decoding job.

Nevertheless, the idea of mapping DVS into a linear programming problem in Section

3.3.2 can still be used for online DVS. We solve the stochastic online DVS problem by

sequentially solving robust linear programs (rLP). We label our proposed algorithm as

SLP/r.

 The main idea of SLP/r is: we predict the stochastic complexity of decoding jobs in a

future time window by using the means and variances of jobs, and solve an rLP problem

to obtain the scheduling solution for the predicted decoding jobs in the window. After

completing a decoding job (or several decoding jobs), we move the window forward

based on the current time, adjust the predictions in the future window, and repeat the rLP

based on possibly new statistics.

3.4.1 Consideration of Stochastic Complexity

 The prediction of future decoding job complexities (in the sliding window) is crucial

to our real-time DVS solution. In real time video transmission, this can be accomplished

by having the encoder send complexity specifications, such as the mean and variance of

each job class for each video scene, prior to transmitting the corresponding frames, as

introduced in Section 3.2.2 [82]. Note that using only the mean for prediction may lead

to a high miss rate. To reduce the probability of misses, we incorporate the variance into

each job to estimate the bounded ―worst case‖ complexity in a probabilistic manner. Due

to the central limit theorem, when uncertainties accumulate over many jobs (See Figure

13 for workload distributions of single jobs.), the total workload tends toward a

Gaussian distribution. In this case, the mean and variance for each job class can

explicitly determine the miss rate probability under different adjustments of U(t) and

L(t). The adjustments are based on a confidence level α to adjust the new bounds. Note

that for jobs far into the future of a prediction window, the accumulated variance over

many jobs may be large. Hence, a scaled coefficient α (possibly 0, such that only the

 57

mean is considered) can be used to guarantee feasibility. Using a small coefficient for

jobs far into the future does not necessarily increase the miss rate, since the rLP solution

will only determine the DVS schedule for imminent jobs, after which the rLP is solved

again for the future jobs based on the decoding results.

 The rLP problem for a given prediction window is as follows:

 Problem Formulation 2:

1 0

min ()
W K

ij j
i j

E A P 
 

    (56)

 such that

0

0 1, 0 1
K

ij ij
j

A for j K and A


     (57)

1 0

() () (), 1
n K

n j ij n
i j

L I F A U I n W
 

       (58)

Where  is the display interval, W is the prediction window size. Adaptation intervals I,

U(t) and L(t) are defined as follows (detailed description is in section 5.2):

 0{ ,..., },W iI I I I i    (59)

 
0 1

1

() (), , 1
k

W j k k
j

U t C I t I k W 


     (60)

 () max(0, ())L t U t     (61)

Where W0 is the current adaptation interval and  iC is stochastic complexity of job i based

on the measured means and variances. Specifically we have:

 
0 0 0W j W j j W jC v      (62)

 max(0, (1)/),1
j

R j R j W      (63)

where ρi and vi is the mean and variance of stochastic complexity of job i, α is the

confidence level set by the user and R is a constant. (63) indicates that, αj is linearly

scaled between α and 0 over time. Note that a tradeoff between miss rate and energy

consumption could be achieved by tuning α. For example, increasing α will make the

bounds tighter and lead to more energy consumption but a lower miss rate.

 One can easily show that the problem defined by equations (56) to (63) is an rLP

problem. Note that with stochastic complexity model, the proposed online algorithm

applies to other real-time applications although we only use video decoding as an

example.

 58

 After we finish decoding one job, we need to adjust U(t) and L(t) dynamically. The

idea is shown in Figure 18. The gray area indicates the variance part of prediction, the

dotted line indicates the adaptation intervals and the dotted area indicates the bound

adjustments. Figure 5.1(a) shows the solution from robust linear programming using

mean and variance of each job class as a prediction. The real complexity of each job is

shown in Figure 5.1(b). In this particular case, we used three adaptation intervals to

finish decoding job No.1. As our granularity for recalculating the solution is one

adaptation interval, we may consume more complexity than that of the specific job. As

shown in Figure 5.1(b), after finishing job No.1, we also finished job No.2 and part of

job No.3. Hence, we need to adjust the prediction dynamically to give more accurate

prediction. As shown in Figure 5.1 (c), the dotted area indicates that part of job No.3 is

already finished in the previous interval, and when we move the window forward, we

need to adjust U(t) and L(t) accordingly.

Media Time

L(t) for robust

linear programming

… …

Media Time

U(t)

from real complexity

and arrive time of jobs

… …

T1 T2 T3 D1 D2 D3

U(t) for robust

linear programming

D1 D2 D3 Media Time

updated L(t) for robust

linear programming

… … updated U(t) for robust

linear programming

D3 D4 D5T1' T2' T3' T3' T4'

(a) obtain solution from rLP (b) adopt DVS solution for job 1 (c) adjust prediction and repeat rLP

L(t) for robust

linear programming

Figure 18 Dynamic adjust of prediction for rLP

3.4.2 Extension to Variable Communication

 For SLP/r, another problem is that we need to deal with the variance of network

bandwidth, because we do not know the exact arrival time of each job. The idea is that

we assume that a network buffer at the decoding side collects packets and dispatches

jobs to the decoder according to the display frame rate. We fix the dispatch time as θ

display intervals before the display deadline of the job. This means that we predict

adaptation intervals using only display intervals. In this fashion, we can reduce the

number of adaptation intervals (and also the size of the rLP problem). In this case, the

adaptation intervals I, U(t) and L(t) are defined as (5.4) to (5.6). If a job arrives before

 59

our scheduling solution (i.e. the real U(t) is higher than the complexity consumption

line), we just switch voltages as guided by rLP. Sometimes, a job may arrive very late

due to insufficient bandwidth of network, which may occur in unreliable wireless

networks. In this case, if a job arrives too late to be processed, power gating can be used

to shut down the processor until a new job arrives, based on which U(t) and L(t) are

adjusted for the next rLP.

3.5 Online Queuing-based DVS Algorithm

Recall that online DVS algorithms, due to varying workloads, cannot always achieve 0%

miss rate. In this section, we introduce a queuing theoretic approach to online processor

power adaptation. While feedback mechanisms using queuing theory may not perform

as optimally as the rLP DVS algorithm, as queuing theory determines mainly resulting

miss rates and power consumptions in steady state rather than for transients, queuing

theory nevertheless provides us with a tool to analyze delay characteristics based on

precise stochastic models. Accurate delay estimation also enables us to construct better

scheduling approaches (e.g. priority scheduling) that perform well under different

energy consumption rates, such that scalable energy-quality tradeoffs can be made. In

this section, we introduce two methods for estimating the miss rate given a fixed

processor power level. We then propose two variations of a queuing-based online DVS

algorithm that utilizes this delay estimation to provide feedback and adapt the processor

operating level.

3.5.1 Delay Analysis

As discussed previously, we assume a network buffer periodically provides the decoder

with jobs in the order of their display deadlines, i.e. releases the jobs for execution. We

deploy a / /1D G cyclic multi-class queuing system with single-service discipline for

modeling a deadline-driven DVS system as shown in Figure 19. In cyclic scheduling

with single service discipline, a job in class 1i  is always serviced directly after a job

in class i , and a job of class 1 (in the next GOP) is always serviced directly after a job in

 60

class I (of the current GOP). The service policy for each class in this system can also be

viewed as a single service discipline with a vacation period [60]. In particular, whenever

a job of class i finishes service, the processor "goes on vacation" by servicing one job in

each of the other classes, and "returns to service" to class i only after it has completed

processing the jobs in other classes. Based on this service discipline and class-dependent

service time distributions obtained through offline training or from an analytical model

(Section III.3.2.1), we can determine the delay distribution for each class of jobs (Figure

19). The delays can then be used to drive power scheduling to ensure that jobs are

decoded before their deadlines.

Figure 19: Queuing model for Deadline Driven DVS.

 In order to analyze the queuing system, we first divide the interarrival time 

between jobs into N equally spaced time intervals, thereby obtaining discrete units of

time that are /N seconds apart. Hence, each job interarrival period contains time

indices {0,1,..., 1}n N  . Let , ()i kS m be a random variable representing the discrete

service time of the thi job of the thm GOP at processor speed kf , and , ()i kV m the

following vacation period. Let , ()i kW m be the waiting time for the thi job of the thm

GOP. The service, vacation, and waiting times are shown for a GOP structure with two

jobs in Figure 20.

 We suggest two methods for computing the delay distribution of jobs. The first

method is based on the vacation time distribution. Suppose the processor runs at a

constant speed kf until steady state is reached. We denote the steady state (or time

Cyclic Single-

Service

Discipline

Model

Power

Scheduling

Model

parameters

Modeled Distr.

Decoder

(+ queue)

Delay Deadline

Violation Prob.

,Pr{ }i k iD T

,k kP f

Frame Display

Offline

Training

Stat. Distr.

Actual

Service Time

Jobs Network

Buffer
Packets

(Network)

 61

average) random variables as ,i kS , ,i kV , and ,i kW with distributions , ()i ks n , , ()i kv n , , ()i kw n .

Waiting times approximations for a / /1D G cyclic service queue and / /1D G queues

with vacations have been analyzed extensively [21-23]. For example, given a discrete

service time distribution , ()i ks n and vacation time distribution , ()i kv n , the average waiting

time is [59]:

  
 
 

1
, , , , ,

,
, , ,1

(1) (1) (1) 2 (1) (1) (1)1
12 (1) 2 (1) (1)

N
i k i k i k i k i k

i k
ri k i k i kr

H N N G G H H
E W

zH N G H





       
  

     (64)

where , ()i kG z and , ()i kH z are the z-transforms of , ()i ks n and , ()i kv n respectively, and rz are

the unique roots of the polynomial , ,() ()N
i k i kz G z H z that are on or inside the unit circle,

except 1z  .

Figure 20: An example of discrete service, vacation, and waiting times for cyclic service and 2

classes per GOP. Jobs of each class arrive at multiples of 2N , with the first job of class 1 arriving at

time 0.

 The second method, which is shown below, is an analytical queuing approach based

on service times directly. Without loss of generality, assume that we have the waiting

time distribution for class 1 jobs, 1, ()kw n . The total delay of class 1 jobs,

1, 1, 1,k k kD S W  , follows the distribution:

 1, 1, 1,() () ()k k kd n w n s n  (65)

where  indicates convolution. Now, define 1,kD for class 1 to have the following

distribution:

1,

1, 1

()

() 1/(1)

0

k

k

d n

d n 

 



,

,

,

n N

n N

n N







 (66)

0 N 2N 3N 4N

1, (1)kS

2, (1)kW

2, (1)kS 1, (2)kS 2, (2)kS

1, (2)kW 1,((1) 0)kW 
2,((2) 0)kW 

1, (1)kV 2, (1)kV 1, (2)kV

Job 2 of
GOP 1

arrives

Job 1 of
GOP 2

arrives

Job 2 of
GOP 2

arrives

Job 1 of
GOP 1

arrives

 62

where  1 1,Pr kD N   . (67)

Intuitively, 1,kD is the delay of a class 1 job, conditioned on the total time being greater

than N , which is when job 2 arrives. Hence, this conditional delay also defines the

waiting time for the following class 2 job, i.e.

 2, 1,() ()k kw n d n N  (68)

 For all other classes 2,...,i I , define the following distributions in the same way:

,

,

()

() 1/(1)

0

i k

i k i

d n

d n 

 



,

,

,

n iN

n iN

n iN







 (69)

where  ,Pri i kD N   (70)

and , 1,() ()i k i kw n d n N  . (71)

The final result 1, ,() ()k I kw n d n N  defining a recursive relationship for 1, ()kw n . In fact,

the vacation time , ()i kv n can also be expressed by its transform:

1,

, (1)
, ,

()
()

() ()
i k

i k I N
i k i k

z
H z

z z G z








 (72)

where 1, ()i k z and , ()i k z are the z-transforms of 1, ()i kd n and , ()i kw n . Because we are

mainly interested in the probability that the waiting time exceeds some time t , we refer

to [35, 36] for the waiting time tail approximation given below:

 ,

,
Pr{ } exp

E
k

i k k
i k

t
W t

W



       

, (73)

where
,

1

[]I
i k

k
i

E S

N




  (74)

is the average load on the system.

 The waiting time tail approximation can be derived based on the approach shown in

Table 6, which iterates through equations (66) and (69) until the expected waiting time

converges. The distributions are truncated at a sample size maxN under which the

expected waiting time will be accurate. Because the waiting time tail distribution is

truncated by maxN , we use the approximation in (73) to estimate the waiting time tail

distribution. The complexity of the waiting time estimation is proportional to

maxI N N iter   , where I is again the total number of cyclic classes, and iter is the

number of iterations through the algorithm in Table 6.

 63

Table 6 Obtaining the waiting time distribution and probability of violating a delay deadline.

1. Initialize
(0)
1, 0kW  , 0iter  .

2. Do {

3. Calculate
()
2, ()iter
ks n ,

()
2, ()iter
ks n , …,

()
2, ()iter
ks n from (66) and (69), maxn N .

4. Set
() ()
, 1,() ()iter iter
i k i kw n s n  for 2,...,i I .

5. } while (
() (1)
, ,[] []iter iter
i k i kEW EW  );

6. Apply (75) to ()
,[]iter
i kEW to determine tolerable delay under error prob. i .

 The last step of the algorithm in Table 6 is used to estimate waiting time tail

distributions. However, the tail distribution of ,i kD is of greater importance to our

system, since the delay determines the probability that a hard deadline at time it T is

missed for a job arriving at time t . However, since the tail distribution for 1,i kW  has the

same shape as the tail distribution of ,i kD shifted by N in time (as can be shown from

the relationship in (71)), we can apply the waiting time tail approximation in (73) to

estimate the probability of violating delay deadline iT :

  
 , 1,

1,

()
Pr{ } Pr exp

E
k i

i k i i k i k
i k

T N
D T W T N

W





           
 (75)

3.5.2 Queuing-based DVS Algorithms

The processor captures its service time and waiting time distributions for different

classes of jobs at various power levels kP according to the algorithm described in section

III.3.5.1. The decoding system then produces a lookup table containing the net load k

and expected delay  ,i kE D for each class i . Using (75), the processor can quickly

estimate the probability of violating delay deadlines iT . Finally, the video application

sets upper bounds i for the probability of dropping class i jobs, and determines a

power schedule such that ,Pr{ }i k i iD T   . Note that i can be set to vary depending on

the distortion impact of the respective job class for a particular sequence. For example, if

an MPEG sequence has high motion, B-frames will have a larger overall quality impact

on the video, and hence the probability of missing its deadline i should be decreased.

 64

As mentioned in [64], for a fixed time  to complete c cycles, the optimal energy saving

schedule is to run the processor at a minimal constant speed, which is *
c

f


 . For

discrete frequency levels, *f can be achieved through timesharing between two

adjacent frequency levels. While the delay constraints do not allow the processor to

always run at the optimal average power level, the processor may usually run at a

constant power level, and occasionally increase to higher power levels when the queue

size (and aggregate delay) becomes large, such that jobs need to be processed quickly.

Hence we consider the following low complexity optimization problem for selecting

processor frequencies:

 We proposed two variations of an adaptive algorithm that performs power adaptation

to achieve energy savings while meeting deadlines with high probability. Based on

control parameter  , Algorithm 1 below adjusts its power such that the decoding

deadlines for all classes will be met with high probability. Hence, it solves (1) after

processing each job. Algorithm 2, on the other hand, adjusts the power based only on the

class about to be processed, such that that particular class i will meet its decoding

deadline with probability 1 i . Unlike existing algorithms, such as laEDF, where the

complexity grows linearly with the number of released jobs, both queuing-based

algorithms have significantly lower complexity, where Algorithm 1 has complexity

equal to the number of classes of jobs, while Algorithm 2 has constant complexity.

Optimization Problem 1: Minimize a fixed power level subject to a target miss rate.

,

min

. .Pr{ }

k
k

i k i i

P

s t D T  
 (76)

 65

Algorithm 1 Adjusting power for all classes based on service time overshoot or undershoot

1. Solve problem 2.

2. While jobs are available,

3. Set time t to 0 for each (soft) arrival point.
4. If job i finishes at time t   

5. Change delay bounds for all classes j to ,Pr{ }j k j jD T       , 0 1 

6. Solve problem 2 under new constraints.

7. end

8. end

Algorithm 2 Adjusting power per class based on service time overshoot or undershoot

1. Solve problem 2. Set *
1k kP P for job 1, where *kP is solution to problem 2.

2. While jobs are available,

3. Set time t to 0 for each (soft) arrival point.
4. If job i finishes at time t   

5. Change delay bound for class 1i  to 1, 1Pr{ }
ii k i iD T        , 0 1 

6. Find
1ikP 
 by solving problem 2 for class 1i  with only the 1i th

delay constraint. 7. end

8. end

Figure 21: Queuing model for Priority Scheduling based DVS.

Prioritized

Scheduling of

Jobs

Power

Scheduling

Model

parameters
modeled distr.

Decoder

(+ queue)

Delay Deadline
Violation Prob.

,k kP f

Offline

Training Stat. Distr.
Actual

Service Time

User-specified

Quality Level

Class i Quality

Contribution

Avg. Power Groups of

 Cycles (GOCs)

Frame Display

Network

Buffer

System Energy

Constraint

 66

Figure 22: (a) Job decomposition based on deadlines for 3 level MCTF. (b) Job decomposition based

on quality-aware priority classes.

3.6 Quality-aware Priority Scheduling-based DVS

In this section, we introduce the concept of a joint DVS and priority-based job

scheduling algorithm (Figure 21). By dropping less important jobs, we can gracefully

degrade the quality by operating at lower power levels. We will show examples of this

graceful degradation in our results section.

3.6.1 Incoming Traffic Model and Service Model

Unlike the deadline-driven decomposition of jobs, we now consider jobs that are

decomposed based on their contribution to quality. Figure 22 shows an example of how

jobs can be decomposed into wavelet frames. There are also many other levels of

decompositions, such as subbands, macroblocks, etc. In particular, the MCTF wavelet

coder has the property of sorting jobs into priority classes, where a job that contributes

more to quality belongs to a higher priority class.

 Consider again a buffer that releases jobs for decoding. By lightly varying the way

the individual job cycles are streamed to the decoder, we can derive a model where ED

3,0L

3,0H

2,1H

1,1H

(a)

2,1L ,
2,0L

1,1L ,
1,0L

0,1A ,
0,0A

1,2H

0,3A ,
0,2A

2,0H

1,3H

1,0H

1,3L , 1,2L

0,3A , 0,7A

Class 1

0,5A ,
0,4A

Class 2

Class 3

Class 4

3,0L

3,0H

2,1H

1,1H

(b)

2,1L ,
2,0L

1,1L ,
1,0L

0,1A ,
0,0A

1,2H 0,3A ,
0,2A

2,0H

1,3H

1,0H

1,3L , 1,2L

0,3A , 0,7A

Class 1

0,5A ,
0,4A

Class 2

Class 3

Class 4

Deadline-based Job Classes Quality-Aware Job Classes

 67

complexity arrives in groups of cycles (GOCs) of fixed size according to a mixed arrival

process. Because ED complexity is closely related to the arrival rate of bits, ED GOCs

can be seen as a complexity representation of packets. Below, based on some

simplifying assumptions, we will show that ED complexity can be modeled by GOCs

that arrive according to a Poisson arrival process plus a general arrival process.

Proposition 6: Let us assume:

 Jobs of class i arrive in periodic time intervals of size i (as in Section 3.3).

 The bit-rate ir per job of each class i is quasi-constant.

 The shifted and scaled Poisson distribution for ED complexity per frame holds.

 Different temporal level transform frames corresponding to the same job have

independent ED complexity statistics (as a result of motion compensation).

 The buffer can feed the decoder with bits that arrive according to an arbitrary

distribution, as long as the total number of bits that arrive within time i is ir .

Then ED complexity can be modeled by a Poisson arrival process plus a general arrival

process.

Proof: It is a well known fact that a Poisson arrival process with i.i.d. exponential interarrival

times () it
ia t e   can be decomposed into a doubly stochastic model based on a Poisson

distributed number of arrivals within a fixed time period  , and a uniform distribution of

arrivals within that period [71], i.e.

 

()
!

i in
i i

A A
e

N p n
n

   

 , 0n  (77)

 1, 2, ,
1

(, ,...,) ()
A A A A A A A
N N N N N N NU u u u f U


  ,,0 , 1,...,N ju j N   (78)

where  is the arrival rate of the process, N is the random number of arrivals within the

period, and NU is the uniform distributed vector over an AN -dimensional hypercube of

all combinations of possible arrival times. (Note that components of ANU do not

necessarily have to arrive in order.)

 Now, consider the case where ED complexity for a frame follows a Poisson

distribution with mean fr . The buffer, which can arbitrarily stream bits that it contains

for a given job, will stream in such a way that GOCs of size 1 (cycle) arrive at rate

 68

/fr i  uniformly distributed in time interval [0,]i . Hence, the ED complexity for the

frame follows a Poisson arrival process. Since wavelet transformed frames are often

independent, we may assume the ED GOCs associated with each frame or job to be

independent. The sum of independent Poisson arrival processes is another Poisson

arrival process, hence the ED complexity per each job, which may include entropy

decoding several frames, is a Poisson process. Denote the average ED complexity per

job of class i as i . Based on the above construction per frame, the buffer now streams

bits in a manner such that, based on the ED complexity associated with each bit, the ED

complexity is ―streamed‖ as a Poisson process in GOCs of size 1 (cycle) with arrival rate

/i i  with total job complexity:

 , , ()
!

in
i

i ED i ED
e

C p n
n

 

 , 0n  (79)

Now consider , ,
ˆ

i ED i i ED iC aC b  , where ,î EDC follows the distribution in (79). First,

,
ˆ
i i EDaC can be modeled as a Poisson process as above, but with GOCs of size ia .

Secondly, we can model the complexity ib as arriving across an independent complexity

stream, where exactly /i ib a GOCs of size ia arrive within time i . Hence, the total

arrival process is a mixture of Poisson and a general arrival process. ■

 For the remainder of this section, we simplify the model for ED complexity to be a

pure Poisson arrival process. We use 1 2, ,..., I   to denote the quantized ED arrival rate

for priority classes 1,...,I , and
1

I

i
i

 


  is the total job arrival rate.

3.6.2 Proposed DVS Service Policy and Model

Based on the decomposition of jobs into ED GOCs in section 3.6.1, we propose a DVS

system that uses priority scheduling to process the incoming GOCs. We model the

service of GOCs as a non-preemptive / /1M G priority queuing system. In other words,

whenever the system finishes servicing a GOC, it will then process the highest priority

GOC waiting in the queue at the time. However, while a GOC is being processed, a

GOC of higher priority can not interrupt the ongoing service (i.e. non-preemptive).

 69

Based on priority scheduling, the system will ensure that even if not all jobs can be

processed before the display deadline, the higher priority jobs will be processed first, so

that they are more likely to satisfy their deadline constraints. Effectively, a lower quality

video can be streamed by decoding (in time) only jobs in higher priority classes without

having to process jobs from every priority class. This creates a quality and energy

tradeoff, as we can lower the average processor power to create a video of lower quality.

To model the service rate per GOC, we divided the total complexity associated with the

decoding of each frame by the complexity of entropy decoding.

1 2 3 4
0

50

100

150
Average L4 complexity per bin

of tics

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

0 5 10 15 20
0

10

20

30
Average H1 Complexity per bin

of tics

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

0 5 10 15
0

10

20

30

40
Average H2 complexity per bin

of tics

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

0 5 10 15 20
0

20

40

60

80
Average H3 complexity per bin

of tics

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

Figure 23 Example of total complexity per arriving ED GOC for various frames in a 4 temporal

level MCTF GOP. The statistics are averaged over several sequences.

3.6.3 Delay and Idle Time Analysis

Let ,i kD be the delay of processing a GOC of class i , and define ,Pr{ }i k iD T to be the

probability that a GOC arriving at time t can not be processed before deadline it T .

Note that in reality, all GOCs of the same job have the same hard deadline regardless of

their arrival times t , so the delay bound iT would not be fixed for every GOC of a job.

However, considering that GOCs need to be processed in FIFO order to complete the

job, the deadlines for the first GOCs in the job may be set earlier to accommodate the

 70

processing time delay induced on later GOCs. For the purpose of analysis, we

approximate the delays tolerated by all GOCs within a class to be approximately equal.

 In order to determine the probability of violating the delay deadline for a non-

preemptive priority queuing system, we first define the load on the system induced by

priority class i with service time ,i kS as:

 , ,[]i k i i kE S  (80)

Let , ,
1

i

i k j k
j

 


  be the total load of traffic coming from priority classes 1 to i , and let

,i k be the average service rate for a class i job in processor operating mode k . The

average waiting time in the queue for priority class i GOCs can then be expressed as

[73]:

  
  

,

,1
,

1, ,
E

2 1 1

I
j k

j kj
i k

i k i k
W




 





 


 (81)

From the average waiting time, we can obtain an approximation for the probability that

the waiting time exceeds some time t . We use the waiting time tail approximation to

estimate the tail of the delay:

  
 , , ,

, ,
Pr{ } Pr exp

E []
k i

i k i i k i k i k
i k i k

T
D T W S T

W E S



           

 (82)

The fraction of idle time in an / /1M G queuing system is the time average probability

that the system is empty:

 0, 1k kp   (83)

3.6.4 Priority Scheduling Optimization Problems and Algorithms

In this section, we formulate and analyze a number of optimization problems based on

probabilistic delay constraints. We begin with a simple optimization problem, where a

processor continues running an idle processing thread even if there are no jobs in

system:

 71

where

 ,
1

Pr{ }
I

i
k i i k i

i

Q D t



   (85)

is the average quality of the decoded sequence at power level kP . Here,  is a vector

with components that are the fraction of time the processor is set to operate at power

level kP , and i is the quality slope parameter for priority i GOCs (i.e. the average

quality contributed to video by a priority i GOC.) as introduced in [66]. Note that i


 is

the fraction of GOCs of priority i received from the bitstream. Thus, the first constraint

requires that the average quality of the video is at least avgQ . This problem turns out to be

a linear programming problem, since kP and kQ are constants. We can thus solve this

via the simplex method. However, an even simpler closed-form solution exists if we

explicitly consider the properties of power with respect to quality.

Proposition 7: If quality is a concave increasing function of ED complexity, and there

are a finite number of power/frequency levels, the optimal solution to is to run the

processor always at a single power level, or to perform time sharing between two

adjacent power levels.

