
 

 

UNIVERSITY OF CALIFORNIA 

Los Angeles 

 

 

Online Learning for Energy-Efficient Multimedia Systems 

 

 

 

A dissertation submitted in partial satisfaction of the 

requirements for the degree Doctor of Philosophy 

in Electrical Engineering 

 

by 

 

Nicholas Howe Mastronarde 

 

 

 

2011 



 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Nicholas Howe Mastronarde 

2011 



 

ii 

The dissertation of Nicholas Howe Mastronarde is approved. 

 

             

     ________________________________________ 

     Abeer Alwan 

 

 

 

     ________________________________________ 

     Paulo Tabuada 

 

 

 

________________________________________ 

     Jenn Vaughan 

 

 

 

________________________________________ 

     Mihaela van der Schaar, Committee Chair 

 

 

 

 

 

 

 

 

 

 

 

 

University of California, Los Angeles 

 

2011 



 

iii 

 

 

 

 

 

 

 

 

 

 

To my wife. 



 

iv 

TABLE OF CONTENTS 

 

1 Introduction .....................................................................................................................1 

1.1 Motivation ..................................................................................................................1 

1.1 Challenges ..................................................................................................................1 

1.1 Contributions of the Dissertation ...............................................................................3 

1.1 Chapter 2 and Chapter 3: System Resource Management .........................................4 

1.1 Chapter 4 and Chapter 5: Wireless Resource Management .......................................5 

1.1 Chapter 6: Conclusion ................................................................................................7 

References ........................................................................................................................8 

2 Cross-Layer Multimedia System Optimization .........................................................12 

2.1 Introduction ..............................................................................................................12 

2.2 Cross-Layer Problem Statement ...............................................................................15 

2.2.1 Layered System Model ......................................................................................16 

2.2.2 States..................................................................................................................17 

2.2.3 Actions ...............................................................................................................18 

2.2.4 State Transition Probabilities ............................................................................19 

2.2.5 Reward Function and Layer Costs ....................................................................21 

2.2.6 Quality of Service ..............................................................................................22 



 

v 

2.2.7 Foresighted Decision Making............................................................................24 

2.3 Illustrative Example .................................................................................................24 

2.3.1 HW Layer Examples .........................................................................................25 

2.3.2 OS Layer Examples ...........................................................................................26 

2.3.3 APP Layer Examples .........................................................................................27 

2.3.4 The System Reward ...........................................................................................30 

2.4 Centralized Cross-Layer Optimization .....................................................................31 

2.4.1 Centralized Foresighted Decision Making Using a Markov Decision Process .32 

2.4.2 Centralized Cross-Layer System .......................................................................34 

2.5 Layered Optimization ...............................................................................................35 

2.5.1 Layered MDP for Cross-Layer Decision Making .............................................36 

2.5.2 Layered Value Iteration .....................................................................................37 

2.5.3 Complexity of Layered Value Iteration .............................................................41 

2.6 Results ......................................................................................................................42 

2.6.1 Equivalence of Centralized and Layered Value Iteration ..................................44 

2.6.2 Impact of the Discount Factor ...........................................................................45 

2.6.3 Impact of Model Inaccuracy on the System’s Performance ..............................46 

2.6.4 Myopic and Foresighted Simulation Trace Comparison ...................................49 

2.6.5 Performance of Simplifications of the Proposed Framework ...........................50 



 

vi 

2.7 Conclusion ................................................................................................................54 

References ......................................................................................................................56 

3 Layered Reinforcement Learning ...............................................................................58 

3.1 Introduction ..............................................................................................................59 

3.2 System Specification ................................................................................................63 

3.2.1 Dynamic Voltage Scaling Model ......................................................................64 

3.2.2 Application Model .............................................................................................65 

3.3 Formulation as a Layered MDP ...............................................................................69 

3.3.1 Layered MDP Model .........................................................................................69 

3.3.2 System Optimization Objective .........................................................................71 

3.4 Learning the Optimal Decision Policy .....................................................................73 

3.4.1 Selecting a Learning Model...............................................................................73 

3.4.2 Proposed Centralized Q-learning ......................................................................74 

3.4.3 Proposed Layered Q-learning ............................................................................77 

3.4.4 Computation, Communication, and Memory Overheads ..................................84 

3.5 Accelerated Learning Using Virtual Experience......................................................85 

3.6 Experiments ..............................................................................................................90 

3.6.1 Evaluation Metrics.............................................................................................92 

3.6.2 Single-Layer Learning Results ..........................................................................93 



 

vii 

3.6.3 Cross-Layer Learning Results ...........................................................................97 

3.6.4 Accelerated Learning with Virtual ETs ...........................................................100 

3.7 Conclusion ..............................................................................................................106 

Appendix A: Utility Gain Function ..............................................................................108 

References ....................................................................................................................111 

4 Fast Reinforcement Learning for Energy-Efficient Wireless Communication ... 116 

4.1 Introduction ........................................................................................................... 117 

4.2 Preliminaries .......................................................................................................... 122 

4.2.1 Physical Layer: Adaptive Modulation and Power-Control ............................ 123 

4.2.2 System-Level: Dynamic Power Management Model ..................................... 124 

4.3 Transmission Buffer and Traffic Model ................................................................ 126 

4.4 Wireless Power Management Problem Formulation ............................................ 128 

4.5 Learning the Optimal Policy ................................................................................. 131 

4.5.1 Conventional Q-learning ................................................................................ 132 

4.5.2 Proposed Post-Decision State Learning ......................................................... 134 

4.5.3 Proposed Virtual Experience Learning........................................................... 141 

4.5.4 Conceptual Comparison of Learning Algorithms .......................................... 142 

4.6 Simulation Results ................................................................................................. 143 

4.6.1 Simulation Setup............................................................................................. 143 



 

viii 

4.6.2 Learning Algorithm Comparison.................................................................... 145 

4.6.3 Comparison to Optimal Policy With Imperfect Statistics .............................. 150 

4.6.4 Performance Under Non-Stationary Dynamics .............................................. 151 

4.7 Conclusion ............................................................................................................. 153 

Appendix B: Overflow Cost ........................................................................................... 153 

Appendix C: Proof of Proposition 4.1 ............................................................................ 154 

Appendix D: Proof of Theorem 4.1 ................................................................................ 155 

Appendix E: Initializing The PDS Value Function ........................................................ 156 

References ....................................................................................................................... 159 

5 Multi-User Cooperative Video Transmission ...........................................................163 

5.1 Introduction ............................................................................................................164 

5.2 System Model .........................................................................................................167 

5.3 Application Model ..................................................................................................170 

5.3.1 Video Data Attributes ......................................................................................171 

5.3.2 Traffic Model and Packet Scheduling .............................................................172 

5.4 Cooperative Multi-User Video Transmission ........................................................175 

5.4.1 Reformulation with Simplified Network State ................................................178 

5.4.2 Distributed Solution.........................................................................................181 

5.5 Cooperative PHY Layer Transmission ..................................................................183 



 

ix 

5.5.1 Data Rate for a Direct Transmission ...............................................................183 

5.5.2 Data Rate for the First and Second Hops of a Cooperative Randomized 

Transmission.............................................................................................................184 

5.5.3 Recruitment Protocol .......................................................................................186 

5.6 Numerical Results ..................................................................................................191 

5.6.1 Cooperation Statistics ......................................................................................194 

5.6.2 Transmission Rate and Resource Price ...........................................................195 

5.6.3 Video Quality Comparison ..............................................................................197 

5.7 Conclusion ..............................................................................................................198 

Appendix F: Proof of Theorem 5.1 ..............................................................................199 

References ....................................................................................................................203 

6 Conclusion ...................................................................................................................207 

 



 

x 

LIST OF FIGURES 

 

Figure 2.1. Layered decision making process illustrating the intra- and inter-layer 

dependencies in the system. System layers adapt to different components of the dynamic 

environment by deploying different “actions” at each layer. ........................................... 17 

Figure 2.2. Centralized cross-layer system optimization framework. The portions of the 

figure that are in bold comprise the centralized information exchange process. If the 

dynamics are stationary, then steps 1 and 2 only need to happen once. ........................... 34 

Figure 2.3.  Layered cross-layer system optimization framework with message 

exchanges. ...................................................................................................................... 36 

Figure 2.4. Layered VI with upward and downward messages. (a) During an initial QoS 

generation period, upward messages are used to tell the application layer which QoS 

levels are supported in each system state. The set of QoS levels at layer L  is required to 

perform layered VI. (b) Downward messages are generated in every iteration of the 

layered VI algorithm. ........................................................................................................ 37 

Figure 2.5. State-value function obtained from centralized VI and layered VI ( 0.9)γ = .  

  ...................................................................................................................... 45 

Figure 2.6. Actual complexity trace (top) vs. trace generated by a stationary model 

(bottom). The stationary model’s parameters are trained based on the actual complexity 

trace.  ...................................................................................................................... 48 

Figure 2.7. Simulation traces from stage 1200 to 1400. (a) Simulation with myopic 

cross-layer optimization ( 0γ = ). (b) Simulation with foresighted cross-layer 

optimization ( 0.9γ = ). .................................................................................................... 50 

Figure 2.8. Comparison of the performance of different system configurations. .......... 51 

Figure 3.1. System diagram showing the states, actions, and environment at each layer. .  

  ...................................................................................................................... 64 

Figure 3.2. Information exchanges required to deploy the centralized Q-learning update 

step in one time slot. ......................................................................................................... 77 

Figure 3.3. Information exchanges required to deploy the layered Q-learning update 

step in one time slot. ......................................................................................................... 84 



 

xi 

Figure 3.4. Backup diagrams. (a) Conventional Q-learning; (b) Q-learning with virtual 

updates. The virtual update algorithm applies a backup on the actual ET and an additional 

Ψ  backups on virtual ETs in ( )nσΣ  indexed by 1 ψ≤ ≤ Ψ . ........................................ 90 

Figure 3.5. Optimal policies for each data unit type. (a) APP parameter configurations. 

(b) Joint OS/HW layer frequency command. The current operating frequency is set to be 

600f =  Mhz. .................................................................................................................... 96 

Figure 3.6. Cumulative average reward for single-layer learning with stationary trace 

( 192, 000N = ). ................................................................................................................. 97 

Figure 3.7. Cumulative average reward for cross-layer learning algorithms with 

stationary trace ( 192, 000N = ). ....................................................................................... 99 

Figure 3.8. Weighted estimation error metric for cross-layer learning algorithms with 

stationary trace ( 192, 000N = ). ....................................................................................... 99 

Figure 3.9. Cumulative average reward achieved with virtual ET and TD(λ ) updates for 

a stationary trace and a non-stationary trace, compared to the optimal achievable reward 

under the stationary trace ( 64, 000N = ). ....................................................................... 104 

Figure 3.10. Weighted estimation error metric for virtual ETs and TD(λ ) with stationary 

trace ( 64, 000N = ). ........................................................................................................ 105 

Figure 3.11. Buffer evolution in 20, 000N =  time slot simulation. (a) Conventional 

utility gain results in the buffer filling rapidly; (b) Conventional utility gain leads to 

overflows; (c) Proposed utility gain keeps the buffer occupancy low; (d) Proposed utility 

gain prevents overflows. ................................................................................................. 110 

Figure 4.1. Wireless transmission system. The components outlined in bold are the 

focus of this chapter. ....................................................................................................... 123 

Figure 4.2. Relationship between the state-action pair at time n , PDS at time n , and 

state at time 1n + . State action pairs ( ) ( )1 1, , , ,i is a s a…  potentially lead to the same PDS.  

  .................................................................................................................... 136 

Figure 4.3. State-action pairs that are impacted in one time slot when using different 

learning updates (highlighted in white). (a) Q-learning update for state-action pair ( ),b z ; 

(b) PDS update for PDS b z− ; (c) Virtual experience updates for PDS b z− . ............ 143 

Figure 4.4. Quantitative learning algorithm comparison with on 320P =  mW. (a) 

Cumulative average cost vs. time slot. The y-axis is in log-scale due to the high dynamic 

range. (b) Cumulative average power vs. time slot. (c) Cumulative average holding cost 



 

xii 

vs. time slot. (d) Cumulative average packet overflows vs. time slot. The y-axis is in log-

scale due to the high dynamic range. (e) Cumulative average offθ  vs. time slot. (f) 

Windowed average of Lagrange multiplier µ  vs. time slot (window size = 1000 time 

slots).  .................................................................................................................... 146 

Figure 4.5. Comparison of the optimal policy with imperfect statistics to the PDS 

learning algorithm with virtual experience and update period = 1. The x-axis is in log-

scale to best highlight the learning process over time. (a) Holding cost vs. time slot. (b) 

Power vs. time slot. ......................................................................................................... 150 

Figure 4.6. Power-delay performance of proposed solution (with virtual experience 

updates every T = 50 time slots) compared to the power-delay performance of the 

threshold-k  policy. Traffic and channel dynamics are non-stationary. .......................... 152 

Figure 4.7. Sensitivity to the arrival distribution used to initialize the PDS value 

function. The arrival distribution is assumed to be deterministic or uniformly distributed 

over { }0,1, ,B… . Virtual experience updates are used every T = 25 time slots. ............. 158 

Figure 5.1. An uplink wireless video network with cooperation. A downlink wireless 

video network with cooperation can be visualized by switching the positions of node 1 

and the access point. ....................................................................................................... 168 

Figure 5.2. (a) Illustrative DAG dependencies and scheduling time window using IBPB 

GOP structure. The schedulable frame sets defined by the scheduling time window W  

are { }1,2, 3t =F , { }1 2,3, 4,1t+ =F , { }2 4,1,2, 3t+ =F , { }3 2,3, 4,1t+ =F , etc. Clearly, tF  is 

periodic with period 2T =  excluding the initial time t , and each GOP contains 4N =  

frames. (b) Traffic state detail for schedulable frame set { }1,2, 3t =F . jb  denotes the state 

of the j th frame’s buffer, where { }1,2, 3tj ∈ =F . ......................................................... 173 

Figure 5.3. Signaling protocol for randomized STBC cooperation. ............................ 190 

Figure 5.4. Network topology used for numerical results. There are 50 nodes placed 

randomly and uniformly throughout the AP’s 100 m coverage range............................ 191 

Figure 5.5. Video source placement for homogeneous and heterogeneous streaming 

scenarios. Three video sources are place 20 m, 45 m, and 80 m from the AP at angles 25º, 

-30º, and 0º, respectively. The size of the relay is proportional to the frequency with 

which it is activated as a helper for the corresponding source. ...................................... 193 

Figure 5.6. Cooperative transmission statistics for different values of the self-selection 

parameter ξ  and for different distances to the AP. (a) Probability of cooperation being 

optimal. (b) Direct transmission rate conditioned on direct transmission being optimal. (c) 

Cooperative transmission rate conditioned on cooperative transmission being optimal. (d) 



 

xiii 

Average transmission rate, which depends on the probability of cooperation, the 

conditional direct rate, and the conditional cooperative rate. ......................................... 201 

Figure 5.7. Average transmission rates using direct and cooperative transmission in low 

congestion and high congestion scenarios. (a) Homogeneous video sources. (b,c) 

Heterogeneous video sources. ......................................................................................... 202 



 

xiv 

LIST OF TABLES 

 

Table 2.1. Complexity of centralized value iteration and layered value iteration. .......... 42 

Table 2.2. Simulation parameters used for each layer. .................................................... 44 

Table 2.3. Impact of the discount factor on the average system reward. ......................... 46 

Table 2.4. Simulated ( 20, 000N =  stages) vs. predicted reward, PSNR, power, and 

resource allocation cost. .................................................................................................... 48 

Table 2.5. Detailed simulation results for each configuration. In each column of the 

table, the value obtained in the foresighted case is on the left and the value obtained in the 

myopic case is on the right................................................................................................ 51 

Table 3.1. Abbreviated list of notation. ........................................................................... 71 

Table 3.2. Comparison of computation, memory, and communication overheads (per 

time slot). ......................................................................................................................... 85 

Table 3.3. Accelerated learning using virtual experience tuples. .................................... 89 

Table 3.4. Simulation parameters (Foreman sequence, 30 Hz, CIF resolution, 

quantization parameter 24). .............................................................................................. 91 

Table 3.5. Single-layer learning performance statistics for stationary trace 

( 192, 000N = ). ................................................................................................................. 97 

Table 3.6. Cross-layer learning performance statistics for stationary trace 

( 192, 000N = ). ............................................................................................................... 100 

Table 3.7. Virtual experience learning statistics for stationary (non-stationary) data trace 

outside (inside) parentheses ( 64, 000N = ). ................................................................... 106 

Table 3.8. Performance statistics using the conventional utility gain function and the 

proposed utility gain function. ........................................................................................ 110 

Table 4.1. Classification of dynamics. ........................................................................... 135 

Table 4.2. Post-decision state-based learning algorithm................................................ 139 

Table 4.3. Learning algorithm complexity (in each time slot). In the system under study  
=S B�

 
and  ∑ = ×B X . ....................................................................................... 143 



 

xv 

Table 4.4. Simulation parameters. ................................................................................. 144 

Table 5.1. Simulation parameters .................................................................................. 194 

Table 5.2. Resource prices in different scenarios .......................................................... 197 

Table 5.3. Average video quality (PSNR) in different scenarios................................... 198 



 

xvi 

ACKNOWLEDGMENTS 

 

I would like to thank my advisor, Professor Mihaela van der Schaar, for her unending 

enthusiasm for research, as well as her support and mentorship throughout my entire 

graduate studies. I am lucky to have met her during my last quarter as an undergraduate 

at UC Davis and thankful that she convinced me to follow her to UCLA to do a PhD. 

 I would like to thank Professors Abeer Alwan, Paulo Tabuada, and Jennifer Wortman 

Vaughan, for taking time out of their busy schedules to serve on my dissertation 

committee. I would also like to thank Professor Rupak Majumdar for serving on my 

dissertation committee for my qualifying exam. 

 I would be remiss not to express my sincere gratitude to all of the amazing colleagues 

I have met in the Multimedia Communications and Systems Laboratory at UCLA. I 

would especially like to thank Dr. Yiannis Andreoupoulos, Dr. Fangwen Fu, Dr. Yi Su, 

Dr. Brian Foo, Dr. Hsien-Po Shiang, and Dr. Hyunggon Park whose friendship and 

support have been invaluable. I would also like to thank my supervisors and mentors Dr. 

Deepak Turaga and Dr. Octavian Udrea at IBM T.J. Watson Research Center, and Dr. 

Hong Jiang at Intel Corporation for the opportunity to do interesting work during summer 

internships.  

 I would like acknowledge that Chapter 5 is a version of a paper in progress that is co-

authored by Francesco Verde, Donatella Darsena, and Anna Scaglione. 

 



 

xvii 

 I am incredibly grateful for the love and support of my wife who moved away from 

home to be with me in Los Angeles, stayed up many late nights with me while I worked, 

and was always there when I needed her most. Lastly, I would like to thank my family for 

always being a phone call away. 



 

xviii 

VITA 

 

February 21, 1983   Born, Oakland, California 

 

2005     B.S. Electrical Engineering 

     University of California, Davis 

     Davis, California 

 

2006     M.S. Electrical Engineering 

     University of California, Davis 

     Davis, California 

 

2007     Internship 

     Intel Corporation 

     Folsom, California 

 

2009-2010    Teaching Assistant 

     Department of Electrical Engineering 

     Los Angeles, California 

 

2010     Internship 

     IBM Research 

     Hawthorne, New York 

 

 

 

PUBLICATIONS 

 

N. Mastronarde, Y. Andreopoulos, M. van der Schaar, D. Krishnaswamy and J. Vicente, 

“Cross-layer video streaming over 802.11e-enabled wireless mesh networks,” IEEE 

International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 5, 

pp. V-433- V-436, May 14-19, 2006. 

 

N. Mastronarde, D. S. Turaga, and M. van der Schaar, “Collaborative resource 

management for video over wireless multi-hop mesh networks,” IEEE International 

Conference on Image Processing (ICIP), pp. 1297-1300, Oct. 8-11, 2006. 

 

Y. Andreopoulos, N. Mastronarde, and M. van der Schaar, “Cross-layer optimized video 

streaming over wireless multi-hop mesh networks,” IEEE J. on Select. Areas in 

Communications Multi-Hop Wireless Mesh Networks, vol. 24, no. 11, pp. 2104-2115, 

Nov. 2006. 



 

xix 

 

N. Mastronarde, D. S. Turaga, and M. van der Schaar. “Collaborative resource exchanges 

for peer-to-peer video streaming over wireless mesh networks,” IEEE J. on Select. Areas 

in Communications Peer-to-peer Communications and Applications, vol. 25, no. 1, pp. 

108-118, Jan. 2007. 

 

N. Mastronarde and M. van der Schaar, "A queuing-theoretic approach to task scheduling 

and processor selection for video decoding applications," IEEE Trans. Multimedia, vol. 

8, no. 7, pp. 1493-1507, Nov. 2007. 

 

N. Mastronarde and M. van der Schaar, “A bargaining theoretic approach to quality-fair 

system resource allocation for multiple decoding tasks,” IEEE Trans. Circuits and 

Systems for Video Technology, vol. 18, no. 3, Mar. 2008. 

 

N. Mastronarde and M. van der Schaar, “A scalable complexity specification for video 

applications,” IEEE International Conference on Image Processing (ICIP), pp. 2576-

2579, Oct. 12-15, 2008. 

 

N. Mastronarde and M. van der Schaar, “Automated bidding for media services at the 

edge of a content delivery network,” IEEE Trans. on Multimedia, vol. 11, no. 3, pp. 543-

555, Apr. 2009. 

 

N. Mastronarde and M. van der Schaar, “Towards a General Framework for Cross-Layer 

Decision Making in Multimedia Systems,” IEEE Trans. on Circuits and Systems for 

Video Technology, vol. 19, no. 5, pp. 719-732, May 2009. 

 

N. Mastronarde and M. van der Schaar, “Designing autonomous layered video coders,” 

Elsevier Journal Signal Processing: Image Communication – Special Issue on Scalable 

Coded Media Beyond Compression, vol. 24, no. 6, pp. 417-436, July 2009. 

 

N. Mastronarde and M. van der Schaar, “Autonomous decision making in layered and 

reconfigurable video coders,” Asilomar Conference on Signals, Systems, and Computers, 

pp. 553-557, Nov. 1-4, 2009. 

 

N. Mastronarde and M. van der Schaar, “Online reinforcement learning for dynamic 

multimedia systems,” IEEE Trans. on Image Processing, vol. 19, no. 2, pp. 290-305, Feb. 

2010. 

 

N. Mastronarde and M. van der Schaar, “Online layered learning for cross-layer 

optimization of dynamic multimedia systems,” ACM Multimedia Systems, pp. 47-58, Feb. 

22-23, 2010. 

 



 

xx 

N. Mastronarde and M. van der Schaar, “Online reinforcement learning for multimedia 

buffer control,” IEEE International Conference on Acoustics, Speech, and Signal 

Processing (ICASSP), pp. 1958-1961, Mar. 14-19, 2010. 

 

N. Mastronarde and M. van der Schaar, “A new approach to cross-layer optimization of 

multimedia systems,” IEEE International Conference on Acoustics, Speech, and Signal 

Processing (ICASSP), pp. 2310-2313, Mar. 14-19, 2010. 

 

N. Mastronarde, M. van der Schaar, A. Scaglione, F. Verde, and D. Darsena, “Sailing 

good radio waves and transmitting important bits: relay cooperation in wireless video 

transmission,” IEEE International Conference on Acoustics, Speech, and Signal 

Processing (ICASSP), pp. 5566-5569, Mar. 14-19, 2010. 

 

N. Changuel, N. Mastronarde, M. van der Schaar, B. Sayadi, and M. Kieffer, “End-to-end 

stochastic scheduling of scalable video over time varying channels,” Proc. ACM 

Multimedia, Oct. 25-29, 2010. 



 

xxi 

ABSTRACT OF THE DISSERTATION 

 

 

Online Learning for Energy-Efficient Multimedia Systems 
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Professor Mihaela van der Schaar, Chair 

 

Designing energy-efficient resource management strategies for multimedia applications is 

a challenging problem because of their stringent delay constraints, mixed priorities, 

intense resource requirements, and sophisticated source coding dependency structures. In 

my dissertation research, I aim to develop a rigorous, formal, and unified modeling 

framework for supporting such applications in a large class of resource management 

scenarios including energy-efficient point-to-point wireless communication, cooperative 

multi-user wireless video transmission, and energy-efficient cross-layer system 

optimization. 

The foundation of my approach is modeling multimedia systems as stochastic and 

dynamic systems. Unlike traditional resource management solutions, in which the goal is 



 

xxii 

to optimize the immediate utility (i.e. myopic optimization), the goal in the proposed 

framework is to optimize the trajectory of the system's underlying stochastic process by 

accounting for how decisions at the current time impact the future utility (i.e. dynamic 

optimization). To achieve this, I model system and network resource management 

problems as Markov decision processes (MDPs). Then, to address the fact that the 

statistics of the system's underlying stochastic process are typically unknown a priori, I 

adopt and often extend reinforcement learning techniques from artificial intelligence to 

enable devices to learn their experienced dynamics online, at run-time, in order to 

optimize their long-term performance. 
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Chapter 1 

Introduction 

1.1 Motivation 

State-of-the-art multimedia technology is poised to enable widespread proliferation of a 

variety of life-enhancing applications, such as video conferencing, emergency services, 

surveillance, telemedicine, remote teaching and training, augmented reality, and 

distributed gaming. However, efficiently designing and implementing such delay-

sensitive multimedia applications on energy-constrained, heterogeneous devices and 

systems is challenging due to their real-time constraints and high workload complexity, as 

well as the time-varying environmental dynamics experienced by the system (e.g. video 

source characteristics, user requirements, workload characteristics, number of running 

applications, memory/cache behavior, channel conditions, etc.). To address these 

problems, novel system and network resource management techniques are required. 

1.2 Challenges 

The majority of existing system and network resource management solutions rely on 

myopic optimizations [1]-[10], which ignore the impact of resource management 

decisions made at the current time on the system’s future performance and ignore the 

dynamics in the system (e.g. application workload and traffic characteristics, memory and 
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cache behavior, and network conditions). However, in almost all resource management 

problems, the decisions made at the current time impact the system’s immediate and 

future performance, and acting on accurate predictions or forecasts about the future 

dynamics can improve resource utilization, energy-efficiency, and application quality. For 

example, in a real-time system, the time required processing a task impacts the time 

available, and the power required, to process future tasks before their deadlines. 

Therefore, in order to minimize the total energy used to process a set of tasks, it is 

necessary to adapt the processor speed based not only on the immediate task’s resource 

requirements, but also on the resource requirements of future tasks. In this dissertation, 

we interchangeably refer to this type of optimization as a long-term, dynamic, or 

foresighted optimization. 

Reaping the full benefits of dynamic resource management hinges on our ability to 

quickly and accurately model the system’s dynamics, which are typically stochastic and 

unknown a priori. The majority of existing resource management solutions cope with 

unknown dynamics by either (i) ignoring them, and deploying suboptimal heuristics [11] 

[12]; (ii) deploying learning and estimation solutions such as maximum likelihood 

estimation, statistical fitting, and regression techniques, which work well for estimating 

model parameters and distributions (e.g. workload distributions), but do not provide 

computationally tractable methods for performing dynamic optimization [2] [4] [6] [13]-

[16]; or, (iii) deploying supervised learning techniques, which require time-consuming 

and domain-specific offline training, to predict the optimal resource management actions 

[13] [17]. 
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In summary, a new paradigm for system and network resource management is 

necessary, where devices can autonomously learn online the unknown dynamics that they 

experience, and dynamically manage resources to obtain long-term optimal resource 

utilization, energy-efficiency, and application quality. 

1.3 Contributions of the Dissertation 

In this dissertation, we aim to develop a rigorous, formal, and unified energy-efficient 

resource management framework for supporting heterogeneous multimedia applications 

(e.g. loss-tolerant applications with different delay-constraints, priorities, and source 

coding dependency structures) in a large class of scenarios including energy-efficient 

point-to-point wireless communication, multi-user cooperative wireless communication, 

and energy-efficient cross-layer system optimization. To address the abovementioned 

challenges, we propose to view the multimedia system as a stochastic and dynamic 

system. Unlike traditional resource management solutions, in which the goal is to 

optimize the immediate performance, the goal in the proposed framework is to optimize 

the trajectory of the system's underlying stochastic process by accounting for how 

decisions at the current time impact the system's future behavior. To achieve this, we 

model system and network resource management problems as Markov decision processes 

(MDPs). Then, to address the fact that the statistics of the system's underlying stochastic 

process are only partially known or are entirely unknown a priori, we adopt and often 

extend reinforcement learning techniques from artificial intelligence to enable devices to 

autonomously learn their experienced dynamics online, at run-time, in order to optimize 
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their long-term performance. 

A unique and distinguishing feature of this dissertation is the extent of multimedia 

specific modeling in developing the proposed learning and dynamic optimization 

framework. This is in contrast to much of the research in stochastic control [18]-[21] and 

artificial intelligence [22] [23], which uses utility functions that generally reflect utility as 

a simple function of resource consumption, and does not consider the application and 

system specific dynamics. At the same time, however, the foundations and principles 

developed in my research are not limited to multimedia systems and, in fact, can be 

extended to many other settings including real-time systems, embedded systems, data 

centers, multi-core systems, multiprocessor systems-on-chips, sensor networks, wireless 

mesh networks, wired networks etc. 

The following sections summarize the remainder of this dissertation.  

1.4 Chapter 2 and Chapter 3: System Resource Management 

In Chapter 2 of this dissertation, we introduce a rigorous methodology for dynamic cross-

layer system optimization. To illustrate the proposed solution, we consider the problem of 

jointly optimizing the video encoding parameters at the application layer, resource 

allocation decision at the operating system layer, and processor speed at the hardware 

layer of a multimedia system. We introduce a centralized formulation of the dynamic 

cross-layer optimization, which requires a single system layer to collect information from 

all of the layers (e.g. the operating system layer, application layer, or a middleware layer), 

solve a complex joint optimization, and then dictate to the layers the optimal actions to 
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perform. This is similar to conventional myopic cross-layer multimedia system solutions 

because it requires a centralized optimizer. We then show that the proposed centralized 

cross-layer optimization can be decomposed into sub-problems for each layer. These sub 

problems can be solved layer by layer, which preserves the layered architecture by 

maintaining a separation among the layers' decision processes, designs, and 

implementations.   

In Chapter 2, the dynamic cross-layer optimization is solved offline, under the 

assumption that the multimedia system’s probabilistic dynamics are known a priori. In 

practice, however, these dynamics are unknown a priori and therefore must be learned 

online. To address this challenge, in Chapter 3, we use the decomposition introduced in 

Chapter 2 to enable the multimedia system layers to learn, through repeated interactions 

with each other, to autonomously optimize the system’s long-term performance at run-

time. Together, Chapters 2 and 3 illustrate how dynamic cross-layer optimization can 

dramatically improve system resource utilization, energy-efficiency, and application 

utility even when layers initially have no information about their experienced dynamics or 

how they impact and are impacted by the layers they interact with.  

1.5 Chapter 4 and Chapter 5: Wireless Resource Management 

While Chapters 2 and 3 focus on energy-efficient system management in systems, 

Chapters 4 and 5 focus on resource management in wireless networks. In Chapter 4, we 

address the problem of energy efficient point-to-point transmission of delay-sensitive data 

over a fading channel. We utilize three power saving techniques -- namely power-control, 
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adaptive modulation and coding, and dynamic power management -- that are widely used 

in the literature, but have never been combined into a unified framework based on 

dynamic optimization and online learning. The advantages of the proposed online method 

are that (i) it does not require a priori knowledge of the traffic arrival and channel 

statistics to determine the jointly optimal power-control, adaptive modulation and coding, 

and dynamic power management policies; (ii) it exploits partial information about the 

system so that less information needs to be learned than when using conventional 

reinforcement learning algorithms; and (iii) it obviates the need for action exploration, 

which severely limits the adaptation speed and run-time performance of conventional 

reinforcement learning algorithms. 

While Chapter 4 addresses the problem of energy-efficient point-to-point wireless 

communications, Chapter 5 explores how to jointly optimize the resource allocation and 

scheduling in a multi-user wireless video transmission scenario with cooperative relays. 

The idea behind cooperation is that feeble signals of nodes that are located far away from 

the access point can be enhanced via the cooperation of intermediate nodes that act as 

cooperative relays. However, cooperative throughput gains alone do not translate to good 

video quality at the application layer, so we systematically formulate the wireless video 

transmission problem as a dynamic optimization that explicitly considers the video users’ 

heterogeneous traffic characteristics, the dynamically varying network conditions, and the 

coupling among the users’ transmission strategies across time due to the shared wireless 

resource. The main analytical result in Chapter 5 is that the optimal selection of 

cooperative relays can be done myopically without loss of optimality. This result is 
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important because it allows us to separate decisions that the wireless user should make in 

dynamic manner, i.e. packet scheduling and resource allocation decisions, from those that 

it can make myopically without loss of optimality, i.e. recruiting cooperative relays. 

Without this result, the dynamic optimization would be computationally intractable. 

1.6 Chapter 6: Conclusion 

Chapter 6 concludes the dissertation and includes a discussion about future research 

directions. 
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Chapter 2 

Cross-Layer Multimedia System 

Optimization 
 

 

In recent years, cross-layer multimedia system design and optimization has garnered 

significant attention; however, there is no existing rigorous methodology for optimizing 

two or more system layers (e.g. the application, operating system, and hardware layers) 

jointly while maintaining a separation among the decision processes, designs, and 

implementations of each layer. Moreover, existing work often relies on myopic 

optimizations, which ignore the impact of decisions made at the current time on the 

system’s future performance. In this chapter, we propose a novel systematic framework 

for jointly optimizing the different system layers to improve the performance of one 

multimedia application. In particular, we model the system as a layered Markov Decision 

Process (MDP). The proposed layered MDP framework enables each layer to make 

autonomous and foresighted decisions, which optimize the system’s long-term 

performance. 

 

2.1 Introduction 

Cross-layer adaptation is an increasingly popular solution for optimizing the performance 

of complex real-time multimedia applications implemented on resource constrained 
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systems [5]-[8] [12] [13]. This is because system performance can be significantly 

improved by jointly optimizing parameters, configurations, and algorithms across two or 

more system layers, rather than optimizing them in isolation. The system layers that are 

most frequently included in the cross-layer optimization are the application (APP), 

operating system (OS), and hardware (HW) layers. For example, in [5] [6] [13], the APP 

layer’s configuration (e.g. encoding parameters) and the HW layer’s operating frequency 

are adapted; meanwhile, in [7] [8] [12], the resource allocation and scheduling strategies 

at the OS layer are also adapted. 

