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Abstract of the Dissertation

Informationally Efficient Multi-User

Communication

by

Yi Su

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2010

Professor Mihaela van der Schaar, Chair

The rapid increase in the demand for data rate over wired and wireless communi-

cation networks has led to a rethinking of the traditional network architecture and

design principles. In fact, communication systems are inherently informationally

decentralized competitive environments, where multiple devices executing a vari-

ety of applications and services need to locally adapt their transmission strategies

based on their available information and compete for scarce networking resources.

The concepts and techniques that have dominated multi-user communication re-

search in recent years are not well suited for these informationally decentralized

environments. Specifically, most existing research has focused on two extreme

multi-user interaction scenarios, the complete information scenario with a com-

mon system-wide objective (e.g. Pareto optimality) and the private information

scenario with conflicting objectives (e.g. Nash equilibrium (NE)).

The objective of this dissertation is to characterize users’ optimal strategies to

improve their performance subject to varying degrees of informational constraints.

We mainly focus on fully distributed solutions without any real-time information

exchange between different users. In particular, we investigate three key problems

xvii



in information-constrained multi-user communication systems. First, when will a

distributed algorithm (e.g. best response dynamics) converge to a NE? And how

fast? Second, if information is constrained and no real-time information exchange

between users is allowed, how to improve an inefficient NE without message pass-

ing? Last, assuming no real-time information exchange between users, can we

still achieve Pareto optimality? We propose and analyze two new classes of games

named additively coupled sum constrained games and linearly coupled games, in

which we individually address these three questions. In particular, we provide

sufficient conditions under which a unique NE exists and best response dynamics

linearly converges to the NE. We also provide conjectural equilibrium based solu-

tions that can substantially improve the performance of inefficient NE and fully

recover Pareto optimality without any real-time information exchange between

users. The proposed game models apply to a variety of realistic applications in

multi-user communication systems, including multi-channel power control, flow

control, and wireless random access.
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CHAPTER 1

Introduction

Mathematical communications theory that started with Shannon’s seminal pa-

per “A mathematical theory of communication” is a fairly young, but rapidly

maturing science just over sixty years old. Shannon’s original work focused on

communication scenarios between a single transmitter and receiver pair [Sha48].

These communication models are referred to as single-user channels for which the

capacities are now well-investigated. Practical communication systems are inher-

ently competitive environments, where multiple transmitters and receivers exe-

cuting a variety of applications and services share the same transmission medium

and compete for limited network resources. As opposed to its single-user counter-

part, the characterization of multi-user environments is much more complicated.

This is because in resource-constrained communication networks, a user’s util-

ity is usually not only affected by its own action but also by the actions taken

by all the other users sharing the same resources. Due to the mutual coupling

among users, the performance optimization of multi-user communication systems

becomes quite challenging.

1.1 Game Theory in Multi-user Communication

Game theory provides a formal framework for describing and analyzing the inter-

actions of multiple decision makers. Recently, there has been a surge in research

1



activities that adopt game theoretic tools to investigate a wide range of prob-

lems in multi-user communication theory, such as flow and congestion control,

network routing, load balancing, power control, peer-to-peer content sharing,

etc [ABE06, MW01, FH06, NRT07, JLL09]. The majority of the existing game

theoretic research works formalize the multi-user interactions in various commu-

nication scenarios as a strategic game, which is a suitable model for the analysis

of a game where all users act independently and simultaneously according to their

own self-interests and a priori knowledge of the other users’ strategies. This can

be formally defined as a tuple

Γ = 〈N ,A, u〉. (1.1)

In particular, N = {1, 2, . . . , N} is the set of communication devices, which

are the rational decision makers in the system. Define A to be the joint ac-

tion set A = ×n∈NAn, with An ⊆ RK being the action set available for user

n. The vector utility function u = ×n∈Nun is a mapping from the individ-

ual users’ joint action set to real numbers, i.e. u : A → RN . In particular,

un(a) : A → R is the utility of the nth user that generally depends on the

strategies a = (an, a−n) of all users, where an ∈ An denotes a feasible action

of user n, and a−n = ×m6=nam is a vector of the actions of all users except n.

We also denote by A−n = ×m6=nAm the joint action set of all users except n.

To capture the multi-user performance tradeoff, the utility region is defined as

U = {(u1(a), . . . , uN(a))| ∃ a = (a1, a2, . . . , aN) ∈ A}. Depending on the char-

acteristics of different applications, numerous game-theoretical models have been

proposed to characterize the multi-user interactions and optimize the users’ de-

cisions in communication networks. A variety of game theoretic solutions, such

as Nash equilibrium (NE) and Pareto optimality [FT91], have been developed to

characterize the resulting performance of the multi-user interactions. Depend-

2



ing on the feasibility of real-time information exchange among users, significant

research efforts have been devoted in the literature to constructing operational

algorithms in order to achieve NE and Pareto optimality in various games with

special structures of action set An and utility function un.

1.1.1 Nash Equilibrium

To avoid the overhead associated with exchanging information between users in

real-time, network designers may prefer fully decentralized solutions in which

the participating users simply compete against other users by choosing actions

an ∈ An to selfishly maximize their individual utility functions un(an, a−n), given

the actions a−n ∈ A−n. Most of these approaches focus on investigating the

existence and properties of NE.

Definition 1.1 A profile a of actions constitutes a Nash equilibrium of Γ if

un(a∗n, a
∗
−n) ≥ un(an, a

∗
−n) for all an ∈ An.

At NE, given the other users’ actions, no user can increase its utility alone by

changing its action. For an extensive discussion of the methodologies studying

the existence, uniqueness, and convergence of various equilibria in communication

networks, we refer the readers to [LDA09].