Proof: Let Q


 be a discrete random variable which takes on quality levels kQ with probability

k . Power is a convex function of frequency [64]. Likewise, complexity (and thus the average

processor frequency per unit time) is a convex function of quality, which has been shown

theoretically [25, 26] given a concave PSNR curve with respect to rate. Hence, the power is a

convex function of the required average quality. From [72], it is shown that for a convex quality

to power function ()P q , the distribution of Q


 with avgE Q Q   


 that minimizes the expected

Optimization Problem 2: Minimize the Average Active Power given an Average Video Quality

1(,...,)
1

, avg
1 1

1

min

. . Pr{ }

1

K

K

k k
k

K I
i

k i i k i
k i

K

k
k

P

s t D t Q

  









 

 



  





 



 (84)

 72

value of the function ()E P Q 
 


 is to choose the avgQ Q


with probability 1 if

   avg 1,..., KP Q P P , or else:

*

* 1

k

k

Q
Q

Q 

 

 . .

. .

w p

w p

avg *

* *1

* avg1

* *1

k

k k

k

k k

Q Q

Q Q

Q Q

Q Q















 (86)

where * *avg 1k kQ Q Q   . Q


 then minimizes ()E P Q 
 


, which gives us the solutions k

to . ■

 If we now consider the case where the processor may shut down during idle times

and expend essentially zero energy, we have a quality-constrained, energy-minimizing

problem:

This problem is the same as (84) but under a different objective function which is not

necessarily convex. Since the optimal mode of operation should keep the system

nonempty with high probability, such that the processor power should run at a nearly

constant power level [64], we propose a simplified problem that can be solved with

complexity (log)O I K and can be used by a DVS algorithm to reactively adapt the

power level based on a minimum desired average quality:

 Based on Problem 4, we propose several simple priority scheduling and power

scheduling algorithms for DVS. The first algorithm chooses a constant power based on

the arrival rate and service time statistics by solving with various levels of avgQ . The

Optimization Problem 3: Minimize the Average Power given an Average Video Quality

1

, avg
1 1

1

min

. . Pr{ }

1

K

k k k
k

K I
i

k i i k i
k i

K

k
k

P

s t D t Q

 










 



  





 



 (87)

Problem 4: Minimize a Fixed Power given an Average Quality

avg

min

. .

k

k

P

s tQ Q
 (88)

 73

second algorithm is the same as the first, but periodically purges the queue of expired

jobs, thereby reducing the average waiting time for different classes. Finally, we present

a combined quality-aware priority and look-ahead algorithm (Algorithm 3), which

temporarily increases the power whenever important jobs are about to expire. Whenever

a job in a class i is within  seconds of being expired, the system will increase the

processor power according to the job‘s priority by some ()i , thereby increasing the

chance of that job being decoded in time.

Algorithm 3 Priority scheduling with last second power increase

1. Solve problem 4 for avgQ to obtain initP .

2. While jobs are available,

3. For the highest priority class i ,

 s.t. deadline of a job in class i expires in less than  time

4. Set ()initP P i   .

5. end

6. Process highest priority job in FIFO order. Record service time s
7. Subtract deadline of all other jobs by s .
8. If deadline of a job j is less than 0, purge job j .

9. end

3.7 Experimentation and Results

3.7.1 Experimental Setup

 For our experiments, we adopted the power and frequency model for the 70nm

technique node in [78][79]. We considered discrete voltage levels Vdd between 0.6V and

1.0V with voltage step sizes of 0.1V, and present the clock frequencies and power for

different Vdd levels in table 6.1.

 74

Table 6.1. Frequency and power for different Vdd levels

Vdd (V) 0.6 0.7 0.8 0.9 1.0

Frequency (GHz) 0.79 1.27 1.81 2.42 3.09

Dynamic Power (10
-

5
W)

0.12 0.27 0.50 0.84 1.33

Leakage Power (10
-

5
W)

0.21 0.29 0.40 0.54 0.72

Total Power (10
-5

W) 0.33 0.56 0.90 1.38 2.05

 For our application scenario, we combined 11 video sequences of 16 GOPs each (e.g.

Coastguard, Foreman, Harbor, Mobile, Silent, Stefan, and several others) into a long

sequence, which was then decoded. We set the hard deadlines for Algorithm 1 and

Algorithm 2 to be 8 frames after the (soft) periodic arrivals, and we collected workload

traces for 4 temporal level MCTF sequences [3]. We measured the complexity for each

decoding job in terms of clock cycles and use the measurement for offline scheduling.

We also tuned the stochastic model using the measurement for the proposed online

algorithm SLP/r.

 Furthermore, we generated more data for simulation based on Monte Carlo method to

present a more general simulation. The experiment observation was almost the same as

the result from real data. Hence, we only present the result from the real data here.

 To simulate a real-time video decoding environment with sequences that have a frame

rate of 30Hz, we fix the hard display deadlines. We assume that the (soft) frame arrivals

from the network follow a normal distribution as in [83] to simulate a wireless network,

and we applied the same generated arrival times of jobs for all algorithms in our

experiments. For all algorithms, we calculate energy with the same power model

considering leakage power. Since the absolute value of energy is not important, we

report normalized energy with respect to energy consumed by the optimal solution.

3.7.2 Optimality Study

 We chose to compare the performances of the rLP, the queuing-based algorithm 2,

and laEDF DVS [41]. We selected queuing-algorithm 2 for comparison as it outperforms

 75

algorithm 1 experimentally. To be fair, the laEDF DVS also considers separate WCET

estimates for different classes of jobs, and hence it is not entirely application-agnostic.

We then compare the performances of different priority scheduling algorithms and

discuss the quality-energy adaptation points achieved by Algorithm 3. We also revised

the power models of laEDF [41] to consider leakage power and sleep modes for a fair

comparison.

 The parameters of each algorithm were tuned to obtain different trade-off points for

energy consumption and job miss rate. For the queuing based algorithm, we tuned the

delay sensitivity parameter ε, and for laEDF, we used different WCETs. The result is

shown in Figure 24. The energy achieved by the optimal offline LP solution (e.g. the

lower bound) is normalized to 1. Note that based on our formulation, the optimal

solution always has zero miss rate. The result shows that for a zero miss rate, laEDF

consumes approximately 15% more than the optimal and queuing based algorithm 2

consumes approximately 4% more than optimal.

Figure 24 Energy and miss rate

3.7.3 Quality-aware Priority Scheduling DVS Implementation and Results

For the priority scheduling approach, we decomposed jobs of the MCTF GOP structure

in the same way shown in Figure 20. While there are other ways to prioritize jobs based

 76

on different classes for single frames, for resolution levels within frames, or even for

subbands within resolution levels in order to achieve results with finer granularity, the

priority classification method depicted in Figure 20 was sufficient to highlight the

performance of our priority-driven DVS implementation.

 Based on various average power levels for the processor, we compared the

probability of dropping jobs of different classes based on the strict priority scheduling

policy, the periodic queue purging priority policy, and our DVS strategy in Algorithm 3.

Table 7 includes the results from the combined sequence encoded by 4 temporal level

MCTF based on the 5 different operating frequencies 1 5,...,f f . For Algorithm 3, we used

2 1(1) , (2)k kf f     . While Algorithm 3 may expend slightly more power than pure

priority queuing due to speeding up when jobs are about to expire, it performs better

than pure priority queuing due to reactively rushing jobs through at the last minute. In

the case of job classes being frames or groups of frames, the effect of dropping different

priority classes is the same as reducing the frame rate of the corresponding GOP.

Finally, Table 8 shows how different power levels correspond to different frame rates,

energies, and quality levels. Notice that as long as the frame rate is sufficiently high (e.g.

10fps), there is only a loss in quality of less than 1.5 dB when the power is scaled down

to 10%! Likewise, when the energy is scaled down to 25%, the quality degradation is

less than 1.0 dB, which demonstrates that Algorithm 3 achieves high-scalability in terms

of quality and power tradeoffs.

 77

Table 7 Comparisons of performances of various quality-aware priority scheduling algorithms in

terms of the percentage of deadlines met for various priority classes for 4 temporal level

decomposition (0f indicates the minimum processor power.).

Jobs decoded in time (%) Frequency Level 0f 1f 03f 04f 05f

Priority Scheduling class 1 99.72 100 100 100 100
class 2 67.33 99.91 100 100 100
class 3 0 98.48 99.91 100 100
class 4 0 0 0 99.05 99.95
class 5 0 0 0 0 0

Priority Scheduling with Queue

Purging

class 1 99.62 100 100 100 100
class 2 68.18 99.91 100 100 100
class 3 13.54 99.72 100 100 100
class 4 0 14.32 57.50 99.67 99.95
class 5 0 0 6.46 26.95 41.28

Priority Scheduling with Last

Second Power Increase for 3

Priority Classes

class 1 99.91 100 100 100 100
class 2 91.29 99.91 100 100 100
class 3 31.91 99.43 100 100 100
class 4 0 14.02 58.43 99.67 99.95
class 5 0 0 6.63 26.95 41.28

Table 8 Comparisons of average energy consumption and quality levels for algorithm 2 and quality-

energy adaptation points of algorithm 3 for the Coastguard and Stefan sequences decoded a bit rate

768kbps. The average frame rates (frames per second) over all GOPs are given for different

adaptation points for algorithm 3.

 Frame rate (fps): Energy consumed: PSNR (dB):

Algorithm Coastguard Stefan Coastguard Stefan Coastguard Stefan

2 30.00 30.00 2.63E 2.41E 33.24 27.35

3 26.48 23.67 2.15E 2.15E 32.98 27.01

3 20.04 18.05 1.26E 1.25E 32.51 26.70

3 16.17 15.23 0.65E 0.65E 32.23 26.48

3 14.53 10.08 0.28E 0.29E 32.05 25.94

3 8.09 7.27 0.09E 0.09E 30.68 25.55

3 5.04 3.63 0.02E 0.03E 29.44 24.62

3.8 Conclusions

Current multimedia compression algorithms and standards provide only very coarse

levels of complexity, thereby neglecting the vast resource diversity and heterogeneity of

state-of-the-art systems. Also, current systems lack good complexity models for resource

management, and hence statistics must be collected and updated frequently online in

order to reactively adapt to time-varying source and coding structures. This chapter

provides a (fine) granular complexity model that enables systems to plan ahead and

optimize their scheduling algorithms. We demonstrate that significant energy savings

 78

can be achieved through application-specific stochastic modeling of complexity by

proposing two DVS approaches that achieve near optimal performance for video

decoding applications. Finally, we proposed an adaptive architecture combining both

power and job scheduling to obtain energy-quality tradeoffs. Our results indicated that

the priority-scheduling based DVS algorithms can save a significant amount of energy

with only a small reduction to the quality level.

 79

CHAPTER 4

Informationally-Decentralized System Resource

Management for Multiple Multimedia Tasks

4.1 Introduction

With the advent of web TV, YouTube, peer-to-peer multimedia streaming, video

conferencing, etc., multiple autonomous multimedia processing, compression,

transcoding, and streaming tasks need to be executed simultaneously on the same

system. Because multimedia systems must readily cope with time-varying resource

availabilities and demands, an automated resource management solution for gathering

on-the-fly application requirements, and reconfiguring the system in a timely manner, is

highly desirable [85][91]. Moreover, multimedia applications are highly resource-

aware, such that they can achieve different video/audio quality levels given different

amounts of system resources (e.g. processing power, memory, battery power,

bandwidth, etc.) [99][11]. Hence, the principles and methodology for determining how

to optimally divide limited system resources among multiple multimedia applications

must also be addressed [87].

 To this extent, various analytical solutions have been proposed for allocating limited

system resources to multiple resource-aware applications [87]-[91]. In these works, the

quality of a resource allocation scheme is assessed by one of several social welfare

functions, often characterized by a weighted sum or a weighted product of individual

application utilities (or multimedia qualities) [86] [93]. In [87]-[89], centralized resource

allocation solutions are provided for maximizing the social welfare of multiple

applications that have multiple quality-of-service dimensions (e.g. error rate, delay, etc.),

and consume multiple types of system resources. In [90], a centralized solution is

 80

provided for maximizing the social welfare of multiple applications running on a

multiprocessor system. Note that centralized solutions implicitly require a resource

manager (RM) to gather application utility-resource functions and solve a centralized

optimization problem. To reduce the informational requirement at the RM, a

decentralized, auction-based middleware solution called CARISMA is proposed for

maximizing social welfare [91]. By maintaining a valid representation of the execution

context (i.e. the types of resources required by the applications), the CARISMA

middleware provides applications with the necessary information to bid on various

system policies (or configurations). Hence, the middleware acts as an RM that simply

collects bids from each application and chooses the policy that maximizes the sum of the

bids.

 However, the above approaches do not perform efficiently for multimedia

applications due to several reasons. First, multimedia applications are diverse, and

include algorithms such as coding, error concealment, resizing, deinterlacing,

deblocking, and denoising, which can function at a fine-granular set of operating points

based on various modes and parameters [99] [101] [102]. Hence, the RM must be either

complex enough to map out and optimize over a large number of system configurations,

or intelligent enough to choose only a subset of potentially optimal candidate policies

based explicitly on the application‘s algorithm. Unfortunately, the computational

overhead associated with enumerating possibly hundreds or thousands of policies, and

choosing the optimal policy (through centralized optimization or decentralized bidding),

is unsuitable for multimedia applications with highly dynamic utility functions, since the

system would need to be reconfigured frequently during runtime [11]. On the other

hand, designing an intelligent RM that can provide candidate policies based on

multimedia algorithms is an even more daunting task, since the RM needs to be updated

every time a new algorithm is ported to the system. While the complexity of determining

candidate policies may not be an issue for a system that supports only 1-2 types of

multimedia algorithms, systems nowadays need to support many different types of

 81

algorithms (e.g. see [92] for a list of common video codecs), and hence the size of the

RM would need to be very large.

 Secondly, and perhaps more importantly, multimedia applications that share a

system are often developed by many different companies [92]. In many cases, these

competing companies may have incentives to develop products that can exploit

information from other applications in order to ―selfishly‖ improve their own

performances at the cost of social welfare. Hence, multimedia applications often require

autonomy over the distribution of private information, such as details about their coding

algorithms and utilities, in order to protect themselves from malicious applications (and

a potentially exploitative system). Unfortunately, the algorithms proposed in [87]-[90]

require multimedia applications to submit their utility-resource functions to the RM.

Likewise, CARISMA‘s auction-based protocol requires each application to bid

according to its utility for each candidate policy, such that each application would be

required to report its utility to the middleware for possibly many different system

configurations [91]. In summary, prior works do not offer informationally-decentralized

solutions that can protect the private information of autonomous multimedia

applications.

 In this chapter, we present a low-complexity, resource management solution for

allocating resources to multiple autonomous multimedia applications, without requiring

the applications to share private information about their utilities. By employing a

continuous representation of system resources,

we introduce a message exchange

protocol (MEP) that enables each application to perform its own reconfiguration and

utility optimization in a decentralized manner,
2
 while using a RM to communicate

system resource demands and costs to each application. Importantly, our optimization

framework allows the decision making process for resource allocation to be

decentralized, where the RM updates costs solely based on resource availability and

demand, while applications update resources requirements based on their private

2 Note that many multimedia applications already have features built in to maximize their qualities subject to resource

constraints [95]. Thus, our decentralized resource management solution requires little additional complexity provided

that individual application utilities are optimized by the applications themselves.

 82

utilities. Indeed, this design also allows the computational overhead of the algorithm to

be distributed across possibly remote (networked) applications, which can significantly

reduce the system‘s computational overhead. (For example, remote video encoders can

make coding decisions for the corresponding decoders on the system in order to satisfy

the system‘s computational resource bounds [11].) Our main contributions are

summarized below:

 We introduce a formal, analytical framework for the MEP. We show that repeatedly

exchanging messages between the RM and each application can effect optimal

resource allocations in a decentralized manner without requiring applications to

disclose private information about their utilities.

 We show that the MEP is highly versatile and can be used to implement

informationally-decentralized algorithms that achieve a variety of system objectives,

such as maximizing the social welfare of applications, minimizing system energy

consumption, performing workload balancing, and performing joint power scheduling

for interdependent multimedia jobs.

 Based on a derived stochastic model for dynamic video quality functions, we provide

insight into the rate of adaptation for MEP-based decentralized algorithms in

dynamic environments. We also demonstrate how temporal correlations in the

quality functions of multimedia applications can be exploited by our algorithms to

reduce the complexity of resource allocation. We show experimentally that our

proposed algorithms converge quickly to their respective optimal solutions and are

therefore ideal for resource adaptation in dynamic environments.

The organization of this chapter is as follows: Section 4.2 provides an overview of the

system, and introduces the MEP. In Section 4.3, we provide MEP-based algorithms for

jointly maximizing social welfare and minimizing energy consumption. Section 4.4

provides MEP-based algorithms for achieving several other miscellaneous objectives.

Section 4.5 analyzes how parameters in the MEP can be tuned to adapt quickly to time-

varying, but temporally-correlated video quality functions. Section 4.6 provides

 83

simulations that compare the performances of the algorithms, and Section 4.7 concludes

the chapter.

4.2 The Message Exchange Protocol

In this section, we introduce the analytical framework for the MEP that is used to

communicate information between applications and the system. An example of the MEP

for maximizing social welfare on a single processor system is then provided as an

illustration.

Figure 25 An overview of the system stack, with the resource manager and resource model.

4.2.1 Formal Representation of the Message Exchange Protocol

The focus of this chapter is the design of a resource management solution that can

provide optimal resource allocation schemes for multiple multimedia applications in an

informationally-decentralized environment. (See Figure 25 for a high-level view of the

architecture.). The OS kernel, which can accurately monitor system resources, does not

have knowledge of each application‘s quality-resource function, and hence cannot

schedule resources to maximize social welfare-related metrics (e.g. sum of application

utilities). On the other hand, the applications are not aware of system configurations and

resource costs/constraints, or of other applications that may be sharing the system. The

 84

problem is further exacerbated by the autonomous applications which are, in general,

unwilling to communicate private information about their utilities to the system, or to

other competing applications.

 To bridge the informational gap between the OS and applications while meeting

information privacy requirements, we introduce a message exchange protocol that makes

use of a system resource manager (RM) to pass messages between applications and the

OS. While the RM does not have knowledge of application utilities, it makes use of a

continuous model of system resources to intelligently effect various resource allocation

solutions by charging applications various costs for consuming system resources. The

RM generates costs in the form of tax functions, which capture the congestion levels or

consumption rates of various utilized system resources (e.g. CPU utilization,

communications bandwidth, energy availability, etc.). Based on the tax functions

provided by the RM, multimedia applications can factor the costs into their utilities,

reconfigure their algorithms, and update their resource requirements, which effectively

leads to a new system configuration. The message exchange protocol (MEP) is presented

formally as follows:

Stage 1: Initialization.

The RM provides each task i ,  1,2,...,i I , with a parametrized tax function

 ,i i it x m , where ix is task i ‘s resource demand, and im is a parameter (or message)

that is transmitted and updated by the RM.3 The message can be used to communicate

the system resource condition, such as CPU utilization, system energy consumption,

bandwidth availability, etc. Upon initialization, the RM also transmits an initial message

 0
im .

In general, it makes sense to define tax functions with  0, 0i it m  . In other words, a

task does not have to pay if it chooses not to utilize system resources.

Stage 2: Message Exchange.

During the message exchange phase, the RM and the tasks will iteratively perform

optimizations and message exchanges (as shown below) until the resource allocation

3 The tax charged to each task may be in the form of real money, or of tokens for future system usage.

 85

scheme converges.

Tasks to RM: During iteration n , each task i solves the following local optimization

problem:

      1argmax () , nn
i i i i

x
x Q x t x m 

  , (89)

where the net utility function of task i is the task quality function ()iQ x minus the tax

  1, n
i it x m 

 that the system charges to the task. After computing its new resource

demand  n
ix , it submits  n

ix to the RM.

RM to Tasks: Based on the resource demands from all tasks, the RM relays messages

      ,n n n
i i im f   x back to each task i , where  n

ix is a vector of the resource demands

from all other tasks during iteration n ,  n is a step size parameter that affects the value

of the message at every iteration, and if is a function that is designed in a way to provide

sufficient information to each task while minimizing the amount of information

exchanged (i.e. the RM may not need to transmit the entire demand vector  n
ix and

parameter  n to each task i). Minimizing the message size can be beneficial both in

terms of reducing the informational overhead, as well as better protecting information

about individual applications‘ resource demands. The messages  n
im will be discussed

in more detail in Section 4.3.

Stage 3: Task Resource Allocation.

For static environments, convergence of the MEP to an optimal resource allocation

solution  1 ,..., Ix x  x is highly desirable. Formally, convergence can be defined as

follows: For any 0  , there exists an integer N such that the resource allocation vector

at any iteration n N , given by  nx , satisfies the property  

2
n   x x [100]. In

practice, an approximate convergence point can be chosen for any given  by

terminating the algorithm when the change in the resource demand vector is less than  ,

i.e.    1
2

n n  x x . After terminating the MEP, each task i is allocated  n
ix

resources.

 For dynamic environments on the other hand, a highly desired objective is minimizing

the adaptation time. The adaptation time can be defined as the number of iterations for

 86

the algorithm to provide a solution within  of the optimal resource allocation, given

that the application utility functions are time-varying. Importantly, unlike the

convergence time in a static environment, the algorithm must constantly adapt to

different application utility functions over time. However, the RM can also take

advantage of temporal correlations in the utility functions to reduce the adaptation time

(discussed in more detail in Section 4.5).

 We note that in general, MEP-based algorithms will require multiple iterations to

converge due to a lack of centralized utility information. This is unlike the auction-based

protocol in CARISMA [91], where the RM collects application utilities as sealed bids,

and then chooses the optimal policy in a single iteration. However, because multimedia

quality-resource functions are often concave [99], the MEP often requires each

multimedia application to solve only a low-complexity, convex optimization problem

during each iteration [100]. Hence, as long as only a few iterations are required for

convergence, the algorithm has very low complexity compared to bidding on hundreds

or thousands of policies.

4.2.2 An Illustrative Example of MEP Implementation: The Social Welfare

Maximizing Algorithm

To illustrate the MEP protocol, consider the simple problem of social welfare

maximization for multiple video applications on a single processor system, subject to

CPU utilization constraints. For simplicity, we consider a static environment where

application utility functions are fixed (Dynamic functions will be explored in Section

4.5). We express the social welfare function as a weighted product of the video

distortions  i id x (or errors) achieved under allocated computational resources ix for

each task i [87] [88]:

 1

1
()

iI w

i ii

U
d x

    x , (90)

or a weighted sum form of the dB PSNR qualities  i iQ x [91] [93] [94]:

  
1

()
I

i i i
i

U wQ x


 x , (91)

 87

where iw are weights (priorities) specifying the importance of each task. For illustration

purposes, we set 1iw  (equal priorities), such that the social welfare optimization

problem is:

 
1

1

max

s.t.

0,

I

i i
i

I

i
i

i

Q x

x R

x i I







  



 , (92)

where R indicates the total computational resources available (i.e. the schedulability

constraint). The social welfare-maximizing (SWM) algorithm is given as follows:

Stage 1: Initialization.

Each task i is provided a linear tax function  ,i i i i i it x m m x px   , where p is a

global cost per unit resource (e.g. cost per CPU cycle) charged to each task. To initialize

the algorithm, the RM determines an initial cost    0 0
im p  for each task.

Stage 2: Message Exchange.

Tasks to RM: During each iteration n , each task  1,2,...,i I calculates its new

resource demand  n
ix and submits it to the RM. The calculation is based on:

     1

0
argmax ()n n

i i
x

x Q x p x


  . (93)

where  1np  is the cost determined by the RM at iteration 1n  .

RM to Tasks: After receiving messages from all tasks, the RM updates the cost  np by:

             1

1

1 / ,
I

n n n n n n
i

i

p p x R   




                     
 x , (94)

where  n is the step size parameter that affects the change in the cost at each iteration,

and           1
, max 0, /

In n n n
ii
x R   

 x is a subgradient metric to force the cost to

be non-zero if the cost is initialized at zero, and resource demands are infeasible [104].

The RM then submits the message    n n
im p  back to each task  1,...,i I .

 One way to understand this algorithm is that if the cost  np is too low, each task will

demand too much computational resource and overutilize the system. If the cost is too

high, the tasks will not demand enough resources to fully utilize the system. Hence,

 88

using (94), the cost is increased if the excess resource demand  

1

I
n
i

i

x R


 is positive (i.e.

system is overutilized), and decreased when the excess resource demand is negative (i.e.

system is underutilized).

Stage 3: Allocation Stage.

After the messages have been exchanged repeatedly, and the resource demands converge

to a feasible vector x , each task i is then allocated resource quantity ix
 . Similar

problems in distributed algorithm design have shown that convergence can be

guaranteed if the value of  n is picked at every stage of the process from an increasing

sequence, as long as the sum of the sequence generated by  1/ n is infinite (e.g.

 n n ) [103] [104].

4.3 MEP-based Algorithms for Energy Minimization

4.3.1 An Energy-Minimizing Solution for an Always-Active System

To demonstrate how the MEP can be applied for energy minimization, in this section we

propose a MEP-based algorithm to simultaneously maximize the social welfare of

applications while minimizing energy consumption for dynamic voltage scalable (DVS)

systems. A DVS-enabled processor can change its operating frequency by adjusting its

voltage level, which affects its energy consumption rate. The active energy consumed by

a DVS-enabled processor can be modeled as a convex increasing function of the

processor workload [40][43][64]. Since modeling system behavior is not the focus of

this chapter, we will forego energy consumption and dissipation details that can vary

between different single- and multi-core architectures, and model the total energy

consumption as a convex function of the total workload across the system.
4
 The convex,

multi-objective optimization problem can be given by:

4 We note that this is an incomplete model, since the energy function may not be purely convex, or purely a function

of the total workload across multiple cores. Future work can explicitly address overheads associated with processor-

sharing and memory-access.

 89

Social Welfare-Maximizing Energy-Minimizing (SWMEM) Optimization Problem:

  act

tot
1 1

max

s.t. 0

i

I I

i i i
x

i i

i

Q x E x

x


 

      


  , (95)

where ix denotes the computational resources allocated to task i ,  act
totE R is the

minimum active energy of a multiprocessor system given the total computational

resources allocated R , and 0  is a weighting factor that determines the relative

importance of system energy to social welfare utility. Note that the passive energy is

assumed to be constant and therefore not considered in the equation. However, the

passive energy becomes important for multiprocessor systems where each of the

multiple processing elements (PEs) can enter sleep mode, as discussed in the next

subsection.

 The MEP tax function that achieves the optimal solution to (95) is:

Excess Energy Minimizing (EEM) Tax Function:

      act act
tot toti i i i it x E x d E d    , (96)

where ix is task i ‘s total computational resource demand, and id is task i ‘s ―perceived‖

total computational resource demand from all other tasks (which will be discussed later).