The abovementioned cross-layer solutions share two important shortcomings. First, 

the formulations and the presented solutions are all highly dependent on a specific cross-

layer problem, and therefore cannot be easily extended to other joint APP-OS-HW 

optimizations. This exposes the need for a rigorous and systematic methodology for 

performing cross-layer multimedia system optimization. Second, the abovementioned 

cross-layer solutions result in sub-optimal performance for dynamic multimedia tasks 

because they are myopic. In other words, cross-layer decisions are made reactively in 

order to optimize the immediate reward (utility) without considering the impact of these 

decisions on the future reward. For example, even the “oracle” solution in [6], which has 

exact knowledge about the consumed energy and required instruction counts under 

different APP and HW layer configurations, is not globally optimal. This is because, “the 

configuration selected for each frame affects all future frames” [6], however, the oracle 

only myopically chooses the cross-layer configuration to optimize its immediate reward. 

This motivates the use of foresighted (i.e. long-term) optimization techniques based on 
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dynamic programming. With foresighted decisions, the layers no longer reactively adapt 

to their experienced dynamics (e.g. time-varying multimedia source characteristics at the 

APP layer or time-varying resource availability at the OS layer due to resource-sharing 

with other applications); instead, layers actively select actions to influence and provision 

for the system’s future dynamics in order to achieve optimal performance over time, even 

if this requires sacrificing immediate rewards.  

In this chapter, we take inspiration from work on dynamic power management at the 

HW layer [9] [14] and formulate the cross-layer optimization problem within the 

framework of discrete-time Markov decision processes (MDP) in order to optimize the 

system’s long-term performance. We believe that this chapter can be viewed as a 

nontrivial extension of the aforementioned work because we investigate previously 

unaddressed problems associated with cross-layer system optimization. 

A trivial and ill-advised solution to the cross-layer system optimization using MDP is 

to glue the decision making processes of the layers together by performing a centralized 

optimization in which a single layer (e.g. the OS), a centralized optimizer, or middleware 

layer must know the states, actions, rewards, and dynamics at every layer. Such a 

centralized solution violates the layered system architecture, thereby complicating the 

system’s design, increasing implementation costs, and decreasing interoperability of 

different applications, operating systems, and hardware architectures. Respecting the 

layered architecture is especially important in situations where system layers are designed 

by different companies, which (i) may not want for their layer to relinquish its decision 

making process to a centralized optimizer or middleware layer, or (ii) may not allow 
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access to the underlying implementation of their layer. Under these constraints, 

centralized solutions such as those proposed in [5] [7] [8] [12] are infeasible because they 

require that the designer can augment the implementation of every layer. 

In this chapter, we propose an alternative solution to the cross-layer optimization in 

which we optimize the system’s performance without a centralized optimizer. To do this, 

we identify the dependencies among the dynamics and decision processes at the various 

layers of the multimedia system (i.e. APP, OS, and HW) and then factor these 

dependencies in order to decompose the centralized optimization into separate 

optimizations at each layer. 

The remainder of this chapter is organized as follows. In Section 2.2, we define all of 

the parameters and concepts in our framework and present the objective of the foresighted 

cross-layer optimization problem. In Section 2.3, we provide concrete examples of the 

abstract concepts introduced in Section 2.2 for an illustrative cross-layer video encoding 

problem similar to those explored in [5]-[8]. In Section 2.4, we describe a centralized 

cross-layer optimization framework for maximizing the objective function introduced in 

Section 2.2, and we discuss the framework’s limitations. In Section 2.5, we propose a 

layered optimization framework for maximizing the same objective. In Section 2.6, we 

present our experimental results based on the example system described in Section 2.3. 

Finally, we conclude in Section 2.7. 

2.2 Cross-Layer Problem Statement 

In this section, we present the considered system model and formulate the cross-layer 



 

16 
 

system optimization problem.  

2.2.1 Layered System Model 

The considered system architecture comprises three layers: the application (APP), 

operating system (OS), and hardware (HW) layers. For generality, however, we assume 

that there are L  layers participating in the cross-layer optimization. Each layer is indexed 

{ }1,...,l L∈  with layer 1 corresponding to the lowest participating layer (e.g. HW layer) 

and layer L  corresponding to the highest participating layer (e.g. APP layer). We note 

that for a layer to “participate” in the cross-layer optimization it must be able to adapt one 

or more of its parameters, configurations, or algorithms (e.g. the HW layer can adapt its 

processor frequency); alternatively, if a layer does not “participate”, then it is omitted. In 

all of the illustrative examples in this chapter, we assume that 3L =  and that the HW, 

OS, and APP layers correspond to layers 1, 2, and 3, respectively. 

The layered optimization framework proposed in this chapter deals with three types of 

time-varying dynamics, which impact multimedia system performance, but are not 

simultaneously considered in most existing research. In particular, our framework 

considers the multimedia application’s time-varying (probabilistic) rate-distortion 

behavior, its time-varying resource requirements, and the system’s time-varying resource 

availability due to contention with other applications, each with their own time-varying 

requirements. Cross-layer optimization frameworks that do not explicitly consider these 

dynamics are inherently suboptimal.  
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Figure 2.1. Layered decision making process illustrating the intra- and inter-layer dependencies in the 

system. System layers adapt to different components of the dynamic environment by deploying different 

“actions” at each layer. 

 

Figure 2.1 illustrates how each system layer can make autonomous decisions in a 

layered manner based on their own local information about different components of the 

dynamic environment and based on limited information forwarded from other layers. In 

our setting, environment refers to anything that affects the system’s performance but is 

not controllable by the system (e.g. the video source characteristics). We will frequently 

refer back to Figure 2.1 in order to make the abstract concepts discussed throughout this 

section more concrete. 

2.2.2 States 

In this chapter, the state encapsulates all of the information relevant to making processing 
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decisions. Illustrative examples of layer states are provided in Section 2.3 and are 

included in Figure 2.1. We assume that the states are Markovian such that, given the 

present state, the past and future states are independent
1
. Since each system layer interacts 

with a different component of the dynamic environment (see Figure 2.1), we define a 

state l ls ∈ S  for each layer l . We denote the state of the entire system by ∈ Ss , with 

1
L
l l== ×S S  (where 1 1

L
l l L=× = × ×�S S S  is the L -ary Cartesian product). If the l th layer’s 

state is constant, then we write 1l =S , where S  denotes the cardinality of set S .  

2.2.3 Actions 

The multimedia system takes different processing actions depending on the state of each 

layer. The actions at each layer can be classified into two types [3]: 

1. External actions impact the state transition of the layer that takes the external 

action. (See Sections 2.3.2 and 2.3.3 for examples of external actions at the OS and 

APP layers, which are also illustrated in Figure 2.1.) The external actions at layer l  

are denoted by l la ∈ A , where lA  is a finite set of the possible external actions at 

layer l . The aggregation of the external actions across all of the layers is denoted by 

1[ , , ]La a∈ ∈ A…a , where 1
L
l l== × AA . 

2. Internal actions determine the Quality of Service (QoS) provided to the upper layers 

and the state transition at layer L . (See Section 2.2.6 for our definition of QoS, and 

Section 2.3.1 and Figure 2.1 for an example of internal actions at the HW layer.) 

The internal actions at layer l  are denoted by l lb ∈ B , where lB  is a finite set of the 

                                                           
1
 We investigate the validity of this assumption for a realistic multimedia system in Section 2.6.3. 
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possible external actions at layer l . The aggregation of the internal actions across all 

of the layers is denoted by 1[ , , ]Lb b∈ ∈ B…b , where 1
L
l l== × BB . 

The action at layer l  is the aggregation of the external and internal actions, denoted by 

,l l l la bξ  = ∈  
X , where l l l= ×X A B . Finally, the joint action of the system is denoted by 

[ ]1 1, ..., L
L l lξ ξ == ∈ = × XXξ . 

We note that some layers may have non-adaptive (i.e. fixed) external and internal 

actions. If the l th layer’s external or internal action is non-adaptive, then 1l =A  or 

1l =B , respectively. Illustrative examples of external and internal actions are provided 

in Section 2.3 and in Figure 2.1. 

2.2.4 State Transition Probabilities 

We assume that the state transition in each layer is synchronized and operates at the same 

time scale, such that the transition can be discretized into stages during which the 

multimedia system has constant state and performs a single joint-action. The length of 

each stage does not need to be constant. For instance, in our H.264/AVC video encoding 

example, the length of each stage is the duration of time between encoding successive 

data-units (DUs) such as video macroblocks or frames. We use a superscript n  to denote 

stage n  (i.e. the stage in which we make the encoding decision for DU n ). For notational 

simplicity, we omit the superscript n  when no confusion will arise. 

In general, because states are Markovian, the state transition of the system only 

depends on the current state s , the current joint action, and the environmental dynamics. 

The corresponding transition probability is denoted by ( )| ,p ′s s ξ , where ns = s  and 
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1n+′s = s  (n ∈ � ). 

 The state transition probability can be factored to reflect the dependencies in the 

layered system architecture. First, using Bayes’ rule, the transition probability can be 

factored as  

 ( ) ( )1 -1
1

| , | , ,
L

l l

l

p p s →
=

′ ′ ′= ∏s s s sξ ξ , (2.1) 

where [ ]1 1,...,l ls s→′ ′ ′=s  and 1 0→′ = 0s  is an empty state. In this chapter, we assume that the 

next state of layer l , ls ′ , is statistically independent of the next state of the lower layers, 

1 -1l→′s , conditioned on the current state. Hence, we can rewrite (2.1) as 

 ( ) ( )
1

| , | ,
L

l

l

p p s
=

′ ′= ∏s s sξ ξ  (2.2) 

Second, due to the layered architecture and the definitions of the internal and external 

actions as illustrated in Figure 2.1, (2.2) can be factored further as follows: 

 ( ) ( ) ( )
1

1

| , | , , | ,
L

L L l l l

l

p p s a p s s a

−

=

′ ′ ′= ∏s s s bξ . (2.3) 

We would like to make the following remarks about (2.3): 

• The term ( )
1

1

| ,
L

l l l

l

p s s a

−

=

′∏  in (2.3) is taken from the first 1L −  layers in (2.2). Since 

the state-transition at layer {1, , 1}l L∈ −…  only depends on its own external 

action la  and state ls , these replace the joint state s  and joint mixed action ξ  in 

(2.2). The state transitions at the HW and OS layers illustrated in Figure 2.1 reflect 

this model. 

• The term ( )| , ,L Lp s a′ s b  in (2.3) is taken from layer L  in (2.2). The state transition at 
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layer L  depends on the joint state s , its own external action La , and the joint 

internal action b . In other words, the state transition at the application layer depends 

on the states and internal actions of all of the layers, which serve the application at 

layer L . This is illustrated in Figure 2.1, except that the states and internal actions 

at the lower layers are abstracted by the QoS values, which we discuss in Section 

2.2.6. 

• If the l th layer’s state is constant (i.e. 1l =S ), then its state transition probability 

( | , ) 1l l lp s s a′ = . On the other hand, if the l th layer’s external action is non-adaptive 

(i.e. 1l =A ), then its state transition probability ( | , ) ( | )l l l l lp s s a p s s′ ′= . This means 

that the state transition is governed solely by the environment. 

Illustrative examples of state transition probabilities are provided in Section 2.3. 

2.2.5 Reward Function and Layer Costs 

Performing the external and internal actions at layer l  incurs the costs ( ),l l ls aα  and 

( ),l l ls bβ , respectively. We define example cost functions for each layer in Section 2.3 

(e.g. the power consumed at the HW layer and mean squared error at the APP layer). 

We assume that the expected reward for taking joint action ξ  in state s  is a weighted 

sum of the costs at each layer plus an additional gain (we define an example gain function 

in Section 2.3), i.e. 

 ( ) ( ) ( ) ( )
1 1

, , , ,
L L

a b
l l l l l l l l

l l

R g s a s bω α ω β
= =

= − −∑ ∑s s bξ  (2.4) 

where ( ),g s b  is the expected gain, and a
lω  and b

lω  weight the external and internal costs 
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at layer l , respectively. We assume that the weights a
lω  and b

lω  are known and have been 

determined based on the desired tradeoff among the various layer costs. The reward in 

Eq. (2.4) can be separated into two parts: one is the internal reward, which depends on the 

internal actions, and the other is the external reward, which depends on the external 

actions. The internal reward is  

 ( ) ( ) ( )in
1

, , ,
L

b
l l l l

l

R g s bω β
=

= − ∑s b s b , (2.5) 

and the external reward is  

 ( ) ( )ex
1

, ,
L

a
l l l l

l

R s aω α
=

= −∑s a . (2.6) 

Hence, the total reward is ( ) ( ) ( )in ex, , ,R R R= +s s b s aξ . 

2.2.6 Quality of Service 

Definition: Quality of Service (QoS). The QoS at layer l  is defined as a pair 

( , )l l lQ ν η=  comprised of (i) the amount of reserved resources for the application layer, 

denoted by lν , and (ii) the immediate cost for reserving those resources, denoted by lη . 

The QoS serves as an abstraction of the states and internal actions at the lower layers 

such that they do not have to directly reveal their parameters and available configurations 

to the upper layers. In this chapter, lν  is the effective service rate in cycles per second 

reserved for the application layer (i.e. layer L ) and ( ),l l l ll l
s bη β ′ ′ ′′≤

= ∑  is the cumulative 

internal action cost
2
 incurred by layers {1, , }l l′ ∈ … . Importantly, the QoS at layer l  can be 

                                                           
2
 We include the internal cost in the QoS because the APP layer’s immediate reward and state transition 

depend on the internal actions at the lower layers. Hence, when the application selects the optimal QoS 

level, it must consider the costs incurred by these layers to ensure optimal performance across all layers. In 
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recursively computed given the QoS at layer 1l − : 

 
( )

( )

1 1( , , ), ( , , ) , 2, ,

( , ), ( , ) , 1

ll

ll

l l l l l ll l

l

l l l ll l

F s b Q F s b Q l L
Q

F s b F s b l

ην

ην

− − == 
 =

…
 

where l

lF ν  and l

lF
η  are functions, which map the state ls , internal action lb , and QoS 1lQ −  

to the service rate lν  and cost lη , respectively. Because the QoS can be recursively 

computed, at no point do the upper layers require specific information about the state sets 

and internal action sets at the lower layers. For notational simplicity, we will write the 

recursive QoS function compactly as 1( , , )l l l l lQ F s b Q −=
�

. In Sections 2.3.1, 2.3.2, and 2.3.3 

we define illustrative QoS pairs for the HW, OS, and APP layers, respectively. These are 

also illustrated in Figure 2.1. 

Given the QoS provided by the lower layers, we can rewrite the L th layer’s transition 

probability function ( )| , ,L Lp s a′ s b  in (2.3) as 

 ( ) ( )| , , | , ,L L L L L Lp s a p s s a Q′ ′=s b , (2.7) 

and its internal reward function ( )in ,R s b  in (2.5) as 

 ( ) ( )in in, ,L LR R s Q=s b . (2.8) 

In other words, there is a one-to-one correspondence between the L th layer’s QoS and the 

states 1 1 1 1( , , )L Ls s→ − −= …s  and internal actions 1 1( , , )L Lb b→ = …b . Hence, the L th layer’s 

QoS provides all of the information required for the L th layer to determine its transition 

probability function and internal reward. The relationships in (2.7) and (2.8) are required 

                                                           

 

contrast, the external cost is determined by each individual layer when it selects its external action, which 

does not impact the immediate reward at the APP layer. Therefore, the external costs do not need to be 

included in the QoS.  
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for the layered optimization solution proposed in Section 2.5.  

2.2.7 Foresighted Decision Making 

Unlike traditional cross-layer optimization, which focuses on the myopic (i.e. immediate) 

utility, the goal in the proposed cross-layer framework is to find the optimal actions at 

each stage that maximize the expected discounted sum of future rewards, i.e. 

 ( ) ( )0 0

0

, |n n n n n

n n

E Rγ

∞
−

=

    
   
∑ s sξ , (2.9) 

where the parameter γ  ( 0 1γ≤ < ) is the “discount factor,” which defines the relative 

importance of present and future rewards, ( )0, |n n nR s sξ  is the reward at stage n  

conditioned on the state at stage 0n  being 0ns , and the expectation is taken over the states 

0 0{ : 1, 2, }n n n n= + + …s . We refer to decisions that maximize (2.9) as foresighted 

cross-layer decisions because, by maximizing the cumulative discounted reward, the 

multimedia system is able to take into account the impact of the current actions on the 

future reward. In Section 2.6.2, we discuss the impact of the discount factor on system’s 

performance. In Section 2.4, we describe how to maximize (2.9) using a centralized 

MDP. Then, in Section 2.5, we present an alternative solution to the same problem based 

on a layered MDP. 

2.3 Illustrative Example 

In this section, we provide concrete examples of states, internal and external actions, state 

transition probabilities, cost functions, and QoS pairs. Our examples are organized by 

layer, starting with the HW layer and working up to the APP layer. Throughout the 
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illustrative examples in this chapter, we assume that 3L =  and that the HW, OS, and 

APP layers correspond to layers 1, 2, and 3, respectively. To facilitate understanding of 

our examples, we will use the subscripts HW , OS , and APP , instead of only specifying 

the layers by their indices. 

We note that if a layer’s state is constant, then it has a non-adaptive external action 

because there is nothing it can to do adapt its constant state. We also assume that there is 

no cost associated with a non-adaptive external action or a non-adaptive internal action. 

2.3.1 HW Layer Examples 

We assume that the HW layer’s processor can be operated at different frequency-voltage 

pairs to make energy-delay tradeoffs [4].  

HW state: In this example, the HW layer has a constant state (i.e. HW 1=S ).  

HW actions: We let the HW layer’s internal action, HW HWb ∈ B , set the processor to 

one of X  frequencies, i.e. HW 1{ , , }Xf f=B … . We denote the frequency used for processing 

the n th DU as HW( ) nf n b= . This is an internal action because it determines the HW layer’s 

QoS, which is defined below.  

HW state transition: Since the HW layer has only one state, it has a deterministic 

state transition, i.e. ( )HW HW HW| , 1p s s a′ = . 

HW costs: The HW layer’s internal cost is the amount of power required for it to run 

at frequency HWf b= . We define the HW layer’s internal cost as [5]: 

 ( ) 3
HW APP APP,s a fβ = . (2.10) 

HW QoS: We define the quality of service (QoS) that the HW layer provides to the 



 

26 
 

OS layer as the pair HW HW HW( , )Q ν η= , where HW fν =  is the CPU frequency and 

( )HW HW APP APP,s aη β=  is the HW layer’s internal cost. The HW layer’s QoS is shown on 

the right hand side of Figure 2.1. 

2.3.2 OS Layer Examples 

OS state: We denote the OS state by OS OSs ∈ S . We let OS ( )ns nε= , where ( ) (0,1]nε ∈  

is the CPU time fraction that the OS reserves for encoding the n th DU (hence, 1 ( )nε−  is 

reserved for other applications). We assume that the OS can be in any one of M  states 

such that OS OS 1{ , , }Ms ε ε∈ =S … . 

OS actions: In this example, the OS has a non-adaptive internal action (i.e. OS 1=B ) 

because we assume that the OS has no actions that impact the immediate reward (or, by 

extension, the immediate QoS) at the APP layer. The OS layer’s external action at stage 

n , however, impacts the amount of resources reserved for the application in stage 1n + . 

We assume that the weighted max-min fairness (WMM) [7] resource allocation strategy 

is used to divide processor time among the competing applications. Hence, the OS layer’s 

external action is a declaration of the application’s weight φ . We assume that there are 

W  possible external actions: i.e., OS OS 1{ , , }Wa φ φ∈ =A … . 

OS state transition: We model the OS state transition as a finite-state Markov chain 

with transition probabilities OS OS OS( | , )p s s a′ , with  OS OS OS,s s ′ ∈ S  and OS OSa ∈ A . This is 

similar to the Markov model of the service provider in [9]. If we assume that the weights 

of other applications are unknown when the OS layer’s external action is selected, then its 

state transition is non-deterministic; On the other hand, if the weights of other tasks are 
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known when the OS layer’s external action is selected, then its state transition is 

deterministic, because it can directly calculate its resource allocation for each weight. 

OS costs: We define the external cost associated with the OS layer as the 

application’s weight, hence 

 ( )OS OS OS OS,s b bα φ= = . 

This cost prevents the application from requesting excessive resources when it stands to 

gain very little additional reward from them. 

OS QoS: We define the QoS that the OS layer provides to the APP layer as the pair 

OS OS OS( , )Q ν η= , where OS fν ε= , ε  is the CPU time fraction allocated to the application, 

f  is the CPU frequency, and OS HWη η=  because there are no internal costs incurred at the 

OS layer. The OS layer’s QoS is illustrated on the right hand side of Figure 2.1. 

2.3.3 APP Layer Examples 

APP state: The APP layer’s state at time index n , APP
ns , is equivalent to the number 

of DUs max( ) [0, ]nρ ρ∈ , maxρ ∈ �  in its post-encoding buffer. The post-encoding buffer is 

placed between the encoder and the network (if the encoded video is to be streamed), or 

between the encoder and a storage device (if the encoded video is to be stored for later 

use). The buffer allows us to mitigate hard real-time deadlines by introducing a maximum 

allowable latency, which is proportional to the maximum buffer size maxρ . In [10], a 

similar buffer is used at the decoder for decoding video frames with high peak complexity 

requirements in real-time. 

Although one goal of our illustrative cross-layer optimization problem is to minimize 



 

28 
 

costs (e.g. power consumption at the HW layer), a competing goal is to avoid buffer 

underflow (caused by DUs missing their delay deadlines) and to avoid buffer overflow 

(caused by DUs being encoded too quickly) [10] [11]. Hence, the goal of the cross-layer 

optimization is for all layers to cooperatively adapt in order to achieve the optimal 

balance between the costs incurred at each layer and the buffer occupancy. We note that 

an alternative buffer model (referred to as a service queue model) is presented in [9]. 

APP actions: We assume that the APP layer has a non-adaptive internal action (i.e. 

APP 1=B ) but that it has external actions APP APPa ∈ A
3
. In a typical video encoder, for 

example, application configurations can include the choice of quantization parameter, the 

motion-vector search range, etc. The application’s configuration affects the n th DU’s 

encoding complexity APP( , )c n a , which is an instance of the random variable C  with 

distribution.  

 
APP APP( ) ( | )aC p c p c a=∼  (2.11) 

APP state transition: We define the actual post-encoding buffer occupancy 

recursively as 

 
 { }{ }max

OS APP

initial

( 1) min max ( ) 1 ( , , , ) , 0 ,

(0) ,

n n t n s a vρ ρ ρ

ρ ρ

+ = + − ⋅

=

b
 (2.12) 

where 

 APP
OS APP

( , )
( , , , )  (seconds)

( ) ( )

c n a
t n s a

n f nε
=b  (2.13) 

                                                           
3
 We know from (2.3) that, unlike the other layers, the APP layer’s state transition depends on its external 

and internal actions. For our application, this makes the distinction between the two types of actions at the 

APP layer largely inconsequential. 
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is the n th DU’s processing delay, which depends on the processor frequency ( )f n  and the 

fraction of time, OS ( )ns nε= , allocated to the application at stage n . In (2.12), the 1  

indicates that DU( )n  is added into the post-encoding buffer after the processing delay 

OS APP( , , , )t n s a b ;  X  takes the integer part of X ; v  is the average number of DUs that 

must be processed per second (for example, if DUs are frames, then the service rate 

required for real-time encoding is typically 30v =  frames per second); and, initialρ  is the 

initial post-encoding buffer occupancy, which we set to initial max 2ρ ρ=  so that we do not 

initially bias the buffer toward overflow or underflow. 

As described before, the DU’s encoding complexity is a random variable, which 

depends on the application’s external action (i.e. encoding parameter selection). This 

causes uncertainty in the buffer state transition. This state transition also depends on the 

states and internal actions at the lower layers (since they affect the CPU frequency f  and 

the CPU time fraction ε  reserved for the application). Hence, the APP state transition 

probability is given by ( )APP APP| , ,p s a′ s b , which is congruent with the first term on the 

right hand side of (2.3).  

Given the processor frequency f  from the HW layer and the time fraction ε  from the 

OS layer, the n th DU’s processing delay t  is an instance of the random variable 
C

T
fε

=  

(seconds) with distribution ( )
APP APP

( )a aT p t f p f cε ε= ⋅ ⋅∼ .  Finally, we let T v T= ⋅�  

with distribution ( )APP APP

1
( )a a

t
T p t p

v v
= ⋅� �∼ . Using T� , the APP state transition 

probability can be written as  
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{ }

{ }

{ }

APP

APP

APP

APP APP

max

max

( = | , , )

1 ,                          {0, , },  0

0 2 ,                         

1 2 ,  otherwise 

a

a

a

p s a

p t

p t

p t

ρ

ρ ρ ρ ρ

ρ ρ ρ

ρ ρ ρ ρ

′ ′

 ′ ≥ + ∈ = ′= ≤ < = =
 ′ ′− + ≤ < − +

� …

�

�

s b

 (2.14) 

APP costs: We penalize the APP’s external action by employing the Lagrangian cost 

measure used in the H.264/AVC reference encoder for making rate-distortion optimal 

mode decisions. Formally, we define this cost as 

 ( )APP APP APP APP rd APP, ( ) ( )s a d a r aα λ= + , (2.15) 

where APP( )d a  and APP( )r a  are the distortion (mean squared error) and compression rate 

(bits/DU), respectively, incurred by the application’s external action, and rd [0, )λ ∈ ∞  is 

used to weight the relative importance of the distortion d  and the rate r  in the overall 

cost. 

APP QoS: We define the QoS at the APP layer as the pair APP APP APP( , )Q ν η= , where 

APP OSν ν=  and APP OSη η=  because there are no internal costs incurred at the APP layer. 

Hence, in this example, APP OSQ Q= . The APP layer’s QoS is illustrated on the right hand 

side of Figure 2.1. 

2.3.4 The System Reward 

Recall that the reward defined in (2.4) can be expressed as ( ) ( ) ( )in ex, , ,R R R= +s s b s aξ . 

Given the system state HW OS APP( , , )s s s=s  and the joint action ( , )= a bξ , where 

HW OS APP( , , )a a a=a  and HW OS APP( , , )b b b=b , the internal reward defined in (2.5) can be 

written as  
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 ( ) ( ) ( )
3

in HW HW HW HW, , ,b

f

R g s aω β= −
��������	�������


s b s b . (2.16) 

In this chapter, we define the expected gain ( ),g s b  as a penalty for buffer underflow and 

buffer overflow.  The gain is a component of the reward that is designed to keep the 

buffer state away from overflow and underflow. Formally, we define the expected gain as 

 ( ) ( )
APP

APP APP APP APP, , , ( | , , )
s

g g s s p s a
′ ∈

′ ′= ∑
S

s b b s b , (2.17) 

where we let 

 ( )

max
APP

APP
APP APP APP

max
APP

,                   if -

, , ,            if  

,   otherwise

s

s
g s s s

s

ρ

ρ

 ′Ω Λ ≤ ≤ Λ ′′ ′= Ω < Λ
 Λ ′ − Ω Λ

b  (2.18) 

with 0Ω >  and max0 2ρ≤ Λ < . This is a good metric to include in the  reward because 

it is indicative of  the quality degradation experienced by the application when encoded 

DUs are lost (due to buffer overflow) or when they miss their deadlines (due to buffer 

underflow). 

Lastly, the external reward defined in (2.6) can be written as 

 ( ) ( ) ( )

rd

ex APP APP APP APP OS OS OS OS, , ,a a

d r

R s a s a

λ φ

ω α ω α

+

= − −
��������	�������
 ������	�����


s a . (2.19)  

2.4 Centralized Cross-Layer Optimization 

Some existing cross-layer optimization frameworks for systems [7] [8] [12] assume that 

there is a centralized coordinator to determine the actions taken by each layer. This 

coordinator usually resides at the OS layer or a middleware layer.  
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In this section, we describe how to maximize (2.9) using a centralized MDP. Then, in 

Section 2.5, we present an alternative solution to the same problem based on a layered 

MDP. 

2.4.1 Centralized Foresighted Decision Making Using a Markov Decision Process 

We model the foresighted centralized cross-layer optimization problem as a Markov 

decision process (MDP) with the objective of maximizing the discounted sum of future 

rewards defined in (2.9). In this way, we are able to consider the impact of the current 

actions on the future rewards in a rigorous and systematic manner. An MDP is defined as 

follows: 

Definition: Markov decision process (MDP). An MDP is a tuple ( , , , , )p R γS X  

where S  is the joint state-space, X  is the joint action-space, p  is a transition probability 

function : [0,1]p × ×S X S � , R  is a reward function :R ×S X � � , and γ  is a 

discount factor. 

In the context of our layered system architecture, 1
L
l l== × SS , 1

L
l l== × XX , the 

transition probability is given by (2.3), and the reward is given by (2.4). The solutions to 

the centralized MDP described below and the layered solution described in Section 2.5 

are implemented offline, prior to the execution of the application. Additionally, the two 

solutions assume that S , X , p  and R  are all known a priori and that they do not change 

during the execution of the application. In Section 2.6.3, we discuss the impact of an 

inaccurate probability transition model p  on the system’s performance.  

In this chapter, the goal of the MDP is to find a Markov policy π , which maximizes 
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the discounted sum of future rewards. A Markov policy π ∈ Π  is a mapping from a state 

to an action, i.e. :π S X� . Π  is the Markov policy space. The policy can be 

decomposed into external and internal policies, i.e. :aπ S A�  and :bπ S B� , 

respectively; and, further decomposed into layered external and internal policies, i.e. 

:a
l lπ AS �  and :b

l lπ BS � , respectively. We assume that the Markov policy is 

stationary, hence the mapping of state to action does not depend on the stage index n . 

A commonly used metric for evaluating a policy π  is the state-value function V π  [2], 

where 

 ( )
current expected reward

expected future rewards

( ) ( , ( )) | , ( ) ( )V R p Vπ ππ γ π
′∈

′ ′= + ∑
S

����	���

������������	�����������
s

s s s s s s s . (2.20) 

In words, ( )V π s  is equal to the current expected reward plus the expected future rewards, 

which is calculated by assuming that the policy π  is followed until stage n → ∞ .  

Our objective is to determine the optimal policy π∗ , which maximizes (2.20) for all s  

(or, equivalently, maximizes (2.9) for all 0ns ). The optimal state-value function is defined 

as 

 { }( ) max ( )V V π
π

∗

∈Π
=s s , ∀ ∈ Ss , (2.21) 

and the optimal policy π∗  is defined as 

 { }( ) argmax ( ) ,V π

π

π∗

∈Π
=s s  ∀ ∈ Ss . (2.22) 

The optimal value function V ∗  and the corresponding optimal policy π∗  can be iteratively 

computed using a technique called value iteration (VI) [2] as follows: 
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 ( ) 1( ) max ( , ) | , ( ) ,k kV R p Vγ∗ ∗
−

∈ ′∈

   ′ ′= + 
   

∑
S

Xξ
ξ ξ

s

s s s s s  (2.23) 

where k  is the iteration number and 0 ( )V ∗ s  is an arbitrary initial estimate of the state-

value function. The optimal stationary policy π∗  defined in (2.22) is obtained by iterating 

until k → ∞ . In practice, VI requires only a few iterations before converging to a near 

optimal state-value function and policy. Importantly, V ∗  and π∗  are computed offline; 

then, at run-time, all that is required to perform optimally is to follow the optimal state-

to-action mappings π∗  stored in a simple look-up table of size S . 

2.4.2 Centralized Cross-Layer System 
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Figure 2.2. Centralized cross-layer system optimization framework. The portions of the figure that are in 

bold comprise the centralized information exchange process. If the dynamics are stationary, then steps 1 and 

2 only need to happen once. 

 

The centralized foresighted framework introduced in the previous subsection requires 
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each layer to convey the following information tuples to the centralized optimizer: 

 
( ) ( ) ( )

( ) ( ) ( )

,  ,  |, , , ,  , ,  , ,  for layer 

,  ,  |, , ,  , ,  , ,  for layers .

L L L L L L L L L L

l

l l l l l l l l l l l

p s a s a s b L

p s s a s a s b l L

α β

α β

′= 
 ′ <

S X

S X
I

s b
 

Figure 2.2 summarizes the centralized foresighted cross-layer framework.  

There are several limitations to this centralized framework, which we have already 

described in the introduction (Section 2.1). In summary, these limitations stem from steps 

1 and 2 of the procedure described above because these steps require the layers to expose 

their parameters and algorithms, and to relinquish their decision making processes, to a 

centralized entity, thereby violating the layered system architecture. 

2.5 Layered Optimization 

To overcome the shortcomings of the centralized solution, we propose a layered 

optimization framework for maximizing the same objective function (i.e. the discounted 

sum of future rewards in (2.9)). The proposed layered framework allows layers to make 

optimal autonomous decisions with only a small overhead for exchanging messages 

between them. Importantly, the format of these messages is independent of the 

parameters, configurations, and algorithms at each layer, which makes the framework 

adaptable to different applications, operating systems, and hardware architectures. Figure 

2.3 illustrates the layered framework. The flow of information in Figure 2.3 is the same as 

in Figure 2.2 except that steps 1 and 2 are replaced by the layered optimizer, which we 

describe in detail in Section 2.5.2, and the states and internal actions at the lower layers 

determine the QoS to the upper layers as we described in Section 2.2.6. 
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Figure 2.3. Layered cross-layer system optimization framework with message exchanges. 

 

2.5.1 Layered MDP for Cross-Layer Decision Making 

Definition: Layered MDP [3]. The layered MDP model is defined by the tuple 

1
, 1 1 , 1 2,  ,  ,  { } ,  { } ,  ,  ,  L L
l l l l l l p R γ−

+ = − =Θ ΘL S X , where {1, , }L=L …  is a set of L  layers; S  is a 

finite set of states with elements 1( , , )Ls s= ∈ S…s ; X  is a finite action space with 

elements 1( , , )Lξ ξ= ∈ X…ξ , where ( , )l l la bξ =  contains the l th layer’s external action la  

and internal action lb ; , 1l l+Θ  is a set of “upward messages,” which layer l  can send to 

layer 1l +  ( {1, , 1}l L∈ −… ), and , 1 , 1l l l lθ + +∈ Θ  is one such message; , 1l l−Θ  is a set of 

“downward messages,” which layer l  can send to layer 1l −  ( {2, , }l L∈ … ), and 

, 1 , 1l l l lθ − −∈ Θ  is one such message; p  is a transition probability function 

: [0,1]p × ×S X S � ; R  is a reward function :R ×S X � � ; and, γ  is the discount 

factor. 
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2.5.2 Layered Value Iteration 

In this subsection, we describe the proposed offline algorithm for evaluating the optimal 

state-value function V ∗  (see (2.21)) and the corresponding optimal policy π∗  (see (2.22)) 

without a centralized optimizer. This is done using an algorithm called layered value 

iteration (layered VI) [3], which is illustrated in Figure 2.4. 
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Figure 2.4. Layered VI with upward and downward messages. (a) During an initial QoS generation period, 

upward messages are used to tell the application layer which QoS levels are supported in each system state. 

The set of QoS levels at layer L  is required to perform layered VI. (b) Downward messages are generated 

in every iteration of the layered VI algorithm. 