For example, to establish the existence of and convergence to a pure NE, we

can examine whether A and u satisfy the conditions of concave games, super-

modular game, potential game, etc. Specifically, to apply the existence result of

a pure NE in concave games [FT91, Ros65], we need to check the following con-

ditions: i) each player’s action set An is convex and compact; and ii) the utility

function un(an, a−n) is continuous in a and quasi-concave1 in an for any fixed

1A real-valued function f is quasi-concave if domf is convex and {x ∈ domf |f(x) ≥ α} is
convex for all α.
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a−n. As additional examples of games that guarantee the convergence to NE, it

is well-known that, in supermodular games [Top98, AA03] and potential games

[MS96, SBP06], the best response dynamics can be used to search for a pure NE.

Suppose that utility function un is twice continuously differentiable, ∀n ∈ N . If

An is a compact subset of R (or more generally An is a nonempty and compact

sublattice2 of RK), ∀n ∈ N , establishing that game Γ is a supermodular game is

equivalent to showing that un satisfies

∀(m,n) ∈ N 2,m 6= n,
∂2un

∂an∂am

≥ 0. (1.2)

If action set A in game Γ is an interval of real numbers, we can show that game

Γ is a potential game by verifying

∀(m,n) ∈ N 2,m 6= n,
∂2(un − um)

∂an∂am

= 0. (1.3)

1.1.2 Pareto Optimality

It is important to note that operating operating at a Nash equilibrium will

generally limit the performance of the user itself as well as that of the entire

network, because the available network resources are not always effectively ex-

ploited due to the conflicts of interest occurring among users. As opposed to

the NE-based approaches, there exists a large body of literature that focuses on

studying how users can jointly improve the system performance by optimizing

a certain common objective function f(u1(a), u2(a), . . . , uN(a)). This function

represents the fairness rule based on which the system-wide resource allocation is

performed. Different objective functions, e.g. sum utility maximization in which

f(u1(a), u2(a), . . . , uN(a)) =
∑N

n=1 un(a), can provide reasonable allocation out-

comes by jointly considering fairness and efficiency. A profile of actions is Pareto

2A real K-dimensional set V is a sublattice of RK if for any two elements a, b ∈ V, the
component-wise minimum, a ∧ b, and the component-wise maximum, a ∨ b, are also in V.
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optimal if there is no other profile of actions that makes every user at least as

well off and at least one user strictly better off.

The majority of these approaches focus on studying how to efficiently or dis-

tributedly find the optimum joint policy. There exists a large body of literature

that investigates how to compute Pareto optimal solutions in large-scale net-

works where centralized solutions are infeasible. Numerous convergence results

have been obtained for various generic distributed algorithms. An important

example is the NUM framework that develops distributed algorithms to solve

network resource allocation problems [CLC07]. The majority of the results in

the existing NUM literature are based on convex optimization theory, in which

the investigated problems share the following structures: the objective function

f(u1(a), u2(a), . . . , uN(a)) is convex3, inequality resource constraint functions are

convex, and equality resource constraint functions are affine. It is well-known

that, for convex optimization problems, users can collaboratively exchange price

signals that reflect the “cost” for consuming the constrained resources between

each other and the Pareto optimal allocation that maximizes the network utility

can be determined in a fully distributed manner [PC06].

Summarizing, these general structural results without and with real-time mes-

sage exchange turn out to be very useful when analyzing various multi-user inter-

actions in communication networks. The majority of the existing game theoretic

research works in communication networking applications usually depend on these

specific structures and inter-user coupling of their action sets and utility func-

tions. By considering or even architecting these specific structures, the associated

games become analytically tractable and possess various important convergence

properties. Numerous existing works are devoted to constructing or shaping the

3f : Rn → R is convex if domf is a convex set and f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y),
∀x, y ∈ domf, 0 ≤ θ ≤ 1.
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multi-user coupling such that it fits into these frameworks and the corresponding

generic solutions can be directly applied.

1.2 Motivation

The rapid increase in the demand for data rate over wired and wireless communi-

cation networks has led to a rethinking of the traditional network architecture and

design principles. In fact, communication systems are inherently informationally

decentralized competitive environments, where multiple devices executing a vari-

ety of applications and services need to locally adapt their transmission strategies

based on their available information and compete for scarce networking resources.

The concepts and techniques that have dominated multi-user communication re-

search in recent years are not well suited for these informationally decentralized

environments. Specifically, most existing research has focused on two extreme

multi-user interaction scenarios:

• the complete information scenario with a common system-wide objective.

This scenario assumes either that all participating users transmit their private

information to a trusted moderator or peer (e.g. access point, base station, se-

lected network leader etc.), to which it is given the authority to fairly divide the

wireless resources among the participating users or that, in a distributed environ-

ment, users exchange information between each other such that the information

required for achieving the common objective is obtained. These solutions can

lead to Pareto efficient allocations at the cost of a large amount of information

exchange.

• the private information scenario with conflicting objectives, where selfish

users interact by assuming no or limited information about each other (e.g. infor-
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mation about the other users’ channel or traffic characteristics) , usually resulting

in inefficient solutions such as NE.

Both aforementioned communications scenarios encourage a passive partici-

pation of the users in the multi-user interaction, because they assume that users

cannot proactively influence the resource division. However, such multi-user net-

work designs do not take advantage of the transceivers’ “smartness” (i.e. their

ability to acquire information, learn and reason about their opponents). Interest-

ingly, these passive interactions among users may lead in practice to inefficient

resource usage. Even in fully collaborative communications scenarios, some users

may not be able to exchange certain desired information. This is because they

are not able to make optimal decisions on which information to exchange due

to their bounded rationality (e.g. limited memory or complexity constraints),

or because they cannot transmit their complete private information due to their

communication constraints.