The EEM tax function has the following interpretation: the system charges each task the

amount of energy the system consumes when the task runs on the system, minus the

amount of energy the system consumes if the task does not run on the system. Note that

the second term in the tax function,  act
tot iE d , does not depend on ix , but is there to

ensure that each task i is not taxed if it does not comsume system resources, i.e.

 0, 0i it m  .

 As in the SWM algorithm, the RM can introduce a step size  n to ensure

convergence of the EEM algorithm. In this case, assuming that  1n
ix

 is the

computational demand from each task i during the previous iteration, and  n
ix the

demand during the current iteration, the RM submits the following message to task i to

update the tax function:

       

    1 11n nn n
i i ll n ll i l i
d m x x x


 

  
     , (97)

 90

such that the "change in demand" seen by each task is scaled down by  n . The step size

parameter  n can be chosen from an increasing sequence to guarantee convergence.

We omit a rigorous proof of convergence here, as a similar proof can be found in [93],

but we will prove that for strictly concave task quality functions (in terms of ix) and

convex energy functions, the EEM tax function generates an optimal solution for the

SWMEM objective upon convergence. This is an important result for multimedia

applications, where the quality-complexity functions are concave [99]. The convergence

time will be further analyzed in the results section (Section 4.6).

Proposition 8: For strictly concave quality functions and convex energy functions, the

EEM tax function generates an optimal solution to the SWMEM upon convergence.

Proof: See Appendix A. We note that the proof provides us with an additional guideline

for designing tax functions that achieve globally optimal solutions, i.e. tax functions

must be designed such that at equilibrium, the Karush-Kuhn-Tucker (KKT) conditions

are uniquely and simultaneously met for each task‘s local optimization problem as well

as the system‘s global optimization problem. ■

4.3.2 Energy-constrained SWM for Multi-processor Systems with Sleep Modes

In this section, we consider a social welfare-maximizing solution for a multiprocessor

system with a fixed total energy constraint. The PEs are DVS-enabled and can switch

between active and sleep modes. We assume that a PE can go to sleep during a control

interval of length T and consume negligible energy if it is not assigned any jobs to

process. However, a PE cannot be both active and sleeping within the same control

interval. For an active, DVS-enabled PE j , it is shown that, given a total computation

requirement (e.g. cycles) jr during an interval of length T , the PE should run at a

constant frequency /j jf r T throughout the interval in order to minimize energy

consumption [64]. Thus, the sleep mode-enabled energy function for each PE j can be

given by:

 91

   pass act

0

j j j
j jj

E r r
TP TP

T


        

, 0

, 0

j

j

r

r




. (98)

where the passive power for PE j , pass
jP , is constant, and the active power  act

j jP f is a

convex function of the operating frequency jf [40][43] .
5

 Note that the energy function for each PE is no longer convex due to the

discontinuity at 0jr  in (98). However, because the function is piecewise convex, we

can still identify all the local minima in the multiprocessor energy function, and search

through them in a combinatorial fashion to find the globally optimal point. Prior to

running the SWM, we determine, for a given energy constraint, the subset of PEs to turn

on in order to maximize the available computational resources. The optimal

configuration is the one with the loosest computational resource constraint. The

algorithm is summarized in Table 9.

4.4 MEP-based Algorithms for Miscellaneous System Objectives

4.4.1 Assigning tasks to PEs using tax functions

A practical concern for multiprocessor systems is how to assign tasks to different PEs in

order to minimize energy consumption. Many multi-core systems provide software

programmers with the flexibility to choose system configurations that can better exploit

thread-level parallelisms in their applications [84] [85]. While this can improve the

performance of individual parallelizable applications when resource availability is high,

arbitrary resource usage can hurt the overall performance of an energy-constrained

system, since many applications might compete over the same set of over-utilized PEs.

 One possible solution is to remove this programming flexibility and allow the RM to

centrally schedule applications across the PEs. However, we propose an alternative idea

which keeps the flexible programming feature, but introduces tax functions to compel

applications to run on PEs that are either underutilized, or have lower energy

5 Note that when there are finitely many voltage levels for a PE, the power as a function of CPU requirements is

piecewise continuous and increasing. Since energy consumption is the integral of power with respect to time, it

follows that energy is a piece-wise linear (and convex) function due to the power being a non-decreasing function.

 92

consumption rates. We note that determining this optimal assignment of PEs is beyond

the scope of this thesis. The main purpose of this section is to provide an alternative,

practical method for the RM to assign applications to PEs, given that an efficient

assignment has already been computed.

 To provide an illustration of our algorithm, we construct an example tax function

that compels individual tasks to run on individually assigned PEs. If a task is assigned to

a particular PE, it is taxed the amount of energy consumed as if no other tasks were

running on the PE. However, if a task is not assigned to a particular PE, it must pay a

penalty equal to the total energy increase it causes to all other tasks sharing that PE.

Without loss of generality, we assign task i to a PE j i , where we have assumed that

I J , such that every task has a uniquely assigned PE. If task i makes resource

demands across J PEs given by  ,1 ,2 ,, ,...,i i i i Jr r rr , its quality is modeled by a concave

increasing function  ,1

I
i i jj
Q r

 . Using an appropriate step size  n , the RM sends the

following messages to each task i during each iteration n :

   

    

    

,1 ,2 , 1 , 1 ,

1 1
. ,. ,

, ,..., , ,..., ,

1
where .

n
i i i i i i i i J

n nn
i j l jl j n l jl i l i

m d d d d d

d r r r


  

 
 



   
 (99)

where  

,
n
i jr is task i ‘s resource demand on processor j during iteration n . The

application then maximizes its utility based on the following tax function:

The PE Assigning Tax Function (PA):

        PA act act act

, , , ,, n
i i i i i i i j i j i j j i j

j i j i

t m E r E r d E d
 

    r . (100)

Here, task i ‘s perceived total resource demand on PE j by all other tasks is given by

,i jd . Note that similar to the EEM tax function, the perceived change in demand is scaled

by the step size  1/ n .

 The PA algorithm satisfies the condition where a task does not have to pay taxes for

any processor that it does not use. It can also be shown that the decentralized PA

algorithm often converges to a solution where a task will never run on another task‘s

assigned processor, unless the derived benefit is very large. (The proof is similar to

 93

Appendix A and is therefore omitted.) Note that while we have constructed a tax

function to assign a single processor to each task in this subsection, a similar tax

function exists for assigning multiple processors to each possibly multi-threaded task.

This can be identically achieved by penalizing a task less for a set of dedicated

processors.

4.4.2 Power Scheduling for Interdependent Multimedia Jobs

In this subsection, we propose a power scheduling solution for maximizing the social

welfare of multiple applications with interdependent jobs. For example, in MPEG, if an

I-frame is decoded at a lower resolution using less resources, the following P-frames and

B-frames will also be decoded under extra distortion regardless of the amount of

resources allocated to them, since they depend on the distorted I-frame to reproduce

their respective video frames. Hence, proper power scheduling is an important issue for

optimizing the performance of real-time multimedia systems where jobs do not only

have stringent delay deadlines, but the contribution of jobs to the overall quality may be

highly interdependent.

 We formulate the scheduling problem as follows: Define a super-interval ST as

consisting of SN time intervals of size T , where T is the time between successive video

frames, and SN is the size of an interdependent group of frames/pictures (GOP). For the

thm time interval in super-interval ST , a corresponding quantity of computational

resources ,i mx is allocated to task i . The resulting quality function with SN time intervals

per super-interval then takes on the form:

    ,1 ,2 ,, ,...,
Si i i i i i NQ Q x x xx , (101)

where  T,1 ,2 ,, ,...,
Si i i i Nx x xx . For simplicity, we allow only the time interval

  1 ,m T mT in the super-interval for decoding the thm job in the GOP.

 The system objective is then to simultaneously maximize the sum of task qualities

while saving energy by jointly allocating resource shares to each task, and adjusting the

operating level of the DVS-enabled processor for each time slot. The optimization

function is as follows:

 94

Joint SWMEM and Scheduling Optimization Problem (SWMEM-S):

    act

tot ,
1 1 1 1

max , max

s.t.

S

i i

I I N I

i i i i i m
i i m i

i

U Q E x 
   

       


   
x x

x x

x 0

, (102)

 Since SWMEM-S is simply the multidimensional version of the SWMEM, by a

proof similar to Proposition 8, we can show that the MEP tax function which achieves

this global objective function is the corresponding multidimensional version of the

EEM:

Joint EEM and Scheduling Tax Function (EEM-S):

       EEM-S
, , , , ,

1

,
SN

i i m i m i m i m i m
m

t x d E x d E d  



   , (103)

where           1 1
, ,, ,1/n nn n
i m i mi m i ml i l i
d x x x 

 
    is computed by the RM from

the resource demands  

,
n
i mx for each interval m during algorithm iteration n .

4.4.3 Summary of MEP Algorithm Design Requirements

The examples in Sections 4.4 and 4.5 were provided to illustrate a formal method for

decentralized algorithm design via tax functions. To clarify our approach, three main

requirements are summarized below.

 First, an analytical optimization problem must be defined. What is the social welfare

function that we are trying to maximize? What are the system resources (energy,

workload on specific PEs, etc.) that we are trying to conserve? What are the resource

constraints?

 Secondly, to guarantee convergence in static environments, a proper step size

sequence  n must be chosen [103]. As we will discuss in the next section, different

choices of  n can also affect the adaptation time for our algorithms in dynamic

environments.

 Finally, to guarantee optimality upon convergence, the KKT conditions must be

simultaneously and uniquely met for the system objective function and each task‘s local

optimization function. Hence, the analytical tax functions must be designed according to

the goal that the system is trying to achieve.

 95

4.5 Efficient Resource Allocation for Temporally-correlated Quality

Functions

In this section, we propose adaptive resource allocation solutions that explicitly take

advantage of the temporal correlations exhibited by the time-varying quality-resource

functions of multimedia applications. For illustration purposes, we focus on the MEP-

based SWM algorithm for video decoding applications. First, we propose a Markov

model for video decoding quality functions based on the collected statistics from various

video sequences (Subsection 4.5.1). We then discuss the information required by the RM

to minimize the adaptation time, and we present how to statistically choose optimal step

sizes for the SWM algorithm based on information known about the dynamics of the

video quality functions (Subsection 4.5.2). Finally a simple algorithm with very low

informational overhead is proposed (Subsection 4.5.3), which fixes the cost function

during intervals where video quality functions do not vary significantly.

4.5.1 Modeling the Quality Functions for Dynamic Video Applications

Video sequences exhibit highly time-correlated characteristics, and are often encoded

using similar GOP structures over time. Hence, we can model video decoding quality-

resource functions as discrete time Markov random processes  ,i iY x n , where each

index n corresponds to the GOP number in the sequence, and the complexity ix in each

period n corresponds to the complexity of the entire GOP. The characteristics of the

Markov process, such as its distribution, can be obtained using training data. For

example, the distribution of video decoding quality for several video sequences are

given in Figure 26 using the coder in [99]. We found that the Gaussian distribution

approximates well the PSNR statistics (in dB) of each sequence for fixed complexity

levels (Figure 26(c-d)). Hence, we model the video decoding quality function for each

task i as a Gaussian Markov chain. The Gaussian Markov chain can be perfectly

described by the mean quality function  i iQ x , the perturbation variance  2
i ix , and the

autocorrelation coefficient i between adjacent GOPs in the sequence (See Figure 26(a-

b).), i.e.:

 96

          

       

, , 1 1

1 , 1 1

i i i i i i i i i i i i

i i i i i i i i i

Y x n Q x Y x n Q x W x

Q x Y x n W x

 

  

     

     
, (104)

where   20,i i iW N x is a white Gaussian vector with variance  2
i ix . Note that

according to our measured statistics (Figure 26(a-b)), i depends little on ix , and can

therefore be modeled as a constant rather than a function of the complexity. Hence,

based on any complexity level ix , i can be estimated by:

          

 2

, , 1i i i i i i i i
i

i i

E Y x n Q x Y x n Q x

x



  

 . (105)

20 25 30 35 40
0

0.5

1

1.5

2
Variances and covariances

PSNR

p
a
ra

m
e
te

rs

coa covariance

mob covariance

for covariance

coa variance

mob variance

for variance

22 24 26 28 30 32 34 36 38
0

0.2

0.4

0.6

0.8

1
autocorrelation coefficient

PSNR

rh
o

coastguard

mobile

foreman

27 27.5 28 28.5 29 29.5 30 30.5 31
0

10

20

30

40

50

60

70

80
Mobile-9.5e9 cycles per GOP

PSNR

#
 G

O
P

s

33 34 35 36 37 38
0

10

20

30

40

50

60

70
Coastguard-7.5e9 cycles per GOP

PSNR

#
 G

O
P

s

Figure 26 a) Variances and covariances and b) autocorrelation coefficient  for quality

perturbations in the Coastguard, Mobile, and Foreman sequences. c-d) Gaussian fits to the PSNR

distributions (in dB) for Mobile and Coastguard when operating at particular complexity levels. The

complexity is the number of entropy decoding and inverse transform cycles per GOP.

 The quality function  ,i iY x n will change its shape based on the first derivative of

 i ix . We approximate this perturbation variance using the following linear model:

  i i i i ix a x b   . (106)

Hence, the change in the first derivative of the quality function from the previous time

interval is:

   , , 1

() i i i i
i

i i

dY x n dY x n
n

dx dx



  , (107)

where  i n is a Gaussian random variable with standard deviation on the order of ia ,

which is independent of ix based on the model in (106). Note that for the SWM

 97

algorithm, the larger the variance of ()i n , the more suboptimal the allocation will be if

the cost per unit resource p is not accurately updated.

4.5.2 Informational Requirement for Single Iteration Adaptation, and Optimal

Step Sizes

In general, if the RM knows the second derivative  i iQ x of each task‘s quality function,

the optimal solution can be determined by the following two steps. First, the RM can

project a cost per unit resource for the tasks, and each task‘s response îx can be used to

reconstruct the first derivative function given  ˆi iQ x p  . Once  i iQ x is known, the

optimal cost can be obtained, and a centralized solution can be used for resource

allocation. Hence, the second derivative provides the RM with sufficient information to

optimally update the resource allocation in a single iteration.

 However,  i iQ x is generally not known by the RM. Nevertheless, if some

information about  i iQ x can be gathered by the RM, better convergence time can be

guaranteed for the SWM by dynamically adjusting the step size parameter  (Note that

the step size is no longer chosen from a predetermined increasing sequence  n , but is

updated based on the behavior of the video quality functions.) To demonstrate our

approach, we propose the following modification to the SWM algorithm:

SWM for Updating Resource Allocations (SWM-U):

 Based on the model in (104) and (107), we have the following task level

optimization function for time interval n :

 

     

   

,

,

,

max ,

max , 1 ,

max , 1 .

i i

i i

i i

i i i
x p

i i i i i i i
x p

i i i i
x p

Y x n t

Y x n n x t x m

Y x n n x px









   

   

 (108)

(Since the costs are already assumed to be non-zero in the previous iteration, we exclude

the last term ()  from (94).) As can be seen, the random quality perturbation function

 i iW x causes the equilibrium point to shift, as the perturbations now affects each task‘s

perceived cost per unit resource to be ip  . To construct a single iteration algorithm

 98

that accurately updates resource allocation, a good choice of  is needed. The following

toy example provides insight on how to determine the best choice for  .

 Consider the case when all tasks have identical quality functions ()Q x , with initially

balanced resource allocations x . At the next time interval, each task identically update

his function to () ()newQ x Q x x    , where ,    . Hence, the new derivative can be

written as:

 () ()newQ x Q x    (109)

Based on this new function and the old cost ()p Q x , a task will update its resource

demand to x  , where     ()newQ x Q x Q x       . Each task now has an identical

excess demand of x x x   . The second derivative of  Q x can be approximated

between the points x and x  as:

    ()()

()
Q x Q xQ x x Q x

Q x
x xx x

          
 

 (110)

Based on the modified SWM-U tax form (108), setting / x    is the optimal choice

for that time interval. Note that  depends on  and the excess demand; hence if  is

known for every interval,  can be chosen close to optimal. For the general case with

many tasks and different quality-resource functions,  can be set to the average value of

all individually calculated i ‘s. Even when precise information is unavailable, if the

system can still obtain an estimate of the quality perturbation autocorrelation coefficient

 and variance  over several time intervals, a distribution of  can be obtained. By

estimating the excess demand x over several intervals, we can obtain a statistically

optimal  E / x   .

4.5.3 A Fixed Cost Algorithm

 Finally, we propose a low-complexity fixed cost algorithm (FCA), which updates

resource allocations without any communications overhead aside from determining an

initial cost per unit resource p . The assumption is that when  is small, the cost of the

SWM-U remains approximately fixed. Hence, the only overhead associated with this

algorithm occurs when source characteristics change significantly, and a new cost needs

 99

to be determined using a few iterations of the SWM. Otherwise, each task can run the

FCA in isolation.

 In the FCA, based on the initial cost p obtained by the SWM at the beginning of a

video scene, tasks simply determine their demand for each time interval n using the cost

p without communicating with the RM, i.e.:

  demand() argmax ,
i

i i i
x

x n Y x n x p  . (111)

 Notice from Figure 26(b) that the perturbation variance is fairly constant across

different complexities for each sequence, which means the slope parameter ia is very

small. Even for sequences such as Mobile, the perturbation parameter ia is about 10%

the slope of its quality function. Moreover, the high correlation coefficient  further

reduces the effect on the cost change between adjacent intervals, such that the

perturbation-to-quality ratio is approximately    /i i i ix Q x . Hence, as long as the

initial cost converges, the FCA should have a cost approximately equal to that of the

SWM-U, which leads to approximately identical resource allocations. We will verify

this in the results section.

4.6 Simulations and Results

To measure the performance of our resource management algorithms, we used the video

coder from [99] in our simulations to encode various sequences at different bit rates, and

we gathered the number of cycles for each decoding job on a Pentium IV processor. We

note that while we have chosen a specific coder, our methodology can just as easily

apply to any other quality-resource scalable video coding algorithms (e.g. encoding with

different macroblock sizes and prediction modes in H.264). In order to verify that our

algorithms are suitable for DVS-enabled PEs, we used the StrongARM processor profile

[105].

4.6.1 SWM and FCA Behavior for Dynamic Quality Functions

In Figure 27, the iterations of the SWM for computational resource allocations are

plotted for 2 Foreman, 2 Coastguard, and 1 Mobile sequences sharing the same system.

 100

Note that only one curve for the Foreman and Coastguard sequences are plotted, since

resource allocations are identical for the same sequences. Negative indices refer to

iterations for global adaptation (via the SWM-based algorithm), such that the allocations

can converge before the video starts playing at iteration/time 0. The MEP iterations for

the SWM-U and FCA are then synchronized with the video sequence during runtime,

such that one iteration of the MEP is performed between each GOP. (The video quality

function changes after each GOP.) Note that we purposely ran 8 iterations of the SWM

algorithm during global adaptation before running the FCA to allow the cost to

converge. On the other hand, 4 iterations were sufficient for SWM global adaptation

before running SWM-U, since the SWM-U continued to adapt its cost metric and

resource allocations accurately during runtime under very low complexity (i.e. only a

single MEP iteration is required for accurately updating the resource allocation between

each GOP!). Moreover, because the cost fluctuates little upon convergence (Figure 27(c,

f)), the FCA, which requires no communications overhead except at the beginning of the

video sequence, performs almost equally to the SWM-U.

4.6.2 EEM Convergence and Tradeoff Parameter λ

 The convergence of the decentralized EEM algorithm to the optimal SWMEM

solution is shown in Figure 28, based on the StrongARM energy model [105], where the

voltage V is proportional to the frequency f , and hence the energy 2 2E V f  . The

same five video tasks above were also used for this experiment. The step size parameter

is fixed at 1  , such that the real resource demand is projected for each application

(see (97)), and the energy weight is set to 32 10 PSNR/Joule   . The EEM converges

quickly (after only 5 iterations) and is therefore ideal for resource allocation in dynamic

environments.

 In Figure 29, we plotted the video qualities and the energy consumed for different

values of  in the SWMEM/EEM, and we compared it against an application-agnostic

fair scheduling scheme. Note that the EEM allocates more resources to the Mobile

sequence since its performance increases drastically with increased resources. On the

 101

other hand, Coastguard, which benefits less from increased resources, receives less total

resources and therefore has lower quality. Overall, the sum of PSNRs for all tasks,

shown in Figure 29b, is 5-10 dB higher for the EEM than for fair share resource

allocation at low-power regions, which translates to a significantly higher average video

quality per task (1-2 dB PSNR). We also performed a comparison between the

application-agnostic fair scheduling scheme using the Nash product social welfare

objective (a utility fair scheme), given by the product of application utilities (Figure 30)

[86]. This can be achieved by requiring each task to use a utility function that is the log

of its quality function, i.e.   ln i iQ x . Note that the Nash product-based EEM algorithm

obtains a much fairer allocation of resources than simple resource-based fair scheduling,

since the quality of the Mobile sequence, which requires far more computational

resources than the Foreman and Coastguard sequences, is greatly increased.

4.6.3 Allocation Behavior for the Processor Assigning Algorithm

We simulated the performance of the PA algorithm by assigning the 5 video decoding

tasks to 5 separate, identical DVS-enabled processors. Note that from Table 10 and

Figure 31a, for 5 tasks and 5 processors, the final resource distribution allocates most of

each task‘s complexity to its assigned processor after only 4 iterations of the PA

algorithm, which demonstrates that using tax functions can compel tasks to run mostly

on their assigned processors.

 We also performed simulations to analyze the ―suboptimality‖ of the PA algorithm

compared to the ideal SWMEM solution when tasks can be arbitrarily parallelized

across all PEs (See Figure 31b). Note that for very small  , or high energy availability

regions, the processor dedicating algorithm achieves approximately the same

performance as the SWMEM. This may be explained by the fact that when energy is

cheap, the video qualities achieved are near maximum and increase very little per unit

energy allocated. Consequently, resource allocation is not an important issue when

resources are highly available. However, the PA algorithm yields considerably less

quality than the ideal SWMEM solution when the cost per unit energy  is high, since

 102

the slope of video quality functions are much steeper and differ much more between

sequences at low energy/quality levels. Indeed, the poor performance of the PA

algorithm is largely a result of poor PE-to-task assignment, which indicates that smartly

assigning/sharing processors is very important when energy is scarce.

4.6.4 Joint SWMEM and Scheduling Simulation

The SWMEM-S simulations were performed for a 3 level hierarchy of frames, and the

quality-resource curves were used for the different bitplane-truncation points for each

frame. Note that if a base-layer frame is decoded down to a certain bitplane, decoding

the second and third layers to a finer quantization level does not contribute much to the

overall quality, since the distortion created by the base-layer frame still exists. Hence,

the quality of the decoded frames are interdependent. As shown in Table 11, by

decoding the different priority frames during different time intervals and adapting the

processor frequency in every interval based on application job dependencies, we can

achieve better performance than rate-monotonic DVS, which is the optimal application-

agnostic policy for saving energy given hard deadlines. Using the same 5 video

decoding tasks as above, we showed that the SWMEM-S achieved approximately the

same video quality as rate-monotonic DVS while providing over 28% in energy savings.

 103

-5 0 5 10 15 20
26

28

30

32

34

36

38

40

42
SWM-U Quality

iteration

P
S

N
R

foreman cent

coastguard cent

mobile cent

foreman SWM

coastguard SWM

mobile SWM

(a)

-5 0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SWM-U Fraction of Resources Allocated

iteration

fr
a
c
ti
o
n
 o

f
re

s
o
u
rc

e
s
 a

ll
o
c
a
te

d

foreman cent

coastguard cent

mobile cent

foreman SWM

coastguard SWM

mobile SWM

 (b)

-5 0 5 10 15 20
5

10

15

20

25

30
SWM-U Cost

iteration

P
ri
c
e
 p

e
r

u
n
it
 c

o
m

p
le

x
it
y

(c)

-10 -5 0 5 10 15 20
26

28

30

32

34

36

38

40

42
FCA Quality

iteration

P
S

N
R

foreman cent

coastguard cent

mobile cent

foreman FPA

coastguard FPA

mobile FPA

(d)

-10 -5 0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
FCA Fraction of Resources Allocated

iteration

fr
a
c
ti
o
n
 o

f
a
llo

c
a
te

d
 r

e
s
o
u
rc

e
s

foreman cent

coastguard cent

mobile cent

foreman FPA

coastguard FPA

mobile FPA

(e)

-10 -5 0 5 10 15 20
5

10

15

20

25

30
FCA Cost

iteration

C
o
s
t

(f)

Figure 27 The (a) convergence of decentralized allocation qualities to centralized solutions, (b) the

corresponding fraction of resources allocated to each task, and (c) the costs are shown for SWM-U.

(d-f) show corresponding plots for the fixed cost algorithm (FCA).

0 1 2 3 4 5 6 7 8 9 10
18

20

22

24

26

28

30

32

34

36
Quality of each task

iteration

q
u
a
lit

y
 o

b
ta

in
e
d
 (

P
S

N
R

)

Coastguard 1

Coastguard 2

Foreman 1

Foreman 2

Mobile

(a)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7
x 10

5 Resource allocated to each task

iteration

re
s
o
u
rc

e
 a

llo
c
a
te

d
 (

c
y
c
le

s
)

Coastguard 1

Coastguard 2

Foreman 1

Foreman 2

Mobile

(b)

Figure 28 (a-c) The convergence of quality and computational resource allocation of EEM with

energy function 2E x .

 104

0.5 1 1.5 2

26

28

30

32

34

36

38

System Energy-Task Quality Curves

Normalized system energy expended

A
v
e
ra

g
e
 P

S
N

R

Foreman EEM

Coastguard EEM

Mobile EEM

Foreman fair

Coastguard fair

Mobile fair

(a)

0.05 0.1 0.15 0.2 0.25
125

130

135

140

145

150

155

160

System Energy-Social Welfare Curve

Normalized system energy expended

T
o
ta

l
P

S
N

R

EEM

Fair Share

 (b)

Figure 29 (a) The energy-quality curves for video sequences in the EEM algorithm compared

against the fair share scheduling algorithm. (b) The plot of the sum of qualities (social welfare).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

22

24

26

28

30

32

34

36

EEM Energy-Quality Curve

Normalized system energy expended

A
v
e
ra

g
e
 P

S
N

R

Foreman EEM

Coastguard EEM

Mobile EEM

Foreman fair

Coastguard fair

Mobile fair

Figure 30 The energy-quality curves for video sequences using Nash product fairness, compared

against the fair share scheduling algorithm.