 

Before layered VI can be performed, layer L  needs to know which QoS levels are 

supported by the lower layers for all system states ∈ Ss . This is achieved through a 

message exchange process in which upward messages , 1 , 1l l l lθ + +∈ Θ  are sent from layer l  
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to layer 1l +  for all {1, , 1}l L∈ −… . The contents of these upward messages are QoS sets 

defined as  

 { }1 1 1 1 1 1 1( ) ( , , ), , ( , ),  l l l l l l l l lQ Q F s b Q Q F s b b ,…, b−= = = ∀ ∈ ∀ ∈B BQ
� �

…s , ∀ ∈ Ss , 

where the QoS lQ  and the QoS mapping function 1( , , )l l l lF s b Q −

�
 are defined in Section 

2.2.6. Figure 2.4(a) illustrates the QoS generation period that immediately precedes 

layered VI. During this period, each layer {1, , 1}l L∈ −… , starting from layer 1l = , 

generates its QoS set for all ∈ Ss  and sends its upward messages { }, 1 ( )l l lθ + = Q s  to layer 

1l +  (e.g. the HW layer tells the OS layer its available frequency and power 

combinations). We let the notation { }( )lQ s  denote the set of QoS values for all ∈ Ss . 

After the L th layer’s set of QoS levels ( )LQ s  is generated, the layered VI algorithm 

illustrated in Figure 2.4(b) begins. 

We derive the layered VI algorithm by substituting the factored transition probability 

function and the factored reward function defined in (2.3) and (2.4), respectively, into the 

centralized VI algorithm defined in (2.23): i.e.,  
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 (2.24) 

Recall from (2.7) and (2.8) in Section 2.2.6 that the internal reward and the transition 

probability function at layer L  can be expressed using the QoS from the lower layers, 

which is known by layer L  because of the upward messages. The QoS based expressions 

allow us to change the optimization variables in (2.24) from the joint actions ∈ Xξ  to 
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∈ Aa  and ( )L LQ ∈Q s . Hence, we can rewrite (2.24) as: 
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 (2.25) 

where we have written the next-state vector ′ ∈ Ss  as 1 1 1=( , , )L L L→ →′ ′ ′ ∈ S…s s s  and the joint 

external action vector ∈ Aa  as 1 1 1=( , , )L L La a→ →∈ A…a .  

We observe that ( )in( , ) ,a
L L L L L LR s Q s aω α−  is independent of the next-states 

1 1 1 1L L→ − → −′ ∈ Ss  and that  ( )
1 1 1 1

1

1

| , 1
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l l l
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−
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, therefore, we can move 

( )in( , ) ,a
L L L L L LR s Q s aω α−  into the product term as follows: 
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(2.26) 

where we have also moved the maximization over the external action set and QoS set at 

layer L  inside the product term because the other terms are independent of these 

parameters. The right-hand term of (2.26) is the sub-value iteration (sub-VI) at layer L , 

the result of which we denote by 1 1 1( )k L-V ∗
− →′s  for all 1 1 1 1L L→ − → −′ ∈ Ss :  

Sub-value iteration at layer L : 
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The sub-VI at layer L  determines the optimal internal actions at every layer (by selecting 

the optimal QoS). The external actions, however, are determined by each individual layer 

based on local models of their dynamics (i.e. transition probability functions and reward 

functions). 

We observe that ( ),a
l l l ls aω α−  is independent of the next-states 1 1 1 1l l→ − → −′ ∈ Ss  and 

that ( )
1 1 1 1

1

1( )

| , 1
l - l -

l

l l l

l

p s s a

→ →

−

′ =∈

′ =∑ ∏
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. Hence, similar to how we obtained (2.27) from (2.25)

, the sub-VI at layers 2, , 1l L= −…  for all 1 1 1 1l l→ − → −′ ∈ Ss  can be performed as follows: 

Sub-value iteration at layer 2, , 1l L= −… : 
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where 1 1( )k lV ∗
− →′s  (on the right hand side) is the result of the sub-VI at layer 1l +  for all 

1 1l l→ →′ ∈ Ss , which is sent as a downward message from layer 1l +  to layer l , i.e. 

{ }1, 1 1( )l l k lVθ ∗
+ − →′= s . 

Finally, the sub-VI at layer 1l =  is performed as follows: 

Sub-value iteration at layer 1 : 

 ( ) ( )
1 1

1 1

1 1 1 1 1 1 1 1 1
 

( ) max , | , ( )a
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where { }2,1 1 1( )kV sθ ∗
− ′=  and ( )kV ∗ s  becomes the input to the sub-VI at layer L  during 
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iteration 1k + . 

We note that performing L  sub-VIs (i.e. one for each layer) during one iteration of 

layered VI is equivalent to one iteration of centralized VI. After performing layered VI, 

we obtain the state-value function, kV ∗ , which will converge to the optimal state-value 

function V ∗  as k → ∞ . Subsequently, the optimal layered external and internal policies 

(i.e. a
lπ

∗  and b
lπ

∗ , respectively) can be found using (2.22), and can be stored in a look-up 

table at each layer to determine the optimal state-to-action mappings at run-time. 

2.5.3 Complexity of Layered Value Iteration 

It is well known that one iteration of the centralized VI algorithm has complexity 

2( )O S X . In our layered setting, 1
L
l l== × SS�  is the state set and 

( )1 1
L L
l l l l l= == × = × ×X A BX  is the action set, which is comprised of external and 

internal action sets at each layer. Based on these definitions, 
1

L

l

l =

= ∏ SS �  and 

( )
1 1

L L

l l l

l l= =

= = ×∏ ∏X A BX . 

In order to evaluate the complexity of the layered value iteration procedure, we must 

first look at the complexity of each sub-VI.  

The sub-VI at layer L  defined in (2.27) has complexity 
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The sub-VIs at layers {2, , 1}l L∈ −…  defined in (2.28) have complexity 
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Finally, the sub-VI at layer 1 defined in (2.29) has complexity 

 ( )1 1 1Comp O= S AS . (2.32) 

Hence, the total complexity of one iteration of the layered VI algorithm can be expressed 

as 

 
1

L

l

l

Comp Comp
=

= ∑ . (2.33) 

We compare the centralized VI and layered VI complexities in Table 2.1 assuming that 

states and actions are as defined in Table 2.2.  

Table 2.1. Complexity of centralized value iteration and layered value iteration. 

Layer No. States No. External Actions No. Internal Actions 

1 (Hardware) 1 1 3 

2 (Operating System) 3 2 1 

3 (Application) 29 3 1 

Centralized VI 

Complexity 2

2

(29 3) (3 3 2)

( ) 136242O

⋅ ⋅ ⋅ ⋅

=S X
����	���


  

Layered VI 

Complexity 

�3

2

2

1 1 2 1 2 3

(29 3) 1 1 (29 3) 3 1 2 (29 3) 3 3 1

87 522 68121

68730

O O O

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
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 ������	�����


 

 

2.6 Results 

In this section, we test the performance of the proposed framework using the illustrative 

cross-layer system described in Section 2.3. Table 2.2 details the parameters used at each 

layer in our simulator, which we implemented in MATLAB. In our simulations, we use 
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actual video encoder trace data, which we obtained by profiling the H.264 JM Reference 

Encoder (version 13.2) on a Dell Pentium IV computer. Our traces comprise 

measurements of the encoded bit-rate (bits/MB), reconstructed distortion (MSE), and 

encoding complexity (cycles) for each video MB of the Foreman sequence (30 Hz, CIF 

resolution, quantization parameter 24) under three different encoding configurations. The 

chosen encoding parameters are listed in Table 2.2. We let one DU comprise 11 

aggregated MBs, and we let each simulation comprise encoding 20000 such DUs. Since 

real-time encoding is not possible with the selected encoding parameters, we set the 

buffer drain rate to 32/11v =  (DUs/sec).  

We note that the illustrative results presented here depend heavily on the simulation 

parameters defined in Table 2.2. Nevertheless, our most important observations are about 

the fundamental properties of the proposed framework, which are independent of the 

chosen example. 
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Table 2.2. Simulation parameters used for each layer. 

Layer Parameter Value 

Application 

Layer 

 

(APP) 

Buffer State 
max

APP {0, , }ρ=S … , max 28ρ =  (DUs) 

Parameter Configuration 

APP {1,2, 3}=A  

APP 1a = : Quarter-pel MV, 8x8 block ME 

APP 2a = : Full-pel MV, 8x8 block ME 

APP 3a = : Full-pel MV, 16x16 block ME 

Gain parameters 40Ω = , 4Λ =  

External Cost Weight APP 1aω =  

Rate-distortion Lagrangian rd 1/128λ =  

Buffer drain rate 32/11v =  (DUs/sec) 

DU size 11 Macroblocks 

Operating 

System Layer 

(OS) 

Resource Allocation State OS {0.80,0.55,0.35}=S  

Resource Allocation Weight OS {1,3}=A  

External Cost Weight OS 1aω =  

Hardware 

Layer 

(HW) 

State Constant 

Processor Frequency Actions HW {200,600,1000}=A  Mhz 

Internal Cost Weight 27
HW 9 10bω −= ×  

 

 

2.6.1 Equivalence of Centralized and Layered Value Iteration 

Figure 2.5 illustrates the state-value function obtained using layered and centralized VI 

with a discount factor of 0.9γ = . Both VI algorithms yield the same state-value 

function, so we only show one state-value function here. 
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Figure 2.5. State-value function obtained from centralized VI and layered VI ( 0.9)γ = . 

 

2.6.2 Impact of the Discount Factor 

The discount factor γ  impacts the average system performance and also the number of 

iterations required for the centralized and layered VI algorithms to converge. Table 2.3 

illustrates the impact of the discount factor on the average reward (defined as the sum of 

(2.16) and (2.19)) achieved over five simulations of the centralized system and five 

simulations of the layered system. (Because the reward is very abstract, in Section 2.6.5 

we provide more detailed simulation results in a variety of simulation scenarios.) As 

expected, the results in Table 2.3 show that the centralized system and the layered system 

perform nearly identically. The small differences in the actual measured performance are 

due to random dynamics over the finite simulations (i.e. random resource allocations at 

the OS layer). We also observe that larger values of the discount factor improve the 

system’s performance; however, larger values also increase the number of iterations 
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(centralized or layered) required to find the optimal foresighted decision policy. 

Table 2.3. Impact of the discount factor on the average system reward. 

Discount 

Factor 

(γ ) 

Number 

of 

Iterations 

Avg. 

Reward 

(Centralized) 

Avg. 

Reward 

(Layered) 

0.00 2 1.67 1.35 

0.15 15 1.66 1.76 

0.30 23 6.24 6.50 

0.45 33 16.95 16.97 

0.60 51 17.63 17.60 

0.75 87 17.83 17.78 

0.90 227 17.93 17.92 

 

2.6.3 Impact of Model Inaccuracy on the System’s Performance 

Using the centralized MDP or the layered MDP requires good prediction of future events 

in order to predict the future performance of the system. In this chapter, we have 

assumed: (i) we know the expected reward for every possible state and action, (ii) the 

probability transition functions can be characterized by stationary controlled Markov 

chains, and (iii) the stochastic matrices describing the probability transitions are known 

perfectly such that the optimal policy to the MDP can be computed offline. If we relax 

these assumptions, it becomes necessary to analyze the affect of model inaccuracy on the 

overall performance. In the following analysis, we assume that model inaccuracy is due to 

the fact that the system’s dynamics are not actually stationary and Markov. 

If the state-transitions in the system are not truly stationary and Markov, then the 

expected reward predicted by the stationary Markov model will differ from the average 

reward that is actually achieved. We can quantify this model error as follows. We let 

( )πµ s  denote the steady-state probability of being in state s  when following policy π . 
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Using ( )πµ s , we can compute the expected rewards that should be achieved if the 

system’s dynamics are truly stationary and Markov: 

 ( ) ( , ( ))R Rπ πµ π
∈

= ∑
Ss

s s s . (2.34) 

Now, consider an N -stage simulation of the system ( 0N � ), which traverses the 

sequence of states 0 1, , , N…s s s  when following policy π . The average reward obtained 

over this simulation can be written as: 

 
1

0

1
( ) ( , ( ))

N
n n

n

R N R
N

π π

−

=

= ∑ s s . (2.35) 

The absolute difference between the expected rewards and the N -stage average reward, 

( )R R Nπ π− , indicates how accurate the stationary Markov model is for the actual 

system. Large values of ( )R R Nπ π−  indicate that the stationary Markov model is 

inaccurate. 

Consider the following example in which we measure the impact of the model’s 

inaccuracy on the system’s performance. Figure 2.6 illustrates the actual encoding 

complexity trace (for a fixed action) and the corresponding trace generated by a stationary 

model of the complexity trace. Clearly, the actual encoding complexity is not perfectly 

represented by the stationary model defined in (2.11). Because the actual complexity 

traffic is not stationary, the buffer transition model in (2.14) is not accurately represented 

as a stationary Markov chain. Nevertheless, the data in Table 2.4 shows us that the 

predicted reward (based on the stationary Markov model of the buffer) does not differ 

significantly from the actual reward that is achieved when simulating the system over 
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20, 000N =  stages. 

Table 2.4. Simulated ( 20, 000N =  stages) vs. predicted reward, PSNR, power, and resource allocation 

cost. 

 
Avg. 

Reward 

Avg. 

PSNR 

(dB) 

Avg. 

Power 

(W) 

Avg.  

Rsrc. Alloc. 

Cost 

Simulated 17.93 38.35 2.90 2.69 

Predicted  18.91 38.40 2.44 2.98 

Prediction 

error 
0.98 0.05 0.46 0.29 
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Figure 2.6. Actual complexity trace (top) vs. trace generated by a stationary model (bottom). The stationary 

model’s parameters are trained based on the actual complexity trace. 
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2.6.4 Myopic and Foresighted Simulation Trace Comparison 

Figure 2.7 shows detailed simulation traces of the APP actions, OS actions, HW actions, 

APP states, and OS states over time when a myopic decision policy is used ( 0γ = ) and 

when a foresighted decision policy is used ( 0.9γ = ). From these traces, it is clear why 

the myopic decision policy performs worse than the foresighted policy. We note that 

these traces are representative of the simulations with rewards shown in the first and last 

row of Table 2.3. 

First, under the myopic policy, the application receives a smaller CPU time fraction 

on average. This is because the immediate reward is always maximized when the OS 

selects the lower resource allocation weight (i.e. 1φ = ); therefore, the OS layer will 

never use a higher weight to reserve increased CPU time in the future. Meanwhile, the 

foresighted policy is able to see that it is less costly to request a higher future CPU time 

fraction than it is to immediately increase the processor frequency.  

Second, because the application receives a low fraction of the CPU time on average, 

the myopic policy selects the least complex, lowest quality, action (i.e. APP 3a = ) and the 

highest processor speed (i.e. 1000f =  Mhz) much more frequently than in the 

foresighted case. In addition, despite reducing the encoding complexity and boosting the 

processor speed, the APP buffer repeatedly underflows. All of these factors result in the 

myopic policy incurring excessive costs compared to the foresighted policy. 
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Figure 2.7. Simulation traces from stage 1200 to 1400. (a) Simulation with myopic cross-layer optimization 

( 0γ = ). (b) Simulation with foresighted cross-layer optimization ( 0.9γ = ). 

 

2.6.5 Performance of Simplifications of the Proposed Framework 

In Figure 2.8, we illustrate the scalability of the proposed cross-layer framework by 

comparing the performance of the full cross-layer design to several simplified system 

configurations, which are similar to those that have been proposed in prior research. In 

this way, we also show that our proposed framework is a superset of existing work. 
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Detailed information about the average peak-signal-to-noise ratio (PSNR in dB), average 

power consumption, average resource allocation cost, and the average number of buffer 

overflows and underflows for each bar in Figure 2.8 is shown in Table 2.5.  
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Figure 2.8.  Comparison of the performance of different system configurations. 

 

Table 2.5. Detailed simulation results for each configuration. In each column of the table, the value 

obtained in the foresighted case is on the left and the value obtained in the myopic case is on the right. 

Configuration 
Avg. 

PSNR (dB) 

Avg. 

Power (W) 

Avg. Resource 

Allocation Cost 

Avg. 

No. Underflows 

Avg. 

No. Overflows 

ALL-adapt 38.35 31.27 2.90 3.67 2.69 1.00 0 5516 0 0 

OS-APP-adapt 36.30 36.29 9.00 9.00 1.07 1.00 0 0 810 813 

HW-APP-adapt 38.16 31.13 5.36 3.60 1.00 1.00 4 5467 0 0 

HW-OS-adapt 38.10 28.14 3.95 2.00 2.42 1.00 6 12874 0 0 

APP-adapt 36.31 36.29 9.00 9.00 1.00 1.00 0 0 800 803 

OS-adapt 34.05 32.85 9.00 9.00 1.09 1.00 2 1323 2201 2069 

HW-adapt 31.40 28.15 6.52 1.99 1.00 1.00 5359 12848 0 0 

  

In the following paragraphs we describe each system configuration used to obtain the 

results in Figure 2.8 and Table 2.5. For each of these configurations, the cross-layer 
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system’s parameters are defined as in Table 2.2 except where specified.  

Configuration 1: ALL-adapt. Similar to [7] [8], every layer can adapt its action. As 

expected, this configuration achieves the highest reward out of all configurations when 

using a foresighted decision policy. Its myopic performance, however, is worse than 

several of the other configurations, which have the HW action fixed at 1000f =  Mhz. 

This initially seems counterintuitive because we would expect it to perform better given 

that it has more options available; however, this is only true if the best decisions are made 

given the additional options, which is not the case with the myopic policy. Instead, the 

myopic policy frequently selects the lowest processor frequency in order to save on the 

immediate power costs; consequently, it is forced to aggressively encode at the highest 

processor frequency to avoid continually underflowing the application buffer. Due to the 

convexity of the power-frequency function (i.e. the HW internal cost), the average power 

consumed is higher than if it had just used the middle processor frequency more 

frequently (like the foresighted policy chooses to do). 

Configuration 2: OS-APP-adapt. Under this configuration, the OS and APP layers 

can adapt their actions, but the HW layer’s action is fixed at 1000f =  Mhz. We observe 

from Figure 2.8 that this configuration’s myopic policy performs nearly as good as its 

foresighted policy. This is because the fixed high processor frequency provides the 

application with enough resources to meet most of its delay constraints (i.e. avoid buffer 

underflows). This configuration’s foresighted performance, however, is worse than that of 

the ALL-adapt configuration because a lot of power is wasted by using the high processor 
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frequency throughout the duration of the simulation. 

Configuration 3: HW-APP-adapt. Similar to [5] [6], the HW and APP layers can 

adapt their actions, but the OS layer’s action is fixed at 1φ = . The foresighted 

performance of this configuration is better than the myopic performance of the ALL-adapt 

configuration, even though both configurations have a static resource allocation weight at 

the OS layer (i.e. 1φ = ). This is because the foresighted policies modestly increase the 

processor’s frequency and reduce the APP complexity before the buffer underflows. 

Meanwhile, the foresighted performance of this configuration is worse than that of the 

ALL-adapt configuration because it must use higher processor speeds (and therefore more 

power) to compensate for having a lower fraction of the CPU time on average. 

Configuration 4: HW-OS-adapt. Under this configuration, the HW and OS layers 

can adapt their actions, but the APP layer’s action is fixed at APP 2a = . This 

configuration’s myopic policy frequently selects the lowest processor frequency in order 

to save on the immediate power costs. This causes a huge number of buffer overflows, 

which severely degrade its performance. We note that this configuration’s foresighted 

performance is better than that of the HW-APP-adapt and OS-APP-adapt configurations 

only because of the particular cost-weights chosen for our simulations (i.e. a
lω  and b

lω , 

{1, , }l L∀ ∈ … ), which heavily penalize high CPU frequencies. In other words, different 

cost-weights would change the relative performance of the various configurations with 

two adaptive layers. 

Configuration 5: APP-adapt. The APP layer can adapt its action, but the HW layer’s 
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action is fixed at 1000f =  Mhz and the OS layer’s action is fixed at 1φ = . For the same 

reason as in the OS-APP-adapt configuration, this configuration’s myopic performance is 

nearly the same as its foresighted performance. 

Configuration 6: OS-adapt. Similar to [1], the OS layer can adapt its action, but the 

HW layer’s action is fixed at 1000f =  Mhz and the APP layer’s action is fixed at 

APP 2a = . There are many overflows in this case because there are more resources 

allocated to the encoder than it requires, which results in DUs being encoded too quickly. 

Configuration 7: HW-adapt. Similar to [9], the HW layer can adapt its action, but the 

OS layer’s action is fixed at 1φ =  and the APP layer’s action is fixed at APP 2a = . 

We make two final observations regarding the above results. First, we note the HW-

adapt and HW-OS-adapt, APP-adapt and OS-APP-adapt, and the HW-APP-adapt and 

ALL-adapt configuration pairs perform nearly the same under their respective myopic 

policies. This is because the OS action is fixed under all myopic configurations (as we 

first illustrated in Figure 2.7). Second, we note that buffer overflows can be avoided by 

increasing the size of the post encoding buffer or by increasing the range of actions 

available at each layer. 

2.7 Conclusion 

We have proposed a novel and general formulation of the cross-layer decision making 

problem in real-time multimedia systems. In particular, we modeled the problem as a 

layered Markov decision process, which enabled us to jointly optimize each layer’s 

parameters, configurations, and algorithms while maintaining a separation between the 
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decision processes and the design of each layer. Unlike existing work, which focuses on 

myopically maximizing the immediate rewards, we focus on foresighted cross-layer 

decisions. In our experimental results, we verified that our layered solution achieves the 

same performance as the centralized solution, which violates the layered architecture. 

Additionally, we demonstrated that our proposed framework can be interpreted as a 

superset of existing suboptimal multimedia system designs with one or more adaptive 

layers. Finally, we showed that dramatic performance gains are achievable when using 

foresighted optimization compared to myopic optimization. 
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Chapter 3 

Layered Reinforcement Learning 

 

In the previous chapter, we proposed a systematic cross-layer framework for dynamic 

multimedia systems, which allows each layer to make autonomous and foresighted 

decisions that maximize the system’s long-term performance, while meeting the 

application’s real-time delay constraints. The proposed solution solved the cross-layer 

optimization offline, under the assumption that the multimedia system’s probabilistic 

dynamics were known a priori, by modeling the system as a layered Markov decision 

process. In practice, however, these dynamics are unknown a priori and therefore must be 

learned online. In this chapter, we address this problem by allowing the multimedia 

system layers to learn, through repeated interactions with each other, to autonomously 

optimize the system’s long-term performance at run-time. The two key challenges in this 

layered learning setting are: (i) each layer’s learning performance is directly impacted by 

not only its own dynamics, but also by the learning processes of the other layers with 

which it interacts; and, (ii) selecting a learning model that appropriately balances time-

complexity (i.e. learning speed) with the multimedia system’s limited memory and the 

multimedia application’s real-time delay constraints. We propose two reinforcement 

learning algorithms for optimizing the system under different design constraints: the first 
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algorithm solves the cross-layer optimization in a centralized manner, and the second 

solves it in a decentralized manner. We analyze both algorithms in terms of their required 

computation, memory, and inter-layer communication overheads. After noting that the 

proposed reinforcement learning algorithms learn too slowly, we introduce a 

complementary accelerated learning algorithm that exploits partial knowledge about the 

system’s dynamics in order to dramatically improve the system’s performance. In our 

experiments, we demonstrate that decentralized learning can perform equally as well as 

centralized learning, while enabling the layers to act autonomously. Additionally, we 

show that existing application-independent reinforcement learning algorithms, and 

existing myopic learning algorithms deployed in multimedia systems, perform 

significantly worse than our proposed application-aware and foresighted learning 

methods. 

3.1 Introduction 

State-of-the-art multimedia technology is poised to enable widespread proliferation of a 

variety of life-enhancing applications, such as video conferencing, emergency services, 

surveillance, telemedicine, remote teaching and training, augmented reality, and 

distributed gaming. However, efficiently designing and implementing such delay-

sensitive multimedia applications on resource-constrained, heterogeneous devices and 

systems is challenging due to the real-time constraints, high workload complexity, and the 

time-varying environmental dynamics experienced by the system (e.g. video source 

characteristics, user requirements, workload characteristics, number of running 
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applications, memory/cache behavior etc.).  

Cross-layer adaptation is an increasingly popular solution for addressing these 

challenges in dynamic multimedia systems (DMSs) [1]-[8]. This is because the 

performance of DMSs (e.g. video rate-distortion costs, delay, and power consumption) 

can be significantly improved by jointly optimizing parameters, configurations, and 

algorithms across two or more system layers (i.e. the application, operating system, and 

hardware layers), rather than optimizing and adapting them in isolation. However, 

existing cross-layer solutions have several important limitations. 

Centralized cross-layer solutions: The majority of these solutions require a central 

optimizer to coordinate the application, operating system, and hardware adaptations to 

optimize the performance of one or multiple multimedia applications sharing the DMS’s 

limited resources. To this end, a new interface between the central optimizer and all of 

the layers is created, requiring extensive modifications to the operating system [4] [5] or 

the introduction of an entirely new middleware layer [1] [2] [3] [24] [25]. Unfortunately, 

these approaches ignore the fact that the majority of modern system’s are comprised of 

layers (components or modules) that are designed by different manufacturers, which 

makes such tightly integrated designs impractical, if not impossible [8] [18] [19]. 

Myopic cross-layer solutions: Another limitation of many existing cross-layer 

solutions for DMSs is that they are myopic. In other words, cross-layer decisions are 

made reactively in order to optimize the immediate utility, without considering the impact 

of these decisions on the future utility. However, in DMSs, it is essential to predict the 

impact of the current decisions on the long-term utility because the multimedia source 
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characteristics, workload characteristics, OS and hardware dynamics are often correlated 

across time. Moreover, in DMSs, utility fluctuations across time lead to poor user 

experience and bad resource planning leads to inefficient resource usage and wasted 

power [26] [27]. In contrast, foresighted (i.e. long-term) optimization techniques take into 

account the impact of immediate cross-layer decisions on the DMS’s expected future 

utility. Importantly, foresighted policy optimizations have been successfully deployed at 

the hardware layer to solve the dynamic power management problem [11]-[13]; however, 

with the exception of our prior work [9], they have never been used for cross-layer DMS 

optimization, where all the layers make foresighted decisions. 

Single-layer learning solutions: The various multimedia system layers must be able to 

adapt at run-time to their experienced dynamics. Most existing learning solutions for 

multimedia systems are concerned with modeling the unknown and potentially time-

varying environment experienced by a single layer. A broad range of single-layer learning 

techniques have been deployed in multimedia (and general purpose) systems in recent 

years, which include estimation techniques such as maximum likelihood estimation [4] 

[5] [10] [12] [13], statistical fitting [7], regression methods [28], adaptive linear 

prediction [29], and ad-hoc estimation heuristics [3]. However, these solutions ignore the 

fact that DMSs do not only experience dynamics at a single layer (e.g. time-varying 

workload), but at multiple (possibly all) layers, which interact with each other. Hence, it 

is necessary to enable the layers to learn at run-time how to autonomously and 

asynchronously adapt their processing strategies based on forecasts about (i) their future 

dynamics and, importantly, (ii) how they impact and are impacted by the other layers.  
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In summary, while significant contributions have been made to enhance the 

performance of DMSs using cross-layer design techniques, no systematic cross-layer 

framework exists that explicitly considers: (i) the design and implementation constraints 

imposed by a layered DMS architecture; (ii) the ability of the various layers to 

autonomously make foresighted decisions in order to jointly maximize the DMS’s utility; 

and, most importantly, (iii) how layers can learn their unknown environmental dynamics 

and determine how they impact and are impacted by the other layers. 

In this chapter, similar to [6] [7] [8], we consider a multimedia system in which (i) a 

video encoder at the application layer makes rate-distortion-complexity tradeoffs by 

adapting its configuration and (ii) the operating system layer makes energy-delay 

tradeoffs by adapting the hardware layer’s operating frequency. Our contributions are as 

follows: 

• We propose a centralized reinforcement learning algorithm for online cross-layer 

DMS optimization based on the well-known Q-learning algorithm. This centralized 

solution can be easily implemented if a single manufacturer designs all of the layers 

in the multimedia system. 

• We propose a novel layered Q-learning algorithm, which allows the loosely-coupled 

multimedia system layers to autonomously learn their optimal foresighted policies 

online, through repeated interactions with each other. This decentralized solution 

can be implemented if the layers are designed by different manufacturers. We show 

experimentally that the proposed layered learning algorithm, which adheres to the 

layered system architecture, performs equally as well as a traditional centralized 
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learning algorithm, which does not. 

• We propose a reinforcement learning technique that exploits partial a priori 

knowledge about the system’s dynamics in order to accelerate the rate of learning 

and improve overall learning performance. Unlike existing reinforcement learning 

techniques [14], [15], which can only learn about previously visited state-action 

pairs, the proposed algorithm exploits our partial knowledge about the system’s 

dynamics in order to learn about multiple state-action pairs even before they have 

been visited. Importantly, the accelerated learning algorithm can be implemented in 

both the centralized and layered scenarios. 

The remainder of this chapter is organized as follows. In Section 3.2, we present the 

system model. In Section 3.3, we formulate the cross-layer problem as a layered Markov 

decision process (MDP). In Section 3.4, we propose a centralized and layered 

(decentralized) Q-learning algorithm for run-time cross-layer optimization. In Section 3.5, 

we propose a technique to accelerate the rate of learning by exploiting partial a priori 

knowledge that we have about the system’s dynamics. In Section 3.6, we present our 

experimental results and we conclude the chapter in Section 3.7. 

3.2 System Specification 

In this section, we model a system in which a video encoding application makes rate-

distortion-complexity tradeoffs by adapting its configuration and the operating system 

makes energy-delay tradeoffs by dynamically adapting the DVS-enabled (dynamic 

voltage scaling) hardware’s operating frequency. In Section 3.3, we map this illustrative 
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system into the proposed layered MDP model. 

As in [21], we model the video source as a sequence of video data units (for example, 

video macroblocks, groups of macroblocks, or pictures), which arrive at a constant rate 

into the application’s pre-encoding buffer. Similar to [11], we assume that the system 

operates over discrete time slots. Additionally, we assume that the time slots have 

variable length, such that one data unit is encoded in each time slot. We interchangeably 

refer to the time slot during which the n th data unit is encoded as the n th “time slot” or 

“stage,” where n ∈ � . 
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Figure 3.1. System diagram showing the states, actions, and environment at each layer. 

 

 

3.2.1 Dynamic Voltage Scaling Model 

The n th data unit is processed at the current operating frequency, which is a member of 

the state set { : 1, , }f i ff i N= =S … . The operating frequency can be adapted from one 
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time slot to the next by asserting a command in the action set { : }u fu u= ∈A S . Similar 

to [11], we assume that there is a non-deterministic delay associated with the operating 

frequency transition such that  
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 (3.1) 

where { }:nf n ∈ �  is the sequence of operating frequencies and ( ]0,1β ∈  (1 β− ) is 

the probability of a successful (an unsuccessful) operating frequency transition. In Figure 

3.1, this transition is illustrated by a temporal dependency between the frequency 

command (action) and operating frequency (state) in the joint OS/HW layer. Note that, 

regardless of the frequency command nu , the n th data unit is processed at the operating 

frequency n
ff ∈ S . We define the cost OS( ) ( )n nJ f P f=  (watts) as the power dissipated 

at operating frequency ff ∈ S , where ( )P ⋅  is the system’s power-frequency function 

(see, for example, [5] [7]). 

3.2.2 Application Model 

The n th data unit can be classified as being one of zN  types in the state set 

{ }: 1, ,z i zz i N= =S … . The set of states zS  depends on the specific video coder being 

used at the APP layer. For illustration, we assume that 3zN =  because video streams are 

typically compressed into group of pictures structures containing intra-predicted (I), inter-

predicted (P), and bi-directionally predicted (B) data units (e.g. MPEG-2, MPEG-4, and 
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H.264/AVC); however, the set of data unit types can be further refined based on, for 

example, each frame’s activity level [7] [20]. It has been shown that transitions among 

data unit types and frame activity levels in an (adaptive) group of pictures structure can be 

modeled as a stationary Markov process [7] [20] [30]: i.e., 

 1( | )n n
zp z z+  (3.2) 

where { }:nz n ∈ �  is the sequence of data unit types. We assume that the choice of data 

unit type is governed by an algorithm similar to the one in [20]; therefore, the 

probabilities in (3.2) depend on the desired ratio of I, P, and B data units (e.g. IBBP…), 

the source characteristics (i.e. the APP layer’s environment illustrated in Figure 3.1), and 

the condition used to decide when to code an I frame [20]. Modeling how the multimedia 

data evolves over time enables us to utilize the system’s resources more efficiently, while 

still ensuring continuity of the multimedia stream’s quality over time. 

The n th data unit can be coded using any one of hN  encoding parameter 

configurations in the action set { : 1, , }h i hh i N= =A …  (for example, to support its real-

time requirements, a video encoder can adapt its choice of quantization parameter, 

macroblock partition size, deblocking filter, entropy coding scheme, sub-pixel motion 

accuracy, motion-vector search range, and motion estimation search algorithm). Given 

the data unit type n
zz ∈ S , each configuration n

hh ∈ A  achieves different operating 

points in the rate-distortion-complexity space [6]. We let ( , )n n nb z h , ( , )n n nd z h , and 

( , )n n nc z h  represent the encoded bit-rate (bits per data unit), encoded distortion (mean 

square error), and encoding complexity (cycles), respectively. We assume that ( , )n n nb z h , 
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( , )n n nd z h , and ( , )n n nc z h  are instances of the i.i.d. random variables ( , )n nB z h , 

( , )n nD z h , and ( , )n nC z h , respectively. Note that, in the proposed learning framework, we 

do not need to know the distributions of these random variables (see Section 3.4). 

We penalize the application configuration by employing the Lagrangian cost measure 

APP( , ) ( , ) ( , )n n n n n n n n
rdJ z h d z h b z hλ= +  used in the H.264/AVC reference encoder for 

making rate-distortion optimal mode decisions, where [ )0,rdλ ∈ ∞  is a Lagrangian 

multiplier, which can be set based on the rate-constraints. 

At stage n , the application’s pre-encoding buffer contains 

{ }: 0, ,n
q i qq q i N∈ = =S …  data units, where qN  is the maximum number of data units 

that can be stored in the buffer. In this chapter, we assume that qN  is not limited by the 

available memory, but instead it is determined by the specific application’s delay-

constraints [21]. We assume that data units arrive in the pre-encoding buffer at η  data 

units per second based on a deterministic arrival process from the video capture device 

(for example, if data units are frames, then η  will typically be 15, 24, or 30 frames per 

second). If the buffer is full when a data unit arrives, then that data unit is discarded. In 

the following paragraphs, we discuss the buffer model in detail because the accelerated 

learning algorithm proposed in Section 3.5 exploits its structure. 