1.3 Overview of Dissertation

The objective of this dissertation is to characterize users’ optimal strategies to im-

prove their performance subject to varying degrees of informational constraints in

several classes of multi-user communication environments. We will mainly focus

on fully distributed solutions without any real-time information exchange between

different users, which perfectly satisfy the informationally efficient requirement

in communication systems. In particular, to achieve the coordination purpose

without real-time information exchange, we will fully explore the structures of

the investigated inter-user coupling, enable the devices to proactively accumu-

late information via observed outcomes of the historical interactions with other

devices and, based on this information, build their beliefs about the competing
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devices and the environment to optimize their transmission strategies.

In order to capture the characteristics of mutual coupling among multiple

users and classify various communication games, we need to introduce two new

elements S and s into the traditional strategic game formulation [FT91] and

redefine the multi-user game in various communication scenarios as a tuple

Γ = 〈N ,A, u,S, s〉. (1.4)

Specifically, S is the state space S = ×n∈NSn, where Sn is the part of the state

relevant to user n. The state is defined to capture the effects of the multi-user

coupling such that each user’s utility solely depends on its own state and action.

In other words, the utility function u = ×n∈Nun is a mapping from the individual

users’ state space and action space to real numbers, un : Sn × An → R. The

state determination function s = ×n∈N sn maps joint actions to states for each

component sn : A−n → Sn in which A−n = ×m6=nAm. Note that traditional

strategic games simply assume Sn = A−n.

Based on the formulation above, we derive several important structural results

for several special classes of multi-user interaction scenarios in communication

networks under the informationally efficient constraint. In particular, we want

to investigate three key problems in information-constrained multi-user commu-

nication systems:

Question 1 : When will a distributed algorithm (e.g. best response dynam-

ics) converge to a NE? And how fast?

Question 2 : If information is constrained and no information exchange

between users is allowed, how to improve an inefficient NE without message

passing?

Question 3 : Assuming no real-time information exchange between users,
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can we still achieve Pareto optimality ?

First of all, to address Question 1, Chapter 2 proposes and analyzes a broad

family of games played by resource-constrained players, which are referred to as

Additively Coupled Sum Constrained Games (ACSCG) and are characterized by

the following central features: 1) each user has a multi-dimensional action space

An, subject to a single sum resource constraint; 2) user n’s utility in a particu-

lar dimension k depends on an additive coupling between user n’s action in the

same dimension and a state determined by the actions of the other users; and 3)

each user’s total utility un is the sum of the utilities obtained in each dimension.

Familiar examples of such multi-user environments in communication systems in-

clude power control over frequency-selective Gaussian interference channels and

flow control in Jackson networks. In settings where users cannot exchange mes-

sages in real-time, we study how users can adjust their actions based on their

local observations. We derive sufficient conditions under which a unique Nash

equilibrium exists and the best-response algorithm converges globally and lin-

early to the Nash equilibrium. In settings where users can exchange messages in

real-time, we focus on user choices that optimize the overall utility in distributed

manner. We provide the convergence conditions of two distributed action update

mechanisms, gradient play and Jacobi update.

As the first step to address Question 2, Chapter 3 considers the problem

of how to allocate power among competing users sharing a frequency-selective

interference channel. The multi-channel power control game is a special case of

ACSCG in which user n’s state represents its experienced interference in different

channels. We model the interaction between selfish users as a non-cooperative

game. As opposed to the existing iterative water-filling algorithm that studies

the myopic users, this chapter studies how a foresighted user, who knows the
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channel state information and response strategies of its competing users, should

optimize its transmission strategy. To characterize this multi-user interaction,

the Stackelberg equilibrium is introduced, and the existence of this equilibrium

for the investigated non-cooperative game is shown. We analyze this interaction

in more detail using a simple two-user example, where the foresighted user de-

termines its transmission strategy by solving as a bi-level program which allows

him to account for the myopic user’s response. It is analytically shown that a

foresighted user can improve its performance, if it has the necessary informa-

tion about its competitors. Since the optimal solution of Stackelberg equilibrium

is computationally prohibitive, we propose a practical low-complexity approach

based on Lagrangian duality theory. Surprisingly, numerical simulations show

that, in most of the simulation settings, the Stackelberg equilibrium results in

higher rates for both the foresighted and the myopic users.

To further address Question 2, Chapter 4 discusses how a foresighted user in

multi-channel power control games can acquire its desired information by mod-

eling its experienced interference as a function of its own power allocation. To

characterize the outcome of the multi-user interaction, the conjectural equilib-

rium is introduced, and the existence of this equilibrium for the investigated

power control game is proved. Interestingly, both the Nash equilibrium and the

Stackelberg equilibrium are shown to be special cases of the generalization of con-

jectural equilibrium. We also develop practical algorithms to form accurate be-

liefs and search desirable power allocation strategies. We show that a foresighted

user without any a priori knowledge of its competitors’ private information can

effectively learn the required information through repeated interaction with its

competitors, and induce the entire system to an operating point that improves

both its own achievable rate as well as the rates of the other participants in the

power control game.
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Finally, to answer Question 3, Chapter 5 and 6 discuss another special type

of multi-user communication scenarios named linearly coupled games, in which

users’ states sn are linearly impacted by their competitors’ actions a−n. We

characterize the inherent structures of the utility functions un for the linearly

coupled games and define two basic types of linearly coupled games. Both the

investigated Type I and Type II games apply to a variety of realistic applications

encountered in the multiple access design, including wireless random access and

rate control. For both Type I and Type II linearly coupled games, to improve

the inefficient NE, we investigates the properties of conjectural equilibrium, in

which individual users compensate for their lack of information by forming inter-

nal beliefs about their competitors. In both games, it is analytically shown that

all the achievable operating points in the throughput region are essentially sta-

ble conjectural equilibria corresponding to different conjectures. Moreover, it is

shown that the Pareto boundaries of the investigated linearly coupled games can

be sustained as stable conjectural equilibria without real-time information ex-

change among users, if the belief functions are properly initialized. Specifically,