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

Processor #

P
e
rc

e
n
t

o
f

R
e
s
o
u
rc

e
 A

llo
c
a
te

d
 t

o
 P

ro
c
e
s
s
o
r

Processor Allocations

Task 1

Task 2

Task 3

Task 4

Task 5

(a)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

28

30

32

34

36

38

40

PAA Energy-Quality Curve

Normalized units of energy expended

A
v
e
ra

g
e
 P

S
N

R

Foreman PA

Coastguard PA

Mobile PA

Foreman opt

Coastguard opt

Mobile opt

 (b)

 105

Figure 31 (a) Resulting processor resource distribution after 4 iterations of the PA algorithm. (b)

Energy-quality curves for the PA algorithm and the optimal SWMEM solution.

Table 9 Sleep Mode Initialization for SWM

1. // Initialize before runtime.

2. Fix total energy constraint totE .

3. Set  1,2,...,S J to be the set of PEs.

4. Construct the power set (set of all possible subsets) of PEs, 2S .

5. For each subset of PEs 2SN 

6. Calculate the active energy constraint: act
tot tot pass

N
j N

E E E


  .

7. Determine the computational resource constraint  act
tot ,N NR E N  by using the inverse of

the energy model  act
tot,NE R for only the PEs in N .

8. End For

9. Turn on the PEs corresponding to the N with the largest N .

10. // During runtime.

11. Run SWM with complexity constraint N .

Table 10 Average number of cycles per frame for task to PE Allocations (4 iterations of the PA

algorithm).

Task/Processor PE 1 PE 2 PE 3 PE 4 PE 5

Foreman 1 267982 3564 4333 4333 4019

Foreman 2 3564 267982 4334 4333 4019

Coastguard 1 3237 3237 299839 3885 3571

Coastguard 2 3237 3237 3884 299842 3571

Mobile 1 3310 3310 4077 4078 289221

Table 11: Comparison of SWMEM-S and rate monotonic (normalized) complexity/energy

allocations for various time intervals.

 Rate Monotonic SWMEM-S/EEM-S

Time Interval / Priority 1 2 3 1 2 3

Task 1 75.0 60.0 120.4 108.2 74.0 43.9

Task 2 75.0 60.0 120.4 108.2 74.0 43.9

Task 3 200.0 190.2 154.8 201.6 161.1 128.7

Task 4 200.0 190.2 154.8 201.6 161.1 128.7

Task 5 200.0 249.7 199.7 199.3 160.5 129.0

Total Complexity 750.0 750.0 750.0 818.9 630.7 474.1

Total Energy 12.66E 9.07E

 Average PSNR 29.75 dB 29.80 dB

4.7 Conclusion

In this chapter, we presented a low-complexity, informationally-decentralized resource

management solution for multiple multimedia applications sharing a resource-

constrained system. By formalizing a message exchange protocol between applications

and a system resource manager, we verified that our solution can be used to optimally

achieve various objectives, such as maximizing the social welfare of applications,

 106

minimizing system energy consumption, assigning processors to applications, and

efficiently updating the resource allocation in dynamic environments. In summary, our

MEP solution can be used to construct robust resource allocation solutions, even when

applications are unwilling to reveal private information about their utilities.

 An avenue for future work is to construct and evaluate informationally-decentralized

algorithms based on more sophisticated (and possibly non-convex) resource models that

deal explicitly with various elements and features that can exist within a heterogeneous

system (e.g. shared memory and caches between PEs, special-function processors,

voltage islands, etc.).

 107

CHAPTER 5

Resource-constrained Configuration of Classifier

Cascades in Distributed Stream Mining Systems

5.1 Introduction

In this chapter, we introduce the problem of configuring cascaded classifier topologies in

resource-constrained, distributed stream mining systems. Many stream classification and

mining applications implement topologies (ensembles such as trees or cascades) of low-

complexity binary classifiers to jointly accomplish the task of complex classification

[145]. It has been shown that boosting trees of weak classifiers enables the successive

identification and filtering of multiple attributes in the data, and leads to improved

accuracy over single classifier systems [146][109].

 Distributed stream mining systems provide a scalable infrastructure capable of

supporting such classification applications, since different classifiers can be naturally

placed across different processing nodes, depending on the classifier workload and

processing node resource availabilities. Nevertheless, when voluminous data streams

need to be processed, resource constraints pose a major challenge for optimizing the

performance of cascades of classifiers. A commonly used approach is load-shedding,

where algorithms determine when, where, what, and how much data to discard given the

observed data characteristics, desired Quality of Service (QoS) requirements [112]-

[116], and delay constraints [117]. While naïve load shedding performs well for simple

data management jobs such as aggregation, for which the quality of job results depend

only on the sample size, this is generally not the case for jobs involving classification of

data. Hence, recent work on intelligent load shedding [118] attempts instead to

maximize certain Quality of Decision (QoD) measures based on the predicted

 108

distribution of feature values in future time units. Nevertheless, this approach considers

only information pertaining to a single classifier, and hence can be highly suboptimal for

an application that requires the use of an entire cascade of (distributed) classifiers.

Moreover, without a joint consideration of resource constraints at all downstream

classifiers in the chain, the end-to-end processing delay for a chain of classifiers can

become intolerable for real-time applications [134][135].

 To address these issues, we consider an optimization concept for load shedding

proposed in recent work, which involves reconfiguring the operating point of each

classifier in a cascaded topology to ensure that constraints are met at each classifier

[120]. For example, SVM-based classifiers can adjust different thresholds for detection,

which in turn influence both the detection and false alarm probabilities, as well as the

load forwarded to the next classifier [148]. Configuring the operating points of each

classifier enables the chain to maintain high accuracy of information retrieval under

resource constraints, since the data returned by the chain consists of higher confidence

data, while lower confidence data is more likely to be shed. In this chapter, we will first

review this methodology for configuring classifiers chains [119][120]. We then propose

a novel solution extending this problem to configuring classifier trees, which go

significantly beyond linearly cascaded classifiers by providing greater flexibility in data

processing, while also posing different challenges in terms of resource constrained

configuration. Specifically, while excess load can be easily handled within the

optimization framework for a binary classifier chain by adapting the operating point of

each classifier, using a single operating point for each classifier in a tree generates two

output streams with a total sum rate that is fixed. Hence, it may not be possible to

simultaneously meet tight processing resource constraints for downstream classifiers

along both output edges when using only one operating point (e.g. threshold).

 Instead, we propose configuring each classifier in a binary tree topology using

multiple operating points (i.e. one for each output), e.g. with multiple overlapping and

non-overlapping decision thresholds for the different classes. This directly enables

intelligent discard of low-confidence data across output edges of each classifier when

 109

resources are scarce. Additionally, this also enables the intelligent replication of low-

confidence data across both positive and negative edges when excess resources are

available, which can significantly reduce the number of classification misses.

 Additionally, we note that in this chapter, the problem we are analyzing is for stream

mining systems that are owned by the same company or reside within the same

administrative domain (e.g. IBM‘s System S stream processing core [108]). Hence, it

can be assumed that classifiers in the topology are designed in a way to obey simple

(often semantic) subset relationships, as shown in Figure 32 for a sports image concept

classification tree [148]Error! Reference source not found.. In this tree, data is

successively filtered from broad concepts to narrow concepts, such that large volume

streams can be successively filtered along each branch of the tree. We will show that this

problem already contains many interesting application specific features and details that

require careful analysis and evaluation. However, Chapter 6 will introduce a more

challenging scenario, where an application requires the use of classifiers that are

distributed across different autonomous sites, and classifiers do not necessarily obey

simple subset relationships. Thus, while the problem introduced in this chapter can be

solved using conventional optimization techniques, the problem introduced in the next

chapter will require a careful application of our proposed framework (i.e. a combination

of modeling, information gathering, and multi-agent learning solutions) in order to

provide efficient optimization solutions.

 110

Figure 32 A hierarchical classifier system that identifies several different sports categories and

subcategories.

 This chapter is organized as follows. In Section 5.2, we discuss the model for a

binary chain of classifiers, and the cost associated with its configuration. We extend the

model to a binary classifier tree in Section 5.3, and formulate the misclassification cost

minimization problem under resource constraints. We also include a discussion on the

assertion that multiple operating point configurations outperforming single operating

point configurations. In Section 5.4, we present experimental results using our

algorithms for a sports image classification application, and discuss insights derived

from the results. We conclude the chapter in Section 5.5 with some insights, as well as

extensions to be addressed in the following chapter.

5.2 Model for Binary Chain of Classifiers

First, we review the configuration of operating points in a binary classifier chain, as

shown in Figure 33. Each binary classifier iv processes an input stream by classifying

each stream data object (SDO) as belonging to a positive class Hi , or a negative class

Hi . Each SDO that is classified as belonging to Hi is forwarded from a classifier node

iv to the next classifier node 1iv  in the chain. Otherwise the SDO is dropped from the

stream. SDOs generated by the source 0v are only received at the terminal Nv if they are

forwarded by every classifier in the chain (i.e. they are relevant for the application).

Figure 33 Classifier chain with probabilities labeled on each edge.

 Given the ground truth iX for an input SDO to classifier iv , denote the classification

decision on the SDO by ˆ
iX . The proportion of correctly forwarded samples is captured

 1 11 FP

1 1
DP

 2 21 FP

2 2
DP

 1 F
n nP

D
n nP

1v 2v Nv
forwarded forwarded forwarded

dropped dropped dropped

Source

Stream

Processed

Stream

 111

by the probability of detection    ˆPr H | HD i i i iip X X   , and the proportion of

incorrectly forwarded samples is captured by the probability of false alarm

   ˆPr H | HF i i i iip X X   .

 Suppose that the input stream to classifier iv has a priori probability (APP) i of

being positive. The probability of forwarding an SDO to the next classifier (i.e.

throughput) can be given by:

      1i i D i Fi it p p      . (112)

Moreover, the probability of correctly forwarding data (i.e. the goodput) to the next

classifier is:

  i i D ig p  . (113)

A filtering classifier is often designed such that the probability of detection is maximized

subject to a false alarm probability constraint [125] [126]. Hence, by varying the false

alarm constraint, different probabilities of detection can be obtained, and different

volumes of the stream can be forwarded. Assuming that each classifier operates at a

fixed complexity level, a detection-error-tradeoff (DET) curve, or a curve relating i
Dp to

i
Fp , can be obtained for each classifier iv . Hence, given the APP i and the DET curve,

it and ig become deterministic functions of i
Fp .

 We can characterize the performance of a single classifier system by a weighted sum

of its misses and false alarms, i.e.:

    M i i F i iC c g c t g    . (114)

This cost is practical in the sense that it identifies, for each data unit processed, the cost

of making a mistake, which can be applied directly to various scenarios such as real-time

manufacturing process control [150].

 It is not as straightforward to determine a practical cost for a binary classifier chain,

since the relationships between classifiers in the chain may be unknown. However, when

successive classifiers filter out subset data, the principle of exclusivity can be applied

[109]. Exclusivity implies that data that does not belong to the positive class of classifier

iv will not belong to the positive class if jv for all j i . Under this assumption, the

 112

end-to-end throughput and goodput for a classifier chain can be computed by the

following recursive relationships:

1

1
1

i i
i

i i

t t

g g





   
         

T , (115)

where
      

 0

F i D Fi i i
i

i D i

p p p

p





  
     

T , (116)

and i is the conditional a priori probability that positive data for classifier iv also

belongs to the positive class of 1iv  . For simplicity, we can normalize the input rate to 1,

such that 0 0 1t g  . Based on this, the end-to-end throughput and goodput can be

computed, and the cost given as:

    M N N F N NC c g c t g    . (117)

5.3 Minimizing Misclassification Cost in Binary Classifier Trees

5.3.1 Binary Classifier Tree Model and Misclassification Cost

Consider now a set of N binary classifiers labeled 1,...,N cascaded in a tree topology,

an example of which, for 2N  is shown in Figure 34. This topology of classifiers may

be used to identify data from 3 (in general K) end-to-end classes of interest. Each binary

classifier n partitions input data objects into two classes, a ``yes'' class 0
nH and a ``no''

class 1
nH , and forwards the classified data along respective output edges. For each

respective class, denote the probability of correct detection by  0
D n
p and  1

D n
p , and the

probability of false alarms by  0
F n
p and  1

F n
p . Note that when the classifier uses one

operating point (e.g. thresholding) to label each data item as 0
nH or 1

nH , we have the

following relationships:    1 01D Fn n
p p  and    1 01F Dn n

p p  . This coupling is,

however, removed when we have multiple operating points (e.g. a different threshold for

each output class).

 113

Figure 34 Example of a depth-2 tree of classifiers with 3 terminal classes.

Each end-to-end class k is determined after a set of cascaded local classifications. Class

k is characterized by the following: kN - the number of classifiers that data from that

class need to pass through, kv - the sequence of classifiers in the path (e.g. each

component from the set of classifiers 1,...,N), ke - the sequence of branch ``types'' in the

path (class 0 or 1), and ,k k
M Fc c - the misclassification costs per miss and false alarm in

class k . Assuming a (normalized) unit input data rate, the total misclassification cost for

each class k can be computed from the total rate of data labeled as k (throughput) kt ,

the total rate of correctly labeled data in class k (goodput) kg , and the a-priori

probability of data belonging to class k , k , by the relation:

   k k k k k k k
M FC c g c t g    where the first term denotes the cost of misses, and the

second term denotes the cost of false alarms for class k . The average cost of

misclassification for the entire tree per unit input data rate can be computed as:

1

K
k

k

C C


  . (118)

To determine kt and kg , we model the impact of filtering at classifier k
iv on the

received data stream at classifier 1k
iv
 by a conditional a priori probability 1

1

,k k
i i
k
i

e e
v
 


, where

 1,
k k
i ie e represents the four possible combinations (0,0), (0,1), (1,0), and (1,1)

corresponding to the ―yes‖ and ―no‖ answers along the two successive branches
6
.

The

throughputs  
1 1

0 1,k k
i iv v
t t

 
 and goodputs  

1 1

0 1,k k
i iv v
g g

 
, outputted by classifier k

iv can be

6 For a tree topology only one data stream enters each classifier. Hence we do not need to include k

iv while

parameterizing  .

 114

computed from
k
i
k
i

e
v
t and

k
i
k
i

e
v
g using a set of recursive relationships described by the

following transfer matrices:

1

1 1

1

1

0 0

k k
i i
k kk
i ii

k
i

k k
i i

e e
v ve

v
v v

t t

g g



 





   
      
        

T , (119)

where
      

 
11 1 1

1

1 1

0,0 0 0

0

0, 00

k
i

kk k k
ii i i

k ki i
k k
i i

e
F D Fvv v v

v e
Dv v

p p p

p





  



 

  
 
 
  

T , (120)

and
        

 
1 11 1 1

1

1 1

1, 0,1 1 1

1

1, 1

1

0

k k
i i
k kk k k
i ii i i

k ki i
k k
i i

e e
D D Fv vv v v

v e
Dv v

p p p

p

 



   



 

   
 
 
  

T . (121)

 Note that, in the above expressions the ―yes‖ (0) and ―no‖ (1) output edges have

different transfer matrices due to classifier exclusivity [109]
7
. Hence, the throughput

expression for the ``no'' output branch consists of three separate terms that correspond to

different types of data: bad data from classifier k
iv that is correctly rejected by classifier

1
k
iv  , good data from classifier k

iv that is falsely rejected by classifier 1
k
iv  , and good data

from classifier k
iv that is correctly rejected by classifier 1

k
iv  . Using the recursive

relationships, the end-to-end throughput and goodput kt , kg for class k can be

computed as:

1

1

1

k
k
i
k
i

k N
e
vk

i

t

g 

                   
T . (122)

Similarly, the end-to-end a priori probability k for class k is given as:

 1,

1

k

k k
i i
k
i

N
e ek
v

i

  


 . (123)

5.3.2 Resource Consumption and Constraints

Due to the high complexity operations that need to be performed by each classifier on

each data object, limited computational resources in the system impose a heavy

constraint on the performance of the classifier tree when the volume of the incoming

data stream is large. Since each classifier generally performs the same set of functions

7 Note that for the tree topology, exclusivity in the classifiers implies

1 1

0,1 1,11 0
k k
i i

k k
i i

e e
v v
 

 

    .

 115

on each data object, we model computational resource requirements for each individual

classifier as being directly proportional to the rate of data entering it. Hence, we may

define its resource consumption as:

 1

1

k
i

k k k
i i i

e
v v v
r t 


 . (124)

where k
iv

 is the amount of resources required per unit rate for classifier k
iv . Since some

of the classifiers for each class overlap, i.e. for multiple classes k , kiv n , we concisely

denote the entire tree configuration vector by indexing the configuration for each output

edge of each of the N classifiers:

        0 1 0 1
1 1
, ,..., ,F F F F FN N

p p p p   p . (125)

and the resulting resource consumption vector for each classifier:

    1,...,
T

F Nr rr p . (126)

 Suppose that each classifier is uniquely placed on one of M different processing

nodes. Let M NA  be the binary node assignment matrix that maps each classifier onto a

processing node, with:

 ,

1 if classifier is placed on node

0 otherwisem n

n m
A

 
. (127)

Given that processing node m has mR available resources, any feasible configuration of

classifiers in the tree needs to satisfy the constraint:

    1, where ,..., T
F MR R Ar p R R . (128)

This problem can be solved using convex programming techniques such as sequential

quadratic programming [144]. However, due to its non-convexity, it is often necessary to

try different starting points for the algorithm to converge to the globally optimal

solution. In practice, due to the sharpness of the DET curve, the global minimum can

often be found by selecting a starting point near the origin, F p 0 .

5.3.3 Discussion: Single versus Multiple Operating Points per Classifier

Recall that using multiple operating points decouples the two output rates by configuring

each output class separately, i.e. 0
Fp and 1

Fp are configured independently. This enables

flexibility in terms of allowing data to be intelligently discarded or replicated across both

 116

branches based on the cost functions. For example, suppose a classifier uses

thresholding on the resulting data prediction scores and forwards all data with scores

above 0 across the ``yes'' branch, and all data with scores below d across the ``no''

branch. If 0d  , all data between d and 0 is dropped from both branches, leading to

load shedding. If 0d  , all data between 0 and d is transmitted across both branches,

leading to replication.

 On the other hand, when a classifier usesone threshold or operating point, the sum of

output rates for each classifier is equal to the input rate entering it. Under tight resource

constraints, such a strategy may not be feasible, and may require the downstream

classifiers to discard input data

using ``arbitrary load shedding''. Arbitrary load shedding effectively moves the

operating point below the DET curve, towards the origin    , 0,0F Dp p  . Using

multiple operating points, on the other hand, can always outperform ``arbitrary load

shedding'' by allowing each output edge to be configured independently. The proof is

obvious, since for any point below the DET curve for an output edge, moving the point

to the left (until it intersects the DET curve) reduces the false alarm probability while

maintaining the same detection probability, thereby decreasing the overall cost.

Moreover, this move strictly reduces the throughout for the respective edge, and hence

downstream resource constraints are always feasibly met.

 In Figure 35, we highlight four different centralized algorithms for comparison in

simulations: 3 using a single operating point per classifier, and 1 which uses multiple

operating points. The algorithms are as follows:

 Algorithm A uses the equal error rate (EER) configuration for each classifier, i.e. the

point where the DET curve crosses the line. This ensures that the probability of false

alarm, and the probability of misses across both output edges are equal. This may

seem an intuitive approach when the costs are equal for all classes.

 Algorithm B determines the operating point of each classifier to minimize the overall

cost without considering resource constraints. Consequently, whenever a classifier is

 117

overloaded, arbitrary load shedding brings the effective operating point below the

DET curve.

 Algorithm C uses a single operating point for each classifier as in Algorithm B, but

jointly determines the point on the DET curve, and the percentage of output load to

shed (randomly) across each branch, such that the resulting resource consumption is

feasible, and the overall cost is minimized.

 Algorithm D selects multiple operating points per classifier to independently filter

and replicate data across each output edge.

Figure 35 Pictorial representations of the configuration choices based on algorithms A-D.

While solving a centralized SQP problem is tractable for small classifier trees, since

only a few classifier configurations need to be optimized, the complexity both in terms

of informational and computational overhead can be very high for a large system with

many classifiers, especially when the system needs to be reconfigured frequently in a

dynamic environment. Moreover, centralized algorithms have a single point of failure,

such that if the central controller fails, the system can no longer adapt to time-varying

data streams or nodal resource constraints. As a practical alternative to the centralized

approach, we propose several distributed approaches to enable classifiers in the tree to

iteratively adapt to locally optimal configurations based on local information exchanges

and low complexity operations.

 118

5.4 Experimental Results

5.4.1 Application Scenario: Classifying Sports Images

We performed experiments by applying our algorithms to a tree topology of classifiers

constructed for a sports image retrieval system [148]. Based on the natural hierarchy in

data characteristics, we constructed a classifier tree given in the introduction (Figure 32).

Each classifier is implemented as a support vector machine (SVM) trained specifically

to the characteristic it detects, and uses up to 82 features, with complexity on the order

of ~4000-21000 support vectors. The DET curves for individual classifiers were

experimentally measured by testing the classifier on a set of images disjoint from the

training set. Based on simulations, we observe that the complexity of processing one

image is approximately proportional to the number of support vectors. In Table 12, we

list the approximate amount of processing complexity (normalized) per image for

different classifiers
8
. Here, C is a normalization constant for the complexity, given by

the product of the average time of processing each image, and the speed of the

processor. The total image set consists of approximately 20000 sports image scenes that

are streamed at a data rate of 1 image per second.

Table 12 Processing complexity per image for each classifier.

5.4.2 The Effect of Resource Constraints on Classifier Configurations

We tested the 4 algorithms for 3 different types of system conditions and placements

under equal cost for misses and false alarms. The first type assumes system resources are

8 We note that each image also required a one-time step for 82-dimensional feature extraction before support vectors

could be used to obtain prediction scores for each classifier. We assume that the extraction is performed on a given

node, and the remaining resources on that node is used for the classification process.

 119

abundant and hence rate constraints (and placement) do not need to be considered while

configuring classifiers. The second type involves placing classifiers on heavily resource

constrained processing nodes in a manner that reduces cross-talk between nodes, i.e.

traffic across the network. The third type involves placing classifiers on nodes in a

hierarchical fashion to enable fault tolerance, where more important (upstream)

classifiers are placed on more reliable nodes. The placements for types 2 and 3 are

shown in Figure~\ref{fig:ExpClassifierPlacement}.

Figure 36 Placement of classifiers (a) to minimize cross-talk between nodes, and (b) to ensure some

level of failure resiliency. Note that different nodes have different processing constraints. The

constraints are measured in terms of the processor speed (in cycles/second).

Table 13 Costs of algorithms under different resource constraints and classifier placements

 To evaluate our algorithms, we ran Algorithms B-D using sequential quadratic

programming from 50 different randomized starting points, and provided the minimum

costs incurred by the application over all trials in Table 13. Note that Algorithms B and

C show significant reduction in cost over the seemingly intuitive EER configuration for

 120

all scenarios. In the non-resource constrained case, the cost of EER was approximately

2.5 times that of Algorithms B and C. For resource constrained cases, the cost of EER

was 40-50\% greater than Algorithms B and C.

 Note that under resource constraints, Algorithm C shows minor improvement over

Algorithm B, since it explicitly configures classifiers based on knowledge of the utility

reduction as a result of load shedding. However, when resource constraints are loose,

there is no benefit using Algorithm C since no load needs to be shed. In all cases,

enabling multiple operating points (Algorithm D) saves 6-12% in cost over the

Algorithms B and C due to intelligent filtering and replication.

5.4.3 Effect of Unequal Costs on Classifier Configurations

To further highlight the benefit of multiple operating points, we consider the effects of

different cost functions on the performance of each algorithm. In the first scenario, we

set the cost functions to be 1k
Mc  , 4k

Fc  for all classes k . In the second scenario, we

set the cost functions to be 4k
Mc  , 1k

Fc  for all classes. The experiments were

performed under loose resource constraints to highlight the effects of cost.

Table 14 Costs associated with various algorithms under different cost functions.

Table 14 depicts the gains derived for each type of cost metric. For high costs of false

alarms, we discovered significant savings when load shedding at the output was

considered (Algorithm C). The reason for this large gain is that, unlike Algorithm B,

which always keeps the entire output load from each classifier, Algorithm C can

completely shed the output load whenever the quality of decision (e.g. goodput to

throughput ratio) falls below a certain threshold. In our simulations, the load was

completely shed by Algorithm C at the edges going into classifiers "Winter Sports" and

 121

"Cricket". Nevertheless, using multiple operating points performed the best because

rather than shedding the entire load down certain branches, it could successively shed

data objects along each path that had poor quality of decision.

 For high costs of misses, a huge decrease in cost resulted from using multiple

operating points (approximately 21%). This is due to the intelligent replication of data,

which reduces the probability of miss for each class. For example, we discovered that

approximately 18% of the data from "Team Sports" was replicated and transmitted along

both the ―yes‖ and ―no‖ output edges, while 10% of the data from "Baseball" was

replicated, and 9% of data from "Winter Sports" was replicated.

5.5 Conclusion and Motivation for Learning Solutions

In this chapter, we introduced the paradigm of jointly configuring binary classifier trees

to minimize misclassification costs under resource constraints. By using multiple

thresholds for each classifier, we showed that significant cost savings can be achieved

through the intelligent filtering and replication of data for semantic trees of classifiers.

 In the following section, we will also consider the same method of configuring

operating points for classifiers in cascaded topologies, but in an autonomous,

informationally-distributed environment. In particular, suppose two autonomous sites

train classifiers separately that detect unrelated semantic features, or features with

unknown relationships, e.g. an ―outdoor‖ image and a ―basketball‖ image. When the two

sites do not share analytics, optimizing the overall performance requires distributed,

multi-agent solutions for learning the optimal configuration, especially for dynamic

streams. In the following two sections, we will discuss in detail the problems,

limitations, and solutions for configuring such classifier topologies in informationally-

distributed environments.

 122

CHAPTER 6

Learning Solutions for Configuring Chains of

Classifiers in Distributed Environments

6.1 Motivation and Introduction of Learning Solutions

The joint optimization of a chain of classifier located across autonomous sites is a very

difficult problem, since the analytics used to perform successive classification/filtering

may be separately trained and owned by different companies [122] [137]. These

analytics may have complex relationships, and often cannot be unified into a single

repository due to legal, proprietary, or technical restrictions [153] [155]. Another

challenge is that data streams often have time-varying rates and characteristics and thus,

they require frequent reconfiguration to ensure acceptable classification performance.

The approach introduced in Chapter 5 only optimally configure classifiers under fixed

stream characteristics [120], and can perform poorly when stream characteristics are

highly time-varying.