The pre-encoding buffer’s state at stage 1n +  can be expressed recursively based on 

its state at stage n : i.e., 

 
 [ ]{ }1

0
init

min ( , , ) 1 ,

,

n n n n n n
qq q t z h f N

q q

η
++ = + ⋅ −

=
 (3.3) 



 

68 
 

where 

 
( , )

( , , )
n n n

n n n n
n

c z h
t z h f

f
=  (seconds) (3.4) 

is the n th data unit’s processing delay (in Figure 3.1, the coupling between the operating 

frequency and processing delay is represented by the inter-layer dependency arrow);  x  

is the integer part of x ; and [ ] max{ ,0}x x+ = . Note that ( , )n n nc z h  is an instance of the 

random variable ( , )n nC z h  with distribution ( )( , ) | ,n n n n n
CC z h p c z h∼ . 

In (3.3), the 1−  indicates that the n th data unit departs the pre-encoding buffer after 

the non-deterministic encoding delay ( , , ) ( , )/n n n n n nT f z h C z h f=  (seconds). Meanwhile, 

the number of data units that arrive in the pre-encoding buffer during the n th time slot, 

( , , ) ( , , )n n n n n n n nt z h f t z h f η= ⋅� , is an instance of the random variable 

( , , ) ( , )/n n n n n nT f z h C z h fη=�  (data units) with distribution  

 ( , , ) ( | , , ) | ,
n n

n n n n n n n n n n
CT

f f
T f z h p t f z h p c z h

η η

 = ⋅ ⋅   
�

� �∼  (3.5) 

Based on (3.3) and (3.5), the pre-encoding buffer’s state transition can be modeled as a 

controllable Markov chain with transition probabilities 
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where 1 1n nq q+Ω = − +  and { }:nq n ∈ �  is the sequence of buffer states. Note that, 

from (3.3), 1 1n nq q+ − ≥ − , with equality when there are no data unit arrivals, i.e. 
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0nt =� . 

We define a utility gain function to non-linearly reward the system for maintaining 

queuing delays less than the maximum tolerable delay, thereby protecting against 

overflows that may result from a sudden increase in encoding delay. Formally, we define 

the utility gain at stage n  as 

 [ ]

2

APP

( , , ) 1
( , , , ) 1

n n n n n
n n n n

q

q t f z h
g f q z h

N

   + −  = −   

�
, (3.7) 

which is near its maximum when the buffer is empty (corresponding to zero queuing 

delay) and is minimized when the buffer is full. In Appendix A, we discuss in detail why 

(3.7) is a good definition for the utility gain. 

3.3 Formulation as a Layered MDP 

In subsection 3.3.1, we formulate the cross-layer problem as a layered MDP and map the 

system described in Section 3.2 to the proposed layered MDP model. Then, in subsection 

3.3.2, we present the system optimization objective. 

3.3.1 Layered MDP Model 

A layered MDP is a tuple , , ,,p RA S �L , where  

• { }1,...,L=L  is a set of L  autonomous layers, which participate in the cross-layer 

optimization.
1
 Each layer is indexed { }1,...,l L∈  with layer 1 corresponding to the 

lowest participating layer (e.g. the HW layer) and layer L  corresponding to the 
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highest participating layer (e.g. the APP layer).  

• A  is the global action set l l∈= × ALA
2
, where lA  is the l th layer’s local action 

set. 

• S  is the global state set l l∈= × SLS , where lS  is the l th layer’s local state set. 

• p  is the joint transition probability function mapping the global state, global action, 

and global next-state to a value in [ ]0,1 , i.e. [ ]: 0,1p × ×S A S � . 

• R  is the expected reward function, which maps the global state and global action to 

a real number representing the system’s expected reward, i.e. +:R ×S A � � . 

• [ )0,1γ ∈  is a discount factor, defined below. 

We now map the system described in Section 3.2 to the layered MDP model. We 

consider a system in which two layers participate in the cross-layer optimization (i.e. 

{ }1,2=L ). In particular, the application layer (APP, 2l = ) makes rate-distortion-

complexity tradeoffs by adapting its configuration and the operating system layer (OS, 

1l = ) makes energy-delay tradeoffs by adapting the hardware layer’s (HW) operating 

frequency (using, for example, the platform independent open standard known as the 

Advanced Configuration and Power Interface [11]). Due to the fact that the OS layer 

controls the HW layer, we combine them into a single decision making layer, which we 

call the joint OS/HW layer. 

                                                           

 
1
 We note that for a layer to “participate” in the cross-layer optimization it must be able to adapt one or 

more of its parameters, configurations, or algorithms (e.g. the APP layer can adapt its source coding 

parameters); alternatively, if a layer does not “participate”, then it is omitted. 
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Table 3.1 summarizes the mapping between the system defined in Section 3.2 and the 

layered MDP model. Since f , q , and z  are Markovian, the transition of the global state 

s  is Markovian with transition probability 

 ( ) ( ) ( )

1 1 1 1 2 2 2( ) ( )

| , | , | , , , ( | )f q z

p s |s ,a p s | ,a

p p f f u p q q f z h p z z

′ ′

′ ′ ′ ′=
������	�����
 ������������	�����������


s

s s a . (3.8) 

Lastly, the reward function is defined as  

 ( ) ( )APP APP APP OS OS, , ( , ) ( )R g J z h J fω ω= − −s a s a , (3.9) 

where APPω  and OSω  are positive weights that are assumed to be given. The forms of the 

factored transition probability function and the additively decomposed reward function 

are exploited in Section 3.4.3 to derive the proposed layered learning algorithm. 

Table 3.1. Abbreviated list of notation. 

f  Operating frequency u  Frequency command 

z  Data unit type h  
Encoding parameter 

configuration 

q  Buffer occupancy 1 OSa a u= =  Joint OS/HW layer action 

1 OSs s f= =  
Joint OS/HW 

layer state 
2 APPa a h= =  APP layer action 

( )2 APP ,s s z q= =  APP layer state ( )1 2,a a=a  Global action 

( )1 2,s s=s  Global state 2 2( , )g as  Utility gain 

1 1 1 1( )p s | s ,a′ , 

2 2 2( )p s | ,a′ s  

Transition probability 

 functions for the joint 

OS/HW and APP layers 

1 1( )J s , 

2 2 2( , )J s a  

Cost functions for the 

joint OS/HW and APP 

layers 

 

 

                                                           

 
2
 1l l L∈× = × ×LA A A�  is the L -ary Cartesian product. 
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3.3.2 System Optimization Objective 

Unlike existing cross-layer optimization solutions, which focus on optimizing the myopic 

(i.e. immediate) utility, the goal in the proposed cross-layer framework is to find the 

optimal actions at each stage n ∈ �  that maximize the discounted sum of future rewards 

[9] [11] [14] [15], i.e. 

 ( ) ( )0
0

, |n n n

n

Rγ

∞

=
∑ s a s  (3.10) 

where the parameter γ  ( 0 1γ≤ < ) is the “discount factor,” which defines the relative 

importance of present and future rewards, and 0s  is the initial state. We refer to the 

Markov decision policy :π∗ S A� , which maximizes the discounted sum of future 

rewards from each initial state 0 ∈ Ss , as the optimal foresighted policy. We use a 

discounted sum of rewards instead of, for example, the average reward, because: (i) 

typical video sources have temporally correlated statistics over short time intervals such 

that the future environmental dynamics cannot be easily predicted without error [7], and 

therefore the system may benefit by weighting its immediate reward more heavily than 

future rewards; and, (ii) The multimedia session’s lifetime is not known a priori (i.e. the 

session may end unexpectedly) and therefore rewards should be maximized sooner rather 

than later. 

Throughout this chapter, we will find it convenient to work with the optimal action-

value function :Q∗ ×S A � �  [15], which satisfies the following Bellman optimality 

equation:  
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 ( )( , ) ( , ) ( )Q R p | , Vγ∗ ∗

′∈

′ ′= + ∑
Ss

s a s a s s a s , (3.11) 

where ( ) ( )max ,V Q∗ ∗=
a

s s a , ∀ ∈ Ss , is the optimal state-value function [15]. In words, 

( , )Q∗ s a  is the expected sum of discounted rewards achieved by taking action a  in state 

s  and then following the optimal policy :π∗ S A�  thereafter, where 

 ( ) argmax ( , ),  Qπ∗ ∗= ∀ ∈ S
a

s s a s . (3.12)  

3.4 Learning the Optimal Decision Policy 

3.4.1 Selecting a Learning Model 

As we mentioned before, the multimedia system’s dynamics (i.e. ( , )R s a  and ( , )p ′s | s a ) 

are unknown and therefore the optimal action-value function Q∗  and the optimal policy 

π∗  must be learned online, based on experience. However, it remains to explain how we 

can learn the optimal policy online despite these unknown quantities. 

One option is to directly estimate the reward and transition probability function and 

then to perform value iteration [15] to determine the optimal policy; however, this 

solution is too complex because each iteration of the algorithm has complexity 

( )2O S A  and the number of iterations required to converge to the optimal policy is 

polynomial in the discount factor γ .
3
 Additionally, storing the estimated transition 

probability function incurs a memory overhead of ( )2O S A , which for a large number 

of states is unacceptably large (e.g. our experimental test-bed in Section 3.6 uses 765 
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states and 15 actions, and therefore requires over 33 MBs of memory to directly store the 

transition probability function using 32 bit single-precision floating point numbers). A 

second option, proposed in [12], avoids the complex value iteration algorithm, but incurs 

even greater memory overheads by requiring a large number of policies to be computed 

and stored offline to facilitate the online decision making process. 

Clearly, given the multimedia system’s limited memory and the multimedia 

application’s real-time delay constraints, neither of the above solutions is practical. Thus, 

in our resource-constrained cross-layer setting with many states and actions (and many 

unknown parameters), we adopt a model-free reinforcement learning solution, which can 

be used to learn the optimal action-value function Q∗  and optimal policy π∗  online, 

without estimating the reward and transition probability functions. Specifically, we adopt 

a low complexity algorithm called Q-learning, which also has limited memory 

requirements (see Table 3.2 in Section 3.4.4). To the best of our knowledge, Q-learning 

has never been deployed in a multimedia system, let alone for cross-layer optimization. 

3.4.2 Proposed Centralized Q-learning 

Central to the conventional centralized Q-learning algorithm is a simple update step 

performed at the end of each time slot based on the experience tuple (ET) 

( )1, , ,n n n nr +s a s : 

  1max ( , ) ( , )n n n n n n nr Q Qδ γ +

′∈

 ′= + −  Aa
s a s a , (3.13) 

                                                           

 
3
 Policy iteration or linear programming could also be used, but these solutions are also too complex. 
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 1( , ) ( , )n n n n n n n nQ Q α δ+ ← +s a s a , (3.14) 

where ns , na , and n n n
L l ll

r g Jω
∈

= −∑ L
 are the state, performed action, and 

corresponding reward in time slot n , respectively; 1n+s  is the resulting state in time slot 

1n + ; ′a  is the greedy action
4
 in state 1n+s ; nδ  is the so-called temporal-difference 

(TD) error [14]; and, [ ]0,1nα ∈  is a time-varying learning rate parameter. We note that 

the action-value function can be initialized arbitrarily at time 0n = .  

It is well known that if (i) the rewards and transition probability functions are 

stationary, (ii) all of the state-action pairs are visited infinitely often, and (iii) nα  satisfies 

the stochastic approximation conditions
5
 ( )

0

n

n

α
∞

=

= ∞∑  and ( )2

0

n

n

α
∞

=

< ∞∑ , then Q  

converges with probability 1 to Q∗  [16]. Subsequently, the optimal policy can be found 

using (3.12). 

During the learning process, it is not obvious what the best action is to take in each 

state. On the one hand, the optimal action-value function can be learned by randomly 

exploring the available actions in each state. Unfortunately, unguided randomized 

exploration cannot guarantee acceptable performance during the learning process. On the 

other hand, taking greedy actions, which exploit the available information in the action-

value function ( , )Q s a , can guarantee a certain level of performance. Unfortunately, 

exploiting what is already known about the system prevents the discovery of new, better, 

                                                           
4
 A greedy action ∗a  is one that maximizes the current estimate of the action-value function, i.e. 

( ){ }argmax ,Q∗ =
a

a s a . 
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actions. To judiciously trade off exploration and exploitation, we use the so-called ε -

greedy action selection method [14]:  

ε -greedy action selection: With probability 1 ε− , take the greedy action that 

maximizes the action-value function, i.e. ( ){ }argmax ,Q∗ =
a

a s a ; and, with probability 

ε , take an action randomly and uniformly over the action set.  

We write ( ),Qε= Φa s  to show that a  is an ε -greedy joint-action. Note that, if the  

ε -greedy action is taken from the optimal state-value function Q∗ , then actions 

corresponding to the optimal policy will only be taken with probability 1 ε− ; therefore, 

if ε  does not decay to 0, then optimal performance will not be achieved. 

Figure 3.2 illustrates the information exchanges required to deploy the centralized Q-

learning algorithm in a two layer multimedia system during one time slot. In Figure 3.2, 

the top and bottom blocks represent the APP layer and joint OS/HW layer, respectively. 

The center block represents the centralized optimizer, which selects both layers’ actions 

and updates the system’s global action-value function Q . As we mentioned before, the 

centralized optimizer may be located at either the APP layer, the joint OS/HW layer, or a 

separate middleware layer. To best highlight the information exchanges, we illustrate the 

centralized optimizer as a separate middleware layer. Although we do not explicitly 

indicate this in Figure 3.2, the ET ( ), , ,r ′s a s  is used by the block labeled “Update 

( , )Q s a ,” which performs the update step defined in (3.14).  

                                                           

 
5
 For example, 1/( 1)n nα = +  satisfies the stochastic approximation conditions. 
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1s  

2a  

1a  
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2 2g Jω−  

1 1Jω−  

Perform 2a  

Perform 1a  

2
ns  

1
ns  

a  r  ′s  

2s ′  

1s ′  

Update ( ),Q s a   

APP  

Layer 

OS/HW 

Layer 

Information exchanges 
Centralized decisions 

and updates 
 

Figure 3.2. Information exchanges required to deploy the centralized Q-learning update step in one time 

slot. 

 

3.4.3 Proposed Layered Q-learning 

Thus far, we have discussed how the traditional Q-learning algorithm can be implemented 

by a centralized optimizer. As we discussed in the introduction, this centralized solution 

is most appropriate when a single manufacturer designs all of the system’s layers. 

However, we are also interested in developing learning solutions that allow layers 

designed by different manufactures to act autonomously, but still cooperatively optimize 

the system’s performance. This is a challenging problem in our cross-layer setting 

because the dynamics experienced at each layer may depend on the learning processes of 

the other layers. Hence, a key challenge is determining how to coordinate the autonomous 

learning processes of the various layers to enable them to successfully learn. In this 

section, we propose a layered Q-learning algorithm, which we derive by exploiting the 
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structure of the transition probability and reward functions in order to decompose the 

global action-value function into local action-value functions at each layer. Then, in 

subsection 3.4.4, we compare the computation, communication, and memory overheads 

incurred by the centralized and the proposed layered learning algorithms. 

In this subsection, we first show how the action-value function can be decomposed by 

exploiting the structure of the considered cross-layer problem. Subsequently, we show 

how this decomposition leads to a layered Q-learning algorithm, which solves the cross-

layer optimization online, in a decentralized manner, when the transition probability and 

reward functions are unknown a priori. For notational simplicity, we drop the time slot 

index n , and denote the next-state 1n+s  using ′s .  

3.4.3.1 Action-Value Function Decomposition 

The proposed decomposition assumes that (i) each layer has access to the global state s  

in each time slot; (ii) the APP layer knows the number of states at the joint OS/HW layer, 

i.e. OSS ; and, (iii) the joint OS/HW layer knows the number of states and actions at the 

APP layer, i.e. APPS  and APPA . 

Given the additive reward function defined in (3.9) and the factored transition 

probability function defined in (3.8), we can rewrite the optimal action-value function 

defined in (3.11) as follows: 

 ( )
1 1 2 2

2 2 1 1 1 1 2 2 2 2

1 1 1 1 2 2 2
,

( , ) ( , ) ( , ) ( , )

( ) ( ) ,
s s

Q g a J s a J s a

p s | s ,a p s | ,a V

ω ω

γ

∗

∗

′ ′∈ ∈

= − − +

′ ′ ′∑
S S

s a s

s s  (3.15) 
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where, ( ) max ( , )V Q∗ ∗

′∈
′ ′ ′=

Aa
s s a  is the optimal state-value for state ( )1 2,s s′ ′ ′=s   (refer to Table 3.1 

for a review of the notation). 

Observing that 2 2 2 2 2 2( , ) ( , )g a J s aω−s  is independent of 1s′  and that 

1 1

1 1 1 1( ) 1
s

p s | s ,a
′∈

′ =∑
S

, we 

may rewrite the Bellman optimality equation in (3.15) as follows: 

 

( )
1 1

2 2

1 2 1 1 1 1

2 2 2 2 2 2

1 1 1 1
2 2 2 1 2

( , , ) ( , )

( , ) ( , )

( ) .
( ) ,

s
s

Q a a J s a

g a J s a

p s | s ,a
p s | ,a V s s

ω

ω

γ

∗

∗
′∈

′ ∈

= − +

  − +   ′   ′ ′ ′      

∑ ∑
S

S

s

s

s

 (3.16) 

Given the global state ( )1 2,s s=s  and the optimal state-value function V ∗ , the APP 

layer’s action-value function can be expressed using the inner Bellman optimality 

equation:  

 ( ) ( )
2 2

2 2 2 2 2 2

1 2 1
2 2 2 1 2

( , ) ( , )

, , ( ) ,
s

g a J s a

Q a s p s | ,a V s s

ω

γ
∗

∗

′ ∈

 − +   ′ =  ′ ′ ′   
∑
S

s

s s , 2 2a∀ ∈ A  and 1 1s′∀ ∈ S  (3.17) 

which is independent of the immediate action at the joint OS/HW layer (i.e. 1a ), but 

depends on the joint OS/HW layer’s potential next-state 1s′ . For each global state 

( )1 2,s s=s , the APP layer must compute the set ( ){ }1 2 1 2 2 1 1, , : ,  Q a s a s∗ ′ ′∈ ∈A Ss  using 

(3.17). Then, given this set from the APP layer, the joint OS/HW layer’s action value 

function can be expressed using the outer Bellman optimality equation in (3.16): i.e., 

 ( ) ( )
1 1

1 1 1 1

1 2
1 1 1 1 1 2 1

( , )

, , ,( ) , ,
s

J s a

Q a a p s | s ,a Q a s

ω
∗

∗

′∈

 − +   =  ′ ′    
∑
S

s s  1 1a∀ ∈ A  and 2 2a∀ ∈ A . (3.18) 

Intuitively, ( )1 2 1, ,Q a s∗ ′s  can be interpreted as the APP layer’s estimate of the expected 
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discounted future rewards; however, there are two important differences between 

( )1 2 1, ,Q a s∗ ′s  and the centralized action-value function ( ),Q∗ s a . First, ( )1 2 1, ,Q a s∗ ′s  does 

not include the immediate reward at the joint OS/HW layer (i.e. 1 1 1 1( , )J s aω− ) because it 

is unknown to the APP layer; and, second, ( )1 2 1, ,Q a s∗ ′s  depends on the joint OS/HW 

layer’s next-state 1s′  (instead of the expectation over of the next-states as it does in the 

centralized case) because the APP layer does not know the joint OS/HW layer’s transition 

probability function. After receiving ( )1 2 1, ,Q a s∗ ′s  from the APP layer, the joint OS/HW 

layer is able to “fill in” this missing information. Clearly, from the derivation, 

( )1 2, ,Q a a∗ s  at the joint OS/HW layer is equivalent to the centralized action-value 

function ( , )Q∗ s a . 

For more information about this decomposition, we refer the interested reader to our 

prior work [9], in which we use a similar decomposition to solve the cross-layer 

optimization offline, in a decentralized manner, under the assumption that the transition 

probability and reward functions are known a priori. 

3.4.3.2 Layered Q-learning 

Recall that the centralized Q-learning algorithm described in Section 3.4.2 requires a 

centralized manager to select actions for both of the layers. In contrast, the layered Q-

learning algorithm that we propose in this subsection – made possible by the action-value 

function decomposition described above – enables each layer to autonomously select its 

own actions and to update its own action-value function. In the following, we discuss the 
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local information requirements for each layer, how each layer selects its local actions, and 

how each layer updates its local action-value function. 

Local information: The proposed layered Q-learning algorithm requires that the APP 

layer maintains an estimate of the action-value function on the left-hand side of (3.17): 

i.e., 

 ( ){ }1 2 1 2 2 1 1, , : , , Q a s a s′ ′∈ ∈ ∈A SSs s , 

and that the joint OS/HW layer maintains an estimate of the action-value function on the 

left-hand side of (3.18): i.e.,  

 ( ) ( ){ }1 2 1 2, , : , ,Q a a a a∈ ∈S As s . 

At time slot 0n = , these tables can be initialized to 0, i.e. ( )0
1 2 1, , 0Q a s ′ =s  and 

( )0
1 2, , 0Q a a =s . Thus, at initialization, the only information required by the APP layer 

about the joint OS/HW layer is the number of states at the joint OS/HW layer, i.e. OSS ; 

and, the only information required by the joint OS/HW layer about the APP layer is the 

number of states and actions at the APP layer, i.e. APPS  and APPA . 

Local action selection: At run-time, given the current global state ( )1 2,s s=s , the 

APP layer selects an ε -greedy action 2 2a ∈ A  as described in Section 3.4.2, but with the 

greedy action selected as follows: 

 ( ) ( ){ }
2 2 1 1

2 1 1 2 1
, 

ˆ, argmax , ,
a s

a s Q a s∗

′∈ ∈

′ ′=
A S

s , (3.19) 

and, the joint OS/HW layer selects its ε -greedy action 1 1a ∈ A , but with the greedy 
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action selected as follows: 

 ( ) ( ){ }
1 1 2 2

1 2 1 2
,

ˆ, argmax , ,
a a

a a Q a a∗

∈ ∈
=

A A

s . (3.20) 

Note that the APP layer selects action 2a
∗  under the assumption that the joint OS/HW 

layer will select its action 1a
∗  to transition to the next-state 1̂s′ , which maximizes the APP 

layer’s estimated discounted future rewards ( )1 2 1, ,Q a s ′s . Similarly, the joint OS/HW 

layer selects action 1a
∗  under the assumption that the APP layer will select action 2̂a , 

which maximizes the joint OS/HW layer’s estimated discounted future rewards 

( )1 2, ,Q a as . The message exchanges during the local learning update procedures 

(described immediately below) serve to “teach” each layer how they impact and are 

impacted by the other layer. Thus, through the learning process, the layers improve their 

assumptions about each other, which enables them to improve their greedy actions. 

Local learning updates: After executing the ε -greedy action ( )1 2,
n n na a=a  in state 

( )1 2,
n n ns s=s , the system obtains the reward 2 1 1 2 2

n n n nr g J Jω ω= − −  and transitions to 

state ( )1 1 1
1 2,

n n ns s+ + +=s . Based on the experience tuple ( )1, , ,n n n nr +s a s , each layer 

updates its action-value function as follows. First, the joint OS/HW layer must forward 

the scalar ( ) ( )
1 1 2 2

1 1 1 1
1 21 2 1 2

,
, max , , ,n n n n n n

a a
V s s Q s s a a+ + + +

′ ′∈ ∈
′ ′=

A A
 to the APP layer. Using this 

forwarded information, the APP layer can perform its action-value function update based 

on the form of (3.17): i.e.,  

 ( )[ ] ( )1 1 1
2 2 2 2 1 21 2 1, , ,n n n n n n n n n ng J V s s Q a sδ ω γ + + += − + − s , (3.21) 
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 ( ) ( )1 1 1
2 1 2 2 21 1 1, , , ,n n n n n n n n n nQ a s Q a s α δ+ + +← +s s . (3.22) 

Then, given the scalar ( )1 1
21 1, ,n n n nQ a s+ +s  from the APP layer and the APP layer’s 

selected action 2
na , the joint OS/HW layer can perform its action-value function update 

based on the form of (3.18) as follows: 

 ( )[ ] ( )1 1
1 1 1 2 1 21 1, , , ,n n n n n n n n n nJ Q a s Q a aδ ω + += − + −s s , (3.23) 

 ( ) ( )1
1 2 1 2 1 1, , , ,n n n n n n n n n nQ a a Q a a α δ+ ← +s s . (3.24) 

Note that, by using the layered Q-learning algorithm, the layers do not need to directly 

share their local rewards (i.e. the local learning updates only require the APP layer to 

know its local reward 2 2 2
n ng Jω−  and for the joint OS/HW layer to know its local cost 

1 1
nJω ). This is because of the coordinating message exchanges during the local learning 

update process (i.e. ( )1 1
1 2,

n n nV s s+ +  is forwarded from the joint OS/HW layer to the APP 

layer and ( )1 1
21 1, ,n n n nQ a s+ +s  is forwarded from the APP layer to the joint OS/HW layer).  

Figure 3.3 illustrates the information exchanges required to deploy the layered Q-

learning algorithm in a two layer multimedia system during one time slot. Although we 

do not explicitly indicate this in Figure 3.3, the ETs ( )2 2 2 2 1, , ,a g J sω ′−s  and 

( )1 1 1 1, , ,a J sω ′−s  are used by the blocks labeled “Update ( )1 2 1, ,Q a s ′s ” at the APP layer 

and “Update ( )1 2, ,Q a as ” at the joint OS/HW layer, respectively. 
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Figure 3.3. Information exchanges required to deploy the layered Q-learning update step in one time slot. 

 

3.4.4 Computation, Communication, and Memory Overheads 

In this subsection, we compare the computation, communication, and memory overheads 

associated with the centralized and layered Q-learning algorithms. Figure 3.2 and Figure 

3.3 illustrate the exact information exchanges required for each algorithm and Table 3.2 

lists the per time slot computation, communication, and memory overheads associated 

with each algorithm. 

Interestingly, the layered Q-learning algorithm is more complex and requires more 

memory than the centralized algorithm. Note that, in our setting, 1 1=S A ; hence, the 

layered Q-learning algorithm incurs approximately twice the computational and memory 

overheads as the centralized algorithm. The increased overheads can be interpreted as the 

cost of optimal decentralized learning (optimal in the sense that it performs equally as 

well as the centralized learning algorithm). Nevertheless, the proposed centralized and 



 

85 
 

layered Q-learning algorithms are far less complex and use less memory than the 

alternative learning solutions discussed in Section 3.4.1. We also observe that, in both 

cases, the communication overheads per time slot are (1)O  because they are independent 

of the size of the state and action sets at each layer; however, the precise number of 

messages exchanged depends on the deployed learning algorithm as illustrated in Figure 

3.2 and Figure 3.3, and noted in Table 3.2. 

Table 3.2. Comparison of computation, memory, and communication overheads (per time slot). 

 Centralized 

Q-learning 

Layered 

Q-learning 

Computation 

overheads 

Action Selection:  

( )O A  

Update: 

 ( )O A  

Action Selection: 

( )1 2O + ×S AA  

Update: 

( )O A  

Memory 

overheads 
( )O ×S A  ( )2 1O × + × ×A SS A S  

Communication 

overheads 
( )1O  (8 messages) ( )1O  (7 messages) 

 

3.5 Accelerated Learning Using Virtual Experience 

The large number of buffer states at the APP layer significantly limits the system’s 

learning speed because the Q-learning update step defined in (3.14) updates the action-

value function for only one state-action pair in each time slot. Several existing variants of 

Q-learning adapt the action-value function for multiple state-action pairs in each time 

slot. These include model-free temporal-difference-λ  updates, and model-based 

algorithms such as Dyna and prioritized sweeping [14] [15]; however, these existing 

solutions are not system specific and assume no a priori knowledge of the problem’s 
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structure. Consequently, they can only update previously visited state-action pairs, 

leaving the learning algorithm to act blindly (or with very little information) the first few 

times that it visits each state, thereby resulting in suboptimal learning performance (our 

experimental results in Section 3.6.4 strongly support this conclusion).  

In this subsection, we propose a new Q-learning variant, which can be used in 

addition to the abovementioned variants. Unlike conventional reinforcement learning 

algorithms, which assume that no a priori information is available about the 

environmental dynamics
6
, the proposed algorithm exploits the form of the transition 

probability and reward functions (defined in Section 3.2) in order to update the action-

value function for multiple statistically equivalent
7
 state-action pairs in each time slot, 

including those that have never been visited. In our specific setting, we exploit the fact 

that the data unit arrival distribution ( | , , )Tp t f z h� �  (defined in (3.5)) is conditionally 

independent of the current buffer state nq  (given nz , nh , and nf ). This allows us to 

extrapolate the experience obtained in each time slot to other buffer states and action 

pairs. Thus, in stationary (non-stationary) environments, the proposed algorithm improves 

convergence time (adaptation speed) at the expense of increased computational 

                                                           
6
 In conventional reinforcement learning [14] [15], the actors (i.e. the system layers in our setting) are 

assumed to have no a priori information about the form of the transition probability and reward functions 

beyond possible high-level structural knowledge about the factored transition and reward dynamics [17] 

[23]. In other words, in a conventional reinforcement learning framework, the additive decomposition 

structure of the reward function defined in (3.9) and the factored transition probability structure defined in 

(3.8) may be known a priori, but the actual form of the utility gain defined in (3.7) and the actual form of 

the transition probability function defined in (3.6) cannot be known a priori. 
7
 We say that a state-action pair ( ),� �s a  is statistically equivalent to the pair ( ),s a  if 

( ) ( )| , | , ,  p p′ ′ ′= ∀ ∈ S� �s s a s s a s  and ( ),R � �s a  can be determined from ( ),R s a . 
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complexity. For ease of exposition, we discuss the algorithm in terms of the centralized 

system; however, it can be easily extended to work with the layered Q-learning algorithm 

proposed in Section 3.4.3. 

Let ( )1, , ,n n n n nr += s a sσ  represent the ET at stage n , where ( ), ,n n n nz q f=s , 

( ),n n nu h=a , 2 1 1 2 2
n n n nr g J Jω ω= − − , and ( )1 1 1 1, ,n n n nz q f+ + + +=s . Given nq  and the 

number of data unit arrivals ( , , )n n n n nt t z h f   =   
� � , the next buffer state 1nq +  can be 

easily determined from (3.3). By exploiting our partial knowledge about the system’s 

dynamics, we can use the statistical information provided by nt  
�  to generate virtual 

experience tuples (virtual ETs) that are statistically equivalent to the actual ET. This 

statistical equivalence allows us to perform the Q-learning update step for the virtual ETs 

using information provided by the actual ET.  

We let ( ) ( ), , ,n nr ′= ∈� � �� �s a s Σσ σ  represent one virtual ET in the set of virtual ETs 

( )nΣ σ . In order to be statistically equivalent to the actual ET, the virtual ETs in ( )nΣ σ  

must satisfy the following two conditions: 

1. The data unit arrival distribution ( | , , )Tp t f z h� �  defined in (3.5) must be the same for 

the virtual ETs as it is for the actual ET. In other words, the virtual operating 

frequency f� , the virtual type z� , and the virtual configuration h�  must be the same 

as the actual operating frequency nf , the actual type nz , and the actual 

configuration  nh , respectively. This also implies that the virtual costs at the APP 

and joint OS/HW layers are the same as the actual costs at these layers, i.e. 1 1
nJ J=�  
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and 2 2
nJ J=� . 

2. The next virtual buffer state qq ′ ∈ S�  must be related to the current virtual buffer 

state qq ∈ S�  through the buffer evolution equation defined in (3.3): i.e.,  

 [ ]{ }min 1 ,n
qq q t N

+′  = + − 
�� � , (3.25) 

where nt  
�  is the number of data unit arrivals under the actual ET. 

Any virtual ET that satisfies the two above conditions can have its reward determined 

using information embedded in the actual ET. Specifically, from the first condition, we 

know that the virtual ET’s local costs are 1 1
nJ J=�  and 2 2

nJ J=� . Then, based on the 

second condition, we can compute the virtual ET’s utility gain as 

2

2

1
1

n

q

q t
g

N

   + −  = −   

��
� . Finally, the Q-learning update step defined in (3.14) can be 

performed on every virtual ET ( ) ( ), , ,n nr ′= ∈� � �� �s a s Σσ σ  as if it is the actual ET.  

Performing the Q-learning update step on every virtual ET in ( )nσΣ  incurs a 

computational overhead of approximately ( )( )nO ×AσΣ  in time slot n  (note that 

( )nΣ σ  is typically as large as the buffer state set ( ) { }APP : 0, ,q
qq i N= =S …  if you 

include the actual ET). Unfortunately, it may be impractical to incur such large overheads 

in every time slot, especially if the data unit granularity is small (e.g. one macroblock). 

Hence, in our experimental results in Section 3.6, we show how the learning performance 

is impacted by updating ( )nΨ ≤ σΣ  virtual ETs in each time slot by selecting them 

randomly and uniformly from the virtual ET set ( )nσΣ . 



 

89 
 

Table 3.3 describes the virtual ET based learning procedure in pseudo-code and 

Figure 3.4 compares the backup diagram [14] of the conventional Q-learning algorithm to 

the proposed algorithm with virtual ET updates. Importantly, because the virtual ETs are 

statistically equivalent to the actual ET, the virtual ET based learning algorithm is not an 

approximation of the Q-learning algorithm; in fact, the proposed algorithm accelerates Q-

learning by exploiting our partial knowledge about the structure of the considered 

problem. 

Table 3.3. Accelerated learning using virtual experience tuples. 

1. Initialize ( , )Q s a  arbitrarily for all ( , ) ∈ ×S As a ; 

2. 
Initialize state 

0s ; 

3. For 0,1,n = … 

4. Take action 
na  using ε -greedy action selection on ( , )nQ ⋅s ; 

5. 
Obtain experience tuple ( )1, , ,n n n n nr += s a sσ  and record 

nt  
� ; 

6. 
For all 

( )
APP
qq ∈ S�  % Generate the virtual ET set ( )nΣ σ  

7. [ ]{ }min 1 ,n
qq q t N

+′  = + − 
�� � ; % virtual ET next buffer state 

8. ( ) ( ), , , ,n nf z q f z q= =�� � � �s ; % virtual ET state 

9. ( ) ( ), ,n nu h u h= =�� �a ; % virtual ET action 

10. 2

1 1 2 2

1
1 n n

q

q t
r J J

N
ω ω

    + −    = − − −      

��
� ; % virtual ET reward 

11. ( ) ( )1 1, , , ,n nf z q f z q+ +′ ′ ′ ′ ′= =�� � � �s ;  % virtual ET next state 

12. ( ) ( ), , , nr ′= ∈� � �� �s a s Σσ σ ;  % store virtual ET 

13. For Ψ  virtual ETs ( )n∈� Σσ σ  % Update virtual ETs  
14. 

max ( , ) ( , )r Q Qδ γ
′∈

 ′ ′= + −  A

� � � ��
a

s a s a ; % TD error for virtual ET 
n�σ  

15. ( , ) ( , )Q Q αδ← + �� � � �s a s a ; % Q-learning update for virtual ET 
n�σ  
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( ),n ns a  

max 

… 

1′a  2′a  ′
A
a  

1n+s  

nr  

( ) ( )( ),Ψ Ψ� �s a  

max 

… 

( )′ Ψ�s  

( )r Ψ�  

(a) Q-learning backup 

for actual ET 

( )1, , ,n n n n nr += s a sσ  

( ) ( )( )1 , 1� �s a  

max 

… 

( )1′�s  

( )1r�  

(b) Q-learning backup for Ψ  virtual ETs 

( ) ( ), , ,n nr ′= ∈� � �� �s a sσ σΣ  

… 

1′a  2′a  ′
A
a  1′a  2′a  ′

A
a  

Statistically equivalent 

state-action pairs 

 

Figure 3.4. Backup diagrams. (a) Conventional Q-learning; (b) Q-learning with virtual updates. The virtual 

update algorithm applies a backup on the actual ET and an additional Ψ  backups on virtual ETs in 

( )nσΣ  indexed by 1 ψ≤ ≤ Ψ .  