Chapter 5 investigates Type II games and analyzes the necessary and sufficient

condition that guarantees the global convergence of the best response and Ja-

cobi update dynamics. Chapter 6 investigates Type I games using the wireless

random access game as an illustrative example. We enables nodes to proactively

gather information, form internal conjectures on how their competitors would

react to their actions, and update their beliefs according to their local obser-

vations. In this way, nodes are capable to autonomously “learn” the behavior

of their competitors, optimize their own actions, and eventually cultivate reci-

procity in the random access network. Two distributed conjecture-based action

update mechanisms, including best response and gradient play, are proposed to

stabilize the random access network. The sufficient conditions that guarantee the
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proposed conjecture-based algorithms to converge are derived. We also investi-

gate how the conjectural equilibrium can be selected in heterogeneous networks

and how the proposed methods can be extended to ad-hoc networks. Numerical

simulations verify that the system performance significantly outperforms existing

protocols, such as IEEE 802.11 Distributed Coordination Function (DCF) pro-

tocol and priority-based fair medium access control (P-MAC) protocol, in terms

of throughput, fairness, convergence, and stability.

Chapter 7 summarizes the main points of the dissertation. In informationally

decentralized multi-user environment, by exploring the structures of inter-user

coupling and designing appropriate belief functions, conjectural equilibrium based

solutions can achieve satisfactory performance without any real-time information

exchange between users.
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CHAPTER 2

Additively Coupled Sum Constrained Games

2.1 Introduction

Power control is one of the first few communication problems in which researchers

started to apply game theoretic tools to formalize the multi-user interaction and

characterize its properties. An interesting and important topic that has been

extensively investigated recently is how to optimize multiple devices’ power al-

location when sharing a common frequency-selective interference channel. In

[YGC02], Yu et. al. first defined such a power control game from a game-theoretic

perspective, proposed a best-response algorithm in which all users iteratively up-

date their power allocations using the water-filling solution, and proved several

sufficient conditions under which the algorithm globally converges to a unique

pure NE. Many follow-up papers further establish various sufficient convergence

conditions with or without real-time information exchange for power control in

communication networks [CSK03, CHC07, SPB08, HBH06, SBH08]. The purpose

of this chapter is to introduce and analyze a general framework that abstracts the

common characteristics of this family of multi-user interaction scenarios, which

includes, but is not limited to the power control scenario. In particular, the main

contributions of this paper are as follows.

First of all, we define the class of Additively Coupled Sum Constrained Games

(ACSCG), which captures and characterizes the key features of several communi-

13



cation and networking applications. In particular, the central features of ACSCG

are: 1) each user has a multi-dimensional strategy that is subject to a single sum

resource constraint; 2) each user’s payoff in each dimension is impacted by an

additive combination of its own action in the same dimension and a function of

the other users’ actions; 3) users’ utilities are separable across different dimen-

sions and each user’s total utility is the sum of the utilities obtained within each

dimension.

Second, based on the feasibility of real-time information exchange, we provide

the convergence conditions of various generic distributed algorithms in different

scenarios. When no message exchanges between users are possible and every

user maximizes its own utility, it is essential to determine whether a NE exists

and if yes, how to achieve such an equilibrium. In ACSCG, a pure NE exists

in ACSCG because ACSCG belongs to concave games [FT91, Ros65]. Our key

contribution in this context is that we investigate the uniqueness of pure NE

and consider the best response dynamics to compute the NE. We explore the

properties of the additive coupling among users given the sum constraint and

provide several sufficient conditions under which best response dynamics con-

verges linearly1 to the unique NE, for any set of feasible initialization with either

sequential or parallel updates. We also explain the relationship between our

results and the conditions previously developed in the game theory literature

[Ros65, GM80]. When users can collaboratively exchange messages with each

other in real-time, we present the sufficient convergence conditions of two alter-

native distributed pricing algorithms, including gradient play and Jacobi update,

to coordinate users’ action and improve the overall system efficiency. The pro-

posed convergence conditions generalize the results that have been previously

1A sequence x(k) with limit x∗ is linearly convergent if there exists a constant c ∈ (0, 1) such
that |x(k) − x∗| ≤ c|x(k−1) − x∗| for k sufficiently large [BV04].
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obtained in [YGC02, CSK03, CHC07, SPB08, HBH06, SBH08] for the multi-user

power control problem and they are immediately applicable to other multi-user

applications in communication networks that fulfill the requirements of ACSCG.

The rest of this chapter is organized as follows. Section 2.2 defines the model

of ACSCG. For ACSCG models, Sections 2.3 and 2.4 present several distributed

algorithms without and with real-time information exchanges, respectively, and

provide sufficient conditions that guarantee the convergence of the proposed al-

gorithms. Section 2.5 presents the numerical examples and concluding remarks

are drawn in Section 2.6.

2.2 Game Model and Examples

In this section, we present the definition of ACSCG and subsequently, we present

several exemplary multi-user scenarios which appertain to this new class of game.