 In this section, we introduce two multi-agent learning solutions for configuring

chains of classifiers in distributed systems. We first introduce an experimentation

algorithm that enables classifiers to determine the optimal configurations for a static

stream. Then we show that this algorithm can fit within a larger multi-agent optimization

framework, shown in Figure 37. The framework combines modeling, distributed

estimation and information gathering schemes, and multi-agent learning solutions, as

follows:

 Modeling: By using Poisson models for the stream traffic at each classifier (since the

system is typically networked), we introduce a utility metric for real-time stream

 123

processing applications that explicitly considers the throughput, classification

accuracy, and end-to-end delay of filtered streams.

 Estimation: Important local information, such as the estimated a priori probabilities

(APP) of positive data from the input stream at each classifier, and processing

resource constraints, are gathered to determine the utility of the stream processing

system. We introduce a method for distributed information gathering, where each

classifier summarizes its local observations using a single scalar called the local

utility metric [153]. The local utility metric can be exchanged between nodes in

order to obtain an accurate estimate of the overall stream processing utility, while

keeping the communications overhead low and maintaining a high level of

information privacy across sites.

 Reconfiguration: Classifier reconfiguration can be performed by using an algorithm

that analytically maximizes the stream processing utility based on the processing

rate, accuracy, and delay. Note that while in some cases, a centralized scheme can be

used to determine the optimal configuration [119], in informationally-distributed

environments, it is often impossible to determine the performance of an algorithm

until sufficient time is given to estimate the accuracy/delay of the processed data

[153]. Such environments require the use of randomized or iterative algorithms that

converge to the optimal configuration over time. However, when the stream is

dynamic, it often does not make sense to use an algorithm that configures for the

current time interval, since stream characteristics may have changed during the next

time interval. Hence, having multiple algorithms available enables us to choose the

optimal algorithm based on the expected stream behavior in future time intervals.

 Modeling of Dynamics: To determine the optimal algorithm for reconfiguration, it is

necessary to have a model of stream dynamics. Stream dynamics affect the APP of

positive data arriving at each classifier, which in turn affects each classifier‘s local

utility function. In our work, we define a system state to be a quantized value over

each classifier‘s local utility values, as well as the overall stream processing utility.

We propose a Markov-based approach to model state transitions over time as a

 124

function of the previous state visited and algorithm used. This model enables us to

choose the algorithm that leads to the best expected system performance in each

system state.

 Rules-based Decision-making: We introduce the concept of rules, where a rule

determines the proper algorithm to apply for system reconfiguration in each state.

We provide an adaptive solution for using rules when stream characteristics are

initially unknown. Each rule is played with a different probability, and the

probability distribution is adapted to ensure probabilistic convergence to an optimal

steady state rule. Furthermore, we provide an efficiency bound on the performance

of the convergent rule when a limited number of iterations are used to estimate

stream dynamics (i.e. imperfect estimation). As an extension, we also provide an

evolutionary approach, where a new rule is generated from a set of old rules based

on the best expected utility in the following time interval based on modeled

dynamics. Finally, we discuss conditions under which a large set of rules can be

decomposed into small sets of local rules across individual classifier sites, which can

then make autonomous decisions about their locally utilized algorithms.

 This chapter is organized as follows. In Section 6.2, we review related works in

distributed decision-making in dynamic environments. In Section 6.3, we introduce

distributed classifier chains and propose a delay-sensitive utility function. In Section 6.4,

we discuss a distributed information gathering approach to estimate the utility when

each site is unwilling to share proprietary data. In Section 6.5, we introduce a multi-

agent experimentation solution for optimally configuring classifiers under the

aforementioned informational constraints. We provide the overarching rules-based

framework in Section 6.6 for dynamic environments. Extensions to the rules-based

framework, such as the decomposition of rules across distributed classifier sites, and

evolving a new rule from existing rules, are discussed in Section 6.7. Simulation results

from a speech classification application are given in Section 6.8, and some concluding

remarks in Section 6.9.

 125

Figure 37 Comparison of prior approaches and the proposed rules-based framework.

6.2 A Review of Related Works for Decision-making in Dynamics

A widely used framework for optimizing the performance of dynamic systems is the

Markov decision process (MDP) [157], where a Markov model is used for state

transitions as a function of the previous state and action (e.g. configuration) taken. In an

MDP framework, there exists an optimal policy (i.e. a function mapping states to

actions) that maximizes an expected value function, which is often given as the sum of

discounted future rewards (e.g. expected utilities at future time intervals). When state

transition probabilities are unknown, reinforcement learning techniques can be applied

to determine the optimal policy, which involves a delicate balance between exploitation

Proposed

Framework

Goal:
Maximize current

performance

Goal:
Maximize

expected

performance

under dynamics

Stream APP , Utility

Input stream Filtered stream

Classifiers

Single Algorithm

R
e
c
o
n
fig

u
ra

tio
nE

s
ti
m

a
ti
o
n

 QStream APP , Utility

Input stream Filtered stream

Classifiers

Single Algorithm

R
e
c
o
n
fig

u
ra

tio
nE

s
ti
m

a
ti
o
n

 Q

Prior Approaches

Stream APP , Utility

Input stream Filtered stream

Classifiers

Choosing from

multiple algorithms

Adapting and

Evolving Rules

R
e
c
o
n
fig

u
ra

tio
n

Constructing

System States

E
s
ti
m

a
ti
o
n

 Q

M
o
d
e
li
n
g

o
f
D

y
n
a
m

ic
s

D
e
c
is

io
n

M
a
k
in

g

Stream APP , Utility

Input stream Filtered stream

Classifiers

Choosing from

multiple algorithms

Adapting and

Evolving Rules

R
e
c
o
n
fig

u
ra

tio
n

Constructing

System States

E
s
ti
m

a
ti
o
n

 Q

M
o
d
e
li
n
g

o
f
D

y
n
a
m

ic
s

D
e
c
is

io
n

M
a
k
in

g

 126

(playing the action that gives the highest estimated value) and exploration (playing an

action of suboptimal value) [158].

 While our rules-based framework is derived from the MDP framework (e.g. rules

map states to algorithms while policies map states to actions), there is a key difference

between traditional MDP-based approaches and our proposed rules-based approach.

Unlike the MDP framework, where actions must be specified by quantized (discrete)

configurations, algorithms are explicitly designed to perform iterative optimization over

previous configurations [104]. Hence, their outputs are not limited to a discrete set of

configurations/actions, but rather converge to a locally or globally optimal configuration

over the real (continuous) space of configurations. Furthermore, algorithms avoid the

complication involving how the configurations (actions) should be quantized in dynamic

environments, e.g. when stream characteristics change over time.

 Finally, there have been recent advances in collaborative multi-agent learning

between distributed sites related to our proposed work. For instance, the idea of using a

playbook to select different rules or strategies, and reinforcing these rules/strategies with

different weights based on their performances, is proposed in [154]. However, while the

playbook proposed in [154] is problem specific, we envision a broader set of rules

capable of selecting optimization algorithms with inherent analytical properties leading

to utility maximization of not only stream processing, but distributed systems in general.

Furthermore, our aim is to construct a purely automated framework for both information

gathering and distributed decision making, without requiring supervision, as supervision

may not be possible across autonomous sites, or can lead to high operational costs.

6.3 A Delay-sensitive Utility Function for a Chain of Classifiers

The goal of a stream processing application is not only to maximize the amount of

processed data (the throughput), but also the amount of data that is correctly processed

by each classifier (the goodput). However, increasing the throughput also leads to an

increased load on the system, which increases the end-to-end delay for the stream. In

[153], we proposed a stream utility function to capture the tradeoff between system

 127

performance and the incurred delay for a chain of classifiers. The performance of each

classifier iv is estimated by a cost for misclassifying information, i.e.

     1 1i D i i Fi ip p     , where i is the weight ratio between false positives and

false negatives [132]. By inverting the cost, a metric for each classifier

 i i i i iF g t g   can be used, which represents a performance reduction given by the

weighted difference between the percentage of good and bad data forwarded by each

classifier. Since exclusivity can no longer be assumed, the true end-to-end cost cannot be

determined. Hence, we provided instead an approximation of the overall performance of

the chain by the product of individual classifier performance reductions,
1

n
ii

F F




[153].

 To factor in the delay, we multiply the resulting processing quality F with an end-

to-end processing delay penalty   DG D e  , where  reflects the application‘s delay

sensitivity [134] [135]. To determine  G D , we follow the / /1M M queuing model

often used for networks and distributed stream processing systems [130] [131]. Denote

the total SDO input rate, and the processing rate for each classifier iv , by i and i ,

respectively. Note that each classifier acts as a filter that drops each SDO with i.i.d.

probability 1 it , and forwards the SDO with i.i.d. probability it to the next-hop

classifier. Based on this model, the resulting output to each next-hop classifier is also

given by a Poisson process [71], where the arrival rate of input data to classifier iv is

given by
1

0 1

i
i jj

t 



  . Because the output of an / /1M M system has i.i.d. interarrival

times, the delays for each classifier in a classifier system, given the arrival and service

rates, are also independent [128]. Hence, the expected delay penalty  G D for the entire

chain can be calculated from the moment generating function [73]:

     
1

n
i i

D
i ii

E G D
 


  

          (129)

Thus, the overall utility of real-time stream processing, as given in our prior work [153],

is:

 128

      

    
1,..., 1,...,

.
i

F
D

i i
i D i i i ii n i n

i i

Q E F G D F

F g t g



 
 

   

     

             

P

 (130)

6.4 Informationally-Distributed Utility Calculation

6.4.1 Distributed Information Gathering

Note that while classifiers may be willing to provide information about  F ip and  D ip ,

the APP i at every classifier iv is, in general, a complicated function of the false alarm

probabilities of all previous classifiers, i.e.  i i F j i   p . This is because setting

different thresholds for the false alarm probabilities at previous classifiers will affect the

incoming source distribution to classifier iv . Because analytics trained across different

sites may not obey simple relationships (e.g. subsets), constructing a joint classification

model is very difficult if sites do not share their analytics. Due to legal and proprietary

restrictions, it can be assumed that in practice, the joint model cannot be constructed,

and hence the objective function  FQ p is unknown.

 While the precise form of  FQ p is unknown, and is most likely changing due to

stream dynamics, the utility can still be estimated over a short time interval if classifier

configurations are held fixed over the length of the interval. This is summarized in

Figure 38 and discussed in more detail in [153]. First, the average service rate i is fixed

(static) for each classifier and can be exchanged with other classifiers upon system

initialization. Second, the arrival rate into classifier iv , i , can be obtained by simply

measuring (or observing) the number of SDOs in the input stream. Finally, the goodput

and throughput ratios i and i are functions of the configuration  F ip and the APP.

The APP can be estimated from the input stream using maximum a priori (MAP)

schemes. Consequently, every parameter in (130) can be easily estimated based on some

locally observable data. By exchanging these locally obtained parameters and

configurations across all classifiers, each classifier can then estimate the overall stream

processing utility.

 129

Figure 38 The various parameters in relation to iv .

 On the other hand, autonomous sites may have even stronger privacy requirements

that prevent them from exchanging such local parameters (e.g. DET curves,

configurations, etc). Alternatively, even if there are no such requirements, the classifiers

may not be able to exchange this information due to the large communication overheads

involved. To deal with the informationally-decentralized nature of the classifying

system, as shown in [153], some calculations can be performed locally, and then a local

utility metric scalar can be exchanged between classifiers. The local utilities are

constructed by decomposing the utility function as follows:

    

  

1 1

1
11 1

1 1 11
constant known at i

n n
i i

F i i i i
i ii i

n
i i i

i i i i
i i ii

v

Q g t g

t
g t g g

t

 


  

  


     

 






        

                

 



p

 
  

 
 

  

  

known at

1

n

n n n n

v

n

i F i
i

t g

K Q p





 

 

 




, (131)

where K is a constant, and the local utilities are given by:

     

     

1

1

, 1 ,

.

i i i
i F i i i ii

i i i

N F N N N NN

t
Q p g t g i N

t

Q p g t g

 


  








    

 

  

 
  

 

  

 (132)

Here, the symbol x is used to indicate that the parameter or function x is obtained based

on observation or estimation. Importantly, based on the observed arrival rate i , the

estimated APP i , the resource constraint/service rate of the next hop classifier 1i  ,

and the configuration F
iP , each classifier iv can compute   i F iQ p locally and

exchange this scalar with other classifiers in the chain in order to compute the product of

local utilities, which is the overall utility. Table 15 summarizes the various parameter

types, their descriptions, and examples in our problem.

 Nv iv …

Exchanged

   F
j j j i
Q P




Observed

,i i  

Exchanged

   F
j j j i
Q P




Configurable
F
iP

Static

1i 

 130

Table 15: Summary of parameter types and a few examples.

Type of parameter for iv : Description: Examples:

Static Parameters: Fixed parameters, exchanged during initialization ,j j i 

Observed Parameters: Can be measured or estimated by classifier iv
i , i

Exchanged Parameters: Traded with other classifiers   i F iQ p

Configurable Parameters: Configured by classifier iv  F ip

6.4.2 Optimization Framework using Distributed Information

In this subsection, we summarize our proposed framework for optimizing based on

estimating the global utility during each time interval.

Distributed Framework for Maximizing Stream Utility:

1) Initialize the configuration  0F ip at time 0 and exchange static parameters.

Each classifier iv sets  0F ip to some initial configuration.

2) For each iteration (or integer time) t , measure/estimate the arrival rate  i t

from the last elapsed control interval  1,t t .

The arrival rate from the previous-hop,  i t , is obtained by observing either the number

of arrivals at classifier iv during the interval  1,t t , or forming an estimate based on

time-averaging, discounting, etc. of previous measurements.

3) Estimate the APP via maximum a posteriori (MAP)  i t from past time

intervals.

Based on the location of the a posteriori points of arriving SDOs during time interval

 1,t t , find the APP of each SDO and update  i t based on time-averaging,

discounting, etc.)

4) For each classifier iv , jv , j i , exchange local utilities t
jQ with all other

classifiers just prior to time t to obtain an estimate of the
1

n
t t

i
i

Q Q


  .

5) Based on empirical analysis, modeling, experimentation, etc., choose the best

configuration  Fp t to maximize the following:

    1argmax
F

t t
F FE Q    

p
p p , (133)

 131

where (133) is the predicted stream utility at time 1t  . Since the  tFp affects the

performance in the following interval  , 1t t  , solving (133) gives the (predicted)

optimal configuration.

 Of course, the key question is determining (133) for both static and dynamic

environments. Because we do not know how a new configuration will affect the

expected utility, learning solutions are needed to enable classifiers to converge to the

optimal configurations.

6.5 A Distributed Learning Algorithm for Static Streams

6.5.1 Safe Experimentation for Discrete Configuration Sets

As an alternative to the model-based approaches, we first introduce a low-complexity,

model-free learning approach called safe experimentation [138] for choosing the best

configuration for classifiers (i.e. Step 5 of the distributed framework). Safe

experimentation was first proposed for large, distributed, multi-agent systems, where

each player is unable to observe the actions of all other players (due to informational or

complexity constraints) and hence cannot build a model of other players. The player

therefore adheres to a ―trusted‖ action at most times, but occasionally ―explores‖ a

different action in search of a potentially better action. Essentially, safe experimentation

does not require coordinating actions between players, or in our case, between

autonomous sites.

 Our stream processing system falls under such a category and is equivalent to a

common interest game [139], where distributed classifiers (i.e. players) want to

configure themselves (i.e. perform actions) to maximize the same utility function. The

safe experimentation algorithm for reconfiguring classifiers is given as follows:

1) Initialization: At iteration 0t  , each classifier randomly selects a configuration

 0Fp from a discrete action set iA , which is set as the baseline configuration  1b
Fp .

After exchanging information about the derived local utilities from the initial

configurations, each classifier‘s baseline utility at iteration 1 is initialized as

    01b
Fu Q p .

 132

2) Configuration Selection: At each subsequent iteration, each player selects his

baseline configuration with probability  1 t or experiments with a new random

configuration with probability t . Hence,    tt b
F Fp p with probability  1 t , and

 tFp is chosen uniformly over iA with probability t . t is denoted the exploration rate

at iteration t .

3) Baseline Configuration and Baseline Utility Update: Each player compares the

utility received,   tFQ p , with his baseline utility  bu t , and updates his baseline

configuration and utility as follows:

  
      

      

1
 ,

,

t t b
F F iitb

F ti tb b
F F ii

p Q u t
p

p Q u t


   

p

p
, (134)

        1 max ,b b F
i iu t u t Q t  P , (135)

4) Return to step 2 and repeat.

The reason why this learning algorithm is called ―Safe Experimentation‖ is because the

baseline utility is non-decreasing with respect to time (or the number of iterations), and

hence the performance of the algorithm only improves over time. We now provide a

sufficient condition for finding the optimal solution.

Theorem 2: The following two conditions for the exploration rate t are sufficient to

guarantee that the Safe Experimentation algorithm for common interest games

converges to the global optimal solution with probability 1:

 lim 0t
t




 , (136)

1 21

lim 1 ... 0
t

t nA A A
  



  
 

                         
 . (137)

Proof: The proof is similar to the proof for Theorem 3.1 in [138]. We provide a short

sketch of the proof to highlight properties of the exploration rate. First, the exploration

rate must converge to 0 as t   , as indicated by (136), such that the algorithm will

play its baseline configuration with probability 1. Moreover, note that each

multiplicative term in (137) represents the probability that the joint configuration played

at time  is not the optimal joint configuration, or all classifiers experimented at time  .

Hence, the left-hand side of (137) forms an upper bound on the probability that the

optimal joint configuration is not played before time t . Thus Eq. (137) provides a

 133

sufficient condition for the optimal joint configuration to be eventually played with

probability 1. ■

 Note that we have shown (137) to be a sufficient (though not necessary) condition on

the exploration rate for convergence to optimality, but only in a discrete action set. More

importantly however, the proof provides no bounds for the convergence time of safe

experimentation. In general, the method converges very slowly, and the expected time

for finding the optimal solution can be bounded below by 1 2 ... nA A A , which is

the expected time for finding the optimal solution via i.i.d. uniform sampling (i.e.

1,t t  ) of the action set. Because the action set for each classifier can be large when

configurations are finely quantized, safe experimentation becomes impractical for

dynamic environments where good configurations are promptly needed. In the next

section, we will provide an alternative to safe experimentation for continuous

configurations.

6.5.2 Combining Safe Experimentation with Randomized Local Search

To overcome the slowness of the convergence time for the discrete Safe

Experimentation algorithm, as well as the suboptimality from choosing from a finite,

discrete set of actions, we propose a simple stochastic algorithm that fits within the

framework of two-phase methods [140]. In this approach, we combine a uniform

random search for a baseline configuration over a continuous feasible set, and we

perform a randomized local search algorithm around the baseline configuration. Unlike

pure safe experimentation, which uses random sampling over the entire configuration

space, the local search procedure take advantage of smoothness and continuity

properties that exist in the global utility function, thereby allowing classifiers to

converge to locally optimal points near their baseline configurations. The algorithm is

given by modifying step 2 of safe experimentation as follows:

2) Configuration Selection: At each subsequent iteration, each player selects his

baseline configuration with probability  1 t or experiments with a new random

configuration with probability t . If the baseline configuration is selected, it is perturbed

 134

by a small random variable (e.g. Gaussian, uniform, etc.)  iZ t . Hence  tF ip is chosen

uniformly over the feasible configuration space with probability t ,

and   tt b t
F F ii i
p p Z  with probability  1 t , where t

iZ is a zero-mean random

variable, with lim 0t
i

t
Z


 .

If the size of the local search random perturbations do not decay too quickly (e.g.

2 2/t
iE Z K t     , where 0K  is a constant), it can be shown that (in a stationary

setting) the local search algorithm converges to a local maximum with probability 1

[141]. Moreover, if the exploration rate is sufficiently high, the algorithm will converge

to the globally optimal point with probability 1.

6.5.3 A Distributed Algorithm without Information Exchange

Recall that global utility estimation requires information exchange across all classifiers.

What if such information could not be exchanged between classifiers? The best solution

would be a simple distributed algorithm where each classifier iv maximizes only its

local utility function  Fi iQ P .

Local Utility-based Distributed Algorithm:

1-3) Perform steps 1-3 in the distributed algorithm framework to obtain local

utilities.

4) Based on the estimated parameters from past intervals, each classifier chooses

 tF ip to maximize its local utility function.

 It can be shown that when stream characteristics are stationary, the local utility-

based distributed algorithm converges to a fixed solution, since each classifier

sequentially fixes its configurations (and hence the resulting APP and arrival rate into

the next classifier), starting from 1
FP to F

nP . However, the convergence point is

suboptimal, since the distributed algorithm optimally configures each classifier based on

a joint consideration of its own performance, and the delay penalty incurred on only its

next-hop classifier, but does not consider the effect of its configuration on the

performances and delays of classifiers further downstream. In the simulations section,

 135

we will compare the performance of the local utility-based distributed algorithm with

safe experimentation to evaluate the gain achieved by the (albeit minimal) information

exchange.

6.5.4 Summary of Algorithms, and Non-stationary Dynamics

 In Table 16, a summary comparing the different algorithms is provided. Note that for

the local utility-based distributed algorithm, the information overhead is zero for single-

path topologies. However, as we will show in the next section, a minimal amount of

information exchange is required for multiple-path topologies. For the combined Safe

Experimentation and local search algorithm, it is impossible to provide useful sufficient

conditions to guarantee both fast and sure convergence in a dynamic environment to a

global maxima for arbitrary utility functions. However, it is useful to have a very high

exploration rate at the beginning of the algorithm, such that a good baseline

configuration can be found as a starting point for local search. During later iterations, a

very low exploration rate is preferable, such that the local search algorithm can perform

―refined‖ exploration around a good baseline point until stream characteristics change

again. In the following section, we will discuss a framework that takes advantage of the

experimentation and local search algorithms based on stream dynamics.

Table 16 Summary comparing the different algorithms and the various criteria

Algorithm Information Overhead Complexity Convergence/Dynamics

Local utility-based None for single-path

topologies, very low

for multiple-path

topologies

Low (requires solving

a single-variable

optimization problem)

Very fast

Discretized Safe

Experimentation

Global exchange of

local utilities

Very low (random

configuration, constant

memory usage)

Slow, suboptimal

Continuous Safe

Experimentation with

Randomized Local

Search

Global exchange of

local utilities

Very low (random

configuration, constant

memory usage)

Fast; optimality can vary

depending on experimentation

frequency and decay rate of

local search

 136

6.6 A Rules-based Framework for Choosing Algorithms

6.6.1 States, Algorithms, and Rules

Now that we have discussed the estimation portion of our framework (Figure 37) and

introduced a few algorithms, we move to discuss the proposed decision-making process

in dynamic environments. We introduce the rules-based framework for choosing

algorithms as follows:

 A set of states  1,..., MS S that capture information about the environment (e.g.

APPs of input streams to each classifier) or the stream processing utility (local or

global), and can be represented by quantized bins over these parameters.

 The expected utility derived in each state mS ,  mQ S .

 A set of algorithms  1,..., KA A that can be used to reconfigure the system,

where an algorithm determines the configuration at time t ,  tFp , based on prior

configurations, e.g.       1 ,...,t t t
F k F FA  p p p . Note that an algorithm differs

from an action in the MDP framework [157] in that an action simply corresponds to

a (discrete) fixed configuration. In fact, algorithms are generalizations of actions,

since an action can be interpreted as an algorithm that always returns the same

configuration regardless of the prior configurations, i.e.     1 ,...,t t
k F F kA   p p c ,

where kc is some constant configuration.

 A set of pure rules  1,..., HR R . Each rule :hR   is a deterministic

mapping from a state to an algorithm, where the expression  hR S A  

indicates that algorithm A should be used if the current system state is S .

Additionally, we introduce the concept of a mixed rule R , which is a random rule

with a probability distribution over the set of pure rules  , given by a probability

vector     1 ,..., T
Hp R p Rr . For convenience, we denote a mixed rule by the dot

product between the probability vector and the (ordered) set of pure rules,

1

H
h hh
R


 r r , where hr is the thh element of r . As will be shown later, mixed

rules are powerful for both proving convergence results, and for designing solutions

 137

to find the optimal rule for algorithm selection when stream characteristics are

initially unknown.

6.6.2 State Spaces and Markov Modeling for Algorithms

Markov processes have been used extensively to model the behavior of dynamic streams

(such as multimedia) due to their ability to capture temporal correlations of varying

orders [118] [156]. In this section, we extend Markov modeling to the space of

algorithms and rules. (Though a Markov model may not be entirely accurate for relating

stream dynamics to algorithms, we provide evidence in our simulations that for

temporally-correlated stream data, the Markov model approximates the real process

closely.) Importantly, based on Markov assumptions about algorithms and states, we can

apply results from the MDP framework to show that the optimal rule for selecting

algorithms in steady state is always pure. While this result is a simple consequence of

the MDP framework, we provide a short proof below to guide us (in the following

section) on how to construct a solution for learning the optimal pure rule under unknown

stream dynamics. Moreover, the details in the proof will also enable us to prove

efficiency bounds when stream parameters cannot be perfectly estimated.

Definition 1: Define a first-order algorithmic Markov process (or algorithmic Markov

system) for a set of algorithms  and discrete state space quantization  as follows: the

state and algorithm used at time t ,  ,t ts a    , is a sufficient statistic for 1ts  .

Hence, 1ts  can be described by a probability transition function

    1 1 1| , | , ,...,F F
t t t t t t t tp s s a p s s a     P P for any past configurations  1,...,

F F
t t  P P .

 Note that Definition 1 implies that in the algorithmic Markov system model, the state

transitions are not dependent on the precise configurations used in previous time

intervals, but only on the algorithm and state visited during the last time interval.

Definition 2: The transition matrix for a pure rule hR over the set of states  is defined

as a matrix  hRP with entries      1 | ,h t i t j t tijR p s S s S a R s   P . The

transition matrix for a mixed rule r  is given by a matrix  P r  with entries:

 138

     11
| ,

H
h t i t j t h tij h
p s S s S a R s

    P r r , where the subscript h indicates

the thh component of r . Consequently, the transition matrix for a mixed rule can also be

written as    
1 h hh

R


 P r r P


 .

Definition 3: The steady state distribution for being in each state mS , given a rule hR , is

given by     | lim t
m h h mt

p s S R R


  P e , where  1,0,...,0 Te 9
. This can be

conveniently expressed as a steady state distribution vector    lim t
ss h h

t
R R


 p P e .