 

3.6 Experiments 

In this section, we compare the performance of the proposed learning algorithms against 

the performance of several existing algorithms in the literature using the cross-layer DMS 

described in Section 3.2. Table 3.4 details the parameters used in our DMS simulator, 

which we implemented in Matlab. In our simulations, we use actual video encoder trace 

data, which we obtained by profiling the H.264 JM Reference Encoder (version 13.2) on 

a Dell Pentium IV computer. Our traces comprise measurements of the encoded bit-rate 

(bits/MB), reconstructed distortion (MSE), and encoding complexity (cycles) for each 

video MB of the Foreman sequence (30 Hz, CIF resolution, quantization parameter 24) 

under three different encoding configurations. The chosen parameters are listed in Table 
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3.4. We use a data unit granularity of one macroblock. As in [7], we assume that the 

power frequency function is of the form ( )P f f θκ= , where κ +∈ �  and [1, 3]θ ∈ . Since 

real-time encoding is not possible with the available encoder, we set the data unit arrival 

rate to 44η =  DUs/sec, which corresponds to 1/9 frames per second. 

For the simulations in Sections 3.6.2 and 3.6.2, we use stationary data traces, which 

we generate from the measured (non-stationary) data traces by assuming that the rate, 

distortion, and complexity samples are drawn from i.i.d. random variables with 

distributions equivalent to the distributions of the quantities over the entire non-stationary 

data traces. In Section 3.6.4, we perform simulations using both the measured (non-

stationary) and generated (stationary) data traces. 

Table 3.4. Simulation parameters (Foreman sequence, 30 Hz, CIF resolution, quantization parameter 24). 

Layer Parameter Value 

Application 

Layer 

 

(APP) 

Data Unit Granularity 1 Macroblock 

Buffer State Set {0, , }q qN=S … , 50qN =  DUs 

Data Unit Type Set 
1 2 3{ , , }q z z z=S  

1 2 3P,  B,  Iz z z= = =  

Parameter Configuration 

APP 1 2 3{ , , }h h h=A  

1h : Quarter-pel MV, 8x8 block ME 

2h : Full-pel MV, 8x8 block ME 

3h : Full-pel MV, 16x16 block ME 

APP Cost Weight APP 22/1875ω =  

Rate-Distortion 

Lagrangian rd 1/16λ =  

Data Unit Arrival Rate 44η =  (Data Units/Sec) 

Operating System 

/ Hardware Layer 

(Joint OS/HW) 

Power-Frequency 

Function 

( )P f f θκ=   

271.5 10κ −∈ ×  and 3θ = . 

Operating Frequency Set OS {200,400,600,800,1000}=A  Mhz 

Joint OS/HW Cost Weight OS 22/125ω =  



 

92 
 

3.6.1 Evaluation Metrics 

We deploy two different metrics to compare the performance of the various learning 

algorithms discussed in this chapter. The first metric is the weighted estimation error, 

which we define as 

 ( )
( ) ( )

( )
Weighted estimation error 

nV V

V

∗
∗

∗
∈

−
∑
S

�
s

s s
s

s
µ , (3.26) 

where ∗
µ  is the stationary distribution under the optimal policy π∗ , 

( ) ( )max ,V Q∗ ∗=
a

s s a  is the optimal state-value function, and ( ) ( )max ,n nV Q=
a

s s a  is 

the state-value function estimate at stage n . In (3.26), we weight the estimation error 

( ) ( )
nV V∗ −s s  by ( )

∗
µ s  because the optimal policy will often only visit a small subset 

of the states, and the remaining states will never be visited; thus, if we were to estimate 

( )V ∗ s  while following the optimal policy, a non-weighted estimation error would not 

converge to 0, but the proposed weighted estimation error would. 

Although the weighted estimation error tells us how quickly an algorithm can learn 

the optimal policy, it does not tell us how well the algorithm performs while learning. To 

see why this is, consider an (exaggerated) scenario in which ( ) ( ) 0nV V∗ − =s s , but 

the exploration rate in the greedy action selection procedure is 1ε =  (i.e. always 

explore). In this scenario, the greedy actions are optimal, but the random policy 

implemented by always exploring will be far from optimal. For this reason, we define a 

second evaluation metric using the average reward, which more accurately measures the 

system’s performance. For a simulation of duration N , the average reward metric is 
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defined as 

 
1

0

1
Average reward 

N
n

n

r
N

−

=
∑� , (3.27) 

where nr  is the reward sample obtained at stage n . If the exploration rate ε  decays 

appropriately to 0 as n → ∞ , then the average reward will increase as the weighted 

estimation error decreases. Determining an optimal decay strategy for ε  is an important 

problem, but is beyond the scope of this chapter. We refer the interested reader to [31] 

[14] [15] for more information on the exploitation-exploration trade off. 

We note that the weighted estimation error cannot be evaluated under non-stationary 

dynamics because the optimal state value function cannot be determined. Hence, for non-

stationary dynamics, we rely solely on the average reward to evaluate the learning 

performance. Nevertheless, the rate at which the weighted estimation error converges 

under stationary dynamics for a particular learning algorithm is indicative of how well 

that algorithm will perform when the dynamics are non-stationary. 

3.6.2 Single-Layer Learning Results 

Before presenting our cross-layer learning results, we believe it is informative to see how 

well a single layer can learn (say layer l ) when the other layer (say layer l− ) deploys a 

static policy. The learning layer deploys a simple adaptation of the centralized Q-learning 

algorithm in which it knows the global state and global reward, but does not know the 

actions implemented by the other layer. The details of the single-layer learning algorithm 

are omitted due to space constraints; however, we note that it is essential that the learning 

layer knows the global state and global reward so that it can learn how it impacts the 
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other system layers. Otherwise, if the joint OS/HW layer is unaware of its impact on the 

application’s delay and quality, for example, it will always selfishly minimize its own 

costs by operating at its lowest frequency and power, which can adversely impact the 

real-time application’s performance.  

For illustration, we assume that the static layer deploys its optimal local policy lπ
∗
−  

corresponding to the global optimal policy ( ),l lπ π π∗ ∗ ∗
−= ; hence, layer l  attempts to 

learn lπ
∗ . Figure 3.5 illustrates the optimal policies at the APP layer ( 2π

∗ ) and the joint 

OS/HW layer ( 1π
∗ ) for each buffer state and data unit type when the current operating 

frequency is 600f =  MHz. In Figure 3.5, the application actions (i.e. parameter 

configurations) are as defined in Table 3.4. 

Figure 3.6 compares the cumulative average reward obtained using single-layer 

learning to the optimal achievable reward, and Table 3.5 shows the corresponding power, 

rate-distortion costs, utility gain, and buffer overflows, for a simulation of duration 

192, 000N =  time slots (approximately 485 frames drawn from the Foreman sequence, 

CIF resolution, by repeating the sequence from the beginning after 300 frames). We 

observe that the total average reward obtained when the joint OS/HW layer learns in 

response to the APP layer’s optimal local policy 2π
∗  is lower than when the APP layer 

learns in response to the joint OS/HW layer’s optimal local policy 1π
∗ . This is because 

there are more actions to explore at the joint OS/HW layer (5 compared to 3), and the 

joint OS/HW layer’s policy is more important to the system’s overall performance than 

the APP layer’s policy for the chosen simulation parameters (see Table 3.4). For instance, 
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given the action sets defined in Table 3.4, the joint OS/HW layer can significantly impact 

the application’s experienced delay (i.e. a factor of 5 change from 200 MHz to 1000 

Mhz), while the APP layer cannot (i.e. its actions impact the delay by less than a factor of 

2). Consequently, when the APP layer learns in response to the joint OS/HW layer’s 

optimal policy (Figure 3.5(b)), the system is initially better off than when the joint 

OS/HW layer learns in response to the APP layer’s optimal policy (Figure 3.5(a)).  

We note that, in Figure 3.6, the saturated performance of the APP and joint OS/HW 

layers’ learning algorithms is due to the finite exploration probability (i.e. 0ε >  in the ε -

greedy action selection procedure), which forces the layers to occasionally test suboptimal 

actions. 
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Figure 3.5. Optimal policies for each data unit type. (a) APP parameter configurations. (b) Joint OS/HW 

layer frequency command. The current operating frequency is set to be 600f =  Mhz. 
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Figure 3.6. Cumulative average reward for single-layer learning with stationary trace ( 192, 000N = ). 

Table 3.5. Single-layer learning performance statistics for stationary trace ( 192, 000N = ). 

 
APP Layer 

Learns 

Joint OS/HW 

Layer Learns 
Optimal 

Avg. Reward 0.7337 0.7172 0.7631 

Avg. Power (W) 0.2835 0.4512 0.2435 

Avg. R-D 14.93 15.08 14.75 

Avg. Gain 0.9588 0.9736 0.9790 

No. Overflows 0 61 0 

 

 

3.6.3 Cross-Layer Learning Results 

In this subsection, we evaluate the performance of the centralized and layered Q-learning 

algorithms proposed in Section 3.4.2 and 3.4.3, respectively. Figure 3.7 compares the 

cumulative average reward obtained using layered Q-learning to the performance of the 

centralized learning algorithm, the optimal achievable reward, and the performance of the 

myopic learning algorithm deployed in the state-of-the-art cross-layer coordination 
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framework called GRACE-1
8
 [5]; Figure 3.8 compares the weighted estimation error for 

the centralized and layered Q-learning algorithms; and, Table 3.6 shows the 

corresponding power, rate-distortion costs, utility gain, and buffer overflows. As in the 

previous simulations, the simulation duration is 192, 000N =  time slots. Recall from 

Table 3.2 that the algorithms compared in this subsection have roughly the same 

computational complexity (note that the complexity of the GRACE-1 algorithm is 

roughly ( )O A  in our setting because it requires finding the action that will most closely 

meet a data unit’s deadline). 

As expected, the layered Q-learning algorithm performs equally as well as the 

centralized Q-learning algorithm, but also allows the layers to act autonomously through 

decentralized decisions and updates. Meanwhile, the myopic learning algorithm deployed 

by GRACE-1 performs very poorly in terms of overall reward. This is because, for each 

data unit, GRACE-1 myopically selects the lowest processing frequency that can 

successfully encode it before its deadline; consequently, the buffer quickly fills, which 

makes the system susceptible to delay deadline violations due to the time-varying 

workload (this is similar to what happens when using the “conventional gain” function 

described in Appendix A). 

                                                           
8
 In GRACE-1, the statistical cycle demand (complexity) of a video encoding application is measured 

using an exponential average of the 95
th

-percentile complexity of recently completed jobs (processed data 

units) in a sliding window. Based on the statistical cycle demand, GRACE-1 myopically encodes jobs at the 

lowest frequency which will meet the job’s deadline. If slack remains after processing a job, then it is 

reclaimed for future jobs.  
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Figure 3.7. Cumulative average reward for cross-layer learning algorithms with stationary trace 

( 192, 000N = ). 
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Figure 3.8. Weighted estimation error metric for cross-layer learning algorithms with stationary trace 

( 192, 000N = ). 
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Table 3.6. Cross-layer learning performance statistics for stationary trace ( 192, 000N = ). 

 Optimal 
Centralized 

Q-learning 

Layered 

Q-Learning 
GRACE-1 

Avg. Reward 0.7631 0.4727 0.4721 -0.1730 

Avg. Power (W) 0.2435 0.3815 0.4061 0.4982 

Avg. Rate-

Distortion 
14.75 15.00 14.99 15.30 

Avg. Utility Gain 0.9790 0.7158 0.7195 0.0942 

No. Overflows 0 1231 1251 3040 

 

 

It is important to note that, even though the proposed learning algorithms outperform 

the existing myopic learning algorithm, there is still significant improvement to be made. 

In particular, the centralized and layered Q-learning algorithms learn too slowly because 

they only update one state-action pair in each time slot. Consequently, the number of 

buffer overflows and the power consumption are both higher, and the utility gain is lower, 

than in the optimal case. In the next subsection, we show that the learning performance 

(including the weighted estimation error and the average reward) can be dramatically 

improved by smartly updating multiple state-action pairs in each time slot. 

3.6.4 Accelerated Learning with Virtual ETs 

In this subsection, we compare the performance of the proposed virtual ET based learning 

algorithm (see Section 3.5) to an existing reinforcement learning algorithm called 

temporal-difference-λ  learning
9
 (i.e. TD(λ ) [15]), which has comparable complexity 

(roughly ( )( )1O Ψ + A  in each time slot for Ψ  virtual ET or TD(λ ) updates in addition 

                                                           
9
 In our implementation, TD(λ ) applies the update step defined in (3.14) to the Ψ  most frequently 

visited states in the recent past. These recently visited states are updated using the TD error obtained for the 

current state weighted by the previously visited states’ “eligibility” as defined in [15]. Informally, the 

“eligibility” is the discounted frequency with which states have been visited in the past.  
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to the actual ET update). Recall that, in this subsection, we simulate the system with the 

measured (non-stationary) trace data and the generated (stationary) trace data. 

Figure 3.9 illustrates the cumulative average reward achieved when we allow 

{ }0,1,15, 30, 45Ψ ∈  virtual ET or TD(λ ) updates in each time slot (the case when 0Ψ =  

is equivalent to the conventional centralized Q-learning algorithm in which only the 

actual ET is updated); Figure 3.10 compares the weighted estimation error for the same 

learning algorithms; and, Table 3.7 illustrates corresponding detailed simulation results. 

Interestingly, the TD(λ ) updates are completely ineffectual at improving the system’s 

performance. In particular, it is obvious that increasing the number of TD(λ ) updates in 

each time slot does not guarantee higher average rewards or lower weighted estimation 

errors. Meanwhile, increasing the number of virtual ET updates in each time slot 

dramatically improves the weighted estimation error metric and the average reward. The 

reason for this stark difference in performance is because the virtual ET based learning 

algorithm can learn about state-action pairs without visiting them, while the TD(λ ) 

learning algorithm can only learn about previously visited state-action pairs. The ability 

to learn about unvisited states is very important in our problem setting because after the 

buffer initially fills from early exploration (resulting in the initial drop in rewards 

illustrated in Figure 3.6, Figure 3.7, and Figure 3.9), the learning algorithm must learn to 

efficiently drain the buffer without consuming too much power or unnecessarily reducing 

the application’s quality. This is simple when using virtual ETs because the information 

obtained from experience in a “near full” buffer state (e.g. 1qq N= − ) can be 
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extrapolated to a “near, near full” buffer state (e.g. 2qq N= − ) and so on. When using 

TD(λ ) updates, however, the algorithm learns very slowly about “near, near full” buffer 

states because they are visited only infrequently from the “near full” buffer state. For this 

reason, TD(λ ) (even for a large number of updates) has trouble emptying the buffer, and 

performs no better than the conventional centralized Q-learning algorithm, which updates 

only one state-action pair in each time slot. 

One might expect that violating the stationarity assumption, which is widely used in 

the reinforcement learning literature (see [14][15][16]), would be disastrous to the 

system’s performance. We observe in Figure 3.9 and Table 3.7, however, that the 

proposed virtual ET based learning algorithm is robust to the non-stationary dynamics in 

the measured data traces. This is primarily due to its ability to quickly propagate new 

information obtained at one state-action pair throughout the state-action space. From the 

data in Table 3.7, we observe that the percent difference between the reward obtained in 

the stationary case and the non-stationary case is less than 6%. 

As in the single-layer learning case, the learning performance with virtual ETs 

saturates due to the finite exploration probability (i.e.  0ε > ), which prevents the 

learning algorithm from converging to the optimal policy.  

It is important to note that, in these experiments, we have assumed that the update 

complexity is negligible. This would be true if the updates were performed infrequently 

(e.g. per video frame) or if the updates were performed in parallel (e.g. using a vector 

processor); however, it is not a valid assumption for the very frequent and serial updates 
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deployed here (i.e. per video macroblock, without a vector processor). Hence, performing 

15, 30, or 45 updates in each time slot is not reasonable, but performing 1 or 2 virtual ET 

updates is. Despite this technicality, we have shown the relative performance 

improvements that can be achieved by updating multiple virtual experience tuples in each 

time slot. An interesting trade off to investigate in future research is the impact of a 

coarser data unit granularity with a simultaneous increase in the number of virtual updates 

(such that the average learning complexity remains constant). Lastly, we note that the 

learning performance could be further improved (for the same number of virtual ET 

updates) by directing the virtual ET updates to states that are most likely to be visited in 

the near future (e.g. states near the observed next-state), instead of randomly updating the 

virtual experience tuples. 
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Figure 3.9. Cumulative average reward achieved with virtual ET and TD(λ ) updates for a stationary trace 

and a non-stationary trace, compared to the optimal achievable reward under the stationary trace 

( 64, 000N = ). 
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Figure 3.10. Weighted estimation error metric for virtual ETs and TD(λ ) with stationary trace 

( 64, 000N = ). 
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Table 3.7. Virtual experience learning statistics for stationary (non-stationary) data trace outside (inside) 

parentheses ( 64, 000N = ).  

 Number of Virtual ET Updates 

 0Ψ =  1Ψ =  15Ψ =  30Ψ =  45Ψ =  

Avg. Reward 
0.2785 

(0.3015) 

0.6414 

(0.6078) 

0.6893 

(0.6710) 

0.7076 

(0.6759) 

0.7200 

(0.6944) 

Avg. Power (W) 
0.4212 

(0.4632) 

0.4164 

(0.4314) 

0.3817 

(0.3864) 

0.3432 

(0.3657) 

0.3108 

(0.3381) 

Avg. Rate-

Distortion 

15.00 

(14.89) 

14.92 

(14.77) 

15.06 

(14.84) 

14.93 

(14.81) 

14.87 

(14.71) 

Avg. Utility Gain 
0.5287 

(0.5577) 

0.8898 

(0.8570) 

0.9332 

(0.9131) 

0.9432 

(0.9140) 

0.9492 

(0.9264) 

No. Overflows 
1196 

(1410) 

1035 

(1271) 

502 

(437) 

226 

(378) 

103 

(438) 

 Number of TD(λ ) Updates 

 0Ψ =  1Ψ =  15Ψ =  30Ψ =  45Ψ =  

Avg. Reward 
0.2835 

(0.3188) 

0.3807 

(0.2899) 

0.3449 

(0.2903) 

0.314 

(0.3088) 

0.3287 

(0.3388) 

Avg. Power (W) 
0.4494 

(0.4707) 

0.4649 

(0.4732) 

0.4551 

(0.4672) 

0.4530 

(0.4644) 

0.4544 

(0.4875) 

Avg. Rate-

Distortion 

15.07 

(14.88) 

15.14 

(14.92) 

15.14 

(14.88) 

15.03 

(14.84) 

15.15 

(14.91) 

Avg. Utility Gain 
0.5395 

(0.5763) 

0.6402 

(0.5483) 

0.6026 

(0.5472) 

0.5703 

(0.5647) 

0.5866 

(0.5997) 

No. Overflows 
1255 

(1630) 

1230 

(1491) 

1267 

(1511) 

1234 

(1491) 

1250 

(1317) 

 

3.7 Conclusion 

Foresighted decisions are required to optimize the performance of resource-constrained 

multimedia systems. However, in practical settings, in which the system’s dynamics are 

unknown a priori, efficiently learning the optimal foresighted decision policy can be a 

challenge. Specifically, selecting an improper learning model can lead to an unacceptably 

slow learning speed, incur excessive memory overheads, and/or adversely impact the 

application’s real-time performance due to large computational overheads. In this chapter, 

we choose reinforcement learning to appropriately balance time-complexity, memory 
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complexity, and computational complexity. We propose a centralized and a layered 

reinforcement learning algorithm and extend these algorithms to exploit our partial 

knowledge of the system’s dynamics. The proposed accelerated learning algorithm, which 

is based on updating multiple statistically equivalent state-action pairs in each time slot, 

allows us to judiciously tradeoff per-stage computational complexity and time-complexity 

(i.e. learning speed), while incurring low memory overheads. 

In our experimental results, we verify that the layered learning solution performs 

equally as well as the centralized solution, which may be impractical to implement if the 

layers are designed by different manufacturers or operate at different time-scales. We also 

illustrate that our proposed foresighted learning algorithms outperform the myopic 

learning algorithm deployed in an existing state-of-the-art cross-layer optimization 

framework and that, by exploiting knowledge about the system’s dynamics, we can 

significantly outperform an existing application-independent reinforcement learning 

algorithm that has comparable computational overheads. 

In the long term, we believe this work can catalyze a shift in the design and 

implementation of DMSs (and systems in general) by enabling system layers (modules or 

components) to proactively reason and interact based on forecasts, as well as evolve, and 

become smarter, by learning from their interactions. A fruitful direction for future 

research is the application of the techniques introduced in this chapter to cross-layer 

optimization of the network protocol stack. 
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Appendix A: Utility Gain Function 

In this appendix, we discuss the form of the utility gain function defined in (3.7). 

Conventionally, if a multimedia buffer does not overflow (i.e. the buffer constraints are 

not violated), then there is no penalty (see, for example, [21] [22]). Within the proposed 

MDP-based framework, where it is difficult to explicitly impose constraints because the 

dynamics are not known a priori, the conventional buffer model must be integrated into 

the system’s reward function. Specifically, it can be integrated into the reward through a 

utility gain function of the form: 

 
( )

conv

1, 1
( , )

1 , otherwise,

q

L
q

q t N
g a

N q t

  + − ≤  = 
  − + −  

�

�
s  

which provides a reward of 1 if the buffer does not overflow, and a penalty proportional 

to the number of overflows otherwise.  

In contrast to the proposed continuous utility gain function defined in (3.7), 

conv( , )Lg as  is disjoint. As a result, the optimal foresighted policy obtained using 

conv( , )Lg as  will initially fill the buffer rapidly in an attempt to minimize rate-distortion 

and power costs (because it is not penalized for filling the buffer) as illustrated in Figure 

3.11(a). Subsequently, the policy will attempt to keep the buffer nearly full in order to 

balance the cost of overflow with the rate-distortion and power costs required to reduce 

the buffer’s occupancy. Unfortunately, with the buffer nearly full, any sudden burst in the 

complexity of a data unit will immediately overflow the buffer as illustrated in Figure 

3.11(b). In contrast, the proposed utility gain function is robust against bursts in 
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complexity because it encourages the buffer occupancy to remain low as illustrated in 

Figure 3.11(c,d). 

The data in Table 3.8 shows that the proposed utility gain function not only prevents 

buffer overflows, but it also achieves comparable power consumption as the conventional 

utility gain function. Thus, we have verified that our choice of utility gain function is 

good. An added benefit of the proposed utility gain function is that it aids in the learning 

process. This is because actions are immediately rewarded (or penalized) based on how 

they impact the buffer state. 
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Figure 3.11. Buffer evolution in 20, 000N =  time slot simulation. (a) Conventional utility gain results in 

the buffer filling rapidly; (b) Conventional utility gain leads to overflows; (c) Proposed utility gain keeps 

the buffer occupancy low; (d) Proposed utility gain prevents overflows. 

Table 3.8. Performance statistics using the conventional utility gain function and the proposed utility gain 

function. 

 Form of the utility gain 

 Conventional Proposed 

Avg. Power (W) 0.2421 0.2427 

Avg. Rate-

Distortion 
14.95 14.84 

No. Overflows 394 0 
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Chapter 4 

Fast Reinforcement Learning for Energy-

Efficient Wireless Communication 
 

 

We consider the problem of energy-efficient point-to-point transmission of delay-

sensitive data (e.g. multimedia data) over a fading channel. Existing research on this topic 

utilizes either physical-layer centric solutions, namely power-control and adaptive 

modulation and coding (AMC), or system-level solutions based on dynamic power 

management (DPM); however, there is currently no rigorous and unified framework for 

simultaneously utilizing both physical-layer centric and system-level techniques to 

achieve the minimum possible energy consumption, under delay constraints, in the 

presence of stochastic  and a priori unknown traffic and channel conditions. In this 

chapter, we propose such a framework. We formulate the stochastic optimization 

problem as a Markov decision process (MDP) and solve it online using reinforcement 

learning. The advantages of the proposed online method are that (i) it does not require a 

priori knowledge of the traffic arrival and channel statistics to determine the jointly 

optimal power-control, AMC, and DPM policies; (ii) it exploits partial information about 

the system so that less information needs to be learned than when using conventional 

reinforcement learning algorithms; and (iii) it obviates the need for action exploration, 
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which severely limits the adaptation speed and run-time performance of conventional 

reinforcement learning algorithms.  

4.1 Introduction 

Delay-sensitive communication systems often operate in dynamic environments where 

they experience time-varying channel conditions (e.g. fading channel) and dynamic 

traffic loads (e.g. variable bit-rate). In such systems, the primary concern has typically 

been the reliable delivery of data to the receiver within a tolerable delay. Increasingly, 

however, battery-operated mobile devices are becoming the primary means by which 

people consume, author, and share delay-sensitive content (e.g. real-time streaming of 

multimedia data, videoconferencing, gaming etc.). Consequently, energy-efficiency is 

becoming an increasingly important design consideration. To balance the competing 

requirements of energy-efficiency and low delay, fast learning algorithms are needed to 

quickly adapt the transmission decisions to the time-varying and a priori unknown traffic 

and channel conditions.  

Existing research that addresses the problem of energy-efficient wireless 

communications can be roughly divided into two categories: physical (PHY) layer-centric 

solutions such as power-control and adaptive modulation and coding (AMC); and 

system-centric solutions such as dynamic power management (DPM).
1
 Although these 

techniques differ significantly, they can all be used to tradeoff delay and energy to 

increase the lifetime of battery-operated mobile devices [2] [3] [8].  

                                                           
1
 DPM enables system components such as the wireless network card to be put into low-power states 

when they are not needed [3]-[6]. We discuss this in more detail in Section 4.2.2. 
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PHY-centric solutions: A plethora of existing PHY-centric solutions focus on 

optimal single-user power-control (also known as minimum energy transmission or 

optimal scheduling) with the goal of minimizing transmission power subject to queuing 

delay constraints (e.g. [1] [2]). It is well known that transmitting with more power in 

good channel states, and with less power in poor channel states, maximizes throughput 

under a fixed energy budget. For this reason, [1] and [2] use dynamic programming, 

coupled with a stochastic fading channel model, to determine the optimal power-control 

policy. Unfortunately, the aforementioned solutions require statistical knowledge of the 

underlying dynamics (i.e. the channel state and traffic distributions), which is typically 

not available in practice. When this information is not available, only heuristic solutions, 

which cannot guarantee optimal performance, are provided. For example, in [2], a 

heuristic power-control policy is proposed that is only optimal for asymptotically large 

buffer delays. Moreover, [1] and [2] are information-theoretic in nature, so they ignore 

transmission errors, which commonly occur in practical wireless transmission scenarios. 

Other PHY-centric solutions are based on adaptive modulation, adaptive coding, or 

AMC. Although these techniques are typically used to tradeoff throughput and error-

robustness in fading channels [22], they can also be exploited to tradeoff delay and 

energy as in [8], where they are referred to as dynamic modulation scaling, dynamic code 

scaling, and dynamic modulation-code scaling, respectively. Offline and online 

techniques for determining optimal scaling policies are proposed in [8], however, these 

techniques cannot be extended in a manner that tightly integrates PHY-centric and 

system-level power management techniques. 



 

119 
 

Although PHY-centric solutions are effective at minimizing transmission power, they 

ignore the fact that it costs power to keep the wireless card on and ready to transmit; 

therefore, a significant amount of power can be wasted even when there are no packets 

being transmitted. System-level solutions address this problem. 

System-level solutions: System-level solutions rely on DPM, which enables system 

components such as the wireless network card to be put into low-power states when they 

are not needed [3]-[6]. A lot of work has been done on DPM, ranging from rigorous work 

based on the theory of Markov decision processes [3]-[5], to low-complexity work based 

on heuristics [6]. In [3], the optimal DPM policy is determined offline under the 

assumption that the traffic arrival distribution is known a priori. In [5], an online 

approach using maximum likelihood estimation to estimate the traffic arrival distribution 

is proposed. This approach requires using the complex value iteration algorithm to update 

the DPM policy to reflect the current estimate of the traffic distribution. In [4], a 

supervised learning approach is taken to avoid the complex value iteration algorithm. 

However, this approach incurs large memory overheads because it requires many policies 

to be computed offline and stored in memory to facilitate the online decision making 

process. Unfortunately, due to their high computational and memory complexity, the 

aforementioned online approaches are impractical for optimizing more complex, 

resource-constrained, and delay-sensitive communication systems. 

Our contributions are as follows: 

• Unified power management framework: We propose a rigorous and unified 

framework, based on Markov decision processes (MDPs) and reinforcement 
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learning (RL), for simultaneously utilizing both PHY-centric and system-level 

techniques to achieve the minimum possible energy consumption, under delay 

constraints, in the presence of stochastic traffic and channel conditions. This is in 

contrast to existing work that only utilizes power-control [1] [2], AMC [8], or DPM 

[3]-[6] to manage power.
2
  

• Generalized post-decision state: We propose a decomposition of the (offline) 

value iteration and (online) RL algorithms based on factoring the system’s 

dynamics into a priori known and a priori unknown components. This is achieved 

by generalizing the concept of a post-decision state (PDS, or afterstate [11]), which 

is an intermediate state that occurs after the known dynamics take place but before 

the unknown dynamics take place. Similar decompositions have been used for 

modeling games such as tic-tac-toe and backgammon [11], for dynamic channel 

allocation in cellular telephone systems [11], and for delay-constrained scheduling 

over fading channels (i.e. power-control) [12] [16]. However, we provide a more 

general formulation of the PDS concept than existing literature. Specifically, 

existing literature introduces the PDS concept for very specific problem settings, 

where the PDS is a deterministic function of the current state and action, and where 

the cost function is assumed to be known. In general, however, the PDS can be a 

non-deterministic function of the current state and action, and it can be used in any 

MDP in which it is possible to factor the transition probability and cost functions 

into known and unknown components. The advantages of the proposed PDS 

                                                           
2
 More accurately, prior research on power-control implicitly considers adaptive coding because it 

assumes that optimal codes, which achieve information-theoretic capacity, are used. 
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learning algorithm are that it exploits partial information about the system, so that 

less information needs to be learned than when using conventional RL algorithms 

and, under certain conditions, it obviates the need for action exploration, which 

severely limits the adaptation speed and run-time performance of conventional RL 

algorithms. 

• Virtual experience: Unlike existing literature, we take advantage of the fact that 

the unknown dynamics are independent of certain components of the system's state. 

We exploit this property to perform a batch update on multiple PDSs in each time 

slot. We refer to this batch update as virtual experience learning. Prior to this work, 

it was believed that the PDS learning algorithm must necessarily be performed one 

state at a time because one learns only about the current state being observed, and 

can, therefore, update only the corresponding component [12]. Importantly, our 

experimental results illustrate that virtual experience dramatically improves 

performance over "one state at a time" PDS learning. 

• Application of reinforcement learning to dynamic power management (DPM): 

We believe that this chapter is the first to apply RL to the DPM problem. This is 

non-trivial because naïve application of RL can lead to very poor performance. This 

is because conventional RL solutions (e.g. Q-learning) require frequent action 

exploration, which lead to significant power and delay penalties when a suboptimal 

power management action is taken. Using PDS learning in conjunction with virtual 

experience learning, however, obviates the need for action exploration and allows 

the algorithm to quickly adapt to the dynamics and learn the optimal policy. 
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The remainder of the chapter is organized as follows. In Section 4.2, we introduce the 

system model and assumptions. In Section 4.3, we describe the transmission buffer and 

traffic models. In Section 4.4, we formulate the power management problem as an MDP. 

In Section 4.5, we discuss how to solve the problem online using RL. In Section 4.6, we 

present our simulation results. Section 4.7 concludes the chapter. 

4.2 Preliminaries 

In this section, we introduce the time-slotted system model used in this chapter. We 

assume that time is slotted into discrete-time intervals of length t∆  such that the n th 

time slot is defined as the time interval ( )[ ), 1n t n t∆ + ∆ . Transmission and power 

management decisions are made at the beginning of each interval and the system’s state 

is assumed to be constant throughout each interval. Figure 4.1 illustrates the considered 

wireless transmission system. We describe the deployed PHY-centric power management 

techniques in subsection 4.2.1 and the deployed system-level power management 

technique in subsection 4.2.2. 
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Figure 4.1. Wireless transmission system. The components outlined in bold are the focus of this chapter. 

4.2.1 Physical Layer: Adaptive Modulation and Power-Control 

We consider the case of a frequency non-selective channel, where nh  denotes the fading 

coefficient over the point-to-point link (i.e. from the transmitter to the receiver) in time 

slot n . As in [1], [2], [12], and [13], we assume that the channel state is constant for the 

duration of a time slot, that it can be estimated perfectly, and that the sequence of channel 

states { }: 0,1,nh n∈ =H …  can be modeled as a Markov chain with transition 

probabilities ( )|hp h h′ . 

The proposed framework can be applied to any modulation and coding schemes. Our 

only assumptions are that the bit-error probability (BEP) at the output of the maximum 

likelihood detector of the receiver, denoted by nBEP , and the transmission power, 

denoted by tx
nP ,  can be expressed as 

 ( )tx, ,n n n nBEP BEP h P z=  and (4.1) 

 ( )tx tx , ,n n n nP P h BEP z= , (4.2) 

where nz is the packet throughput in packets per time slot and each packet has size �  

(bits). Assuming independent bit-errors, the packet loss rate (PLR) for a packet of size �  
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can be easily computed from the BEP as ( )1 1n nPLR BEP= − − � . 

We will use the packet throughput as a decision variable in our optimization problem. 

We are then free to either select the transmission power, which determines the BEP 

through (4.1), or select the BEP, which determines the transmission power through (4.2). 

Without loss of generality, we select the BEP as our decision variable.  

For illustration, throughout this chapter we assume that (4.1) and (4.2) are known; 

however, the proposed learning framework is general and can be directly extended to the 

case when (4.1) and (4.2) are unknown a priori. We also select a fixed coding scheme for 

simplicity; however, the proposed framework can still be applied using adaptive 

modulation and coding with an appropriate modification to the BEP and transmission 

power functions. Note that if both modulation and coding can be adapted, then (4.1) and 

(4.2) are often unattainable analytically. Thus, if (4.1) and (4.2) are assumed to be known, 

it is necessary to resort to models based on fitting parameters to measurements as in [19]-

[21]. 