2.2.1 Definition of ACSCG

Definition 2.1 A multi-user interaction Γ = 〈N ,A, u,S, s〉 is a ACSCG if it

satisfies the following assumptions:

A1: ∀n ∈ N , action set An ⊆ RK is defined to be2

An =
{

(a1
n, a

2
n, · · · , aK

n )
∣∣ ak

n ∈ [amin
n,k , amax

n,k ] and
K∑

k=1

ak
n ≤ Mn

}
. (2.1)

A2: There exist hk
n : R → R, fk

n : A−n → R, and gk
n : A−n → R, k =

2We consider a sum constraint throughout the chapter rather than a weighted-sum constraint,
because a weighted-sum constraint can be easily converted to a sum constraint by rescaling An.
Besides, we nontrivially assume that

∑K
k=1 amax

n,k ≥ Mn.
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1, . . . , K, such that

un(a) =
K∑

k=1

[
hk

n

(
ak

n + fk
n(a−n)

)− gk
n(a−n)

]
, (2.2)

for all a ∈ A and n ∈ N . hk
n(·) is an increasing, twice differentiable, and

strictly concave function. fk
n(·) and gk

n(·) are both twice differentiable functions

which correspond to the state determination functions associated with user n in

dimension k.

The ACSCG model defined by assumptions A1 and A2 covers a broad class

of multi-user interactions. Assumption A1 indicates that each player’s action

set is a K-dimensional vector set and its action vector is sum-constrained. This

represents the communication scenarios in which each user needs to determine its

multi-dimensional action in various channels or networks while the total amount

of resources it can consume is constrained. Assumption A2 implies that each

user’s utility is separable and can be represented by the summation of concave

functions hk
n minus “penalty” functions gk

n across the K dimensions. In partic-

ular, within each dimension, the input of hk
n is an additive combination of user

n’s action ak
n and state determination function fk

n(a−n) that depends on the re-

maining users’ joint action a−n. Since ak
n only appears in the concave function

hk
n, it implies that each user’s utility is concave in its own action, i.e. diminish-

ing returns per unit of user n’s invested action an, which is common for many

application scenarios in communication networks.

Summarizing, the key features of the game model defined by A1 and A2

include: each user’s action is subject to a sum constraint ; users’ utilities are im-

pacted by additive combinations of ak
n and fk

n(a−n) through concave functions hk
n.

Therefore, we term the game Γ that satisfies assumptions A1 and A2 as ACSCG.

In the following section, we present several illustrative multi-user interaction ex-
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amples that belong to ACSCG.

2.2.2 Examples of ACSCG

We present four examples that satisfy assumptions A1 and A2 and belong to

ACSCG. The details of functions hk
n(·), fk

n(·) and gk
n(·) in each example are sum-

marized in Table 2.1. For each example, Table 2.1 also summarizes the applicable

convergence conditions that will be provided in the remaining parts of the chap-

ter.

Example 2.1 We first consider a simple two-user game with two-dimension ac-

tion spaces, i.e. N = K = 2. The utility functions are given by3

un(a) = − exp
{
−a1

n −
√

(a1−n)2 + 1 +
√

(a2−n)2 + 1
}

− exp
{
−a2

n +
√

(a1−n)2 + 1−
√

(a2−n)2 + 1
}

,

for n = 1, 2. The resource constraints are
∑2

k=1 ak
n ≤ Mn in which Mn > 0 and

ak
n ≥ 0 for ∀n, k.

Example 2.2 (Power control in frequency-selective Gaussian interference chan-

nel [YGC02, SPB08]) There are N transmitter and receiver pairs in the system.

The entire frequency band is divided into K frequency bins. In frequency bin

k, the channel gain from transmitter i to receiver j is denoted as Hk
ij, where

k = 1, 2, · · · , K. Similarly, denote the noise power spectral density (PSD) that

receiver n experiences as σk
n and player n’s transmit PSD as P k

n . The action of

user n is to select its transmit power Pn = [P 1
n P 2

n · · ·PK
n ] subject to its power

constraint:
∑K

k=1 P k
n ≤ Pmax

n . For a fixed Pn, if treating its interference as noise,

3In this example, since there are only two users, the subindex −n denotes the user but n.

17



user n can achieve the following data rate:

rn(P) =
K∑

k=1

log2

(
1 +

Hk
nnP

k
n

σk
n +

∑
m6=n Hk

mnP
k
m

)

=
K∑

k=1

(
log2(σ

k
n +

N∑
m=1

Hk
mnP

k
m)− log2(σ

k
n +

∑

m6=n

Hk
mnP

k
m)

)
.

(2.3)

Example 2.3 (Delay minimization in Jackson Networks [CY01]) As an addi-

tional example, we consider a network of N nodes. A Poisson stream of external

packets arrive at node n with rate ψn and the input stream is split into K traf-

fic classes, which are individually served by exponential servers. Denote node

n’s input rate and service rate for class k as ψk
n and µk

n respectively. There-

fore, the action of node n is to determine the rates for different traffic classes

Ψn = [ψ1
n ψ2

n · · ·ψK
n ] and the total rate is subject to the minimum rate constraint:

∑K
k=1 ψk

n ≥ ψmin
n . The packets of the same traffic class constitute a Jackson net-

work in which Markovian routing is adopted: packets of class k completing service

at node m are routed to node n with probability rk
mn or exit the network with prob-

ability rk
m0 = 1−∑N

n=1 rk
mn. Denote the arrival rate for class k at node n as ηk

n.