Likewise, denote the utility vector for each state by       1 ,..., T
MQ S Q Sq  . The

steady-state average utility is given by:

       T
ss h ss hQ R Rp p q  . (138)

Lemma 1: The steady state distribution for a mixed rule can be given as a linear function

of the steady state distribution of pure rules,    
1

H
ss h ss hh
r R


 p r p . Likewise, the

steady state average utility for a mixed rule can be given by

      ss1

H T
ss h hh

Q R


  p r r p q   .

Proof: The steady state distribution vector for being in each state can be derived by the

following sequence of equations.

     

    

1

1 1

lim lim

lim .

H
t t

ss h h
t t

h

H H
t

h h h ss h
t

h h

r R

R R

  

 

     

  



 

p P r e r P e

r P e r p

 

 (139)

Likewise, the steady state average utility for a mixed rule can be given by:

      

       

ss
1 1

ss ss
1 1 1

|

| .

M H

ss h h m
m h

H M H
T

h m h m h h
h m h

Q p s R Q S

p S R Q S R

 

  

 
       

 

 

  

p r r

r r p q

 



 (140)

■

Proposition 9: Given an algorithmic Markov system, a set of pure rules  , and the

option to play any mixed rule r  , the optimal rule in steady state is always pure.
10

9 Note that the steady state distribution can be efficiently calculated by finding the eigenvector corresponding to the

largest eigenvalue (e.g. 1) of transition matrix  hRP .

 139

Proof: The optimal mixed rule r  in steady state maximizes the expected utility,

which is obtained by solving the following problem:

  

1

max

s.t. 1,

.

ss

H
hh

Q



 






r
p r

r

r 0

 

 (141)

From Lemma 1,       ss
1

H
T

ss h h
h

Q R


   p r r p q   , which is a linear transformation

on the pure rule steady state distributions. Hence, the problem in (141) can be reduced to

the following linear programming problem:

   ss
1

1

max

1,

.

H
T

h h
h

H
hh

R











r
r p q

r

r 0



 (142)

Note that the extrema of the feasible set are given by points where only one component

of r is 1, and all other components are 0, which correspond to pure rules. Since an

optimal linear programming solution always exists at an extremum, there always exists

an optimal pure rule in steady state. ■

6.6.3 An Adaptive Solution for Finding the Optimal Pure Rule

We have shown in the previous section that an optimal rule is always pure under the

Markov assumption. However, a mixed rule is often useful for estimating stream

dynamics when the distribution of stream data values are initially unknown. For

example, when a new application is run on a distributed stream mining system, there

may not be any prior transmitted information about its stream statistics (e.g. average data

rate, APPs for each classifier). In this section, we propose a solution called Simultaneous

Parameter Estimation and Rule Optimization (SPERO), depicted in Figure 39. SPERO

attempts to accomplish two important objectives. First, SPERO accurately estimates the

state utilities and state transition probabilities, such that it can determine the optimal

steady state pure rule from (142). On the other hand, SPERO utilizes a mixed rule that

approaches the optimal rule in the limit, but also provides high performance during any

10 Note that this proposition is proven in [157] for MDPs.

 140

finite time interval. This is obtained by initializing the mixed rule to play each pure rule

with equal probability, and then slowly reinforcing the probability of playing the pure

rule that is expected to lead to the highest steady state utility, given the current

estimation of state utilities and transition probabilities. As an example, the probability

distribution of SPERO is shown in Figure 40 for a set of 8 rules used in our simulations

(see Section 6.8, Approach B for more details). Note that the rule distribution is updated

by reinforcing one rule at a time. Proof of steady state convergence to the optimal rule in

SPERO is given in

Solution 1: Simultaneous Parameter Estimation and Rule Optimization (SPERO)

1) Initialize state transition count, mixed rule count, and utilities for each state:

For all states and actions , ,s s a ,

 If there exists hR  such that  hR s a ,

 Set state transition count  , , 1C s s a  .

 Else

 Set state transition count  , , 0C s s a  .

Set rule count : 1hc  for all hR  .

For all states s   , set state utilities
 

 0 : 0Q s  .

Set state visit counts    1,..., 0,...,0mv v  .

Set initial iteration : 0t  .

Determine initial state 0s .

2) Choose a rule:

Select mixed rule  tR  r  , where  1 1
,..., /

HTM M M
H hh

c c c


 r .

Calculate
 
 t

ta R s for current state s .

3) Update state transition probability and utility based on observed new state:

Process stream for given interval, and update time : 1t t  .

For new state t hs S , measure utility Q .

 Set:
           1: / 1 / 1t t

h h h h hQ S v Q S v Q v    .

 Set: 1h hv v  .

Update:
         1 1

1 1 1 1, , := , , + 1t t
t t t t t tC s s R s C s s R s 

    .

For all ,s s    , set:      | , , , / , ,
s

p s s a C s s a C s s a


    
.

4) Calculate utilities that would be achieved by each rule, and choose best pure rule:

Calculate steady-state state probabilities  ss hRp for pure

rules.

Set  
|

: argmax
h

T
ss h

h R
h R


 q p


, where

        1 ,...,
Tt t

MQ S Q Sq .

Update : 1h hc c   .

5) Return to step 2.

 141

Appendix B.

Figure 39 Flow diagram for updating parameters in Solution 1.

Figure 40 Rule distribution update in SPERO for 8 pure rules (see Section 6.8).

6.6.4 Tradeoff between Accuracy and Convergence Rate

In this section, we discuss the tradeoff between the estimation accuracy and the

convergence rate of SPERO. In particular, SPERO uses a slow reinforcement rate to

guarantee perfect estimation of parameters as t   . In practice however, it is often

important to discover a good rule within a finite number of iterations, without continuing

to sample rules that lead to states with poor performances. However, choosing a rule

under finite observations can prevent the system from obtaining a perfect estimation of

state utilities and transition probabilities, thereby converging to a suboptimal pure rule.

In this section, we provide a probabilistic bound on the inefficiency of the convergent

pure rule with respect to imperfect estimation caused by limited observations of each

system state.

 Consider when the real expected utility in a state is given by  mQ S , and the

estimation based on time averaging of observations is given by  ˆ
mQ S . Depending on

1 2 3 4 5 6 7 8
0

0.5

1

1 2 3 4 5 6 7 8
0

0.5

1

1 2 3 4 5 6 7 8
0

0.5

1

…

0t  1t  2t  10000t 
1 2 3 4 5 6 7 8

0

0.5

1

 142

the variance of utility observations in that state 2
m , we can provide a probabilistic bound

on achieving an estimation error of  with probability at least
2

21 m


 using Chebyshev‘s

inequality, i.e.     
2

2
ˆPr m

m mQ S Q S





   . Likewise, a similar probability

estimation bound exists for the state transition probabilities, i.e.

    Pr ij h ij hR R    P P . Both of these bounds enable us to estimate the number

of visits required in each state to discover an efficient rule within high probability. We

providing the following proposition and corollary to determine an upper bound on the

expected number of iterations required by SPERO to discover a near optimal rule.

Proposition 10: Suppose that    ˆ
m mQ S Q S   and    ij h ij hR R  P P . Then the

steady state utility of the convergent rule deviates from the utility of the optimal rule by

no more than approximately 2 (2)QM U M  , where QU is the average system utility of

the highest utility state.

Proof: From [159], it is shown that if the entry-wise error of the probability transition

matrices is  , then the steady state probabilities for the estimated and real transition

probabilities obey the following relation:

   

     ss ss 2

ss

ˆ| | 1
1 2

| 1

M
m h m h

m h

p S R p S R
M O

p S R


 


 
   


. (143)

Furthermore, since  ss | 1m hp S R  , a looser bound for the element-wise estimation

error of  ss |m hp S R can be given by      ss ss
1

ˆ| | 1 2
1

M

m h m hp S R p S R M






   


,

where the  2O  term can be dropped for small  . Maximizing    ss
1

ˆ ˆ
H

T
h h

h

R

 r p q  in

(142) based on estimation leads to a pure rule hR (by Proposition 9) with estimated

steady state utility that differs from the real steady state utility by no more than:

               

              

ss ss ss ss
1

ss ss ss
1

2

ˆˆ ˆ ˆ| |

ˆ ˆˆ| | max , |

2 (2)

M
T T

h h m h m m h m
h

M

m h m h m m m h m m
h

Q Q

R R p S R Q S p S R Q S

p S R p S R Q S Q S p S R Q S Q S

MU M M U M   





  

   

   





p q p q 

 (144)

 143

Hence, the true optimal rule R will have estimated average steady state utility with an

error of (2)QM U M  . The estimated rule R̂ , will have at least the same estimated

average utility of the true optimal rule, and a true average utility within (2)QM U M 

of that value. Hence, combining the two maximum errors, we have the bound

2 (2)QM U M  for differences between the performances of the convergent rule and the

optimal rule. ■

Corollary 1: In the worst case, the expected number of iterations required for SPERO to

determine a pure rule that has average utility within (2)QM U M  of the optimal pure

rule with probability at least   1 1   is      2 2 2

1,...,
max 1/ 4 , /m
m M

O n v 


 .

Proof:     2 2 2

1,...,
max 1/ 4 , /m
m M

n v 


 is the greater value between the number of visits to

each state required for     ˆPr m mQ S Q S     , and the number of state transition

occurrences required for     Pr ij h ij hR R    P P . The number of iterations

required to visit each state once is bounded below by the sojourn time of each state,

which is, for recurrent states, a positive number  . Multiplying  by the number of state

visits required to meet the two Chebyshev bounds gives us the expected number of

iterations required by SPERO. ■

 Note that we use big-O notation, since the sojourn time  for each recurrent state is

finite, but this can also vary depending on the system dynamics and the convergent rule.

6.7 Extensions of the Rules-based Framework

6.7.1 Evolving a New Rule from Existing Rules

Recall that SPERO determines the optimal rule out of a predefined set of rules.

However, suppose that we lack the intuition to prescribe rules that perform well under

any system state due to unknown stream dynamics. In this subsection, we propose a

solution that evolves a new rule out of a set of existing rules.

 Consider for each state mS a set of preferred algorithms
mS , given by the

algorithms that can be played in the state by the set of existing rules  . Instead of

 144

changing the probability density of mixed rule r  through reinforcing each existing

rule, we propose a solution called Evolution From Existing Rules (EFER), which

reinforces the probability of playing each preferred algorithm in each state based on its

expected performance (utility) in the next time interval. Since EFER determines an

algorithm for each state that may be prescribed by several different rules, the resulting

scheme is not simply a mixed rule over the original set of pure rules  , but rather an

evolved rule over a larger set of pure rules  .

 Next, we present an interpretation on the evolved rule space. The rule space  can

be interpreted by labeling each mixed rule R over the original rule space  as a M K

matrix R , with entries       
1

, | I
H

k m h h m kh
m k p A S R S A


   R r , and  I is the

indicator function. Note that for pure rules hR , exactly 1 entry in each row m is 1, and

all other entries are 0, and any mixed rule r  lies in the convex hull of all pure rule

matrices 1 2, ,..., HR R R (See Figure 47 for a simple graphical representation.). An evolved

rule R , on the other hand, is a mixed rule over a larger set    , which has the

following necessary and sufficient condition: each row of rule R is in the convex hull

of each row of pure rule matrices 1 2, ,..., HR R R .

 145

 An important feature to note about EFER is that the evolved rule is not designed to

maximize the steady state expected utility. SPERO can determine the steady state utility

for each rule based on its estimated transition matrix. However, no such transition matrix

exists for EFER, since in the evolution of a new rule, there is no predefined rule to map

each state to an algorithm, i.e. no transition matrix for an evolving rule (until it

converges). Hence, EFER focuses instead on finding the algorithm that gives the best

expected utility during the next time interval (similar to best response play [139]). In the

simulations section, we will discuss the performance tradeoffs between SPERO and

Solution 2: Evolution From Existing Rules (EFER)

1) Initialize state transition count, prescribed algorithm probabilities, and utilities for

each state:

For all states and actions , ,s s a , set state transition count

 , , 1C s s a  .

Initialize algorithm probability count

     
1

, : I
H

m k h mh
c S A R S A


  for each mS and kA .

For all states s   , set state utilities
 

 0 : 0Q s  .

Set state visit counts    1,..., 0,...,0mv v  .

Set initial iteration : 0t  .

Determine initial state 0s .

2) Choose an algorithm:

Select algorithm kA with probability      
1

, / ,
K

k t k tp A c s A c s A
  .

3) Update state transition probability and utility based on observed new state:

Process stream for given interval, and update time : 1t t  .

For new state t ms S , measure utility Q .

 Set:
           1: / 1 / 1t t

h h h h hQ S v Q S v Q v    .

 Set: 1h hv v  .

Update:
         1 1

1 1 1 1, , := , , + 1t t
t t t t t tC s s R s C s s R s 

    .

For all ,s s    , set:      | , , , / , ,
s

p s s a C s s a C s s a


    
.

4) Calculate the expected utility in the next time interval, and increment frequency of

best algorithm in the last state:

If
        max | 1,...,t t

mQ S Q S H   ,

Set     
1|

: argmax | ,
h

H
hh sh R

h p s s R s Q s
 

    
, where:

     1 ,..., T
MQ S Q Sq .

Increment : 1h hc c   .

5) Return to step 2 and repeat.

 146

EFER, where steady state optimization and best response optimization lead to different

performance guarantees for stream processing.

6.7.2 A Decomposition Approach for Complex Sets of Rules

While using a larger state and rule space can improve the performance of the system, the

complexity of finding the optimal rule in Solution 1 increases significantly with the size

of the state space, as it requires calculating the eigenvalues of H different M M

matrices (one for each rule) during each time interval. Moreover, the convergence time

to the optimal rule grows exponentially with the number of states M in the worst case!

Hence, for a finite number of time intervals, a larger state space can even perform more

poorly than a smaller state space (as we will show in our simulations).

 To overcome the complexity issue, we propose a decomposition method that omits a

subset of rules in order to reduce a large rule space into a collection of simple rules that

can be decided autonomously by each classifier site. We define the decomposition

methods below.

Definition 4: Consider a centralized state space model  for a system of n different

sites.  is said to be decomposable if 1 2 ... n       , where i is a local state

space model at site i . Likewise,  is partially decomposable if

1 2 ... n          , where S  is a shared state space model that is contained in all

local models. In other words, all local state space models are of the form i   .

Similarly, an algorithm space model is said to be decomposable if 1 2 ... n       ,

where the algorithm space i is the set of algorithms that can be used to reconfigure

system parameters at site i .

Definition 5: A decomposable rule space model 1 2 ... n       is given over a

decomposable algorithm space model 1 2 ... n       and a partially

decomposable state space model 1 2 ... n          , where each local rule in i

maps a local state in i   to a local algorithm in i .

 Note that in a decomposed rule space model, each site has its own set of local rules

and algorithms that it plays independently based on partial information (or a state space

 147

model using partial information) about the entire system. The notion of partial

information has several strong implications. For example, a centralized rule space is not

always decomposable, even when it is played over a decomposable algorithm and state

space (See Example 1 below.). Hence, there always exists centralized rules that can not

be simulated by a decomposed approach. Furthermore, when the local state space

models are not identical between each classifier, the classifiers converge to a Nash

equilibrium [139] when running SPERO locally and independently, even when their

payoffs are identical. While proof of convergence is a straightforward extension of

Proposition 11, it is difficult to prove conditions under which the convergence point is

optimal or suboptimal, since multiple Nash equilibria may exist [139]. In general, the

convergent rule depends highly on the initial rules used in SPERO (see Example 2

below). However, as we demonstrate in Example 2, the probability of converging to a

suboptimal rule is also correlated with its efficiency, such that poor equilibria are

reached with low probability.

Example 1 - When a rule cannot be decomposed: Consider a centralized state space

given by 4 states consisting of quantized local utilities of a 2 classifier system. Each

classifier has a ―bad‖ state 1,iS corresponding to   thresh
F

i iQ P Q , and a ―good‖ state

2,iS corresponding to   thresh
F

i iQ P Q . Each classifier can perform a local algorithm 1,iA

given by randomly choosing a new configuration (experimentation), or performing a

local search 2,iA around the last configuration, and to memorize the new configuration if

it outperforms the old (See [153] for details.). A centralized rule space can consist of all

rules 1 2 1 2:R       , while a localized rule space can only consist of rules of the

form     1 2,R R R , where  1
1 1:R   , and  2

2 2:R   . A decomposable rule is

for each classifier to use experimentation in state 1,iS , and local search in state 2,iS . A

non-decomposable rule is for each classifier to use experimentation in all states, unless

both classifiers are in state 2,iS . As can be seen, to use non-decomposable rules, each

classifier needs information about the states of both classifiers.

 148

Example 2 - Convergence to a suboptimal equilibrium: Consider a simple scenario

involving two classifiers 1,2i  , and two algorithms for each classifier, 1,iA and 2,iA .

The centralized model contains four states given by the combinations of algorithms used

in the previous time interval. Suppose that when both classifiers perform action 1,iA , the

utility of the system in the following time interval is 2. When both classifiers perform

action 2,iA , the utility of the system is 1. Otherwise, the utility is 0. In the local model,

each classifier measures only two states, where each state is given by the algorithm that

it performed during the last interval i.e. 1, 1,i iS A , 2, 2,i iS A . Suppose that during the

first 100 iterations, the following actions happen to be played:  1,1 1,2,A A with probability

1/100,  2,1 1,2,A A with probability 9/100,  1,1 2,2,A A with probability 9/100, and  2,1 2,2,A A

with probability 81/100. (Note that these classifiers are probabilistically choosing

algorithms independently.) Then for each classifier, the estimated utility of using

algorithm 1,iA is 1/10 * 2 1/5 , while the utility of using algorithm 2,iA is 9/10 . Each

classifier will thus continue to reinforce its own algorithm 2,iA , leading to a convergent

suboptimal rule of using  2,1 2,2,A A with probability 1 (unless the state/action  1,1 1,2,A A is

played a significant fraction of time to update the local utilities). Note that  2,1 2,2,A A is a

Nash equilibrium, as well as the optimal  1,1 1,2,A A .

 Note that while in Example 2, suboptimal convergence is possible, the likelihood of

suboptimal convergence to  2,1 2,2,A A is dependent on the utilities achieved in the two

Nash equilibria. The greater the difference between the utilities of the Nash equilibria,

the more unlikely the distributed approach is to converge to a suboptimal rule. For

example, suppose that  1,1 1,2, 1Q A A   , and  2,1 2,2, 1Q A A  , and the utility is zero

otherwise. Then algorithm 2,iA must be played with probability of at least  1 1/ 1 

in order for both classifiers to reinforce the suboptimal combination of algorithms

 2,1 2,2,A A . Hence, for large  , suboptimal convergence is unlikely to occur unless initial

conditions are heavily weighted towards  2,1 2,2,A A .

 149

6.8 Simulation Results

6.8.1 Application: Classification of Speech Signals

We evaluate our framework for classifier reconfiguration using a stream consisting of

utterances of Japanese vowels ‗a‘ and ‗e‘, given by cepstrum data collected from 8

different speakers (See [124] for more details.). By sampling different portions of the

cepstrum data, we were able to cluster the speakers hierarchically, such that successive

filtering using a chain of classifiers could be performed, i.e. to gather speech data from

speaker 1, the first classifier splits the data into speaker groups {1,2,7,8} and {3,4,5,6},

the second classifier splits the filtered data {1,2,7,8} into {1,2} and {7,8}, and the final

classifier splits {1,2} into {1} and {2}. For simple demonstration purposes, each

classifier uses thresholding based on a low-complexity Gaussian mixture model

generated from prior training data (240 speech samples). The test data consists of a

mixed stream comprised of a total of 370 distinct speech data objects from the 8

speakers.

 To simulate stream dynamics, we define a rate of change metric as follows: The rate

of change refers to the maximum number of test samples randomly added or removed

from each speaker class during each time interval (or iteration). For example, if the rate

of change is 4, then during each time interval, a maximum of 4 speech signals from each

speaker can be removed or added to the test data, where the number of speech data

added or removed is uniformly distributed over this range. Note that adding and

removing speech data affects the APP and the underlying stream distribution for each

speaker class. Furthermore, we define fractional rates of change, where a rate of change

of ½ means that during each time interval, there is ½ probability that a speech sample

will be added or removed from each speaker.

 While we allow the APPs to vary for each speaker class, for simplicity, we

considered a fixed input stream rate normalized to 1 data object per second, and the

normalized classifier processing rates in our experiments are set to 1 1.2  , 2 0.82  ,

and 3 0.67  data objects per second, such that the stream imposes a medium to high

load on each site. The application delay sensitivity parameter is set to 1.5  (highly

 150

sensitive), and false alarm to miss ratio to 0.2i  for each classifier, as this corresponds

to approximately the equal error rate region when the entire chain is used to filter

speaker 1 data.

6.8.2 Performance of Safe experimentation in Static Environments

We configured the operating points (thresholds) of the chain of 3 speech classifiers

based on different classifier service rates and different application delay sensitivities.

Given a source stream arrival rate close to 1, the highly loaded scenario involves

classifier service rates of 1 1  , 2 0.45  , and 3 0.2  , while the low load scenario

involves service rates 1 2  , 2 1.4  , and 3 1  . High and low delay sensitivities are

set at 5  and 2  respectively, and false alarm to miss ratio for each classifier is

set to 0.5i  . The results are shown in Table 20 for synthetic data and Table 18 for the

real speech test data. In our safe experimentation solution, we used a local search

Gaussian random variable with variance that decayed on the order of  21/O t , where t

is the iteration number. An approximate global maximum is also obtained by brute force

sampling over 64000 joint configurations of the 3 classifiers. The local utility-based

distributed algorithm is also compared. Finally, to show the gain achieved by the

proposed algorithms, we considered an algorithm that simply maximizes the quality of

classification for each SDO, and a probabilistic load shedding scheme [112] [113] is

discard data if the average load exceeds moderately high levels (e.g. 0.6).

 As can be seen from the results for both synthetic data and real speech data, the safe

experimentation with random local search algorithm greatly outperforms the local

utility-based distributed algorithm, which generally outperforms the probabilistic load

shedding scheme. Note that the safe experimentation with random local search actually

converges to a higher utility value than the approximate global maximum for synthetic

data, since the global maximum approximation is discretized (albeit finely). In

particular, it can be seen from Figure 41 that our algorithm uses less than 1000 iterations

to find solutions that are almost as good if not better than the best possible configuration

after uniformly quantizing the space with 64000 discrete points! On the other hand, safe

 151

experimentation alone would have required on average at least 64000 iterations to find

the best possible discrete configuration (See Section 6.5.1.).

Table 17 Performance comparison for synthetic data, normalized to the global maximum.

 shedding local utility safe exp. (1000 iterations) approx. global max

low load, low delay-sensitivity 0.1259 0.5806 0.9789 1.0000

high load, high delay-sensitivity 0.2701 0.5776 0.9999 0.9816

Table 18 Performance comparison for speech data test set.

 shedding local utility safe exp. (1000 iterations) approx. global max

low load, low delay-sensitivity 0.0900 0.0814 1.0000 0.9715

high load, high delay-sensitivity 0.0283 0.0893 1.0000 0.9556

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

-4

iterations

u
ti
li
ty

Performance on synthetic data, high load

approximate optimal

safe experiment

distributed

load shedding

(a)

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5
x 10

-3

iterations

u
ti
li
ty

Performance on synthetic data, low load

approximate optimal

safe experiment

distributed

load shedding

(b)

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

-4

iterations

u
ti
li
ty

Performance on real speech data

approximate optimal

safe experiment

distributed

load shedding

(c)

Figure 41 Comparison of utility versus iteration for load-shedding, distributed, and safe

experimentation algorithms under: (a) synthetic data, low load and low delay-sensitivity, (b)

synthetic data, high load and high delay-sensitivity, (c) the real speech data stream. The exploration

rates in these experiments were set to 1/ t .

 Secondly, we analyzed the adaptation time for our proposed experimentation and

local search algorithm using the speech test data. In particular, we considered the cases

where each classifier experiments with probability 1/t , 31/ t , and /t rt , where r

indicates the approximate number of explorations performed at the beginning. Some

sample curves are shown in Figure 42 to highlight the rate of adaptation. In particular,

note that the exploration rate is very low with 1/t and is insufficient for finding the

global optimal utility. On the other hand, using 31/ t , which satisfies the minimal

exploration rate condition in Theorem 2, is sufficient for finding the global optimal

point, but the exploration rate decays very slowly, and even up to the 1000
th

 iteration.

Finally, for /50tt (as shown in Figure 42c), frequent exploration is performed during the

first few iterations, while local search dominates the later iterations. Our experiments

 152

verify our intuition that, during the first few iterations, it is important to explore

frequently to find a good baseline configuration, while for later iterations, ―playing it

safe‖ by using local search performs better.

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

-4 Experiment probability with iteration-1

iteration

u
ti
li
ty

approximate optimal

safe experiment

distributed

load shedding

(a)

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

-4 Experiment probability with iteration-1/3

iteration

u
ti
li
ty

approximate optimal

safe experiment

distributed

load shedding

(b)

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

-4 Experiment probability with iteration-1/3

iteration

u
ti
li
ty

approximate optimal

safe experiment

distributed

load shedding

(c)

Figure 42 Comparison of adaptation times for exploration rates (a) 1/t , (b) 31/ t , and (c) /50tt .

0 100 200 300 400 500 600 700

0

0.5

1

1.5

2

2.5

3

3.5

x 10
-4

iteration

u
ti
lit

y

Performance under a nonstationary, dynamic environment

safe experiment

distributed

Figure 43 Dynamic adaptation results of Safe-Experimentation with exploration rate /50tt for non-

stationary streams. Vertical lines indicate the arrival of new stream characteristics.

 In Figure 43, we show that a quickly decaying exploration rate (i.e. /50tt) is in fact a

good heuristic for non-stationary streams. The vertical lines in the figure indicate when

the stream is replaced by new source characteristics. To simulate a non-dynamic

environment, the new source stream characteristics are chosen randomly by varying the

number of samples selected from each speaker in the test data uniformly between 5 and

30. The interarrival times for each new stream is also uniformly distributed between 50

and 100 iterations. Note that in most cases, a high utility point can be found in very few

iterations due to early exploration.

 153

 However, note that even in this simulation, the dynamics vary quite slowly. The safe

experimentation algorithm would not be able to cope with stream characteristics that

change significant during every time interval, as we will demonstrate in the following

section.

6.8.3 State Space, Algorithms, and Rules used in Simulations under Dynamics

In our experiments, we use the following state space quantizations and algorithms listed

below:

 State space: In our experiments, we associate four states 1 2 3 4, , ,S S S S with different

levels of ―minimum‖ utility given by 0 , 46 10 , 31 10 , and 31.4 10

respectively. Note that the utilities are small due to the delay penalty factor, as well

as the low a priori probability of speaker 1 stream data. The ―minimum‖ utility levels

merely determines bounds for being in each state and are not regarded as the average

utilities estimated in each state. Furthermore, the state space can be divided into local

states for each classifier that capture different ranges of local utilities. We used a low

state 0 and a high state 0.1 for the local utilities of each classifier.