4.2.2 System-Level: Dynamic Power Management Model 

In addition to adaptive modulation and power-control, which determine the active 

transmission power, we assume that the wireless card can be put into low power states to 

reduce the power consumed by the wireless card’s electronic circuits. Specifically, the 

wireless card can be in one of two power management states in the set { }on, off=X  and 

can be switched on and off using one of the two power management actions in the set 
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{ }s_on, s_off=Y .
3
 As in [3], the notation s_on  and s_off  should be read as “switch 

on” and “switch off,” respectively. 

If the channel is in state h , the wireless card is in state x , the maximum BEP is 

nBEP , the power management action is y , and the packet throughput is z , then the 

required power is 

 [ ]( )

( )[ ]on tx

off.

tr

, , , if on, s_on

, , , , , if off, s_off

, otherwise,

n n nP P h BEP z x y

h x BEP y z P x y

P

ρ

 + = == = =


 (4.3) 

where txP  (watts) is the transmission power defined in (4.2), onP  and offP  (watts) are the 

power consumed by the wireless card in the “on” and “off” states, respectively, and trP  

(watts) is the power consumed when it transitions from “on” to “off” or from “off” to 

“on”. Similar to [3], we assume that tr on off 0P P P≥ > ≥  such that there is a large 

penalty for switching between power states, but remaining in the “off” state consumes 

less power than remaining in the “on” state. 

As in [3], we model the sequence of power management states 

{ }: 0,1,nx n∈ =X …  as a controlled Markov chain with transition probabilities 

( )| ,xp x x y′ . Let ( )x yP  denote the transition probability matrix conditioned on the 

power management action y , such that ( ) ( )[ ]
,

| ,x x
x x

y p x x y ′
′=P . Due to the high level 

of abstraction of the model, it is possible that there is a non-deterministic delay associated 

with the power management state transition such that  

                                                           
3
 This can be easily extended to multiple power management states as in [4], but we only consider two 

for ease of exposition. 
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( )

( )

on off

on 1 0s_on

off 1

on off

on 1s_off

off 0 1

x

x

θ θ

θ θ

 =    −  

− =     

P

P

 (4.4) 

where the row and column labels represent the current ( nx ) and next ( 1nx + ) power 

management states, respectively, and ( ]0,1θ ∈  (resp. 1 θ− ) is the probability of a 

successful  (resp. an unsuccessful) power state transition. For simplicity of exposition, we 

will assume that the power state transition is deterministic (i.e. 1θ = ); however, our 

framework applies to the case with 1θ <  (with θ  known or unknown). We note that the 

packet throughput z  can be non-zero only if onx =  and s_ony = ; otherwise, the 

packet throughput 0z = . 

4.3 Transmission Buffer and Traffic Model 

We assume that the transmission buffer is a first-in first-out (FIFO) queue. The source 

injects nl  packets into the transmission buffer in each time slot, where nl  has distribution 

( )lp l . Each packet is of size L  bits and the arrival process { }: 0,1,nl n = …  is assumed 

to be independent and identically distributed (i.i.d) with respect to the time slot index n . 

The arriving packets are stored in a finite-length buffer, which can hold a maximum of B  

packets. The buffer state { }0,1, ,b B∈ =B …  evolves recursively as follows: 

 
( )( )

0
init

1 min , , ,n n n n n n

b b

b b f BEP z l B+

=

= − +
 (4.5) 

where initb  is the initial buffer state and ( ),n n n nf BEP z z≤  is the packet goodput in 
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packets per time slot (i.e. the number of packets transmitted without error), which 

depends on the throughput nz  and the BEP nBEP . Recall that the packet throughput z , 

and therefore the packet goodput f , can be non-zero only if onx =  and s_ony = ; 

otherwise, they are both zero (i.e. 0z f= = ). Also, note that the packets arriving in 

time slot n  cannot be transmitted until time slot 1n +  and that any unsuccessfully 

transmitted packets stay in the transmission buffer for later (re)transmission. For 

notational simplicity, we will omit the arguments of the packet goodput and instead write 

( ),n n n nf f BEP z= . Assuming independent packet losses, nf  is governed by a binomial 

distribution, i.e.  

 ( ) ( )| , bin ,1f n n n n np f BEP z z PLR= − , (4.6) 

and has expectation [ ] ( )1n n nE f PLR z= − . 

Based on the buffer recursion in (4.5), the distribution of the arrival process ( )lp l , 

and the distribution of the departure process ( )| ,fp f BEP z , the sequence of buffer states 

{ }: 0,1,nb n = …  can be modeled as a controlled Markov chain with transition 

probabilities 

 [ ]( )
[ ]( ) ( )

( ) ( )
[ ]

0

0

| , , if 
| , , , , ,

| , , if .

z l f
fb
z l f
f l B b f

p b b f p f BEP z b B
p b b h x BEP y z

p l p f BEP z b B

=

∞

= = − −

 ′ ′ − − <′ = 
 ′ =

∑

∑ ∑
 (4.7) 

Eq. (4.7) is similar to the buffer state transition probability function in [9], except that the 

model in [9] assumes that the packet goodput f  is equal to the packet throughput z  (i.e. 

there are no packet losses). 

We also define a buffer cost to reward the system for minimizing queuing delays, 
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thereby protecting against overflows that may result from a sudden increase in 

transmission delay due to a bad fading channel or traffic burst. Formally, we define the 

buffer cost as the expected sum of the holding cost and overflow cost with respect to the 

arrival and goodput distributions: i.e., 

 [ ] ( ) ( ) [ ] [ ]( )
0 0 holding cost overflow cost

( , , , , ) | , max ,0 .
z

l f

l f

g b x BEP y z p l p f BEP z b f b f l Bη

∞

= =

    = − + − + − 
    

∑ ∑ ������� �������������������������
 (4.8) 

In (4.8), the holding cost represents the number of packets that were in the buffer at the 

beginning of the time slot, but were not transmitted (and hence must be held in the buffer 

to be transmitted in a future time slot). If the buffer is stable (i.e. there are no buffer 

overflows), then the holding cost is proportional to the queuing delay by Little’s theorem 

[10]. If the buffer is not stable (i.e. there is a finite probability of overflow such that 

Little’s theorem does not apply), then the overflow cost imposes a penalty of η  for each 

dropped packet. With the correct choice of η , the overflow cost ensures that it is 

suboptimal to drop packets while simultaneously transmitting with low power or shutting 

off the wireless card. In Appendix B, we discuss how to define the per-packet penalty η  

and how it relates to the delay. 

4.4 Wireless Power Management Problem Formulation 

In this section, we formulate the wireless power management problem as a constrained 

MDP. We define the joint state (hereafter state) of the system as a vector containing the 

buffer state b , channel state h , and power management state x , i.e. ( ), ,s b h x ∈ S� . 

We also define the joint action (hereafter action) as a vector containing the BEP BEP , 
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power management action y , and packet throughput z , i.e. ( ), ,a BEP y z ∈ A� . The 

sequence of states { }: 0,1,ns n = …  can be modeled as a controlled Markov chain with 

transition probabilities that can be determined from the conditionally independent buffer 

state, channel state, and power management state transitions as follows: 

 ( ) [ ]( ) ( ) ( )| , | , , , , , | | ,b h xp s s a p b b h x BEP y z p h h p x x y′ ′ ′ ′= . (4.9) 

The objective of the wireless power management problem is to minimize the infinite 

horizon discounted power cost subject to a constraint on the infinite horizon discounted 

delay. Let : Sπ A�  denote a stationary policy mapping states to actions such that 

( )a sπ= . Starting from state s  and following policy π , the expected discounted power 

cost and expected discounted delay are defined as 

 ( ) ( ) ( )( ) 0
0

, |n n n
n

P s E s s s sπ γ ρ π
∞

=
 = = ∑ , and (4.10) 

 ( ) ( ) ( )( ) 0
0

, |n n n
n

D s E g s s s sπ γ π
∞

=
 = = ∑ , (4.11) 

where the expectation is over the sequence of states { }: 0,1,ns n = … , [ )0,1γ ∈  is the 

discount factor, and ( )nγ  denotes the discount factor to the n th power. Formally, the 

objective of the constrained wireless power management problem is 

 ( ) ( )Minimize  subject to P s D sπ π δ≤ , s∀ ∈ S , (4.12) 

where δ  is the discounted delay constraint. 

We minimize the infinite horizon discounted cost instead of, for example, the time 

average cost, because (i) typical traffic and channel dynamics only have “stationary” 

behavior over short time intervals such that the future dynamics cannot be easily 
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predicted without error; (ii) delay-sensitive traffic is more valuable the earlier it is 

transmitted; and, (iii) we may indeed want to optimize the time average cost, but because 

the application’s lifetime is not known a priori (e.g. a video conference may end 

abruptly), we assume that the application will end with probability 1 γ−  in any time slot 

(i.e., in any state, with probability 1 γ− , the MDP transitions to a zero cost absorbing 

state [23]). For all of these reasons, costs should be minimized sooner rather than later, 

and therefore immediate costs should be weighted more heavily than future costs. 

We can reformulate the constrained optimization in (4.12) as an unconstrained MDP 

by introducing a Lagrange multiplier associated with the delay constraint. We can then 

define a Lagrangian cost function: 

 ( ) ( ) ( ), , ,c s a s a g s aµ ρ µ= + , (4.13) 

where 0µ ≥  is the Lagrange multiplier, ( ),s aρ  is the power cost defined in (4.3), and 

( ),g s a  is the buffer cost defined in (4.8). For a fixed λ , the unconstrained problem is to 

determine the optimal policy π∗  that minimizes 

 ( ) ( ) ( )( ), 0
0

, |n n n
n

L s E c s s s sπ µ µγ π
∞

=
 = = ∑ , s∀ ∈ S  (4.14) 

Solving (4.14) is equivalent to solving the following dynamic programming equation: 

 ( ){ }, ,( ) min ( , ) ( )a s
V s c s a p s | s,a V sµ µ µγ∗ ∗

∈ ′∈
′ ′= + ∑A S

, s∀ ∈ S  (4.15) 

where , :V µ∗ S � 	  is the optimal state-value function. 

We also define the optimal action-value function , :Q µ∗ ×S A � 	 , which satisfies:  

 ( ), ,( , ) ( , ) ( )
s

Q s a c s a p s | s,a V sµ µ µγ∗ ∗
′∈

′ ′= + ∑ S
, (4.16) 
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where ( ) ( ), ,min ,aV s Q s aµ µ∗ ∗
∈′ ′= A . In words, , ( , )Q s aµ∗  is the infinite horizon 

discounted cost achieved by taking action a  in state s  and then following the optimal 

policy ,µπ∗  thereafter, where 

 , ,( ) argmin ( , ),  as Q s a sµ µπ∗ ∗
∈= ∀ ∈A S . (4.17) 

Assuming that the cost and transition probability functions are known and stationary, 

(4.15), (4.16), and (4.17) can be computed numerically using the well-known value 

iteration algorithm [11]. 

For notational simplicity, we drop the Lagrange multiplier from the notation in the 

remainder of the chapter unless it is necessary; hence, we will write ( , )c s a , ( )V s∗ , 

( , )Q s a∗ , ( )sπ∗  instead of ( , )c s aµ , ( )
,V sµ∗ , , ( , )Q s aµ∗ , and , ( )sµπ∗ , respectively. 

4.5 Learning the Optimal Policy 

In practice, the cost and transition probability functions are (partially) unknown a priori. 

Consequently, V ∗  and π∗  cannot be computed using value iteration; instead, they must be 

learned online, based on experience. To this end, we adopt a model-free RL approach, 

which can be used to learn Q∗  and π∗  online, without first estimating the unknown cost 

and transition probability functions. 

We begin in Section 4.5.1 by introducing a well-known model-free RL algorithm 

called Q-learning, which directly estimates Q∗  under the assumption that the system’s 

dynamics are completely unknown a priori. In subsection 4.5.2, we develop a framework 

that allows us to integrate known information about the cost and transition probability 

functions into the learning process. Exploiting this partially known information 
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dramatically improves run-time performance compared to the Q-learning algorithm. 

4.5.1 Conventional Q-learning 

Central to the conventional Q-learning algorithm is a simple update step performed at the 

end of each time slot based on the experience tuple (ET) ( )1, , ,n n n n ns a c sσ += : i.e.,  

  ( )1 1( , ) 1 ( , ) min ( , )n n n n n n n n n n n

a
Q s a Q s a c Q s aα α γ+ +

′∈

 ′← − + +  A
, (4.18) 

where ns  and na  are the state and performed action in time slot n , respectively; nc  is the 

corresponding cost with expectation ( ),n nc s a ; 1ns +  is the resulting state in time slot 

1n + , which is distributed according to 1( , )n n np s s a+ | ; a′  is the greedy action in state 

1ns + , which minimizes the current estimate of the action-value function; [ ]0,1nα ∈  is a 

time-varying learning rate parameter; and, 0( , )Q s a  can be initialized arbitrarily for all 

( ),s a ∈ ×S A . 

Q-learning essentially uses a sample average of the action-value function, i.e. nQ , to 

approximate Q∗ . It is well known that if (i) the instantaneous cost and transition 

probability functions are stationary, (ii) all of the state-action pairs are visited infinitely 

often, and (iii) nα  satisfies the stochastic approximation conditions 
0

n
n
α

∞

=
= ∞∑  and 

( )2
0

n
n

α
∞

=
< ∞∑ , then nQ  converges with probability 1 to Q∗  as n → ∞  (for example, 

1/( 1)n nα = +  or ( )0.71/n nα =  satisfy the stochastic approximation conditions). 

Subsequently, the optimal policy can be calculated using (4.17). 

Using Q-learning, it is not obvious what the best action is to take in each state during 

the learning process. On the one hand, Q∗  can be learned by randomly exploring the 
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available actions in each state. Unfortunately, unguided randomized exploration cannot 

guarantee acceptable run-time performance because suboptimal actions will be taken 

frequently. On the other hand, taking greedy actions, which exploit the available 

information in nQ , can guarantee a certain level of performance, but exploiting what is 

already known about the system prevents the discovery of better actions. Many 

techniques are available in the literature to judiciously trade off exploration and 

exploitation. In this chapter, we use the so-called ε -greedy action selection method [11], 

but other techniques such as Boltzmann exploration can also be deployed [11]. 

Importantly, the only reason why exploration is required is because Q-learning assumes 

that the unknown cost and transition probability functions depend on the action. In the 

remainder of this section, we will describe circumstances under which exploiting partial 

information about the system can obviate the need for action exploration.  

Q-learning is an inefficient learning algorithm because it only updates the action-

value function for a single state-action pair in each time slot and does not exploit known 

information about the system’s dynamics. Consequently, it takes a long time for the 

algorithm to converge to a near-optimal policy, so run-time performance suffers [17] 

[18]. In the remainder of this section, we introduce two techniques that improve learning 

performance by exploiting known information about the system’s dynamics and enabling 

more efficient use of the experience in each time slot. 
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4.5.2 Proposed Post-Decision State Learning 

4.5.2.1 Partially Known Dynamics 

The conventional Q-learning algorithm learns the value of state-action pairs under the 

assumption that the environment’s dynamics (i.e. the cost and transition probability 

functions) are completely unknown a priori. In many systems, however, we have partial 

knowledge about the environment’s dynamics. Table 4.1 highlights what is assumed 

known, what is assumed unknown, what is stochastic, and what is deterministic in this 

chapter. Note that this is just an illustrative example and the dynamics may be classified 

differently under different conditions. For example, if the parameter θ  in (4.4) is known 

and in the interval ( )0,1 , then the power management state transition can be classified as 

stochastic and known as in [3]; if θ  is unknown, then the power management state 

transition can be classified as stochastic and unknown; if the BEP function defined in 

(4.1) is unknown, then the goodput distribution and holding cost can be classified as 

stochastic and unknown; or, if the transmission power function in (4.2) is unknown, then 

the power cost can be classified as unknown. Importantly, the proposed framework can 

be applied regardless of the specific classification. 

We will exploit the known information about the dynamics to develop more efficient 

learning algorithms than Q-learning, but first we need to formalize the concepts of known 

and unknown dynamics in our MDP-based framework. 
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Table 4.1. Classification of dynamics. 

 Known Unknown 

Deterministic 

● Power management state transition [(4.4), 

1θ = ] 

● Power cost (4.3) 

N/A 

Stochastic 

● Goodput distribution (4.6) (Section 4.3)  

● Holding cost (4.8) 

● Traffic arrival distribution 

( )lp l   

● Channel state distribution 

( )|hp h h′   

● Overflow cost (4.8) 

 

4.5.2.2 Post-Decision State Definition 

We define a post-decision state (PDS) to describe the state of the system after the known 

dynamics take place, but before the unknown dynamics take place. We denote the PDS as 

s
  and the set of possible PDSs as S
 . Based on the discussion in the previous subsection, 

the PDS at time n  is related to the state ( ), ,n n n ns b h x= , action ( ), ,n n n na BEP y z= , 

and the state at time 1n + , as follows: 

• PDS at time n : ( ) [ ]( )1, , , ,n n n n n n n ns b h x b f h x += = −
 

 
 .  

• State at time 1n + : ( ) [ ]( )1 1 1 1 1 1, , , ,n n n n n n n n ns b h x b f l h x+ + + + + += = − + . 

The buffer’s PDS n n nb b f= −
  characterizes the buffer state after the packets are 

transmitted, but before new packets arrive; the channel’s PDS is the same as the channel 

state at time n ; and, the power management PDS is the same as the power management 

state at time 1n + . In other words, the PDS incorporates all of the known information 

about the transition from state ns  to state 1ns +  after taking action na . Meanwhile, the 

next state incorporates all of the unknown dynamics that were not included in the PDS 

(i.e. the number of packet arrivals nl  and next channel state 1nh + ). Note that the buffer 
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state at time 1n +  can be rewritten in terms of the buffer’s PDS at time n  as 

1n n nb b l+ = +
 . 

These relationships are illustrated in Figure 4.2, where it is also shown that several 

state-action pairs can lead to the same PDS. A consequence of this is that acquiring 

information about a single PDS provides information about the many state-action pairs 

that can potentially precede it. Indeed, this is the foundation of PDS-based learning, 

which we describe in Section 4.5.2.4. 

By introducing the PDS, we can factor the transition probability function into known 

and unknown components, where the known component accounts for the transition from 

the current state to the PDS, i.e. s s→ 
 , and the unknown component accounts for the 

transition from the PDS to the next state, i.e. s s ′→
 . Formally,  

 ( ) ( ) ( )u k| , | , | ,
s

p s s a p s s a p s s a′ ′= ∑ 


 
 , (4.19) 

( )V s∗ ′( )V s∗
 
( )V s∗

( ) ( )k k, ,  | ,c s a p s s a
 ( ) ( )u u, ,  | ,c s a p s s a′
 


( )1 1, ,s b h x=

( )2 2, ,s b h x=

( ), ,i is b h x=

(

)

1

1
1

, ,

a
BEP y z

=

( )2 2 2, ,a BEP y z=

(

)
, ,

i

i
i

a
BEP

y z

=

( ), ,i is b f h x ′= −
 ( ), ,s b h x′ ′ ′ ′=

 

Figure 4.2. Relationship between the state-action pair at time n , PDS at time n , and state at time 

1n + . State action pairs ( ) ( )1 1, , , ,i is a s a…  potentially lead to the same PDS. 
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where the subscripts k  and u  denote the known and unknown components, respectively. 

We can factor the cost function similarly: 

 ( )k k u( , ) ( , ) | , ( , )
s

c s a c s a p s s a c s a= + ∑ 


 
 . (4.20) 

Notice that, in general, both the known and unknown components may depend on the 

action and the PDS. The proposed framework can be extended to this scenario, but action 

exploration will be necessary to learn the optimal policy. In the system under study, 

however, the unknown components only depend on the PDS (i.e. 

( ) ( )u u| , |p s s a p s s′ ′=
 
  and u u( , ) ( )c s a c s=
 
 ). The implication of this, discussed further 

in Section 4.5.2.4, is that action exploration is not needed to learn the optimal policy. We 

will focus on second scenario in the remainder of the chapter. Specifically, the known 

and unknown transition probability functions are defined as 

 ( ) ( ) ( ) ( )k | , | , | ,x fp s s a p x x y p b b BEP z I h h= − =
 

 
  and (4.21) 

 ( ) ( ) ( ) ( )u | | ,h lp s s p h h p b b I x x′ ′ ′ ′= − =
 

 
  (4.22) 

where ( )I ⋅  is the indicator function, which takes value 1 if its argument is true and 0 

otherwise. Meanwhile, the known and unknown cost functions are defined as  

 [ ]( ) ( ) [ ]k 0
power cost holding cost

( , ) , , , , | ,
z f
f

c s a h x BEP y z p f BEP z b fρ µ
=

= + −∑
�

��������������������������
, and (4.23) 

 ( ) ( ) ( )u 0

overflow cost

max , 0 .l
l

c s p l b l Bµη
∞

=
= + −∑ 



�������������������
 (4.24) 

4.5.2.3 Post-Decision State-Based Dynamic Programming 

Before we can describe the PDS learning algorithm, we need to define the PDS value 
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function, which is a value function defined over the PDSs. In the PDS learning algorithm, 

the PDS value function plays a similar role as the action-value function does in the 

conventional Q-learning algorithm. The optimal PDS value function, denoted by V ∗
 , can 

be expressed as a function of the optimal state-value function and vice-versa:  

 ( ) ( ) ( ) ( )u u |
s

V s c s p s s V sγ∗ ∗
′

′ ′= + ∑
 
 
 
 , (4.25) 

  ( ) ( ) ( ){ }k kmin ( , ) | ,a s
V s c s a p s s a V s∗ ∗

∈= + ∑A 



 
 . (4.26) 

Given the optimal PDS value function, the optimal policy can be computed as 

 ( ) ( ) ( ){ }PDS k kmin ( , ) | ,a s
s c s a p s s a V sπ∗ ∗

∈= + ∑A 



 
 . (4.27) 

The following proposition proves that PDSπ∗ , defined in (4.27), and π∗ , defined in (4.17), 

are equivalent.  

 

Proposition 4.1: PDSπ∗  and π∗  are equivalent. 

 

Proof: The proof is provided in Appendix C. 

Proposition 4.1 is important because it enables us to use the PDS value function to 

learn the optimal policy. 

4.5.2.4 The Post-Decision State Learning Algorithm 

While Q-learning uses a sample average of the action-value function to approximate Q∗ , 

PDS learning uses a sample average of the PDS value function to approximate V ∗
 . 

However, because the value function V  can be directly computed from the PDS value 

function V
  using the known dynamics and (4.26), the PDS learning algorithm only needs 
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to learn the unknown dynamics in order to learn the optimal value function V ∗  and the 

optimal policy π∗ . The PDS learning algorithm is summarized in Table 4.2. The 

following theorem shows that the PDS learning algorithm converges to the optimal PDS 

value function ( ),V sµ∗
 
  based on which the optimal scheduling policy can be determined. 

 

Theorem 4.1 (Convergence of PDS learning algorithm): The post-decision state 

learning algorithm converges to the optimal post-decision state value function ( ),V sµ∗
 
  

when the sequence of learning rates nα  satisfies 
0

n

n

α
∞

=

= ∞∑  and ( )2

0

n

n

α
∞

=

< ∞∑ . 

Proof: The proof is provided in Appendix D. 

Table 4.2.Post-decision state-based learning algorithm. 

1. Initialize: At time 0n = , initialize the PDS value function 0V
   

as described in Appendix E. 

2. Take the greedy action: At time n , take the greedy action 

 ( ) ( )k kargmin ( , ) | ,n n n n

a s

a c s a p s s a V s
∈

   = + 
   

∑
A 




 
 . (4.28) 

3. Observe experience: Observe the PDS experience tuple 

( )1u, , , ,n n n n n ns a s c sσ += 

 . 

4. Evaluate the state-value function: Compute the value of state 1ns + : 

 ( ) ( ) ( )1 1 1
k kmin ( , ) | ,n n n n n

a
s

V s c s a p s s a V s+ + +

∈

   = + 
   

∑
A 




 
 . (4.29) 

5. Update the PDS value function: At time n , update the PDS value function  

using the information from steps 3 and 4: 

 ( ) ( ) ( ) ( )[ ]1 1
u1n n n n n n n n nV s V s c V sα α γ+ +← − + +
 

 
  (4.30) 

6. Lagrange multiplier update: Update the Lagrange multiplier µ  using (4.31). 

7. Repeat: Update the time index, i.e. 1n n← + . Go to step 2. 

 

 

The optimal value of the Lagrange multiplier µ  in (4.13), which depends on the 
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infinite horizon discounted average delay constraint, can be learned online using 

stochastic subgradients as in [12]: i.e., 

 ( )( )[ ]1 1n n n ngµ µ β γ δ+ = Λ + − − , (4.31) 

where Λ  projects µ  onto [ ]max0,µ , nβ  is a time-varying learning rate with the same 

properties as nα , ng  is the buffer cost with expectation ( ),n ng s a , and the ( )1 γ δ−  term 

converts the discounted delay constraint to an average delay constraint. The following 

additional conditions must be satisfied by nβ  and nα  to ensure convergence of (4.31) to 

µ∗ : 

 ( )
0

n n

n

α β
∞

=

+ < ∞∑  and lim 0
n

nn

β

α→∞
→ . (4.32) 

There are several ways in which the PDS learning algorithm uses information more 

efficiently than Q-learning. First, PDS learning exploits partial information about the 

system so that less information needs to be learned. This is evident from the use of the 

known information (i.e. k( , )nc s a  and ( )k | ,n np s s a
 ) in (4.28) and (4.29). Second, 

updating a single PDS using (4.30) provides information about the state-value function at 

many states. This is evident from the expected PDS value function on the right-hand-side 

of (4.29). Third, because the unknown dynamics (i.e. u( )nc s
  and ( )1
u |n np s s+ 
 ) do not 

depend on the action, there is no need for randomized exploration to find the optimal 

action in each state. This means that the latest estimate of the value function can always 

be exploited and therefore non-greedy actions never have to be tested. 
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4.5.3 Proposed Virtual Experience Learning 

The PDS learning algorithm described in the previous subsection only updates one PDS 

in each time slot. In this subsection, we discuss how to update multiple PDSs in each time 

slot in order to accelerate the learning rate and improve run-time performance. The key 

idea is to realize that the traffic arrival and channel state distributions are independent of 

the buffer and power management states. Consequently, the statistical information 

obtained from the PDS at time n  about the a priori unknown traffic arrival and channel 

state distributions can be extrapolated to other PDSs with different post-decision buffer 

states and different post-decision power management states. Specifically, given the PDS 

experience tuple in time slot n , i.e. ( )1u, , , ,n n n n n ns a s c sσ += 

 , the PDS value function 

update defined in (4.30) can be applied to every virtual experience tuple in the set 

 ( ) ( )( ) ( ){ }1
u, , , , , ; , , , | ,n n n n n n ns a b h x c b l b l h x b xσ +   ∑ = + ∀ ∈ ×    B X
 
 
 
 

 
 

 , (4.33) 

where ( ) ( )u ; max ,0c b l b l Bη= + −
 
 . We refer to elements of ( )σ∑ 
  as virtual experience 

tuples because they do not actually occur in time slot n . As shown in (4.33), the virtual 

experience tuples in ( )nσ∑ 
  are the same as the actual experience tuple nσ
  except that 

they have a different post-decision buffer state and/or a different post-decision power 

management state, and a different cost. 

By performing the PDS update in (4.30) on every virtual experience tuple in ( )nσ∑ 
 , 

the proposed virtual experience learning algorithm improves adaptation speed at the 

expense of a ×B X -fold increase in computational complexity ( ( )σ× = ∑B X 
 ). We 

show in the results section that we can trade off performance and learning complexity by 
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only performing the complex virtual experience updates every T  time slots. 

4.5.4 Conceptual Comparison of Learning Algorithms 

Figure 4.3 illustrates the key differences between Q-learning (described in Section 4.5.1), 

PDS learning (proposed in subsection 4.5.2), and virtual experience learning (proposed in 

subsection 4.5.3). To facilitate graphical illustration, Figure 4.3 uses a simplified version 

of the system model defined in Section 4.3 in which the state is fully characterized by the 

buffer state b , the only action is the throughput z , and there are no packet losses. Figure 

4.3(a) illustrates how one Q-learning update on state-action pair ( ),b z  only provides 

information about the buffer-throughput pair ( ),b z . Figure 4.3(b) illustrates how one 

PDS learning update on PDS b z−  provides information about every state-action pair 

that can potentially lead to the PDS, which in this example corresponds to all buffer-

throughput pairs ( ),b z′ ′  such that b z b z′ ′− = − . Finally, Figure 4.3(c) illustrates how 

performing a PDS learning update on every virtual experience tuple associated with PDS 

b z−  provides information about every buffer state. 

Table 4.3 illustrates both the greedy action selection complexity and learning update 

complexity for Q-learning, PDS learning, and virtual experience learning. It is clear from 

Table 4.3 that as more information is integrated into the learning algorithm, it becomes 

more complex to implement. 
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Table 4.3. Learning algorithm complexity (in each time slot). In the system under study  =S B

 
and  

∑ = ×B X . 

 
Action Selection 

Complexity 

Learning Update 

Complexity 

Q-learning ( )O A  ( )O A  

PDS learning ( )O S A
  ( )O S A
  

Virtual experience 

learning 
( )O S A
  ( )O ∑ S A
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Figure 4.3. State-action pairs that are impacted in one time slot when using different learning updates 

(highlighted in white). (a) Q-learning update for state-action pair ( ),b z ; (b) PDS update for PDS b z− ; 

(c) Virtual experience updates for PDS b z− . 

 

4.6 Simulation Results 

4.6.1 Simulation Setup 

Table 4.4 summarizes the parameters used in our MATLAB-based simulator. We assume 

that the PHY layer is designed to handle QAM rectangular constellations and that a Gray 

code is used to map the information bits into QAM symbols. The corresponding bit-error 

probability and transmission power functions can be found in [7]. We evaluate the 

performance of the proposed algorithm for several values of onP : at 320 mW, onP  is 



 

144 
 

much larger than txP  as in typical 802.11a/b/g wireless cards [15]; at 80 mW, onP  is 

closer to txP  as in cellular networks. The channel transition distribution ( )|hp h h′  and 

packet arrival distribution ( )lp l  are assumed to be unknown a priori in our simulations. 

Lastly, we choose a discount factor of 0.98γ =  in the optimization objective (γ  closer to 

1 yields better performance after convergence, but requires more time to converge). 

The signal-to-noise ratio (SNR) used for the tests is tx

0

n
n P

SNR
N W

= , where tx
nP  is the 

transmission power in time slot n , 0N  is the noise power spectral density, and W  is the 

bandwidth. We assume that the bandwidth is equal to the symbol rate, i.e. 
1

s
W

T
= , 

where sT  is the symbol duration. 

Table 4.4. Simulation parameters. 

Parameter Value Parameter Value 

Arrival rate λ  200 packets/second Packet loss rates PLR  {1, 2, 4, 8, 16} % 

Bits per symbol β  {1, 2, … , 10} Packet size �  5000 bits 

Buffer size B  25 packets 
Power management 

actions y ∈ Y  
{ }s_on, s_off  

Channel states 

h ∈ H  

{-18.82, -13.79, 

 -11.23, -9.37, 

-7.80, -6.30,  

-4.68, -2.08} dB 

Power management 

states x ∈ X  
{ }on, off  

Discount factor 
γ  0.98 Symbol rate 1/ sT  3500 10×  symbols/s 

Holding cost 

constraint 
4 packets Time slot duration t∆  10 ms 

Noise power spectral 

density 0N  
112 10−×  watts/Hz Transition power trP  Set equal to onP  

“Off” power offP  0 watts 
Transmission actions 

z ∈ Z  
{0, 1, 2, … , 10} 

packets/time slot 

“On” power onP  80 mW, 160mW, 

 or 320 mW 
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4.6.2 Learning Algorithm Comparison 

Simulation results using the parameters described in Section 4.6.1 and Table 4.4 are 

presented in Figure 4.4 for numerous simulations with duration 75,000 time slots (750 s) 

and on 320P =  mW. Figure 4.4(a) illustrates the cumulative average cost versus time, 

where the cost is defined as in (4.13); Figure 4.4(b) illustrates the cumulative average 

power versus time, where the power is defined as in (4.3); Figure 4.4(c) and Figure 4.4(d) 

illustrate the cumulative average holding cost and cumulative average packet overflows 

versus time, respectively, as defined in (4.8); Figure 4.4(e) illustrates the cumulative 

average number of time slots spent in the off state (with both offx =  and s_offy = ), 

denoted by offθ , versus time; and Figure 4.4(f) illustrates the windowed average of the 

Lagrange multiplier versus time (with a window size of 1000 time slots). 
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Figure 4.4. Quantitative learning algorithm comparison with on 320P =  mW. (a) Cumulative average 

cost vs. time slot. The y-axis is in log-scale due to the high dynamic range. (b) Cumulative average power 

vs. time slot. (c) Cumulative average holding cost vs. time slot. (d) Cumulative average packet overflows 

vs. time slot. The y-axis is in log-scale due to the high dynamic range. (e) Cumulative average offθ  vs. 

time slot. (f) Windowed average of Lagrange multiplier µ  vs. time slot (window size = 1000 time slots). 
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Each plot in Figure 4.4 compares the performance of the proposed PDS learning 

algorithm (with virtual experience updates every T = 1, 10, 25, 125 time slots) to the 

conventional Q-learning algorithm [11] and to an existing PDS learning-based solution 

[12]. The curves labeled "PDS Learning (No DPM)" are obtained by adapting the 

algorithm in [12] to use a discounted MDP formulation, rather than a time-average MDP 

formulation, and to include an adaptive BEP. This algorithm does not consider system-

level power management (i.e. no DPM) and does not exploit virtual experience. 

Meanwhile, the curves labeled "PDS Learning" are obtained by further modifying the 

algorithm in [12] to include system-level power management. 

In Figure 4.4, the PDS learning algorithms are initialized as described in Appendix E 

assuming that the arrival distribution is deterministic with 5 packet arrivals per time slot 

and that the channel transition matrix is the identity matrix. 

As expected, using a virtual experience update period of 1 leads to the best 

performance [see “PDS + Virtual Experience (update period = 1)” in Figure 4.4]; in fact, 

this algorithm achieves approximately optimal performance after 3,000 time slots, at 

which point the cumulative average cost and Lagrange multiplier settle to nearly steady-

state values [Figure 4.4(a) and Figure 4.4(f), respectively]. Thus, if sufficient 

computational resources are available, the jointly optimal power-control, AMC, and 

DPM policies can be quickly learned online by smartly exploiting the structure of the 

problem using PDS learning combined with virtual experience. In existing wireless 

communications systems (especially in mobile devices), however, there are not enough 

computational resources to use virtual experience in every time slot. Hence, we also 
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illustrate the performance of the proposed algorithm for different update periods [see 

“PDS + Virtual Experience (update period = 10, 25, 125)” in Figure 4.4] and without 

doing any virtual experience updates (see “PDS Learning” in Figure 4.4). As the number 

of updates in each time slot is decreased, the learning performance also decreases. 