By Jackson’s Theorem, we have ηk
n = ψk

n +
∑N

m=1 ηk
mrk

mn, n = 1, 2, · · · , K. De-

note [Rk]mn = rk
nm, Υk = (I − Rk)−1, and υk

mn = [Υk]nm. Equivalently, we have

ηk
n =

∑N
m=1 υk

mnψ
k
m. Each node aims to minimize its total M/M/1 queueing delay

incurred by accommodating its traffic:

dn(Ψ) =
K∑

k=1

1

µk
n −

∑N
m=1 υk

mnψ
k
m

. (2.4)

Example 2.3 can be shown to be a special case of ACSCG by slightly trans-

forming the action sets and utilities. We can define user n’s action as −Ψn. For

user n, the sum constraint becomes
∑K

k=1−ψk
n ≤ −ψmin

n and minimizing dn(Ψ)

is equivalent to maximizing −dn(Ψ).
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Example 2.4 (Asynchronous transmission in digital subscriber lines network

[CHC07]) The basic setting of this example to similar as that of Example 2.2

except that inter-carrier interference (ICI) exist among different frequency bins.

Due to the loss of the orthogonality, the interference that user n experiences in

frequency bin k is

fk
n(P−n) =

∑

m6=n

( K∑
j=1

γ(k − j)Hj
mnP

j
m

)
, (2.5)

in which γ(j) is the ICI coefficient that represents the relative interference trans-

mitted signal in a particular frequency bin generates to its jth neighbor bin. In

particular, it takes the form

γ(j) =





1, if j = 0

2
K2 sin2( π

K
j)

, −K
2
≤ j ≤ K

2
j 6= 0.

(2.6)

It satisfies the symmetric and circular properties, i.e. γ(−j) = γ(j) = γ(K − j).

User n’s achievable rate in the presence of ICI is given by

rn(P) =
K∑

k=1

log2

[
1 +

Hk
nnP

k
n

σk
n +

∑
m6=n

(∑K
j=1 γ(k − j)Hj

mnP
j
m

)
]
. (2.7)

2.2.3 Issues Related to ACSCG

Since the ACSCG model represents a good abstraction of numerous multi-user

resource allocation problems, we aim to investigate the convergence properties

of various distributed algorithms in ACSCG without and with real-time message

passing.

ACSCG is a concave game [FT91, Ros65] and therefore, it admits at least one

pure NE. In practice, we want to provide the sufficient conditions under which

best response dynamics provably and globally converges to a pure NE. However,

the existing literature, e.g. the diagonal strict concavity (DSC) conditions in
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[Ros65] and the supermodular game theory [Top98, Yao95, AA03], does not pro-

vide such convergence conditions for the general ACSCG model. For example,

the DSC conditions developed for general concave games do not guarantee the

convergence of best response dynamics [Ros65]. Even if the utility functions in

ACSCG possess the supermodular type structure, due to the sum constraint,

the action set of each user is generally not a sublattice4 of RK . Therefore, the

convergence results based on supermodular games cannot be directly applied in

ACSCG. On the other hand, if we want to maximize the sum utility by enabling

real-time message passing among users, we also note that, the utility un is not

necessarily jointly concave in a because of the existence of gk
n(·). Therefore, the

existing algorithms developed for the convex NUM are not immediately applica-

ble either.

In fact, a unique feature of the ACSCG is that different users’ actions are

additively coupled in hk
n(·) and each user’s action space is sum-constrained. In the

following sections, we will fully explore these specific structures and address the

convergence properties of various distributed algorithms in two different scenarios.

Specifically, Section 2.3 investigates the scenarios in which each user n can only

observe {fk
n(a−n)}K

k=1 and cannot exchange any information with any other user.

Section 2.4 focuses on the scenarios in which each user n is able to announce and

receive information in real-time to and from the remaining users about ∂un(a)
∂ak

m
and

∂um(a)
∂ak

n
, ∀m 6= n, k = 1, . . . , K.

4In supermodular games, for each player, the action set is a nonempty and compact sublattice
of RK . We can verify that with the sum constraint, An is usually not a sublattice of RK by
taking the component-wise maximum.
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2.3 Scenario I: No Message Exchange among Users

In communication scenarios where users cannot exchange messages to achieve

coordination, the participating users can simply choose actions to selfishly max-

imize their individual utility functions un(a) without taking into account the

utility degradation caused to the other users. In particular, each user individu-

ally solves the following optimization program:

max
an∈An

un(a). (2.8)

The steady state outcome of such a multi-user interaction is usually characterized

as a NE, at which given the other users’ actions, no user can increase its utility

alone by unilaterally changing its action. It is worth pointing out that, since

there is no coordination signal among users, NE generally does not lead to a

Pareto-optimal solution. Section IV will discuss distributed algorithms in which

users exchange coordination signals in order to improve the system efficiency.

2.3.1 Properties of Best Response Dynamics in ACSCG

To better understand the key properties of the ACSCG, in this subsection, we

first focus on the scenarios in which fk
n(a−n) is the linear combination of the

remaining users’ action in the same dimension k, i.e.

fk
n(a−n) =

∑

m6=n

F k
mna

k
m (2.9)

and F k
mn ∈ R, ∀m,n, k. Specifically, both Example 2.2 and 2.3 in Table 2.1

belong to this category. In Section 2.3.2, we will extend the results derived for

the functions fk
n(a−n) defined in (2.9) to general fk

n(a−n).