 Algorithms: The algorithm space consists of 4 algorithms modified from the solution

proposed in [153]. Algorithm 1A randomly chooses a new configuration for the

classifier. 2A samples a random configuration near its current best (or baseline)

configuration, and if the utility increases with the new configuration, sets the new

baseline configuration to the new configuration. Additionally, we use two algorithms

3 4,A A to perform random experimentation in low FP (below the equal error rate

configuration) and high FP (above the equal error rate configuration) regions of

each classifier.

We will compare 3 different types of rules-based approaches.

 The first approach (Experimentation) involves a single fixed (but fairly efficient)

rule, which performs algorithm 1A when the system utility is below a threshold

(47 10), and algorithm 2A otherwise. This approach is very similar to the one

 154

introduced for static environments, and has the lowest complexity of all the

approaches.

 The second approach (Small Rule Space) uses a state space consisting of the 4

different levels of minimum utility, and a centralized algorithm that allocates

identically to each and every classifier, one of the 4 algorithms. To map each state to

an algorithm, 8 heuristic rules are used. SPERO is used to determine the optimal

steady state rule.

 The third approach (Distributed/Large Rule Space) uses a large state space with 4

levels of utility, as well as 2 levels of local utilities for each classifier, totaling 32

states. Due to the high complexity and long convergence time of the centralized

approach, we use decomposition by configuring each classifier independently using

the 4 algorithms, leading to a total of 34 64 possible algorithms. Finally, we

consider 512 decomposable pure rules, where the rule space is a cross product

between 8 local rules at each classifier. Note that the actual rule space at each

classifier is similar to the second approach (8 states, 4 algorithms, 8 rules), although

the combined centralized rule space is huge. SPERO is used at each classifier

independently to learn the optimal local rule.

6.8.4 Comparison of Algorithms under Different Levels of Dynamics

In Figure 44, we display the average utilities achieved over the first 10000 time intervals

of SPERO under different rates of change (given in Subsection 6.8.1). We discovered

that the average performance of the first approach (experimentation) decreases as the

rate of change increases, since changing stream characteristics requires the

experimentation approach to randomly sample different points frequently when the

utility level drops below the fixed threshold. In a highly dynamic case (e.g. rate of

change equal to 12), the experimentation approach obtains an average utility of

48.88 10 . On the other hand, the second approach (small rule space) had a poorer

average utility of only 47.42 10 . The poor performance can be attributed to the poor

choice of rules, where out of the 8 rules, the rule that corresponds to the first approach

 155

actually outperforms all other rules. However, because SPERO performs random

selection out of all 8 rules, and requires many iterations to converge, the average

performance is poorer during the first 10000 iterations. Finally, we discovered that in the

third approach (large rules-space), which we implemented in a distributed fashion across

classifiers due to its high complexity, the rule space contained a convergent rule that

significantly outperformed the optimal rule in the first two approaches. The average

utility for the first 10000 iterations was 31.13 10 , about 27% higher than the

experimentation approach. This is because the decomposed rule enables each classifier

to model better the dynamics in its own local environment, which has a greater effect on

its individual performance and delay.

 On the other hand, for static or near static environments, we discovered that

approaches 2 and 3 usually performed worse than experimentation. This is because, in

slowly time-varying environments, the optimal rule in both the small and large rule

spaces is in fact the experimentation rule. However, because of their slower learning

rates, approaches 2 and 3 tend to perform more poorly during the first 10000 iterations

while trying to discover (and reinforce) the experimentation rule.

0 2 4 6 8 10 12
5

10

15

20

25

30

Rate of change in stream APP

U
ti
lit

y

Experimentation

Small Rule Space

Large/distributed Rule Space

Figure 44 Comparison of utilities achieved by different rule spaces under different levels of

dynamics.

 156

Table 19 Average confusion matrices per time interval for a dynamic stream.

Approach Experimentation Small Rule Space Large Rule Space

 Lbled Spk 1 Lbled Spk 2-8 Lbled Spk 1 Lbled Spk 2-8 Lbled Spk 1 Lbled Spk 2-8

True Spk 1 4.21 13.54 10.15 7.93 11.95 6.12

True Spk 2-8 11.06 153.66 29.97 126.21 9.58 146.61

Average Delay 3.96 secs. 6.51 secs. 3.42 secs.

Table 20 Probabilities of using local rules by each classifier for the distributed large rule space.

Classifier Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Rule 8

1 0.05% 88.6% 0.01% 0.49% 8.71% 0.96% 0.02% 1.11%

2 0.64% 0.06% 4.29% 3.80% 0.07% 91.0% 0.01% 0.18%

3 85.6% 0.01% 0.32% 12.0% 1.69% 0.12% 0.06% 0.28%

 To provide better intuition about the utilities achieved by each approach, we

constructed a table of the confusion matrices and delays (see Table 19 and Figure 45)

under a very dynamic environment (rate of change = 12). Note that the labeled speaker

2-8 simply refers to data that has been dropped (i.e. misses and true negatives). The

misses can be attributed to both classifier inaccuracy, as well as discarding of low

confidence data to ensure that correctly classified data is received with low delay. From

Table 19, it can be seen that the experimentation approach performs very poorly, since

whenever it obtains a configuration with high utility, the stream dynamics change within

the next few time intervals, forcing the solution to perform random experimentation

again. On the other hand, the small rule space had a better confusion matrix, but the

utility suffered from the long end-to-end processing delay and high delay variance. This

is due to periodically choosing suboptimal rules that operate at high false alarm regions

even when the APP is high. Hence, the experimentation approach achieved a higher

delay-sensitive utility than the small rule space. Finally, the large/distributed rule space

provided the best performance as well as the lowest average delay and delay variance.

As indicated by Table 20, each classifier converges toward a different local rule that is

highly dependent on its accuracy and resource constraints. (In Table 20, rule 2

corresponds to approach 1, while other rules are mixtures of local search and random

configurations in low and high false alarm regions.) Importantly, Table 20 shows that by

decomposing 512 rules into 8 local rules at each classifier, SPERO converges quickly to

a rule that performs well under dynamics.

 157

0 10 20 30 40 50 60 70 80 90 100
2

4

6

8

10

12

14

iterations x 100

D
e
la

y
 (

s
e
c
o
n
d
s
)

Average delays

Large/distributed Rule Space

Experimentation

Small Rule Space

Figure 45 Comparison of delays for the 3 approaches. Each point is an average delay over 100

intervals.

6.8.5 Evaluation of the Markov Assumption for Algorithms

An important consideration is whether system dynamics are accurately modeled by the

algorithmic Markov process given in Definition 1. To determine the sufficiency of

information captured by the last state, we calculated the state transition probabilities for

each algorithm conditioned on only the last state, versus the state transition probabilities

conditioned on the last 2 states. The similarity between distributions obtained based on

the last state, and the last two states, were evaluated for each algorithm using the average

absolute difference between the estimated state transition probabilities. In other words,

we evaluated a distance metric    1 1 1 1 2
1

Pr | , Pr | , ,
t

t t t t t t ts
s s a s s a s

M     
 

 for

each 1ta  and 2ts  . We discovered that for the centralized state space partitioned into 4

bins based on utilities, the (first-order) Markov model and the second order Markov

model had transition probabilities that differed element-wise by no more than 0.04. This

shows that the first-order Markov model is sufficient in capturing most of the

information about the past two states, which provides higher confidence in the accuracy

of Markov modeling for algorithms for the distributed classification system.

 158

6.8.6 Evolution of a New Rule

In this section, we used EFER to evolve a new rule from the large/distributed rule space.

We compared the performance of our evolved rule with the convergent distributed rule

in the previous section and discovered that the average performance of the evolved rule

was about 10% worse than that of the best prescribed rule in the large/distributed rule

space. However, as shown in Figure 46 for a highly dynamic environment, EFER

provides smaller utility fluctuations and guarantees a better minimum utility with high

probability.

 This phenomenon can be explained by how SPERO and EFER updates rules. Recall

that in SPERO, the mixed rule was updated by reinforcing the pure rule with the highest

steady state performance. Such a rule may perform well in certain states, but poorly in

other states, since transients are ignored in this approach for the sake of maximizing the

average performance. However, the evolved rule, which chooses an algorithm based on

the expected performance in the next time interval, is more likely to discover a rule that

performs well in each state, although not necessarily the rule that provides the optimal

steady state performance.

Table 21 Average distance between a first order and second order Markov model.

State visited 2 intervals ago Avg. absolute distance compared to 1
st
 Order Markov Model

1 0.0032

2 0.0373

3 0.0353

4 0.0362

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5
x 10

-3

iteration x 100

u
ti
lit

y

Orig. Best Rule

Evolved Rule

Figure 46 Comparison of utility achieved by the best rule in the original space, and the evolved rule.

 159

 Finally, note that the complexity of EFER is much less than SPERO, since EFER is

not required to compute the eigenvalues for every pure rule matrix. Rather, it performs a

single matrix-vector multiplication per algorithm, and chooses the best algorithm for the

next time interval. From our experiments, the running time for determining the rule to

reinforce during each iteration in SPERO was approximately 14.0ms, while the running

time to determine the algorithm to reinforce in EFER was only 5.1ms. The savings

become even more significant when the number of rules in SPERO becomes larger.

6.9 Conclusions

In this chapter, we proposed multi-agent learning solutions that fit within a rules-based

framework for reconfiguring distributed classifiers for a delay-sensitive stream mining

application with dynamic stream characteristics. By gathering information locally at

each classifier and estimating local utility metrics, the framework employs rules based

on models of the global system utility and transition probabilities between different

states. We showed that the optimal rule can be chosen from a set of prescribed rules

while accurately measuring parameters related to stream dynamics. Furthermore, we

proposed a decomposition approach for reducing the complexity of the framework.

Finally, we proposed a method to evolve a new rule based on prescribed rules. Using a

chain of speech classifiers, we validated that large gains could be achieved by the

proposed rules-based framework.

 Note that while we used the classifier chain configuration problem as a key

application to show the advantages of using rules to choose algorithms, the rules-based

framework is not specific to the distributed stream mining problem and can be applied to

various other dynamic and informationally-distributed systems. Importantly, when

system dynamics are unknown, and intuition is insufficient for choosing the best

algorithm to use for reconfiguration, the proposed methodology enables the system to

adapt by learning the best algorithms to be played under different system conditions.

 160

CHAPTER 7

Summary, Broader Impact, and Future Directions

To address the many challenges that arise from designing systems capable of

efficiently supporting dynamic and/or distributed multimedia applications, this thesis

proposes a systematic resource management framework that incorporates modeling,

informationally-decentralized resource allocation mechanisms, and multi-agent

learning solutions to optimally and fairly allocate and configure resources for

multimedia applications. Here, we summarize several key insights obtained from this

thesis.

 First, modeling the dynamic behavior of applications (i.e. their time-varying

utilities and workloads) is essential for improving the system performance, since this

enables us to provide analytical estimates (bounds) for the resulting multimedia

quality and the required computational costs for different algorithms configurations

and implementations and, based on these estimates, predict and select the optimal

application and system setting. For instance, in Chapter 2, we propose the first ever

reported information-theoretic model relating rate, distortion, and complexity (R-D-

C) for wavelet video compression. (Using the same methodology, such models can

also be computed for other multimedia applications and algorithms.) Developing such

R-D-C methods is important for existing and emerging multimedia streaming

applications, where the transmitter or server needs to remotely determine the optimal

configuration in terms of quality, rate and complexity (e.g. power utilization) that

needs to be transmitted to the receiver. Since the video characteristics, channel

conditions, and power constraints can change dynamically, the R-D-C model should

be determined on-the-fly, even while the video is being encoded [11]. We show that

our predictive approach to cross-layer optimization between applications and systems

 161

can significantly outperform existing solutions for joint application-system

optimization, which are based on reactive (feedback) solutions.

 Second, the information-theoretic modeling approach proposed in Chapter 2 can

be used to classify sequences and frame types according to source characteristics (and

hence, according to their complexity estimates). This differs from existing solutions

for modeling complexity which rely on empirical models, which are constructed

based on fitting experimental data, which assumes that the complexity requirements

for video sequences do not change significantly over time or are known a priori. As

discussed in Chapter 3, this classification scheme enables the encoder to transmit

control messages that specify to the decoder which class of complexity distributions

to use for predicting the application workload, thus enabling the decoder device to

proactively adapt the system resource scheduling policies to optimize the

performance of the application. The energy-saving benefit of using multiple classes of

jobs to model and forecast the future complexity of various tasks, and based on the

forecasted complexity, to determine the optimal voltage level, was highlighted in

Chapter 3, where we proposed two online DVS algorithms that achieved near optimal

performance.

 Third, quality-complexity models enable us to develop Pareto efficient and fair

resource allocation solutions for multiple delay-critical multimedia tasks running on

the same system. Importantly, the principle of designing application-aware objective

functions (e.g. social welfare) for resource allocation relies on the fact that the

applications can accurately model their quality-complexity tradeoffs.

 Fourth, we demonstrate that a novel, decentralized resource management scheme

can be constructed to achieve intended centralized resource allocation solutions, even

when the autonomous applications are unwilling to reveal their private internal

parameters, algorithms, and quality-complexity functions. In chapter 4, the

decentralized algorithms are implemented by exchanging ―tax functions‖ and

resource demands between the system resource manager and the applications. The tax

functions are messages designed specifically by the resource manager to compel tasks

to conform to a variety of intended resource allocation solutions, including (but not

limited to) maximizing social welfare, minimizing system energy consumption, and

 162

performing workload balancing on multiple processors. An important feature of tax

functions is that they do not require the resource manager to know each application's

utility-resource function, but can nevertheless be adapted to produce the intended

results.

 Fifth, stochastic complexity models can also provide improved methods for

estimating and optimizing the performance of informationally-distributed systems.

For example, we used a stochastic model to construct delay-sensitive utility functions

for stream mining across distributed, autonomous sites (Chapter 6). The modeled

utility function could be decomposed into a product of local utility functions, which

could then be locally estimated, calculated, and exchanged in order to obtain an

estimate of the global utility function. Without this decomposition, a large amount of

coordination and information sharing would be required between the various sites,

which might not be feasible given the proprietary restrictions and

communications/processing overhead.

 One final insight is that by extending the well-known Markov Decision Process

(MDP), we can develop a rules-based framework that performs well in both static and

dynamic environments. In particular, the rules-based approach differs from

conventional MDP approaches in that the best performance that can be achieved by

MDP in a static environment corresponds to a quantized action, which depending on

the quantization method, can be significantly worse than the optimal convergent

solution of an algorithm. The rules based approach, on the other hand, can choose the

algorithm that optimizes performance in static environments (e.g. safe

experimentation and local search in Chapter 6), while also choosing different

algorithms to reconfigure classifiers in dynamic environments and guaranteeing high

average performance like MDP.

 Importantly, future multimedia systems will need to support an increasing number

of concurrent multimedia tasks. Furthermore, new multimedia applications, such as

multi-view video coding, require significantly more computational complexity than

the previous generation of multimedia applications [80]. Likewise, as distributed

multimedia applications such as real-time video streaming and online gaming become

more popular, optimization techniques will be required to ensure that not only

 163

bandwidth, but also processing resources, are appropriately scheduled and distributed

across sites in order to maximize user experience. The analytical methods proposed in

this framework can have a broad impact in shaping the design of future multimedia

systems by providing efficient real-time scheduling and resource allocation solutions

for low-power and distributed systems.

 The research described in this thesis can be extended in at least three directions.

First, the proposed framework, mechanisms developed and statistics obtained from

our system evaluations can impact both computer system developers and multimedia

service providers. By having analytical models for application utility and complexity

tradeoffs, these service providers can provide fair and efficient resource allocation

solutions for multi-user environments.

 Second, the proposed paradigm can catalyze a shift in multimedia software and

systems research based on economics principles. For instance, powerful systems or

devices can configure themselves as resource brokers that can make money or acquire

other services in exchange for providing their system resources. In order for systems

to determine the best prices for their services, they need to be able to accurately

model the tradeoffs between resource costs and application utilities (i.e. willingness

to pay), or at least, to be able to achieve their intended goals in a decentralized

manner.

 A third and more theoretical extension of this research involves determining how

various parts of the framework should be jointly and automatically configured. For

example, what is the minimum information exchange required from sites in order to

optimize the performance of various distributed application? Implicit in such a

question is knowing the underlying modeling approach, which can yield different

modeled parameters that can be exchanged between applications or sites (e.g. utility

metrics, processing delays, etc.). While the thesis discusses how to utilize each

component for particular problems and solutions (e.g. stochastic modeling for DVS),

a complete set of rules for determining how to jointly model, exchange information,

and employ learning solutions for different types of multimedia applications and

systems was not determined. Such rules can further guide the design of future

dynamic, distributed, and highly complex multimedia systems.

 164

Appendix A: Proof of Proposition 1

Proof: To show that the decentralized task objective functions are at equilibrium at

the optimal point of the SWMEM objective function (95), and that the equilibrium

point is unique, we use the Karush-Kuhn-Tucker (KKT) conditions for optimality.

Since the SWMEM function is concave, the KKT conditions for optimality exist at a

unique point, where for some  1 2, ,..., 0I    


, the following conditions hold:

  act

tot
1 1

0

0, 1,...,

I I

i i i
i i

i i

Q x E x

x i I





  


              

 

 
x x



. (145)

Likewise, the KKT conditions for the task level optimization using the EEM tax

function (96) are:

   act

tot
1

0

0
i i

I

i i i i i
i i i x x

i i

Q x E x d
x x

x





 


            




. (146)

 For all tasks to be at an equilibrium point for the decentralized algorithm, the

perceived change in demand for each task i should be 0, and thus based on (97), the

perceived demand from other tasks is i l
l i

d x



  . Hence at equilibrium, we have the

following condition:

     

 

act act
tot tot

act
tot

1 1

i i i i i i i i

i i i i i i i i l i
i i i ix x x x x x l i x x

I I

i i i i i
i i

Q x E x d Q x E x x
x x x x

Q x E x

 



   





    

  

                 

              



 
x x

.(147)

Since the intersection of all KKT conditions for the local objective functions at

equilibrium (147) is the same optimality condition for the global system objective

(145), convergence of the decentralized algorithm (EEM) guarantees an optimal

solution to the global objective function (SWMEM). ■

 165

Appendix B: Proof of convergence of SPERO

Proposition 11: For an algorithmic Markov system, SPERO converges to the optimal

rule in steady state.

Proof: Note that the average utility in each state  mQ S , and the unknown state

transition probabilities, must be perfectly estimated for each rule and state to

determine the optimal rule. Since performing each state transition infinitely many

times when t   implies that each state is visited (and hence the utility is

measured) infinitely many times, we need only prove perfect estimation for state

transitions.

We use the worst-case lower bound for the number of times each rule is played in

each state to prove that each feasible state transition occurs infinitely many times as

t   . Consider the Markov chain given in Figure 47, where for a pure rule 1R ,

there exists a random walk from state mS to 1mS  and 1mS  with non-zero

probabilities (except for 1S and MS). For all other pure rules, algorithms are chosen

such that state transitions always lead from mS to 1mS  , until the state reaches MS .

Furthermore, we assume the relation      1 2 ... MQ S Q S Q S   , such that the

solution reinforces rules leading away from 1S . This is the worst case scenario for

updating the transition probabilities of 1S .

 Let H be the total number of pure rules. Suppose that at time t , all other rules

have been reinforced a total of t times, but 1R has not been reinforced, i.e. 1 1c  .

Figure 47 Worst case Markov chain for updating  1Q S , random walk on a line.

Rule 1R

1S 2S MS … 3S

1 1 1

All other rules

11

1S 2S MS …
2p

3S

1 21 p 1 Mp31 p

3p 4p Mp

11 Mp 

 166

The worst case probability of playing 1R at time t is if all other rules have been

reinforced equally, i.e.  2 3 ... / 1Hc c c t H     . In this case, rule 1R is played

with probability     1 1/ 1 1 / 1MH t H   r . The probability of transitioning

from mS to 1S in 1M  steps, and playing rule 1R in state 1S (hence playing 1R M

consecutive times), can be bounded below by:

       

     

     

     

 

1 1 1 1 1 1 2 1

1

2 0

, | 1 ... 2

1

1 1 / 1

1

1 1 1 / 1

1

2 1 1 / 1

1 1
2 1 1
1

M M M

M M

m M
m m

M

M

M

M

M

p S S R t t p t p t M p

p
H t m H

C
H t M H

C
H t M H

H
C

H t M

C
t M





 

          

 
   

           

          

       




 

r r r r

. (148)

where C and C  are constants, and the inequality in the fourth line is due to the fact

that      1 / 1 1MH t m H    . Since from any other starting state transitioning to

1S in less than M steps has higher probability than (148), we can also bound the

average number of plays of rule 1R in 1S for every M time intervals by (148).

Likewise, the average number of visits to any other state (e.g. 2S) starting from any

initial state, times the probability of using any rule in the final state, is also bounded

below by (148).

 Thus, the total number of updates for transition probability pairs for any state mS

and rule hR as t   can be bounded below by:

  

 
ˆ 0

lim
ˆ

1 1 1
...

2 3

mSt
t

C
E N t

tM M

C
M M M











     


, (149)

where the right hand side is given by recalculating the final inequality of (148) every

M time intervals, starting with 0t  . ■

 167

Bibliography

[1] J. Markhoff, ―Intel Prototype may herald a new age of processing‖, New York

Times, February 12, 2007, p. C9.

[2] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, ―Overview of the

H.264/AVC video coding standard,‖ IEEE Trans. on Circ. Syst. for Video

Technol., vol. 13, no. 7, July 2003.

[3] J.-R. Ohm, "Advances in scalable video coding," Proc. of the IEEE, vol. 93, pp.

42-56, Jan. 2005.

[4] D. G. Sachs, S. V. Adve, and D. L. Jones, ―Cross-layer adaptive video coding to

reduce energy on general purpose processors,‖ Proc. IEEE Int. Conf. on Image

Proc., ICIP 2003, vol. , pp. 25-28, Sept. 2003.

[5] M. Horowitz, A. Joch, F. Kossentini, and A. Hallapuro, ―H.264/AVC baseline

profile decoder complexity analysis,‖ IEEE Trans. on Circ. and Syst. for Video

Tech., vol. 13, no. 7, pp. 704-716, July 2003.

[6] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira, T.

Stockhammer, and T. Wedi, ―Video coding with H.264/AVC: Tools,

performance, and complexity,‖ IEEE Circ. and Syst. Mag., vol. 4, no. 1, pp. 7-

28, Jan. 2004.

[7] J. Valentim, et al, ―Evaluating MPEG-4 video decoding complexity for an

alternative video verifier complexity model‖, IEEE Trans. on Circ. and Syst. for

Video Tech., vol. 12, no. 11, pp. 1034-1044, Nov. 2002.

[8] D. S. Turaga, M. van der Schaar, B. Pesquet-Popescu, ―Complexity-scalable

motion compensated wavelet video encoding,‖ IEEE Trans. on Circ. and Syst.

for Video Tech., vol. 15, no. 8, pp. 982-993, Aug. 2005.

[9] W. Yuan and K. Nahrstedt, ―Energy-efficient CPU scheduling for multimedia

applications,‖ ACM Trans. on Computer Syst., Vol. 24, Issue 3, Aug. 2006.

[10] M. Wang, M. van der Schaar, ―Operational rate-distortion modeling for wavelet

video coders,‖ IEEE Trans. on Signal Proc., Vol. 54, Issue 9, Sept. 2006.

[11] M. van der Schaar and Y. Andreopoulos, ―Rate-distortion-complexity modeling

for network and receiver aware adaptation,‖ IEEE Trans. on Multimedia, vol. 7,

no. 3, pp. 471-479, June 2005.

[12] Y. Andreopoulos and M. van der Schaar, ―Complexity-constrained video

bitstream shaping,‖ IEEE Trans. on Signal Processing, to appear, preprint

available at: www.ee.ucla.edu/~yandreop .

[13] Z. He, and S. K. Mitra, ―A unified rate-distortion analysis framework for

http://www.ee.ucla.edu/~yandreop

 168

transform coding,‖ IEEE Trans. on Circ. and Syst. for Video Technol., vol. 11,

no. 12, Dec. 2001.

[14] H.-M. Hang and J.-J. Chen, ―Source model for transform video coder and its

application – Part I: Fundamental theory,‖ IEEE Trans. on Circ. and Syst. for

Video Technol., vol. 7,no. 2,pp. 287-298,Apr. 1997.

[15] Z. He, Y. Liang, L. Chen, I. Ahmad and D. Wu, ―Power-rate-distortion analysis

for wireless video communication under energy constraints,‖ IEEE Trans.

Circuits and Syst. for Video Technol., vol. 15, no. 5, pp. 645-658, May 2005.

[16] M. Flierl and B. Girod, ―Video coding with motion-compensated lifted wavelet

transforms,‖ Signal Processing: Image Communication, vol. 19, no. 7, pp. 561-

575.

[17] B. Girod, ―Efficiency analysis of multihypothesis motion-compensated

prediction for video coding,‖ IEEE Trans. on Image Proc., vol. 9, no. 2, pp. 173-

183, Feb. 2000.

[18] K. Stuhlmuller, N. Farber, M. Link and B. Girod, ―Analysis of video

transmission over lossy channels,‖ IEEE Journal on Select. Areas in Comm., vol.

18, no. 6, pp. 1012-1032, June 2000.

[19] W. Ding and B. Liu, ―Rate control of MPEG video coding and recording by rate-

quantization modeling,‖ IEEE Trans. on Circ. and Syst. for Video Technol., vol.

6, pp. 12-20, Feb. 1996.

[20] D. Taubman, M. W. Marcellin, JPEG 2000-Image Compression Fundamentals,

Standards and Practice, Kluwer Academic Publishers, 2002.

[21] P. Schelkens, A. Munteanu, J. Barbarien, M. Galca, X. Giro-Nieto, J. Cornelis,

―Wavelet coding of volumetric medical datasets,‖ IEEE Transactions on

Medical Imaging,vol. 22,no. 3,pp. 441-458,Mar. 2003.

[22] R. Shukla, P. L. Dragotti, M. N. Do, and M. Vetterli, ―Rate-distortion optimized

tree-structured compression algorithms for piecewise polynomial images,‖ IEEE

Trans. on Image Proc., vol. 14, no. 3, Mar. 2005.

[23] P. Chen and J. W. Woods, ―Bidirectional MC-EZBC with lifting

implementation,‖ IEEE Trans. on Circ. and Syst. for Video Technol., vol. 14, no.