From the plots with different update periods, we can identify how the system adapts 

over time. Initially, the holding cost and packet overflows rapidly increase because the 

initial policy is not tuned to the specific traffic and channel conditions. This increasing 

delay drives the Lagrange multiplier to its predefined maximum value (resulting in a cost 

function that weighs delay more heavily and power less heavily), which leads to 

increased power consumption, which in turn drives the holding cost back down toward 

the holding cost constraint. As the cumulative average holding cost decreases towards the 

holding cost constraint, the Lagrange multiplier also begins to decrease,  which 

eventually leads to a decrease in power consumption (because the cost function begins to 

weigh delay less heavily and power more heavily). Clearly, this entire process proceeds 

quicker when there are more frequent virtual experience updates, thereby resulting in 

better overall performance. This process also explains why near optimal delay 

performance is achieved sooner than near optimal power consumption (because the 

minimum power consumption can only be learned after the holding cost constraint is 

satisfied). 

We now compare our proposed solution to the “PDS Learning (No DPM)” curves in 

Figure 4.4, which were obtained using the PDS learning algorithm introduced in [12] 

(modified slightly as described at the beginning of this subsection). It is clear that this 
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algorithm performs approximately the same as our proposed “PDS + Virtual Experience 

(update period = 125)” algorithm in terms of delay (i.e. holding cost and overflows) but 

not in terms of power. The reason for the large disparity in power consumption is that the 

PDS learning algorithm introduced in [12] does not take advantage of system-level DPM, 

which is where the large majority of power savings comes from when onP  is significantly 

larger than txP . This is corroborated by the fact that the offθ  curves in Figure 4.4(e) and 

the power consumption curves in Figure 4.4(b) are very similarly shaped. Thus, solutions 

that ignore system-level power management achieve severely suboptimal power in 

practice. (Note that PHY-centric power management solutions are still important for 

achieving the desired delay constraint!) Interestingly, despite using the same number of 

learning updates in each time slot, the “PDS Learning (No DPM)” algorithm performs 

better than “PDS Learning” algorithm in terms of delay (i.e. holding cost and overflow). 

This can be explained by the fact that DPM is ignored, so the learning problem is 

considerably simpler (i.e. there are less states and actions to learn about). 

Lastly, we observe that the conventional Q-learning algorithm (see “Q-learning” in 

Figure 4.4) performs very poorly. Although Q-learning theoretically converges to the 

optimal policy, and therefore, should eventually approach the performance of the other 

algorithms, its cost in Figure 4.4(a) goes flat after its buffer overflows in Figure 4.4(d). It 

turns out that Q-learning has trouble finding the best actions to reduce the buffer 

occupancy because it requires action exploration and it only updates one state-action pair 

in each time slot. Nevertheless, it is clear from the increasing power cost in Figure 4.4(b) 

and the decreasing value of offθ  in Figure 4.4(e) that Q-learning is slowly learning the 
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optimal policy: indeed, all of the learning algorithms must learn to keep the wireless card 

on before they can transmit enough packets to drain the buffer and satisfy the buffer 

constraint. 

4.6.3 Comparison to Optimal Policy With Imperfect Statistics 

In Figure 4.5, we compare the performance of the best learning algorithm in Figure 4.4 

(“PDS + Virtual Experience (update period = 1)” to the expected performance of a per-

step suboptimal algorithm. The per-step suboptimal algorithm uses value iteration to 

compute the optimal policy with respect to imperfect statistics, which are estimated from 

previous channel transition and packet arrival realizations. The reason the PDS learning 

algorithm does not track the per-step suboptimal algorithm more closely during the early 

stages of learning is because it not only needs to learn the imperfect statistics (like the 

per-step suboptimal algorithm), but it also needs to learn the value function (unlike the 

per-step suboptimal algorithm, which can compute the value function directly from the 

statistics without regard for complexity). 
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Figure 4.5. Comparison of the optimal policy with imperfect statistics to the PDS learning algorithm with 

virtual experience and update period = 1. The x-axis is in log-scale to best highlight the learning process 

over time. (a) Holding cost vs. time slot. (b) Power vs. time slot. 
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4.6.4 Performance Under Non-Stationary Dynamics 

In this subsection, we compare our proposed solution to the network energy saving 

solution in [6], which combines transmission scheduling with DPM, but uses a fixed 

BEP. Like our proposed solution, the DPM and packet scheduling solution in [6] uses a 

buffer to enable power-delay trade-offs. Unlike our proposed solution, however, the 

solution in [6] ignores the channel and traffic dynamics and is based on a simple 

threshold-k  policy: That is, if the buffer backlog exceeds k  packets, then the wireless 

card is turned on and all backlogged packets are transmitted as quickly as possible; then, 

after transmitting the packets, the wireless card is turned off again.  

Figure 4.6 illustrates the average power-delay performance achieved by the proposed 

PDS learning algorithm (with virtual experience updates every 50T =  time slots) and the 

threshold-k  policy for three values of onP  after 75,000 time slots. All curves are 

generated assuming a fixed PLR of 1% and are obtained under non-stationary arrival 

dynamics
4
 and non-stationary channel dynamics

5
. The proposed algorithm performs 

between 10 and 30 mW better than the threshold-k  policy across the range of holding 

cost constraints despite the fact that RL algorithms can only converge to optimal 

solutions in stationary environments. Interestingly, the results in Figure 4.6 show that, for 

low values of onP , the average power can actually increase as the delay increases under 

the threshold-k  policy. This is because, after the buffer backlog exceeds the predefined 

                                                           
4
 Non-stationary arrival dynamics are generated by a 5-state Markov chain with states (0, 100, 200, 300, 

400) packets/s and corresponding stationary distribution (0.0188, 0.3755, 0.0973, 0.4842, 0.0242). The 

state indicates the expected arrival rate for a Poisson arrival distribution. Importantly, the MDP does not 

know the traffic state so it simply assumes that the arrival distribution is i.i.d. 
5
 Non-stationary channel dynamics are generated by randomly perturbing the channel state transition 

probability ( )|p h h′  from time slot to time slot. 
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threshold k , the wireless card is turned on and transmits as many packets as possible 

regardless of the channel quality. Hence, a significant amount of transmit power is 

wasted in bad channel states. However, as onP  increases, the results in Figure 4.6 show 

that the performance begins to improve and more closely approximate the optimal power-

delay trade-off. Indeed, a more aggressive scheduling policy becomes necessary as onP  

increases so that the wireless card may be in the “off” state more frequently. The 

threshold-k  policy takes this observation to the extreme by transmitting the maximum 

number of packets possible in order to maximize the time spent in the “off” state. 

Unfortunately, because it ignores the transmission power, the threshold-k  policy cannot 

perform optimally, especially for smaller values of onP . 
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Figure 4.6. Power-delay performance of proposed solution (with virtual experience updates every T = 50 

time slots) compared to the power-delay performance of the threshold-k  policy. Traffic and channel 

dynamics are non-stationary. 
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4.7 Conclusion 

In this chapter, we considered the problem of energy-efficient point-to-point transmission 

of delay-sensitive multimedia data over a fading channel. We proposed a unified 

reinforcement learning solution for finding the jointly optimal power-control, AMC, and 

DPM policies when the traffic arrival and channel statistics are unknown. We exploited 

the structure of the problem by introducing a post-decision state, eliminating action-

exploration, and enabling virtual experience to dramatically improve performance 

compared to conventional RL algorithms. Our experimental results demonstrate that the 

proposed solution significantly outperforms existing solutions, even under nonstationary 

traffic and channel conditions. The results also strongly support the use of system-level 

power management solutions in conjunction with PHY-centric solutions to achieve the 

minimum possible power consumption, under delay constraints, in wireless 

communication systems. 

Importantly, the proposed framework can be applied to any network or system 

resource management problem involving controlled buffers (e.g. multi-user uplink and 

downlink transmission; delay-sensitive data transmission over multi-hop wired/wireless 

networks; DPM for other system components such as processors and hard-drives; and job 

scheduling and dynamic-voltage-scaling for energy-efficient processing). 

Appendix B: Overflow Cost 

In this appendix, we discuss how to set the penalty η  in (4.8). Recall that, with the 

correct choice of η , the overflow cost ensures that it is suboptimal to drop packets while 
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simultaneously transmitting with low power or shutting off the wireless card. Intuitively, 

this means that η  should be at least as large as the maximum infinite horizon discounted 

holding cost that can be incurred by a single packet, i.e. the total discounted holding cost 

incurred by holding a packet in the buffer forever. Therefore, since a packet arriving in 

time slot 0n  does not incur cost until time slot 0 1n + , we have 

 ( ) 0

0 1

1
1

n n

n n

γ
η γ

γ

∞
−

= +

≥ =
−∑ . (4.34) 

We choose 
1

γ
η

γ
=

−
 because of its relationship to the delay. Specifically, 

1

γ

γ−
 can be 

interpreted as the maximum possible infinite horizon discounted delay that can be 

incurred by a single packet. 

Appendix C: Proof of Proposition 4.1 

To show that PDSπ∗  and π∗  are equivalent we substitute (4.25) into (4.27) as follows: 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

PDS k k

k k u u

k k u k u

min ( , ) | ,

min ( , ) | , |

min ( , ) | , | , |

min (
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s
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s s
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s s s
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∈
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     ′ ′ = + + 
      
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where the fourth equality follows from (4.19) and (4.20). �  
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Appendix D: Proof of Theorem 4.1 

The post-decision state learning algorithm defined in Table 4.2 can be written using the 

recursion 

( ) ( ) ( )

( )

( )( ) ( )
( )

1
k

1
u 1

k

( , )

min
| ,

n

n n n n
n n

a

s

c s a

V s V s c s V s
p s s a V s

α γ

+

+
+

′

   Ψ +    ← + + −  ′ ′Ψ        
∑






 
 

 
 
 


 
 


 

where ,s s′ ∈ S
 
 , a ∈ A , and ( )1n s+Ψ ∈ S
  is an independently simulated random 

variable drawn from ( )u |p s⋅ 
 . 

Let :h →S S	 	  be a map such that ( )( ) s s
h V h V =  
 


 
  with 

 ( ) ( ) ( ) ( ) ( ) ( )u u k k| min ( , ) | , n n
s

a
s s

h V c s p s s c s a p s s a V s V sγ
′ ′

   ′ ′ ′ ′ ′= + + − 
   

∑ ∑





 
 

 
 
 
 
 , 

where ,s s′ ∈ S
 
 , a ∈ A . Define ( )( ) s s
F V F V =  
 


 
  with  

 ( ) ( ) ( ) ( ) ( )u u k k| min ( , ) | , n
s

a
s s

F V c s p s s c s a p s s a V sγ
′ ′

   ′ ′ ′ ′ ′= + + 
   

∑ ∑





 

 
 
 
 . 

Then, ( ) ( )h V F V V= −
 
 
 . As in [24], it can be shown that the convergence of the online 

learning algorithm is equivalent to the convergence of the associated O.D.E.  

 ( ) ( ): .V F V V h V= − =
�
 
 
 
  

Since the map :F →S S	 	  is a maximum norm γ -contraction [25], the asymptotic 

stability of the unique equilibrium point of the above O.D.E. is guaranteed [24]. This 

unique equilibrium point corresponds to the optimal post-decision state value function 

,V µ∗
 . �  
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Appendix E: Initializing The PDS Value Function 

Given the known and unknown cost functions (i.e. k( , )c s a  and ( )uc s
 , respectively) and 

the known and unknown transition probability functions (i.e. ( )k | ,p s s a
  and ( )u |p s s′ 
 ), 

the optimal PDS value function can be computed using PDS value iteration as follows: 

 

( ) ( ) ( ) ( )u u |k ks
V s c s p s s V sγ

′
′ ′= + ∑
 
 
 
 , and (4.35) 

 ( ) ( ) ( ){ }1 k kmin ( , ) | ,k a ks
V s c s a p s s a V s+ ∈= + ∑A 




 
 , (4.36) 

where k  denotes the iteration index; ( )0V s  can be initialized arbitrarily; and kV
  

converges to V ∗
  as k → ∞ . If we make assumptions about ( )uc s
  and ( )u |p s s′ 
 , then 

we can use PDS value iteration to initialize the PDS value function in step 1 of the PDS 

learning algorithm described in Table 4.2. 

Under arbitrary assumptions about the initial PDS value function, selecting the greedy 

action using (4.28) in each time slot can cause the PDS learning algorithm to get stuck in 

an undesirable state (because, under certain policies, the transition probability function is 

not irreducible). In particular, in the system under study, the PDS learning algorithm can 

get stuck in the “off” state (i.e. offx = ) if the greedy action is always “switch off” (i.e. 

s_offy = ). To prevent this, we need to initialize the PDS value function offline by 

performing the PDS value iteration algorithm with the unknown cost function ( )uc s
  and 

unknown transition probability function ( )u |p s s′ 
  replaced with reasonable estimates 


 ( )uc s
  and � ( )u |p s s′ 
 , respectively. In the system under study, estimates can be derived 

from past measurements of the traffic arrival and channel state distributions. Most 
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importantly, the estimate of the traffic arrival distribution should be designed to force 

overflows to occur in the “off” state; in this way, the greedy action in the “off” state will 

not always be “switch off.”  

Figure 4.7 illustrates the sensitivity of the PDS learning algorithm to the initialized 

arrival rate which impacts ( )u |p s s′ 
  through the buffer transition and impacts ( )uc s
  

through the overflow cost. In Figure 4.7, the operating points under stationary dynamics 

use the same arrival and channel dynamics as in Section 4.6.2 and 4.6.3, and the 

operating points under non-stationary dynamics use the same arrival and channel 

dynamics as in Section 4.6.4. These empirical results demonstrate that initializing the 

traffic arrival distribution as deterministic leads to good performance that is relatively 

insensitive to the initialized arrival rate in both stationary and non-stationary 

environments. These results also demonstrate that poorly selecting the arrival distribution 

(e.g. assuming arrivals are uniformly distributed over { }0,1, ,B… ) can adversely impact 

the power-delay performance. In all of the PDS learning results in this chapter, we 

assume that the channel transition matrix is initialized as the identity matrix. 
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Figure 4.7. Sensitivity to the arrival distribution used to initialize the PDS value function. The arrival 

distribution is assumed to be deterministic or uniformly distributed over { }0,1, ,B… . Virtual experience 

updates are used every T = 25 time slots. 
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Chapter 5

Multi-User Cooperative Video
Transmission

We investigate the impact of cooperative relaying on uplink and downlink multi-user

(MU) wireless video transmission. The objective is to maximize the long-term sum

of utilities across the video terminals in a decentralized fashion, by jointly optimizing

the packet scheduling, the resource allocation, and the cooperation decisions, under

the assumption that some nodes are willing to act as cooperative relays. A pricing-

based distributed resource allocation framework is adopted, where the price reflects

the expected future congestion in the network. Specifically, we formulate the wireless

video transmission problem as an MU Markov decision process (MDP) that explicitly

considers the cooperation at the physical layer and the medium access control sub-

layer, the video users’ heterogeneous traffic characteristics, the dynamically varying

network conditions, and the coupling among the users’ transmission strategies across

time due to the shared wireless resource. Although MDPs notoriously suffer from

the curse of dimensionality, our study shows that, with appropriate simplications and

approximations, the complexity of the MU-MDP can be significantly mitigated. Our

simulation results demonstrate that integrating cooperative decisions into the MU-

MDP optimization increases the resource price in congested networks and decreases
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the price in uncongested ones. Additionally, our results show that cooperation allows

users with feeble direct signals to achieve improvements in video quality on the order

of 5 − 10 dB peak signal-to-noise ratio, with less than 0.8 dB quality loss by users

with strong direct signals.

5.1 Introduction

Existing wireless networks provide dynamically varying resources with only limited

support for the Quality of Service (QoS) required by delay-sensitive, bandwidth-

intense, and loss-tolerant multimedia applications. This problem is further exac-

erbated in multi-user (MU) settings because they require multiple video streams,

with heterogeneous traffic characteristics, to share the scarce wireless resources. To

address these challenges, a lot of research has focused on MU wireless communi-

cation [1, 2, 3, 4, 5] and, in particular, MU video streaming over wireless net-

works [6, 7, 8, 9, 10]. The majority of this research relies on cross-layer adapta-

tion to match available system resources (e.g., bandwidth, power, or transmission

time) to application requirements (e.g., delay or source rate), and vice versa. In MU

video streaming applications [6, 7, 8, 9, 10], for example, cross-layer optimization is

deployed to strike a balance between scheduling the easy customers, i.e., those users

who experience very good fades, and serving the most important customers, i.e., those

users who have the highest priority video data to transmit. This tradeoff is important

because rewarding a few lucky participants, as opportunistic multiple access policies

do [2, 3, 4], does not translate to providing good quality to the application (APP)
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layer. Unfortunately, with the exception of [5, 11], the aforementioned research as-

sumes that wireless users are noncooperative. This leads to a basic inefficiency in the

way that the network resources are assigned: indeed, good fades experienced by some

nodes can go to waste because users with higher priority video data, but worse fades,

get access to the shared wireless channel.

A way to not let good fades go to waste is to enlist the nodes that experience good

fades as cooperative helpers, using a number of techniques available for cooperative

coding [12, 13, 14]. As mentioned above, this idea has been considered in [5, 11].

In [11], for example, a cross-layer optimization is proposed involving the physical

(PHY) layer, the medium access control (MAC) sublayer, and the APP layer, where

layered video coding is integrated with randomized cooperation to enable efficient

video multicast in a cooperative wireless network. Because it is a multicast system,

there is no need for an optimal multiple-access strategy, and no need to worry about

heterogeneous traffic characteristics. In [5], a centralized network utility maximization

(NUM) framework is proposed for jointly optimizing relay strategies and resource

allocations in a cooperative orthogonal frequency-division multiple-access (OFDMA)

network. The cross-layer problem is decomposed into two subproblems using a set of

dual variables coordinating the APP layer demand and PHY layer supply of rates.

The PHY layer subproblem is then solved by introducing another set of dual variables

to relax each users’ power constraint. In both [5, 11], it is assumed that each user has

a static utility function of the average transmission rate, where the utility derived by

each user in [11] is a function of the average received rate of the base and enhancement
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layer video bitstreams.

Unlike the abovementioned solutions, we take a dynamic optimization approach to

the cooperative MU video streaming problem. Our solution is inspired by the cross-

layer resource allocation and scheduling solution in [10], in which the MU wireless

video streaming problem is modeled and solved as an MU Markov decision process

(MDP) that allows the users, via a uniform resource pricing solution, to obtain long-

term optimal video quality in a distributed fashion. Unlike [5, 11], the solution that we

adopt from [10] explicitly considers packet-level video traffic characteristics (instead

of flow-level) and dynamic network conditions (instead of average case conditions).

However, as recently shown in [15], augmenting the framework developed in [10] to

also account for cooperation is challenging because of the complexity of the resulting

cross-layer MU-MDP optimization.

The contributions of this chapter are threefold. First, we formulate the cooperative

wireless video transmission problem as an MU-MDP using a time-division multiple-

access (TDMA)-like network, randomized space-time block coding (STBC) [16], and

a decode-and-forward cooperation strategy. To the best of our knowledge, we are the

first to consider cooperation in a dynamic optimization framework. We show analyt-

ically that the decision to cooperate can be made opportunistically, independently of

the MU-MDP. Consequently, each user can determine its optimal scheduling policy

by only keeping track of its experienced cooperative transmission rates, rather than

tracking the channel statistics throughout the network. Second, in light of the fact

that opportunistic cooperation is optimal, we propose a low complexity opportunistic
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cooperative strategy for exploiting good fades in an MU wireless network. The key

idea is that nodes can, in a distributed manner, self-select themselves to act as co-

operative relays. The proposed self-selection strategy requires a number of message

exchanges that is linear in the number of video sources, and selects sets of coopera-

tive relays in such a way that cooperation can be guaranteed to be better than direct

transmission. Third, we show experimentally that users with feeble direct signals to

the access point (AP) are conservative in their resource usage when cooperation is

disabled. In contrast, when cooperation is enabled, users with feeble direct signals to

the AP use cooperative relays and utilize resources more aggressively. Consequently,

the uniform resource price that is designed to manage resources in the network tends

to increase when cooperation is enabled in a congested network.

The remainder of the chapter is organized as follows. We introduce the system

and application models in Section 5.2 and Section 5.3, respectively. In Section 5.4, we

present the proposed MU cross-layer PHY/MAC/APP optimization. In Section 5.5,

we compute the transmission and packet error rates for both direct and coopera-

tive transmission modes, and propose a distributed protocol for opportunistically

recruiting cooperative relays. Finally, we report numerical results in Section 5.6 and

conclude in Section 5.7.

5.2 System Model

We consider a network composed of M users streaming video content over a shared

wireless channel to a single AP (see Fig. 5.1). Such a scenario is typical of many
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Figure 5.1: An uplink wireless video network with cooperation. A downlink wireless
video network with cooperation can be visualized by switching the positions of node
1 and the access point.

uplink media applications, such as remote monitoring and surveillance, wireless video

sensors, and mobile video cameras. The proposed optimization framework can also be

used for downlink applications, where the relays can be recruited for streaming video

to a certain user in the network in exactly the same way that they can be recruited

to transmit to the AP in the uplink scenario.

We assume that time is slotted into discrete time-intervals of length R > 0 seconds

and each time slot is indexed by t ∈ N.1 At the MAC layer, the users access the

shared channel using a TDMA-like protocol. In each time slot t, the AP endows

1 The fields of complex, real, and nonnegative integer numbers are denoted with C, R, and N,
respectively; matrices [vectors] are denoted with upper [lower] case boldface letters (e.g., A or x);
the field of m × n complex [real] matrices is denoted as Cm×n [Rm×n], with Cm [Rm] used as a
shorthand for Cm×1 [Rm×1]; the superscript T denotes the transpose of a vector; |·| denotes the
magnitude of a complex number; ‖x‖1 is the l1 norm of the vector x ∈ Cn, which for positive real-
valued vectors is simply the sum of the components, whereas ‖x‖2 is the Euclidean norm of x ∈ Cn;
{A}ij indicates the (i + 1, j + 1)th element of the matrix A ∈ Cm×n, with i ∈ {0, 1, . . . ,m − 1}
and j ∈ {0, 1, . . . , n − 1}; a circular symmetric complex Gaussian random variable X with mean µ
and variance σ2 is denoted as X ∼ CN (µ, σ2); b·c denotes flooring-integer; E[·] stands for ensemble
averaging; and, finally, [·]+ = max(·, 0).
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the ith user, for i ∈ {1, · · · ,M} with the resource fraction xit, where 0 ≤ xit ≤ 1,

such that the user can use the amount of channel time Rxit for transmission. Let

xt , (x1t , x
2
t , . . . , x

M
t )T ∈ RM denote the resource allocation vector at time slot t,

which must satisfy the stage resource constraint ‖xt‖1 =
∑M

i=1 x
i
t ≤ 1, where the

inequality accounts for possible signaling overhead. Each node’s PHY layer is assumed

to be a single-carrier single-input single-output system designed to handle quadrature

amplitude modulation (QAM) square constellations, with a (fixed) symbol rate of

1/Ts symbols per second and with the average transmitter energy fixed for all the

nodes and data rates. We consider a frequency non-selective block fading model,

where hi`t ∈ C denotes the fading coefficient over the i → ` link in time slot t, with

i 6= ` ∈ {0, 1, 2, . . . ,M}, and i = 0 or ` = 0 corresponding to the AP. It is assumed

that all the channels are dual, i.e., |hi`t | = |h`it |, and that the fading coefficients hi`t

are i.i.d. with respect to t. Moreover, we define Ht ∈ CM×M as the matrix collecting

the fading coefficients among all of the nodes and the AP, i.e., {Ht}i` = hi`t , for

i 6= ` ∈ {0, 1, 2, . . . ,M}.

At the PHY layer, there are two transmission modes to choose from: direct and

cooperative. In the direct transmission mode, as shown in Fig. 5.1, the ith source node

transmits directly to the AP at the data rate (per unit of bandwidth) βi0t , measured in

bits/second/Hz, for the assigned transmission time Rxit. In the cooperative transmis-

sion mode, some nodes serve as decode-and-forward relays. Specifically, in the coop-

erative mode, the assigned transmission time is divided into two phases as illustrated

in Fig. 5.1: in Phase I, the ith source node directly broadcasts its own data to all the
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nodes in the network at the data rate βi,1t (bits/second/Hz) for Rρit x
i
t seconds, where

0 < ρit < 1 is the Phase I time fraction; in Phase II, some of the nodes overhearing

the source transmission, belonging to a certain subset Cit ⊆ {1, 2, . . . ,M} − {i}, de-

modulate the data received in Phase I, re-modulate the original source bits, and then

cooperatively transmit towards the AP, along with the original source i, at the data

rate βi,2t (bits/second/Hz) for the remaining R (1− ρit)xit seconds. Thus, the coopera-

tive data rate βi,coopt (bits/second/Hz) over the two phases is a convex combination of

the data rates attainable in each of these two hops, i.e., βi,coopt = ρit β
i,1
t + (1−ρit) β

i,2
t .

The decision to transmit in the direct or cooperative transmission mode depends

on fading coefficients throughout the network in time slot t and on the target packet

error rate (PER). Thus, the actual transmission rate of the ith source in time slot

t is dictated by cooperation decision zit ∈ {0, 1}, where zit = 1 if cooperation is

chosen, and zit = 0 if direct transmission is chosen. In Section 5.5, we compute the

transmission parameters βi0t , βi,1t , and βi,2t as functions of a subset of the elements in

the channel matrix Ht, and describe how to determine the set of cooperative relays

Cit and the cooperation decision zit.

5.3 Application Model

Due to the video application’s real-time requirements and the fact that not all video

bits are equally important, cooperative throughput gains alone do not translate to

good video quality at the APP layer. For this reason, we develop herein a dynamic

video traffic model that we will use to optimize the resource acquisition and packet
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scheduling in the face of stochastically varying wireless resources. Before proceeding

further, we define the characteristics of the ith user’s video data, for i ∈ {1, 2, . . . ,M}.

5.3.1 Video Data Attributes

We assume that the ith user’s video is encoded using a fixed, periodic, group of

pictures (GOP) structure that contains N i frames and lasts a period of T i time slots.

Each video frame is characterized by five attributes: size, arrival time, deadline,

distortion impact, and dependency. We denote with li,max
j the maximum video frame

size in packets. Each frame j ∈ {1, 2, . . . , N} is packetized into lij ∈ {1, 2, . . . , l
i,max
j }

packets of P bits, where lij is an i.i.d. random variable with respect to i and j.

The arrival time tij (in time slots) denotes the earliest time at which frame j can

be transmitted. The deadline dij (in time slots) denotes the time at which frame j

must be decoded by the receiver. The distortion impact qij represents the distortion

reduction observed when a packet in frame j is received before its deadline dij. The

packets must be decoded at the receiver in decoding order, which is dictated by

the dependencies introduced by predictive coding (e.g., motion-compensation). In

general, the dependencies among frames for different GOP structures can be described

by a directed acyclic graph (DAG) [17] with the nodes representing frames and the

edges representing the dependencies among frames. We borrow the notation k ≺ j

from [17] to indicate that frame j depends on frame k (i.e., there exists a path directed

from k to j) and cannot be decoded until k is decoded.
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5.3.2 Traffic Model and Packet Scheduling

For i ∈ {1, 2, . . . ,M}, the traffic state T it of the ith user represents the video data

that the ith user can potentially transmit in time slot t, and comprises the following

two components: the schedulable frame set F it and the buffer state bit. In time slot

t, we assume that the ith user can transmit the set of frames whose deadlines are

within the scheduling time window (STW) [t, t + W ]. Thus, the schedulable frame

set is defined as F it ,
{
j | dij ∈ {t, t+ 1, . . . , t+W}

}
. The STW is chosen such that

if frame j directly depends on frame k (i.e., there is a directed arc from k to j in the

DAG), then W > dij − dik. This condition guarantees that frame j and k are within

the same STW in at least one time slot, and ensures that the traffic state transition

is Markovian.2 Because the GOP structure is fixed and periodic, F it is periodic with

some period T i. Each frame’s arrival time tij and deadline dij is fully determined

by the periodic GOP structure. Specifically, it turns out that tij , minj∈Fi
t
t and

dij , maxj∈Fi
t
t. The buffer state bit , (bit,j | j ∈ F it )T represents the number of

packets of each frame in the STW that are awaiting transmission at time t. The jth

component bit,j of bit denotes the number of packets of frame j ∈ F it remaining for

transmission at time t. By definition, bit,j ≤ lij, where lij is the total number of packets

associated with frame j. Thus, the traffic state is defined as T it , {F it ,bit}. Fig. 5.2

2Larger STWs allow more packets to be transmitted in each time slot, but the number of buffer
states bi

t is exponential in the cardinality of F i
t , which increases with W . To mitigate the size of the

state-space and the complexity of the optimization in Section 5.4, we set the STW to the minimum
value of W that satisfies W > dij − dik. In the congested operating regime for which the proposed
MU-MDP is most beneficial, it is not necessary to have a large STW because there are not enough
resources to transmit all of the packets in the STW.
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Figure 5.2: (a) Illustrative DAG dependencies and scheduling time window using
IBPB GOP structure. The schedulable frame sets defined by the scheduling time win-
dow W are Ft = {1, 2, 3}, Ft+1 = {2, 3, 4, 1}, Ft+2 = {4, 1, 2, 3}, Ft+3 = {2, 3, 4, 1},
etc. Clearly, Ft is periodic with period T = 2 excluding the initial time t, and
each GOP contains N = 4 frames. (b) Traffic state detail for schedulable frame set
Ft = {1, 2, 3}. bj denotes the state of the jth frame’s buffer, where j ∈ Ft = {1, 2, 3}.

illustrates how the traffic states are defined for a simple IBPB GOP structure.3

We now define the packet scheduling action, and show how this action impacts

the traffic state transition. In each time slot t, the ith user takes scheduling action

yit , (yit,j | j ∈ F it )T , which determines the number of packets to transmit out of

bit. Specifically, the jth component yit,j of yit represents the number of packets of

the jth frame within the STW that are scheduled to be transmitted in time slot t.

Importantly, the scheduling action yit is constrained to be in the feasible scheduling

action set P i(T it ,Ht), which depends on the traffic state T it and network state Ht. In

particular, the following three constraints must be met:

1. Buffer: Every component of yit must satisfy 0 ≤ yit,j ≤ bit,j.

3In a typical hybrid video coder like H.264/AVC or MPEG-2, I, P, and B indicate the type
of motion prediction used to exploit temporal correlations between video frames. I-frames are
compressed independently of the other frames, P-frames are predicted from previous frames, and
B-frames are predicted from previous and future frames.
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2. Packet: The total number of transmitted packets must satisfy

‖yit‖1 =
∑
j∈Fi

t

yit,j ≤
Rβit
P Ts

, (5.1)

where βit = βi0t in the direct transmission mode, i.e., when zit = 0, and βit =

βi,coopt in the cooperative transmission mode, i.e., when zit = 1. Note that βit

depends on a subset of the elements in Ht as described later in Section 5.5.

3. Dependency: If there exists a k ≺ j that has not been transmitted, then(
bit,k − yit,k

)
yit,j = 0. In other words, all packets associated with k must be

transmitted before transmitting any packets associated with j.

The transition of the schedulable frame set from time t (i.e., F it ) to time t+1 (i.e.,

F it+1) is independent of the scheduling action. In fact, it is deterministic and periodic

for a fixed GOP structure, and can therefore be modeled as a deterministic Markov

process with transition probability function p(F it+1 | F it ) = I
[
F it+1 = next(F it )

]
,

where I[·] is an indicator function that takes value 1 if F it+1 is the schedulable frame

set that proceeds F it in the GOP structure, denoted by F it+1 = next(F it ), and takes

value 0 otherwise.

Unlike the schedulable frame set transition, the buffer state transition depends on

the scheduling action. Under the assumption that lij is i.i.d. with respect to i and j,

the sequence of buffer states {bit : t ∈ N} can be modeled as a controllable Markov

process with transition probabilities p(bit+1 |bit,yit), where the controlling variable is

the scheduling action yit. Before we can compute the transition from bit to bit+1, we
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need to define a partition of the schedulable frame set F it+1. The partition divides

F it+1 into two sets: a set of frames that persist from time t to t+ 1 because they have

deadlines dij > t, i.e., F it ∩F it+1; and, a set of newly arrived frames with arrival times

tij = t + 1, i.e., F it+1 \ F it , F it+1 − F it ∩ F it+1. Based on this partition, bit+1,j can be

determined from bit,j and yit,j as follows

bit+1,j =


bit,j − yit,j , if j ∈ F it ∩ F it+1 ;

lij , if j ∈ F it+1 \ F it ,
(5.2)

where yit satisfies the buffer, packet, and dependency constraints described above.

Because both F it and bit are Markov processes, the sequence of traffic states {T it :

t ∈ N} can be modeled as a controllable Markov process with transition probabilities

p(T it+1 | T it ,yit) = p(F it+1 | F it ) p(bit+1 |bit,yit).

5.4 Cooperative Multi-User Video Transmission

Recall that T it denotes the ith user’s traffic state and Ht collects the channel coef-

ficients among all the nodes and the AP. Hence, the global state can be defined as

st , {T 1
t , T 2

t , . . . , T Mt ,Ht} ∈ S, where S is a discrete set of all possible states.4 Since:

(i) the ith user’s traffic state evolves as a Markov process controlled by its scheduling

action yit; (ii) the ith user’s traffic state transition is conditionally independent of the

other users’ traffic state transitions given yit; and (iii) the state of each i→ ` link hi`t

is assumed to be i.i.d. with respect to time; the sequence of global states {st : t ∈ N}
4To have a discrete set of network states, the individual link states in Ht are quantized into a

finite number of bins (see [24] for details).
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can be modeled as a controlled Markov process with transition probability function

p(st+1 | st,yt) = p (Ht+1)
M∏
i=1

p(T it+1 | T it ,yit) , (5.3)

where yt , ({y1
t }T , {y2

t }T , . . . , {yMt }T )T collects the scheduling actions of all the video

users. Moreover, under the scheduling action yit, the ith user obtains the immediate

utility ui(T it ,yit) ,
∑

j∈Fi
t
qij y

i
t,j , which is the total video quality improvement expe-

rienced by the ith user by taking scheduling action yit in traffic state T it under the

assumption that quality is incrementally additive [17].

The objective of the MU optimization is the maximization of the expected dis-

counted sum of utilities with respect to the joint scheduling action yt and the co-

operation decision vector zt , (z1t , z
2
t , . . . , z

M
t )T taken in each state st. Due to the

stationary Markovian transition probability function, the optimization can be formu-

lated as an MDP that satisfies the following dynamic programming equation5

U∗(s) = max
y,z

{
M∑
i=1

ui(T i,yi) + α
∑
s′∈S

p(H′)
M∏
i=1

p(T i′ | T i,yi)U∗(s′)

}
,∀s, (5.4)

subject to

yi ∈ P i(T i,H) and
M∑
i=1

xi ≤ 1, (5.5)

where xi is the time-fraction allocated to the ith user given its scheduling action yi

5In this section, since we model the problem as a stationary MDP, we omit the time index when
it does not create confusion. In place of the time index, we use the notation (·)′ to denote a state
variable in the next time step (e.g. T i′, H′, s′).
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and transmission rate βi, i.e.,

xi =
P Ts
Rβi

‖yi‖1 , (5.6)

the parameter α ∈ [0, 1) is the “discount factor”, which accounts for the relative

importance of the present and future utility, and P i(T i,H) is the set of feasible

scheduling actions given the traffic state T i and channel state matrix H.