Since hk
n(·) is concave, the objective in (2.8) is a concave function in ak

n when

the other users’ actions a−n are fixed. To find the globally optimal solution of
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the problem in (2.8), we can first form its Lagrangian

Ln(an, λ) = un(a) + λ(Mn −
K∑

k=1

ak
n), (2.10)

in which ak
n ∈ [amin

n,k , amax
n,k ]. By taking the first derivatives of (2.10), we have

∂Ln(an, λ)

∂ak
n

=
∂hk

n(ak
n +

∑
m6=n F k

mna
k
m)

∂ak
n

− λ = 0. (2.11)

Denote

lkn(a−n, λ) ,
[{∂hk

n

∂x

}−1

(λ)−
∑

m6=n

F k
mna

k
m

]amax
n,k

amin
n,k

, (2.12)

in which
{∂hk

n

∂x

}−1
is the inverse function5 of ∂hk

n

∂x
and [x]ab = max{min{x, a}, b}.

The optimal solution of (2.8) is given by a∗kn = lkn(a−n, λ
∗), where the Lagrange

multiplier λ∗ is chosen to satisfy the sum constraint
∑K

k=1 a∗kn = Mn.

We define the best response operator Bk
n(·) as

Bk
n(a−n) = lkn(a−n, λ

∗). (2.13)

We consider the dynamic adjustment process in which users revise their ac-

tions over time based on their observations about their opponents. A well-known

candidate for such adjustment processes is the so-called best response dynamics.

In the best response algorithm, each user updates its action using the best re-

sponse strategy that maximizes its utility function in (2.2). We consider two types

of update orders, including sequential update and parallel update. Specifically,

in sequential update, individual players iteratively optimize in a circular fashion

with respect to their own actions while keeping the actions of their opponents

fixed. Formally, at stage t, user n chooses its action according to

ak,t
n = Bk

n([at
1, . . . , a

t
n−1, a

t−1
n+1, . . . , a

t−1
N ]). (2.14)

5If @ x = x∗ such that ∂hk
n

∂x |x=x∗ = λ, we let
{∂hk

n

∂x

}−1(λ) = −∞.
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On the other hand, players adopting the parallel update their actions revise at

stage t according to

ak,t
n = Bk

n(at−1
−n ). (2.15)

We obtain several sufficient conditions under which best response dynamics

converges. Similar convergence conditions are proved in [CSK03, CHC07, SPB08]

for Example 2.2 in which hk
n(x) = log2(σ

k
n + Hk

nnx). We consider more general

functions hk
n(·) and further extend the convergence conditions in [CSK03, CHC07,

SPB08]. The key differences among all the sufficient conditions which will be

provided in this section are summarized in Table 2.2.

2.3.1.1 General hk
n(·)

The first sufficient condition is developed for the general cases in which the func-

tions hk
n(·) in the utilities un(·) are specified in assumption A2. Define

[Tmax]mn ,





maxk |F k
mn|, if m 6= n

0, otherwise.
(2.16)

and let ρ(Tmax) denote the spectral radius of the matrix Tmax.

Theorem 2.1 If

ρ(Tmax) <
1

2
, (C1)

then there exists a unique NE in game Γ and best response dynamics converges

linearly to the NE, for any set of initial conditions belonging to A with either

sequential or parallel updates.

Proof : This theorem is proved by showing that the best response dynamics

defined in (2.14) and (2.15) is a contraction mapping under (C1). See Appendix

A for details. ¥
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In multi-user communication applications, it is common to have games of

strategic complements (or strategic substitutes), i.e. the marginal returns to any

one component of the player’s action rise with increases (or decreases) in the

components of the competitors’ actions [BGK85]. For instance, in Examples

2.2 and 2.4, increasing user n’s transmitted power creates stronger interference

to the other users and decreases their marginal achievable rates. Similarly, in

Example 2.3, increasing node n’s input traffic rate congests all the servers in

the network and increases the marginal queueing delay. Mathematically, if un is

twice differentiable, strategic complementarities (or strategic substitutes) can be

described as

∂2un(an, a−n)

∂aj
n∂ak

m

≥ 0, ∀m 6= n, j, k, (or
∂2un(an, a−n)

∂aj
n∂ak

m

≤ 0, ∀m 6= n, j, k). (2.17)

We can verify that Examples 2.2, 2.3, and 2.4 are games with strategic substitutes.

For the ACSCG models that exhibit strategic complementarities (or strategic

substitutes), the following theorem further relaxes condition (C1).

Theorem 2.2 Let Γ be an ACSCG with strategic complementarities (or strategic

substitutes), i.e. F k
mn ≤ 0, ∀k, m 6= n, (or F k

mn ≥ 0, ∀k, m 6= n). If

ρ(Tmax) < 1, (C2)

then there exists a unique NE in game Γ and best response dynamics converges

linearly to the NE, for any set of initial conditions belonging to A with either

sequential or parallel updates.

Proof : This theorem is proved by adapting the proof of Theorem 2.1. See

Appendix B. ¥

Remark 2.1 (Implications of conditions (C1) and (C2)) Theorem 2.1 and The-

orem 2.2 give sufficient conditions for best response dynamics to globally converge
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to a unique fixed point. Specifically, maxk |F k
mn| can be regarded as a measure of

the strength of the mutual coupling between user m and n. The intuition be-

hind (C1) and (C2) is that, the weaker the coupling among different users is, the

more likely that best response dynamics converges. Consider the extreme case in

which F k
mn = 0,∀k, m 6= n. Since each user’s best response is not impacted by

the remaining users’ action a−n, the convergence is immediately achieved after a

single best-response iteration. If no restriction is imposed on F k
mn, Theorem 2.1

specifies a mutual coupling threshold under which best response dynamics prov-

ably converge. The proof of Theorem 2.1 can be intuitively interpreted as follows.