10, pp. 1183-1194, Oct. 2004.

[24] A. Munteanu, J. Cornelis, G. Van der Auwera and P. Cristea, ―Wavelet image

compression – the quadtree coding approach,‖ IEEE Trans. on Information

Technol. in Biomed., vol. 3, no. 3, pp. 176-185, Sept. 1999.

[25] C. Chrysafis, et al, ―SBHP – a low complexity wavelet coder,‖ Proc. IEEE

Internat. Conf. on Acoust. Speech and Signal Process., ICASSP ‘00, vol. 6, pp.

2035-2038, June 2000.

[26] J. Xu, Z. Xiong, S. Li and Y. Zhang, ―Three-dimensional embedded subband

coding with optimized truncation (3-D ESCOT),‖ Appl. Comput. Harmon. Anal.,

vol. 10, pp. 290-315, 2001.

 169

[27] J. Liu, P. Moulin, ―Information-theoretic analysis of interscale and intrascale

dependencies between image wavelet coefficients,‖ IEEE Trans. on Image

Processing, vol. 10, pp. 164701658, Nov., 2001.

[28] M. K. Mihçak, et al, ―Low-complexity Image Denoising based on Statistical

Modeling of Wavelet Coefficients,‖ IEEE Signal Processing Letters, vol. 6, no.

12, pp. 300-303, 1999.

[29] S. Mallat, F. Falzon, ―Analysis of low bit-rate image transform coding,‖ IEEE

Trans. on Signal Processing, vol. 46, pp. 1027-1042, Apr., 1998.

[30] Y. Andreopoulos, A. Munteanu, J. Barbarien, M. van der Schaar, J. Cornelis and

P. Schelkens, ―In-band motion compensated temporal filtering,‖ Signal

Processing: Image Communication, vol. 19, no. 7, pp. 653-673, Aug. 2004.

[31] T. Rusert, K. Hanke, and J. Ohm, ―Transition filtering and optimization

quantization in interframe wavelet video coding,‖ VCIP, Proc. SPIE, vol. 5150,

pp. 682-693, 2003.

[32] P. Borwein, T. Erdelyi, Polynomials and polynomial inequalities, Springer, New

York, 1995.

[33] C. Hummel, ―Chapter IV: The Squeezing Theorem,‖ in: Gromov's Compactness

Theorem for Pseudo-Holomorphic Curves, Spinger, Series: Progress in

Mathematics, vol. 151, 1997.

[34] D. Marpe, et al, ―Context-based adaptive binary arithmetic coding in the

H.264/AVC video compression standard,‖ IEEE Trans. on Circuits and Systems

for Video Technology, Vol. 13, Issue 7, July 2003.

[35] C. Chrysafis, A. Ortega, ―Efficient context-based entropy coding for lossy

wavelet image compression,‖ in Proc. IEEE Data Compression Conference,

Snowbird, UT, 1997, pp. 221-230.

[36] Y. Andreopoulos and M. van der Schaar, "Adaptive linear prediction for

resource estimation of video decoding," IEEE Trans. on Circuits and Systems for

Video Technology, to appear.

[37] E. Lam, J. Goodman, ―A Mathematical Analysis of the DCT Coefficient

Distributions for Images,‖ IEEE Transactions on Image Processing, Vol. 9,

Issue 10, Oct. 2000.

[38] Intel Inc. ―Intel XScale Technology,‖ Available:

http://www.intel.com/design/intelxscale

[39] AMD Inc. ‖AMD PowerNow!TM Technology Platform Design Guide for

Embedded Processors,‖ Available: http://www.amd.com/epd/processors

[40] L. Benini, G. De Micheli. Dynamic Power Management: Design Techniques and

CAD Tools. Kluwer Academic Publishers, Norwell, MA, 1997.

[41] P. Pillai, K. Shin. ―Real-Time Dynamic Voltage Scaling for Low-Power

Embedded Operating Systems.‖ Proceedings of the eighteenth ACM symposium

on Operating Systems, 2001.

http://www.amd.com/epd/processors

 170

[42] V. Raghunathan, C. Pereira, M. Srivastava, and R. Gupta. ―Energy aware

wireless systems with adaptive power-fidelity tradeoffs,‖ IEEE Transactions on

VLSI Systems , February 2005.

[43] W. Yuan, K. Nahrstedt, S. Adve, D. Jones, and R. Kravets. ―GRACE: Cross-

layer Adaptation for Multimedia Quality and Battery Energy,‖ IEEE

Transactions on Mobile Computing, 2006.

[44] Y. Zhu, F. Mueller. ―Feedback EDF Scheduling Exploiting Dynamic Voltage

Scaling,‖ Proceedings of the 11th international conference on Computer

Architecture, 2004.

[45] D. H. Albonesi, R. Balasubramonian, S. Dropsho, S. Dwarkadas, E. G.

Friedman, M. Huang, V. Kursun, G. Magklis, M. L. Scott, G. Semeraro, P. Bose,

A. Buyuktosunoglu, P. W. Cook, S. E. Schuster. ―Adaptive Processing:

Dynamically Tuning Processor Resources for Energy Efficiency‖, IEEE

Computer, December 2003

[46] S. Irani, G. Singh, S. K. Shukla, and R. K. Gupta. ―An overview of the

competitive and adversarial approaches to designing dynamic power

management strategies,‖ IEEE Trans. on Very Large Scale Integ., vol. 13, no.

12, pp.1349-1362, Dec. 2005.

[47] Kihwan Choi, Karthik Dantu, Wei-Chung Cheng, Massoud Pedram. ―Frame-

based dynamic voltage and frequency scaling for a MPEG decoder.‖ ICCAD

2002, pp. 732-737

[48] H. Aydin, R. Melhem, D. Mosse, P. Mejia-Alvarez. ―Power-aware Scheduling

for Periodic Real-time Tasks,‖ IEEE Trans. on Computers, Vol. 53, Issue 5, May

2004.

[49] T. Pering, T. Burd, and R. Brodersen, "The simulation and evaluation of

dynamic voltage scaling algorithms," in Proc. Int'l Symposium on Low Power

Electronics and Design, pp. 76-81, Aug. 1998.

[50] W. Yuan, K. Nahrstedt. ―Practical voltage scaling for mobile multimedia

devices,‖ Proceedings of the 12th annual ACM international conference on

Multimedia, October 10-16, 2004, New York, NY, USA.

[51] A. Maxiaguine, S. Chakraborty, L. Thiele. ―DVS for buffer-constrained

architectures with predictable QoS-energy tradeoffs,‖ Proceedings of the 3rd

IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and

System Synthesis, 2005.

[52] Z. Ren, B. Krogh, R. Marculescu. ―Hierarchical adaptive dynamic power

management,‖ IEEE Trans. on Computers, Vol. 54, Issue. 4, Apr. 2005.

[53] T. Simunic, L. Benini, A. Acquaviva, P. Glynn, G. de Micheli. ―Dynamic

voltage scaling and power management for portable systems,‖ Proc. from

Design Automation Conference, 2001.

[54] J. Liu, W. Shih, K. Lin, R. Bettati, J. Chung. ―Imprecise Computations,‖

Proceedings of the IEEE, 1994.

 171

[55] M. Mesarina, Y. Turner. ―Reduced Energy Decoding of MPEG Streams,‖

Multimedia Systems, 2003.

[56] J. Shapiro. ―Embedded image coding using zerotrees of wavelet coefficients,‖

IEEE Trans. on Signal Processing, 1993.

[57] O. Boxma, W. Groenendijk. ―Waiting Times in Discrete-Time Cyclic-Service

Systems,‖ IEEE Transactions on Communications, Vol. 36, No. 2, February

1988.

[58] Teunis J. Ott. ―Simple Inequalities for the D/G/1 Queue.‖ Operations Research,

1987 INFORMS.

[59] L. D. Servi. ―D/G/1 Queues with Vacations.‖ Operations Research, 1986

INFORMS.

[60] H. Zhang, S. C. Graves. ―Cyclic Scheduling in a Stochastic Environment.‖

Operations Research, 1997 INFORMS.

[61] D. M. Sow, A Eleftheriadis. ―Complexity Distortion Theory.‖ IEEE Trans.

Inform. Theory, vol. 49, no. 3, pp. 604-608, Mar. 2003.

[62] B. Foo, Y. Andreopoulos, M. van der Schaar. ―Analytical Rate-Distortion-

Complexity Modeling of Wavelet-based Video Coders.‖ IEEE Trans. on Signal

Processing, Feb. 2008.

[63] Y. Lim, J. Kobza. ―Analysis of a delay-dependent priority discipline in a multi-

class traffic packet switching node,‖ Proc. IEEE INFOCOM, pp. 889-898, Apr.

1988.

[64] T. Ishihara, H. Yasuura. ―Voltage Scheduling Problem for Dynamically Variable

Voltage Processors,‖ in Proc. ACM ISLPED, 1998, pp. 197-202.

[65] S. Regunathan, P. A. Chou, and J. Ribas-Corbera, ―A generalized video

complexity verifier for flexible decoding,‖ Proc. IEEE International Conference

on Image Processing, vol. 3, pp. 289-292, Sept. 2003.

[66] A. Ortega, K. Ramchandran. ―Rate-distortion Methods for Image and Video

Compression,‖ IEEE Signal Processing Mag., vol. 15, issue 6, pp. 23-50, Nov,

1998

[67] J. Ohm, M. van der Schaar, J. Woods. ―Interframe Wavelet Coding—Motion

Picture Representation for Universal Scalability,‖ Signal Processing: Image

Communication 19 (2004) pp. 877-908.

[68] F. Fitzek, M. Reisslein. ―MPEG-4 and H.263 Video Traces for Network

Performance Evaluation,‖ IEEE Network, Nov.-Dec. 2001.

[69] T. Jiang, C. K. Tham, and C. C. Ko, ―An approximation for waiting time tail

probabilities in multiclass systems‖, IEEE Communications Letters, vol. 5, no. 4,

pp 175-177. April 2001.

[70] J. Abate, G. L. Choudhury, and W. Whitt. ―Exponential approximations for tail

probabilities in queues I: Waiting times‖, Operations Research, vol. 43, no. 5, pp

 172

885-901, 1995.

[71] R.G. Gallager, Discrete Stochastic Processes, Kluwer, Dordrecht, 1996.

[72] T. M. Cover and J. A. Thomas, Elements of Information Theory, New York:

Wiley, 1991.

[73] D. Gross and C. Harris, Fundamentals of Queueing Theory, New York: Wiley-

Interscience, 1997.

[74] Y. Yoo, A. Ortega, and B. Yu, ―Image subband coding using progressive

classification and adaptive quantization,‖ IEEE Trans. Image Processing, pp.

1702-1715, Dec. 1999.

[75] M. Ravasi, M. Mattavelli, P. Schumacher, R. Turney, ―High-Level Algorithmic

Complexity Analysis for the Implementation of a Motion-JPEG2000 Encoder,‖

PATMOS 2003: 440-450.

[76] M. Mattavelli and S. Brunetton. ―Implementing real-time video decoding on

multimedia processors by complexity prediction techniques,‖ IEEE Transactions

on Consumer Electronics, 44(3):760--767, August 1998.

[77] Q. Wu, P. Juang, M. Martonosi, D. Clark. ―Formal online methods for

voltage/frequency control in multiple clock domain microprocessors,‖ Proc. of

11
th

 International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2004.

[78] S. Zhang, and K. S. Chatha. Approximation algorithm for the temperature-aware

scheduling problem. Proceedings of ICCAD, 2007.

[79] R. Jejurikar, C. Pereira, and R. Gupta, ―Leakage aware dynamic voltage scaling

for real-time embedded systems,‖ Proceedings of Design and Automation

Conference (DAC), 2004.

[80] Y. Zhang, G. Jiang, W. Yi, M. Yu, Z. Jiang, Y. Kim, ―An Approach to Multi-

Modal Multi-View Video Coding,‖ Proceedings of the 8
th

 International

Conference on Signal Processing, 2006.

[81] Z. Cao, B. Foo, L. He, M. van der Schaar, ―Optimality and Improvement of

Dynamic Voltage Scaling Algorithms for Multimedia Applications,‖

Proceedings of DAC, 2008. (Nominated for best paper award)

[82] B. Foo, M. van der Schaar. ―A Queuing Theoretic Approach to Processor Power

Adaptation for Video Decoding Systems.‖ IEEE Trans. on Signal Processing,

Vol. 56, No. 1, Jan. 2008.

[83] A. Adas. Traffic Models in Broadband Networks. IEEE Communications

Magazine, Vol. 35, Issue 7, July 1997.

[84] Intel Inc. ―Intel Multi-Core Processors: Leading the Next Digital Revolution‖

Available: http://www.intel.com/technology/magazine/computing/multi-core-

0905.pdf

[85] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste. ―Project Aura:

http://www.intel.com/technology/magazine/computing/multi-core-0905.pdf
http://www.intel.com/technology/magazine/computing/multi-core-0905.pdf

 173

Towards Distraction-Free Pervasive Computing,‖ IEEE Pervasive Computing,

Volume 21, Number 2, April-June, 2002.

[86] Y. Chevaleyre, P. E. Dunne, U. Endriss, J. Lang, M. Lematre, N. Maudet, J.

Padget, S. Phelps, J. A. Rodrguez-Aguilar, and P. Sousa. ―Issues in multiagent

resource allocation.‖ http://www.doc.ic.ac.uk/˜ue/MARA/mara-may-2005.pdf.

[87] V. Poladian, J. Sousa, D. Garlan, M. Shaw. ―Dynamic configuration of resource-

aware services,‖ Proc. of the 26
th

 ICSE, 2004.

[88] V. Poladian, J. Sousa, F. Padberg, M. shaw. ―Anticipatory configuration of

resource-aware applications,‖ ACM SIGSOFT Software Engineering Notes, Vol.

30, Issue 4, July 2005.

[89] R. Rajkumar, C. Lee, J. Lehoczky, D. Siewiorek, ―A Resource Allocation Model

for QoS Management,‖ IEEE Real-Time Systems Symposium, 1997.

[90] Ghosh, S., Rajkumar, R. R., Hansen, J., and Lehoczky, J. (2003). ―Scalable

resource allocation for multi-processor QoS optimization,‖ In 23rd IEEE

International Conference on Distributed Computing Systems (ICDCS 2003).

[91] L. Capra, W. Emmerich, C. Mascolo, ―CARISMA: Context-aware reflective

middleware system for mobile applications,‖ IEEE Trans. on Software

Engineering, Vol. 29, No. 10, Oct. 2003.

[92] List of Video Codecs at: http://www.fourcc.org/codecs.php

[93] T. Stoenescu, J. Ledyard. ―A Pricing Mechanism which Implements a Network

Rate Allocation Problem in Nash Equilibria,‖ submitted to IEEE/ACM

Transactions on Networking.

[94] X. Lin, N. Shroff, R. Srikant, ―A Tutorial on Cross-Layer Optimization in

Wireless Networks.‖ IEEE JSAC, 2006.

[95] T. Wiegand, H. Schwarz, H. Joch, A. Kossentini, F. Sullivan, ―Rate-constrained

coder control and comparison of video coding standards,‖ IEEE Trans. on

Circuits and Systems for Video Technology (CSVT), Vol. 13, Issue 7, July 2003.

[96] P. Chowdhury, C. Chakrabarti. ―Static Task-Scheduling Algorithms for Battery-

Powered DVS Systems,‖ IEEE Trans. on VLSI Systems, Vol. 13, No. 2, Feb.

2005.

[97] R.G. Gallagher, Discrete Stochastic Processes, Kluwer, Dordrecht, 1996.

[98] L. Rabiner, B. Juang, ―An introduction to hidden Markov models,‖ IEEE ASSP

Magazine, Vol. 3, Issue 1, Jan. 1986.

[99] B. Foo, Y. Andreopoulos, M. van der Schaar. ―Analytical Complexity modeling

of Wavelet-based Video Coders,‖ ICASSP 2007.

[100] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press,

2004.

[101] N. Mastronarde and M. van der Schaar, "A Bargaining Theoretic Approach to

Quality-Fair System Resource Allocation for Multiple Decoding Tasks," IEEE

http://www.fourcc.org/codecs.php

 174

Trans. Circuits and Systems for Video Technology, to appear.

[102] Z. Yu, J. Zhang, ―Video deblocking with fine-grained scalable complexity for

embedded mobile computing,‖ ICSP 2004.

[103] N. A. Lynch, Distributed Algorithms. San Mateo, CA: Morgan Kaufmann, pp.

51-80, 1996.

[104] D. Bertsekas, Nonlinear Programming, Palgrave Macmillan, 1997.

[105] A. Sinha and A. P. Chandrakasan, ―Jouletrack: A web based tool for software

energy profiling,‖ in Proc. IEEE/ACM DAC, pp. 220–225, 2001.

[106] M. Shah, J. Hellerstein, M. Franklin, ―Flux: An adaptive partitioning operator

for continuous query systems,‖ International Conference on Data Engineering

(ICDE), 2003.

[107] C. Olston, J. Jiang, J. Widom, ―Adaptive filters for continuous queries over

distributed data streams,‖ ACM SIGMOD, 2003 International Conference on

Management of Data, pp. 563-574, June 2003.

[108] L. Amini, H. Andrade, F. Eskesen, R. King, Y. Park, P. Selo, C. Venkatramani,

―The stream processing core,‖ Technical Report RSC 23798, Nov. 2005.

[109] D. Turaga, O. Verscheure, U. Chaudhari, L. Amini, ―Resource Management for

Chained Binary Classifiers,‖ Proceedings of the Workshop on Tackling

Computer Systems Problems with Machine Learning Techniques (SysML), 2006.

[110] Y. Schapire, ―A brief introduction to boosting,‖ International Conference on

Algorithmic Learning Theory, 1999.

[111] A. Garg, V. Pavlovic, ―Bayesian networks as ensemble of classifiers,‖

International Conference on Pattern Recognition (ICPR), 2002.

[112] B. Babcock, S. Babu, M. Datar, R. Motwani, ―Chain: Operator scheduling for

memory minimization in data stream systems,‖ In ACM International

Conference on Management of Data (SIGMOD), 2003.

[113] N. Tatbul, U. Cetintemel, S. Zdonik, M. Cherniack, M. Stonebraker, ―Load

shedding in a data stream manager,‖ Proc. of the 29
th

 International Conference

on Very Large Databases (VLDB), Sept. 2003.

[114] B. Babcock, M. Datar, R. Motwani, ―Cost-efficient mining techniques for data

streams,‖ in Worshop on Management and Processing of Data Streams (MDPS),

2003.

[115] N. Tatbul, S. Zdonik, ―Dealing with overload in distributed stream processing

systems,‖ in IEEE International Workshop on Networking Meets Databases

(NetDB), 2006.

[116] N. Tatbul, ―QoS-driven load shedding on data streams,‖ in XML-Based Data

Management and Multimedia Engineering, 2002.

[117] V. Eide, F. Eliassen, O. Granmo, O. Lysne, ―Supporting timeliness and

accuracy in distributed real-time content-based video analysis,‖ in ACM

 175

International Conference on Multimedia, 2003.

[118] Y. Chi, P. Yu, H. Wang, R. Muntz, ―Loadstar: A load shedding scheme for

classifying data streams,‖ International Conference on Data Mining, Oct. 2005.

[119] D. Turaga, O. Verscheure, U. Chaudhari, L. Amini, ―Resource management for

networked classifiers in distributed stream mining systems,‖ IEEE ICDM, Dec.

2006.

[120] F. Fu, D. Turaga, O. Verscheure, M. van der Schaar, and L. Amini,

"Configuring Competing Classifier Chains in Distributed Stream Mining

Systems" IEEE Journal of Selected Topics in Signal Process. (JSTSP), 2008.

[121] Y. Xing, S. Zdonik, J.-H. Hwang, ―Dynamic Load Distribution in the Borealis

Stream Processor.‖ In proceedings of the 21st International Conference on Data

Engineering (ICDE'05), Tokyo, Japan, April 2005.

[122] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel, Y.

Xing, S. Zdonik. ―Scalable Distributed Stream Processing,‖ Proc. of CIDR,

Asilomar, CA, Jan. 2003.

[123] M. Balazinska, H. Balakrishnan, S. Madden, M. Stonebraker, ―Fault Tolerance

in the Borealis Distributed Stream Processing System,‖ SIGMOD International

Conference on Management of Data, SIGMOD 2005.

[124] M. Kudo, J. Toyama and M. Shimbo, "Multidimensional Curve Classification

Using Passing-Through Regions," Pattern Recognition Letters, Vol. 20, No. 11-

13, pp. 1103-1111, 1999. (See:

http://kdd.ics.uci.edu/databases/JapaneseVowels/JapaneseVowels.html for the

data set.)

[125] A. Hero, J. Kim, ―Simultaneous signal detection and classification under a false

alarm constraint,‖ ICASSP, 1990.

[126] D. Turaga and T. Chen, "I/P frame selection using classification based mode

decisions," ICIP 2001.

[127] A. Pentland, B. Moghaddam, T. Starner, ―View-Based and Modular

Eigenspaces for Face Recognition,‖ IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 1994.

[128] P. Burke, ―The Output of a Queuing System,‖ Operations Research 4, 699,

1956.

[129] A. Roth, I. Erev, ―Learning in extensive-form games: experimental data and

simple dynamic models in the intermediate term,‖ Games and Economic

Behavior, 8, pp. 164-212, 1995.

[130] D. Bertsekas and R. Gallager, Data Networks, Prentice Hall, 2
nd

 edition, 1991.

[131] S. Viglas, J. Naughton, ―Rate-based query optimization for streaming

information sources,‖ SIGMOD, 2002.

[132] M. Ciraco, M. Rogalewski, G. Weiss, ―Improving classifier utility by altering

http://kdd.ics.uci.edu/databases/JapaneseVowels/JapaneseVowels.html

 176

the misclassification cost ratio,‖ 1
st
 International Workshop on Utility-based

Data Mining, 2005.

[133] D. Abadi, D. carney, U. Centintemel, M. Cherniack, C. Convey, S. Lee, M.

Stonebraker, N. Tatbul, S. Zdonik, ―Aurora: a new model and architecture for

data stream management,‖ VLDB Journal, 2003.

[134] V. Kumar, B. Cooper, K. Schwan, ―Distributed Stream Management using

Utility-Driven Self-Adaptive Middleware,‖ ICAC, 2005.

[135] E. Horvitz, G. Rutledge, ―Time-Dependent Utility and Action Under

Uncertainty,‖ In Proc. of the Seventh Conference on Uncertainty in Artificial

Intelligence, pp. 151-158, July, 1991.

[136] P. Young, Strategic Learning and Its Limits, Oxford University Press, 2004.

[137] F. Douglis, M. Branson, K. Hildrum, B. Rong, F. Ye, ―Multi-site Cooperative

Data Stream Analysis,‖ ACM SIGOPS, Vol. 40, Issue 3, July 2006.

[138] J. Marden, H. Young, G. Arslan, J. Shamma, ―Payoff Based Dynamics for

Multi-Player Weakly Acyclic Games,‖ submitted to SIAM Journal on Control

and Optimization, special issue on Control and Optimization in Cooperative

Networks, 2007.

[139] D. Fudenberg, J. Tirole, Game Theory, The MIT Press, 1991.

[140] P. Pardalos, H. Romeijn, H. Tuy, ―Recent developments and trends in global

optimization,‖ Journal of Computational and Applied Mathematics, Vol. 124,

Issues 1-2, Dec. 2000.

[141] R. Horst and P.M. Pardalos, Handbook of Global Optimization, Kluwer

Academic Publishers, Dordrecht, The Netherlands, 1995.

[142] K. Arrow, Social Choice and Individual Values, Yale University Press, 1970.

[143] J. Nash, ―The Bargaining Problem,‖ Econometrica, 1950.

[144] P. Boggs AND J. Tolle, ―Sequential quadratic programming,‖ Acta Numerica,

1995.

[145] R. Lienhart, L. Liang, A. Kuranov, ―A detector tree for boosted classifiers for

real-time object detection and tracking,‖ in Proceedings of the International

Conference on Multimedia and Expo (ICME), 2003.

[146] H. Xiao, L. Zhu, ―Boosting chain learning for object detection,‖ in Proceedings

of the 9th IEEE International Conference on Computer Vision, 2003.

[147] T. Senator, ―Multi-stage classification,‖ in Proceedings of the 5th International

Conference on Data Mining (ICDM), 2005, pp. 386–393.

[148] J. Smith, ―IBM multimedia analysis and retrieval system (MARVEL),‖

http://mp7.watson.ibm.com/marvel/.

[149] L. Carreras, ―Boosting trees for anti-spam email filtering,‖ in Proceedings of the

Recent Advances in Natural Language Processing, 2001.

 177

[150] M. Chen, T. Yen, B. Coonan, ―Real-time fault detection and classification for

manufacturing etch tools,‖ in Proceedings of IEEE Semiconductor

Manufacturing Technology Workshop, Sept, 2004.

[151] N. Tatbul, U. Cetintemel, S. Zdonik, M. Cherniack, M. Stonebraker, ―Load

shedding in a data stream manager,‖ Proc. of the 29
th

 International Conference

on Very Large Databases (VLDB), Sept. 2003.

[152] B. Babcock, M. Datar, R. Motwani, ―Cost-efficient mining techniques for data

streams,‖ Workshop on Management and Processing of Data Streams (MDPS),

2003.

[153] B. Foo, M. van der Schaar, "Distributed Classifier Chain Optimization for Real-

time Multimedia Stream Mining Systems," Proceedings of SPIE Multimedia

Content Access, Algorithms and Systems II, Jan. 2008.

[154] E. Crawford, M. Veloso, ―Learning to Select Negotiation Strategies in Multi-

Agent Meeting Scheduling,” In the working notes of the Multiagent Learning

Workshop (to appear), AAAI, Pittsburgh, USA, 2005.

[155] S. Merugu, J. Ghosh, ―Privacy-preserving distributed clustering using

generative models,‖ International Conference on Data Mining (ICDM), 2003.

[156] L. Xie, S. Chang, A. Divakaran, and H. Sun, ―Structure analysis of soccer video

with hidden Markov models,‖ In Proc. Interational Conference on Acoustic,

Speech and Signal Processing (ICASSP), Orlando, FL, 2002.

[157] M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic

Programming, John Wiley & Sons, 1994.

[158] R. Sutton, A. Barto, Reinforcement Learning: An Introduction, MIT Press,

1998.

[159] C. O‘Cinneide, ―Entrywise perturbation theory and error analysis for Markov

chains,‖ Numerische Mathematik, Vol. 65, No. 1, Dec. 1993.