Given the distributions p(H) and p(T i′ | T i,yi) for all i, the above MU-MDP can

be solved by the AP using value iteration or policy iteration [18]. However, there are

two challenges associated with solving the above MU-MDP. First, the complexity of

solving an MDP is proportional to the cardinality of its state-space S, which, in the

above MU-MDP, scales exponentially with the number of users, i.e., M , and with

the number of links in H, i.e., M2. Hence, even for moderate sized networks, it

is impractical to compute, or even to encode, U∗(s). In subsection 5.4.1, we show

that the exponential dependence on the number of links in H can be eliminated.

Second, in the uplink scenario, the traffic state information is local to the users, so

neither the AP nor the users have enough information to solve the above MU-MDP.

In subsection 5.4.2, we summarize the findings in [10] that show that the considered

optimization can be approximated to make it amenable to a distributed solution.

Additionally, this distributed solution eliminates the exponential dependence on the

number of users.
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5.4.1 Reformulation with Simplified Network State

The only reason to include the detailed network state information H and the cooper-

ation decision z in the MU-MDP is to make foresighted cooperation decisions, which

take into account the impact of the immediate cooperation decision on the expected

future utility of the users. However, if we can show that the optimal opportunistic

(i.e., myopic) cooperation decision is also long-term optimal, then the detailed net-

work state information does not need to be included in the MU-MDP. The following

theorem shows that the optimal opportunistic cooperation decision, which maximizes

the immediate transmission rate, is also long-term optimal.

Theorem 5.1 (Opportunistic cooperation is optimal) If utilizing cooperation

incurs zero cost to the source and relays, then the optimal opportunistic cooperation

decision, which maximizes the immediate throughput, is also long-term optimal.

Proof: See Appendix F.

To intuitively understand why maximizing the immediate transmission rate at

the PHY layer is long-term optimal, consider what happens when a user chooses

not to maximize its immediate transmission rate (i.e., does not utilize the optimal

opportunistic cooperation decision). Two things can happen: either less packets are

transmitted overall because of packet expirations; or, the same number of packets are

transmitted overall, but their transmission incurs additional resource costs because

transmitting the same number of packets at a lower rate requires more resources

[see (5.6)]. In either case, the long-term utility is suboptimal. A consequence of
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Theorem 5.1 is that the cooperation decision vector z does not need to be included

in the MU-MDP. Instead, it can be determined opportunistically by selecting z to

maximize the immediate transmission rate. Most importantly, this means that the

MU-MDP does not need to include the high-dimensional network state.

We now make two remarks regarding Theorem 5.1 so that its consequences are

not misinterpreted. First, in the introduction, we noted that maximizing throughput

is a suboptimal multiple access strategy for wireless video. This does not contradict

Theorem 5.1 because it only states that the cooperation decision should be made

opportunistically to maximize the immediate transmission rate. Indeed, myopic (op-

portunistic) resource allocation and scheduling is suboptimal because it does not

take into account the dynamic video data attributes (i.e., deadlines, priorities, and

dependencies). Second, although the users’ MDPs do not need to include the high-

dimensional network state, the optimal resource allocation and scheduling strategies

still depend on it; however, instead of tracking Ht, it is sufficient to track the users’

optimal opportunistic transmission rates provided by the PHY layer, i.e., βit for all i.

Under the assumption that the channel coefficients are i.i.d. random variables with

respect to t, βit can also be modeled as an i.i.d. random variable with respect to t.

We let p(βi) denote the probability mass function (pmf) from which βit is drawn. We

note that p(βi) depends on p(H) and the deployed PHY layer cooperation algorithm.

Based on the second remark, we can simplify the maximization problem in (5.4).

Let us define the ith user’s state as si , (T i, βi) ∈ S i and redefine the global state

as s , (s1, . . . , sM)T . In Section 5.5, we describe how βi is determined, but for now
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we will take for granted that it is known. Because the optimization does not need to

include the cooperation decision, the maximization of the expected sum of discounted

utilities in (5.4) can be simplified by only maximizing with respect to the scheduling

action y in each state s, that is,

U∗(s) = max
y

{
M∑
i=1

ui(T i,yi) + α
∑
s′∈S

M∏
i=1

p(si′ | si,yi)U∗(s′)

}
,∀s, (5.7)

subject to

yi ∈ P i(T i, βi),
M∑
i=1

xi ≤ 1, (5.8)

where p(si′ | si,yi) = p(βi′) p(T i′ | T i,yi). Although we have eliminated the exponen-

tial dependence on the number of links in the network, the complexity of solving (5.7)

in both the uplink and downlink scenarios still scales exponentially with the number

of users. Moreover, (5.7) must be solved in a centralized fashion by the AP, which

does not have direct access to the users’ local states in the uplink scenario. Thus,

significant information exchange overheads are required because, in every time slot,

the users must communicate their states to the AP and the AP must communicate

their optimal actions back to them.

5.4.2 Distributed Solution

The optimization problem in (5.7) is equivalent to the so-called multiuser primary

problem with stage resource constraints (MUP/SRC) considered in [10]. In [10], it

is shown that (5.7) can be reformulated as an unconstrained MDP using Lagrangian

relaxation. The key idea is to introduce a Lagrange multiplier λ associated with the
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stage resource constraint
∑M

i=1 x
i ≤ 1 in each global state s because every global state

has a different resource-quality tradeoff. The resulting dual solution has zero duality

gap compared to the primary problem [i.e., (5.7)], but it still depends on the global

state so it is not amenable to a distributed solution. However, by imposing a uniform

resource price λ, which is independent of the multi-user state, the resulting MU-MDP

can be decomposed into M MDPs, one for each user [10].6 These local MDPs satisfy

the following dynamic programming equation

U i,∗(si, λ) = max
yi

[
ui(T i,yi)− λ

(
xi − 1

M

)
+ α

∑
si′∈S

p(si′ | si,yi)U i,∗(si′, λ)

]
, (5.9)

Ûλ∗(s) = min
λ≥0

M∑
i=1

U i,∗(si, λ) , (5.10)

subject to yi ∈ P i(T i, βi). Importantly, the ith user’s dynamic programming equation

defines the optimal scheduling action as a function of the ith user’s state, rather than

the global state s. In this chapter, the ith user solves (5.9) offline using value iteration;

however, it can be easily solved online using reinforcement learning as in [10] and [19].

Although the optimization can be decomposed across the users, the optimal re-

source price λ still depends on all of the users’ resource demands. Hence, λ must

be determined by the AP in both the uplink and downlink scenarios. Specifically,

the resource price can be numerically computed by the AP using the subgradient

method. The subgradient with respect to λ is given by
∑M

i=1X
i − 1

1−α , where

6We note that the resource price is only used to efficiently allocate the limited wireless resources
among the users; it is not used to generate revenue for the AP. In other words, it is a congestion
price rather than a real price.
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X i = E
[∑+∞

t=0 α
txit | si0

]
is the ith user’s expected discounted accumulated resource

consumption, which can be calculated as described in [10]. Importantly, X i can be

computed locally by the ith user in the uplink scenario and by the AP in the downlink

scenario. Using the subgradient method, the resource price is updated as

λk+1 =

[
λk + µk

(
M∑
i=1

X i − 1

1− α

)]+
, (5.11)

where µk is a diminishing step size. Since the focus of this chapter is on the interaction

between the multiuser video transmission and the cooperative PHY layer, we refer

the interested reader to [10] for complete details on the dual decomposition outlined

in this subsection, and the derivation of the subgradient with respect to λ.

We note that a similar decomposition has recently been proposed for energy-

efficient uplink scheduling with delay constraints in multiuser wireless networks using

a different MU-MDP framework [19]. Besides the fact that [19] does not consider

physical layer cooperation or heterogeneous traffic characteristics, there is one signifi-

cant difference between the decomposition in [19] and the one adopted in this chapter.

Specifically, the TDMA-like protocol in [19] assumes that only one user can transmit

in each time slot, whereas we consider a TDMA-like protocol in which each time slot

is divided into different length transmission opportunities for each user. As a result,

in [19], every user has a unique Lagrange multiplier associated with its average buffer

delay constraint. In contrast, in our decomposition, all users have the same Lagrange

multiplier, which regulates the resource division among the users, rather than their

individual delay constraints. Note that, in this chapter, delay constraints are included
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in the application model.

5.5 Cooperative PHY Layer Transmission

The ith user’s packet scheduling decision yit is subject to the packet constraint ‖yit‖1 ≤

Rβi
t

P Ts
, where βit = βi,coopt when zit = 1 and the nodes cooperate, and βit = βi0t when

zit = 0 and they do not. Until now, we have assumed that the ith video user knows

the opportunistically optimal βit , which, from Theorem 5.1, we know to be long-term

optimal. Herein, with reference to the uplink scenario, we describe how βi0t and βi,coopt

depend on a subset of the elements in the channel state matrix Ht. Then, we define

our opportunistic cooperative strategy to select distributively the set of cooperative

relays Cit and make the decision zit at the AP. The downlink case is a minor variation.

5.5.1 Data Rate for a Direct Transmission

Let us consider the direct i → ` link with instantaneous channel gain hi`t and data

rate βi`t ≥ 1 (bits/second/Hz) corrupted by additive white Gaussian noise (AWGN).

The bit error probability (BEP) P i`
t (hi`t , β

i`
t ) at the output of the maximum likelihood

(ML) detector of the receiving node `, under the assumption that a Gray code is used

to map the information bits into QAM symbols and the signal-to-noise ratio (SNR)

is sufficiently high, can be upper bounded as (see [20])

P i`
t (hi`t , β

i`
t ) ≤ 4 exp

[
− 3 γ |hi`t |2

2
(
2β

i`
t − 1

)] , (5.12)
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where γ is the average SNR per symbol expended by the transmitter. In our frame-

work, each direct transmission is subject to a PER threshold at the MAC sublayer,

which leads to a BEP constraint P i`
t (hi`t , β

i`
t ) ≤ BEP at the PHY layer. Consequently,

the achievable data rate βi`t under the BEP constraint is

βi`t = blog2

(
1 + Γ |hi`t |2

)
c , where Γ ,

3 γ

2
∣∣loge

(
BEP
4

)∣∣ . (5.13)

The data rate βi0t over the link between the source and the AP is obtained using

(5.13) by setting ` = 0.

5.5.2 Data Rates for the First and Second Hops of a Coop-

erative Randomized Transmission

Because of possible error propagation, the end-to-end BEP for a two-hop cooperative

transmission is in general cumbersome to calculate exactly with decode-and-forward

relays; therefore, the relationship that ties the rates βi,1t , β
i,2
t and the relevant channel

state information, and that guarantees a certain reliability of the overall link, is not

as simple as (5.13). To significantly simplify the computation of βi,1t and βi,2t , we

use two different BEP thresholds BEP1 and BEP2 for the first and second hops,

respectively, where BEP1 is a large percentage of the total error rate budget BEP ,

say BEP1 = 0.9BEP , and BEP2 = BEP −BEP1. Moreover, we reasonably assume

that the end-to-end BEP at the output of the ML detector of the AP is dominated

by the BEP over the worst source-to-relay link. Under this assumption, accounting
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for (5.13), we can estimate βi,1t in Phase I as

βi,1t =

⌊
log2

(
1 + Γ1 min

`∈Cit
|hi`t |2

)⌋
, (5.14)

where Γ1 is obtained from Γ by replacing BEP with BEP1. Since the AP and

the relays cannot estimate the channel coefficients hi`t , for all ` ∈ Cit , they cannot

determine βi,1t alone. We will deal with this problem in Subsection 5.5.3.

Supposing that a subset Cit of the available nodes are recruited to serve as relays

in Phase II, these nodes, along with the ith user, cooperatively forward the source

message by using a randomized STBC rule [16]. More specifically, assuming error-

free demodulation at the decode-and-forward relays, if ait ∈ CK denotes the block of

i.i.d. QAM symbols transmitted by source i during Phase I of time slot t, then at

the `th node, for each ` ∈ {i}∪Cit , the vector ait is mapped onto an orthogonal space-

time code matrix G(ait) ∈ CQ×L [21], where Q is the block length and L denotes

the number of antennas in the underlying space-time code. During Phase II, the

`th node transmits a linear weighted combination of the columns of G(ait), with the

weights of the L columns of G(ait) contained in the vector r` ∈ CL. We denote with

R , (r` | ` ∈ Cit) ∈ CL×N i
t the weight matrix of all the cooperating nodes, where

N i
t ≤M is the cardinality of Cit .7 Under the randomized STBC rule, the AP observes

the space-time coded signal G(ait) with equivalent channel vector h̃i,2t , hi0t ri+R hi,2t ,

where hi,2t , (h`0t | ` ∈ Cit)T ∈ CN i
t collects all the channel coefficients between the relay

7One specific code of the STBC matrix is always assigned to the source itself, which transmits over
the cooperative link every time cooperation is activated. This can be accounted for by simply setting
ri = (1, 0 . . . , 0)T and replacing the first row of R with (0 . . . , 0), whereas the remaining entries of
R are identically and independently generated random variables with zero mean and variance 1/L.
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nodes and the AP (see Fig. 5.1). It is noteworthy that the AP only needs to estimate

h̃i,2t for coherent ML decoding and that the randomized coding is decentralized since

the `th relay chooses r` locally.

By capitalizing on the orthogonality of the underlying STBC matrix G(ait), the

BEP P i,2
t (h̃i,2t , β

i,2
t ) over the second hop at the output of the ML detector of the

AP using data rate βi,2t (bits/second/Hz) can be upper bounded as in (5.12) by

replacing |hi`t |2 and βi`t with ‖h̃i,2t ‖2 and βi,2t , respectively. By imposing the BEP

constraint P i,2
t (h̃i,2t , β

i,2
t ) ≤ BEP2, the data rate βi,2t attainable on the second hop of

the cooperating link is given by

βi,2t = blog2[1 + Γ2 (|hi0t |2 + ‖R hi,2t ‖2)]c , (5.15)

where Γ2 is obtained from Γ in (5.13) by replacing BEP with BEP2. It is interesting

to underline that the AP can exactly evaluate βi,2t because it can estimate hi0t and

R hi,2t via training as explained in Subsection 5.5.3.

5.5.3 Recruitment Protocol

Recall from the end of Section 5.2 that the cooperative data rate βi,coopt over the two

phases is a convex combination of the attainable data rates βi,1t and βi,2t in the first

and second hops. Since K and Q symbols have to be transmitted in Phase I and II,

respectively, it is required that Qρit β
i,1
t = K (1− ρit) β

i,2
t , which means that

ρit =
1

1 + βi,1t /(β
i,2
t Rc)

=⇒ Rc + 1

βi,coopt

=
Rc

βi,1t
+

1

βi,2t
, (5.16)
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where Rc , K/Q ≤ 1 is the rate of the orthogonal STBC rule. The cooperative

mode is activated only if the cooperative transmission is more data-rate efficient than

the direct communication, i.e., only if βi,coopt > βi0t , which from (5.16) leads to the

following condition

Rc

βi,1t
+

1

βi,2t
<
Rc + 1

βi0t
. (5.17)

If condition (5.17) is not fulfilled, the source transmits to the AP in direct mode.

The trouble in recruiting relays on-the-fly is that the AP cannot directly compute

βi,1t given by (5.14). Some MAC randomized protocols have been recently proposed

[22, 23], which get round the problem that the AP and the relays do not have the

necessary channel state information to determine βi,1t . However, such protocols re-

quire the exchange and/or the tracking of a large amount of network parameters that

may incur unacceptable delays in a wireless video network. To avoid this problem,

we propose a much simpler recruitment scheme that is based on (5.14) and (5.15).

Specifically, we adopt a MAC solution similar to that proposed in [23]; however, we

underline that only the signaling is the same as [23], whereas the parameters ex-

changed among the source, the relays, and the AP are different because we use a

different recruitment policy. The proposed handshaking is reminiscent of the request-

to-send (RTS) and clear-to-send (CTS) control messages used in carrier sense multiple

access with collision avoidance (CSMA/CA), where all the control frames are trans-

mitted at a low data-rate such that they can be decoded correctly. The thresholds

BEP1 and BEP2, as well as L and Rc, are fixed parameters that are known at all

the nodes. Fig. 5.3 illustrates the signaling protocol for time slot t, which consists of
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the following four steps:

Step 1) The ith source initiates the handshaking by transmitting the RTS frame,

which announces the will to transmit K data symbols and also includes

training symbols that are used by the other nodes to estimate the link gains.

From the RTS message, the AP estimates the channel coefficients hi0t and,

hence, determines βi0t . At the same time, by passively listening to all the RTS

messages occurring in the network, the other nodes estimate their respective

channel parameters hi`t , for ` ∈ {1, 2, . . . ,M}−{i}, and, thus, determine β i`t .

Step 2) The AP responds with a global cooperative recruitment signal (CRS) that

provides feedback on βi0t to all the candidate cooperative nodes, as well as a

second parameter 0 < ξt ≤ Rc

1+Rc
, which is used to recruit relays.

Step 3) The candidate cooperative nodes can self-select themselves according to the

following rule:

Cit =

{
` :

βi0t
β i`t
≤ Rc + 1

Rc

ξt

}
, (5.18)

where β i`t is defined using (5.13) by replacing BEP with BEP1, and the

condition defining Cit assures that

Rc

βi,1t
≤ ξt

Rc + 1

βi0t
. (5.19)

The nodes belonging to the formed group Cit send in unison the help to send

(HTS) message using randomized STBC of size L as described in Subsec-

tion 5.5.2, which piggybacks training symbols that are used by the AP to
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estimate the cooperative channel vector R hi,2t .

Step 4) The AP computes the data rate βi,2t by resorting to (5.15) and verifies the

fulfillment of the following condition

1

βi,2t
< (1− ξt)

Rc + 1

βi0t
. (5.20)

If (5.20) holds then, accounting also for (5.19), it can be inferred that coop-

eration is better than direct transmission, i.e., condition (5.17) is satisfied:

in this case, zit = 1. Otherwise, cooperation is useless: in this case, zit = 0.

Therefore, in the end of the handshaking among all participants, the AP re-

sponds with a CTS frame, which conveys the following information: (i) the

cooperation decision zit; (ii) if zit = 1, the data rate βi,2t in Phase II given by

(5.15); (iii) the resource price λ computed as explained in Section 5.4.

Fig. 5.3 also depicts the data transmission phase. In Phase I, the source proceeds with

sending its data frame at rate βi,1t = 1
ξt

Rc

Rc+1
βi0t . In Phase II, along with the source,

the self-recruited relays cooperatively transmit the data frame at rate βi,2t . Then, the

AP finishes the procedure by sending back to the source an acknowledgement (ACK)

message.

With reference to the protocol reported above, the key observation is that the

selection of the set Cit by virtue of (5.18) is done in a distributed way and, more-

over, by simply having access to the channel state from the source i to itself, i.e., hi`t ,

the `th candidate cooperative node can autonomously determine if, by cooperating,
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Figure 5.3: Signaling protocol for randomized STBC cooperation.

it can improve the data rate of node i. Another important observation is that the

recruitment of the cooperative nodes and the assignment of the data rates requires

only four control messages for each source. In particular, the control information ex-

change is independent of the number of recruited relays thanks to the randomization

of the cooperative transmission. Moreover, the two parameters ξt and L need to be

chosen appropriately. The best choice for ξt and L requires global network informa-

tion. A learning framework would be very appropriate for their selection but we defer

the treatment of this aspect to future work. Finally, as for the impact of L on the

network performance, it should evidenced that randomized channels tend to behave

statistically like their non-randomized counterparts [16], with deep-fade events that
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Figure 5.4: Network topology used for numerical results. There are 50 nodes placed
randomly and uniformly throughout the AP’s 100 m coverage range.

become as frequent as those of L independent channels, as long as the number of

cooperative nodes N i
t ≥ L+ 1.

5.6 Numerical Results

We consider a network with 50 potential relay nodes placed randomly and uniformly

throughout the 100 m coverage range of a single AP as illustrated in Fig. 5.4. We

specify the placement of the video source(s) separately for each experiment. Let ηi`t

denote the distance in meters between the ith and `th nodes. The fading coefficient

hi`t over the i→ ` link is modeled as an i.i.d. CN (0, (ηi`t )−δ) random variable, where

δ is the path-loss exponent. Additionally, we assume that the entries of R, defined in

Section 5.5, are i.i.d. CN (0, 1
L

) random variables, where L is the length of the STBC.

Due to space constraints, and because cooperation has the same impact in both

uplink and downlink scenarios, we only present results for cooperative uplink video
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transmission. In particular, we consider four uplink scenarios:

1. Single source: In this scenario, we assume that a single source node is placed

between 10 and 100 m directly to the right of the AP in Fig. 5.4. We use

this scenario to evaluate the transmission rates in the direct and cooperative

transmission modes at different distances from the AP, and to determine a good

self-selection parameter ξ.

2. Homogeneous video sources: This scenario mimics a surveillance applica-

tion in which three cameras capture correlated video content in an outdoor

environment and transmit it to the AP. The video sources are placed to the

right of the AP as illustrated in Fig. 5.5. To simulate correlated content, we

assume that each of the three cameras stream the Foreman sequence (CIF res-

olution, 30 Hz framerate, encoded at 1.5 Mb/s) offset by several frames. Using

homogeneous sources allows us to isolate the impact of cooperation on the

video streaming performance by removing the additional layer of complexity

introduced by heterogeneous video sources (e.g. different packet priorities and

bit-rates among the video users).

3. Heterogeneous video sources 1: This scenario mimics a network in which

users deploy entertainment applications such as video sharing and video con-

ferencing. To simulate this, we assume that the three video sources illustrated

in Fig. 5.5 transmit heterogeneous video content to the AP. Specifically, we

assume that video user 1 streams the Coastguard sequence (CIF, 30 Hz, 1.5

Mb/s), video user 2 streams the Mobile sequence (CIF, 30 Hz, 2.0 Mb/s), and
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Figure 5.5: Video source placement for homogeneous and heterogeneous streaming
scenarios. Three video sources are placed 20 m, 45 m, and 80 m from the AP at
angles 25◦, −30◦, and 0◦, respectively. (a,b,c) Relay activation frequencies for video
source 1, 2, and 3, respectively. The size of the relay is proportional to the frequency
with which it is activated as a helper for the corresponding source.

video user 3 streams the Foreman sequence (CIF, 30 Hz, 1.5 Mb/s).

4. Heterogeneous video sources 2: This is the same as the previous scenario,

but with video user 2 streaming the Foreman sequence and video user 3 stream-

ing the Mobile sequence.

We note that the proposed framework can be applied using any video coder to

compress the video data. However, for illustration, we use a scalable video coding

scheme [25], which is attractive for wireless streaming applications because it provides

on-the-fly application adaptation to channel conditions, support for a variety of wire-

less receivers with different resource and power constraints, and easy prioritization of

video packets.

In the presented results, we deploy the proposed randomized STBC cooperation

protocol outlined in Section 5.5.3 and determine the optimal resource allocation and

scheduling decisions using the distributed optimization introduced in Section 5.4.2.

The relevant simulation parameters are given in Table 5.1. Note that, in the homoge-
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Table 5.1: Simulation parameters.

neous and heterogeneous scenarios described above, we simulate two levels of network

congestion by adjusting the symbol rate. To simulate a network experiencing low con-

gestion, we use the symbol rate 1
Ts

= 1250000 symbols/second; whereas, to simulate

high congestion, we use half that symbol rate, i.e., 1
Ts

= 625000 symbols/second.

5.6.1 Cooperation Statistics

In this subsection, we consider the single source scenario described above. Fig. 5.6

illustrates the performance of the proposed cooperation protocol for time-invariant

self-selection parameter values ξt = ξ ∈ {0.1, 0.2, . . . , 0.5}, given the single source

transmitting to the AP. Note that the results hold regardless of the symbol rate

because the proposed cooperation protocol only depends on the transmission rate

measured in bits/second/Hz.

From Fig. 5.6(a), it is clear that nodes further from the AP utilize cooperation

more frequently than nodes closer to the AP. This is because, on average, distant

nodes have the feeblest direct signals to the AP due to path-loss and, therefore, have

the most to gain from the channel diversity afforded to them by cooperation. It is

194



also clear from Fig. 5.6(a) that cooperation is utilized more frequently as the self-

selection parameter ξ increases. This is because more relays satisfy the self-selection

condition in step 3 of the recruitment protocol in Section 5.5.3 for larger values of ξ.

However, larger values of ξ yield relay nodes for which
βi0
t

βi`
t

is large, which leads to a

bad transmission rate over the bottleneck hop-1 cooperative link. Due to this poor

bottleneck rate, the mean cooperative rate shown in Fig. 5.6(c) declines for ξ > 0.2.

We let the self-selection parameter ξt = ξ = 0.2 because, from Fig. 5.6(d), this

value provides a large average transmission rate over the AP’s entire coverage range,

and achieves approximately double the direct rate when the source is between 60 and

100 m from the AP. Fig. 5.5 illustrates the activation frequencies for different relays

in the homogeneous and heterogeneous streaming scenarios with ξ = 0.2.

5.6.2 Transmission Rate and Resource Price

Fig. 5.7 illustrates the average transmission rates achieved by the video users in the

homogeneous and heterogeneous scenarios under different levels of network conges-

tion. Recall that the resource cost xit incurred by user i is inversely proportional to

the transmission rate [see (5.6)], which decreases as the distance to the AP increases

due to path loss. Hence, when only direct transmission is available, user 3 tends to

resign itself to a low average transmission rate because the cost of using resources

is too high. Cooperation increases the average transmission rate, thereby providing

user 3 lower cost access to the channel to transmit more data.

In the homogeneous scenario illustrated in Fig. 5.7(a), cooperation tends to equal-

ize the resource allocations to the three users (this is especially evident in the cooper-
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ative case with low congestion). This is because the homogeneous users have identical

utility functions; thus, when sufficient resources are available, it is optimal for them

to all operate at the same point of their resource-utility curves. In contrast, when

heterogeneous users with different utility functions are introduced, the transmission

rates change to reflect the priorities of the different users’ video data. Observing

Fig. 5.7(b,c), it is clear that the additional resources afforded by cooperation tend to

go to the highest priority video user, who, in our simulations, is the user streaming

the Mobile sequence. This is especially true if the highest priority user is farther from

the AP.

Recall that users autonomously optimize their resource allocation and scheduling

actions given the resource price λ announced by the AP. Table 5.2 illustrates the op-

timal resource prices in the homogeneous and heterogeneous scenarios. Interestingly,

cooperation impacts the resource price differently depending on the level of conges-

tion in the network. In particular, when there is little congestion in the network,

cooperation decreases the resource price compared to direct transmission. This is

because cooperation increases the available resources without significantly increasing

aggregate demand. In contrast, when there is congestion in the network, cooperation

increases the resource price compared to direct transmission. This is because, users

that resigned themselves to low transmission rates in the direct scenario suddenly de-

mand resources due to a decrease in their resource cost. The resource price increases

in our simulations because the enlarged demand pool exceeds the additional resources

introduced by cooperation.
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Table 5.2: Resource prices in different scenarios.

5.6.3 Video Quality Comparison

Table 5.3 compares the video quality obtained in the homogeneous and heteroge-

neous scenarios, where video quality is measured in terms of peak-signal-to-noise

ratio (PSNR in dB) of the luminance channel. In the low congestion scenario, the

user furthest from the AP (user 3) benefits on the order of 5-10 dB PSNR from coop-

eration, while the video user closest to the AP (user 1) is penalized by less than 0.4 dB

PSNR. In the high congestion scenario, user 3 goes from transmitting too little data

to decode the video (denoted by “−−−”) to transmitting enough data to decode at

low quality, while penalizing user 1 by less than 0.8 dB PSNR. Note that these PSNR

results implicitly reflect the end-to-end delay from the source, through the relays,

to the destination. This is because the frames that are not entirely received before

their deadlines, and subsequent frames that depend on them, cannot be decoded and

therefore do not contribute to the received video quality.
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Table 5.3: Average video quality (PSNR) in different scenarios.

5.7 Conclusion

We introduced a cooperative multiple access strategy that enables nodes with high

priority video data to be serviced while simultaneously exploiting the diversity of

channel fading states in the network using a randomized STBC cooperation protocol.

We formulated the dynamic multi-user video transmission problem with cooperation

as an MU-MDP and we used Lagrangian relaxation with a uniform resource price to

decompose the MU-MDP into local MDPs at each user. We analytically proved that

opportunistic (myopic) cooperation strategies are optimal, and therefore the users’

local MDPs only need to determine their optimal resource allocation and schedul-

ing policies based on their experienced cooperative transmission rates. Subsequently,

we proposed a randomized STBC cooperation protocol that enables nodes to oppor-

tunistically and distributively self-select themselves as cooperative relays. Finally, we

experimentally showed that the prosed cooperation strategy significantly improves

the video quality of nodes with feeble direct links to the AP, without significantly
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penalizing other users. We also demonstrated that cooperation increases the resource

price in congested networks and decreases the price in uncongested ones.

Appendix F: Proof of Theorem 5.1

The transmission rate βi is a function of the cooperation decision zi and the channel

state H, i.e., we can write βi = βi (H, zi). Thus, the cooperation decision impacts the

immediate utility because it constrains the set of feasible scheduling actions P i (T i, βi)

through the packet constraint ‖yi‖1 ≤ Rβi

PTs
.

Let zi∗opp = arg maxzi {βi (H, zi)} and βi∗opp = maxzi {βi (H, zi)} denote the optimal

opportunistic cooperation decision and the maximum transmission rate, respectively.

Selecting the cooperation decision that maximizes the immediate transmission rate

enlarges the set of feasible scheduling actions, i.e., P i (T i, βi) ⊆ P i
(
T i, βi∗opp

)
, for all

βi ≤ βi∗opp. We now show that the optimal opportunistic cooperation decision enables

a user to maximize its immediate utility when α = 0. We then show that the long-

term utility with α > 0 is maximized by the same optimal opportunistic cooperative

decision. Let uiλ (T i, βi,yi) =
∑

j∈Fi qijy
i
j−λ

(
xi − 1

M

)
denote the utility less the cost,

where xi is given by (5.6). Under the optimal opportunistic cooperation decision, we

have

max
yi∈Pi(T i,βi∗

opp)
uiλ
(
T i, βi,yi

)
≥ max

yi∈Pi(T i,βi)
uiλ
(
T i, βi,yi

)
, (5.21)

where the inequality is due to the fact that P i (T i, βi) ⊆ P i
(
T i, βi∗opp

)
. Thus, the
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optimal opportunistic cooperative decision allows the node to immediately transmit

more packets for the same resource cost. By the same argument, the long-term utility

with α > 0 is also maximized, i.e.,

U i,∗
λ

(
si
)

= max
yi∈Pi(T i,βi∗

opp)

{
uiλ
(
T i, βi,yi

)
+ α

∑
si′

p
(
si′|si,yi

)
U i,∗
λ

(
si′
)}

(5.22)

≥ max
yi∈Pi(T i,βi)

{
uiλ
(
T i, βi,yi

)
+ α

∑
si′

p
(
si′|si,yi

)
Ū i,∗
λ

(
si′
)}

(5.23)

= Ū i
λ

(
si
)
, (5.24)

where the inequality is due to the fact that P i (T i, βi) ⊆ P i
(
T i, βi∗opp

)
for all βi ≤ βi∗opp.

Thus, the optimal opportunistic cooperative decision also maximizes the long-term

utility.
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Figure 5.6: Cooperative transmission statistics for different values of the self-selection
parameter ξ and for different distances to the AP. (a) Probability of cooperation
being optimal. (b) Direct transmission rate conditioned on direct transmission being
optimal. (c) Cooperative transmission rate conditioned on cooperative transmission
being optimal. (d) Average transmission rate, which depends on the probability of
cooperation, the conditional direct rate, and the conditional cooperative rate.
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Figure 5.7: Average transmission rates using direct and cooperative transmission in
low congestion and high congestion scenarios. (a) Homogeneous video sources. (b,c)
Heterogeneous video sources.
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Chapter 6 

Conclusion 

In this dissertation, we developed a rigorous, formal, and unified energy-efficient 

resource management framework for supporting heterogeneous multimedia applications 

in a large class of resource management scenarios including energy-efficient point-to-

point wireless communication, multi-user cooperative wireless communication, and 

energy-efficient cross-layer system optimization. First, we showed that a dynamic 

centralized cross-layer optimization can be decomposed into multiple single-layer 

dynamic optimizations, thereby preserving the layered system architecture. Second, we 

showed that, by exploiting this decomposition and introducing appropriate interlayer 

communication, the individual layers can learn online, at run-time, how they impact and 

are impacted by the layers they interact with. This ultimately enables the layers to 

autonomously, but jointly, optimize the system’s performance. Third, we introduced a 

post-decision state to separate the known an unknown dynamics. Using the post-decision 

state: (i) the decision making process can be separated from the unknown dynamics; (ii) 

partial information about the system can be exploited so that less information needs to be 

learned; and, (iii) action-exploration can be avoided. Forth, we introduced the concept of 

virtual experience, which can be used to learn about multiple states in each time slot to 

dramatically accelerate learning. Finally, we showed that some actions, such as the 
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decision to cooperate in a multi-user cooperative network, can be made myopically 

without loss of optimality.  

The proposed framework can be extended on three fronts. First, it can be applied in 

new resource management scenarios. For instance, the proposed framework is a 

promising solution to the intimately related problems of load balancing, cache efficiency, 

and power management in multi-core and parallel systems, which are used for multimedia 

compression and processing in data centers, desktop computers, and increasingly in 

mobile devices such as laptops, tablets, and smart phones. Additionally, the proposed 

framework may prove useful for solving large-scale emerging problems like intelligent 

energy distribution in the smart grid. Second, the proposed algorithms can be 

implemented in real networks and systems to compare them to existing resource 

management algorithms and to gain a practical understanding of implementation issues 

and resource management overheads. Third, there is potential to advance reinforcement 

learning theory by gaining a better theoretical understanding of the dynamic behavior of 

the proposed learning algorithms (i.e. bounds on the convergence rates). This is in 

contrast to most existing theoretical results, which focus on the asymptotic behavior of 

the algorithms, and ignore the speed at which they converge. However, convergence 

speed is essential to ensure good performance in engineered systems, and in particular for 

energy-efficient resource management of delay-sensitive applications. Meanwhile, 

existing theoretical results on convergence rates are for very general settings and can 

likely be significantly tightened for resource allocation problems with specific structures 

and learning algorithms that exploit these structures. New theoretical results could be 
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used to explore design trade-offs in different resource management scenarios, and could 

be used as benchmarks for real system implementations. 
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