We regard every best response update as the users’ joint attempt to approach the

NE. Due to the linear coupling structure in (2.9), user n’s best response in (2.12)

contains a term
∑

m6=n F k
mna

k
m that is a linear combination of a−n. As a result,

the residual error
∣∣at+1

n − at
n

∣∣
1
, which is the 1-norm distance between the updated

action profile at+1
n and the current action profile at

n, can be upper-bounded using

linear combinations of
∣∣at

m−at−1
m

∣∣
1
in which m 6= n. Recall that F k

mn can be either

positive or negative. We also note that, if at
m 6= at−1

m , at
m−at−1

m contains both pos-

itive and negative terms due to the sum-constraint. In the worst case, the distance
∣∣at+1

n − at
n

∣∣
1

is maximized if
{
F k

mn

}
and

{
ak,t

m − ak,t−1
m

}
are co-phase multiplied

and additively summed, i.e. F k
mn

(
ak,t

m − ak,t−1
m

) ≥ 0, for ∀k = 1, . . . , K, m 6= n.

After an iteration, all users except n contributes to user n’s residual error at stage

t + 1 up to
∑

m6=n 2 maxk

∣∣F k
mn

∣∣∣∣at
m − at−1

m

∣∣
1
. Under condition (C1), it is guar-

anteed that the residual error contracts with respect to the special norm defined

in (2.63). Theorem 2.2 focuses on the situations in which the signs of F k
mn are

the same, ∀m 6= n, k. In this case,
{
F k

mn

}
and

{
ak,t

m − ak,t−1
m

}
cannot be co-phase

multiplied. Therefore, the region of convergence enlarges and hence, condition

(C2) stated in Theorem 2.2 is weaker than condition (C1) in Theorem 2.1.
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Remark 2.2 (Relation to the results in references [CSK03, CHC07, SPB08])

Similar to [CSK03, CHC07], our proofs choose 1-norm as the distance measure

for the residual errors at+1
n − at

n after each best-response iteration. However, by

manipulating the inequalities in a different way, condition (C2) is more general

than the results in [CSK03, CHC07], where they require maxk F k
mn < 1

N−1
. In-

terestingly, condition (C2) recovers the result obtained in [SPB08] where it is

proved by choosing the Euclidean norm as the distance measure for the residual

errors at+1
n − at

n after each best-response iteration. However, the approach in

[SPB08] using the Euclidean norm only applies to the scenarios in which hk
n(·) is

a logarithmic function. We prove that condition (C2) applies to any hk
n(·) that is

increasing and strictly concave.

2.3.1.2 A special class of hk
n(·)

In addition to conditions (C1) and (C2), we also develop a sufficient convergence

condition for a family of utility functions parameterized by a negative number θ.

In particular, hk
n(·) satisfies6

hk
n(x) =





log(αk
n + F k

nnx), if θ = −1,

(αk
n+F k

nnx)θ+1

θ+1
, if −1 < θ < 0 or θ < −1.

(2.18)

and αk
n ∈ R and F k

nn > 0. The interpretation of this type of utilities has been

addressed in [MW00]. It is shown that varying the parameter θ leads to different

types of fairness across αk
n + F k

nn(ak
n +

∑
m6=n F k

mna
k
m) for all k. In particular,

θ = −1 corresponds to the proportional fairness; if θ = −2, then harmonic mean

fairness; and if θ = −∞, then max-min fairness. We can see that, Examples 2.2

and 2.3 are special cases of this type of utility functions. In these cases, best

6If αk
n + F k

nnx ≤ 0, we let hk
n(x) = −∞. We assume for this class of hk

n(·) that for ∀a−n ∈
A−n, there exists an ∈ An such that αk

n + F k
nnx > 0 for ∀n, k.
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response dynamics in equation (2.12) is reduced to

lkn(a−n, λ) =
[( 1

F k
nn

)1+ 1
θ λ

1
θ − αk

n

F k
nn

−
∑

m6=n

F k
mna

k
m

]amax
n,k

amin
n,k

, (2.19)

Define

[Smax]mn ,





∑K
k=1(F k

mm)1+
1
θ

∑K
k=1(F k

nn)1+
1
θ

maxk

{
|F k

mn|
(

F k
nn

F k
mm

)1+ 1
θ
}

, if m 6= n

0, otherwise.

(2.20)

For the class of utility functions in (2.18), Theorem 2.3 gives a sufficient condition

that guarantees the convergence of the best response dynamics defined in (2.19).

Theorem 2.3 For hk
n(·) defined in (2.18), if

ρ(Smax) < 1, (C3)

then there exists a unique NE in game Γ and best response dynamics converges

linearly to the NE, for any set of initial conditions belonging to A and with either

sequential or parallel updates.

Proof : It can be proved by showing that the best response dynamics defined

in (2.19) is a contraction mapping with respect to the weighted Euclidean norm.

See Appendix C for details. ¥

Remark 2.3 (Relation between conditions (C3) and the results in reference [SPB08])

For aforementioned Example 2.2, Scutari et al. established in [SPB08] a sufficient

condition under which the iterative water-filling algorithm converges. The itera-

tive water-filling algorithm essentially belongs to best response dynamics. Specif-

ically, in [SPB08], Shannon’s formula leads to θ = −1 and cross channel coeffi-

cients satisfy F k
mn ≥ 0,∀k, m 6= n. Equation (2.19) reduces to the water-filling

formula

lkn(a−n, λ) =
[1

λ
− αk

n

F k
nn

−
∑

m6=n

F k
mna

k
m

]amax
n,k

amin
n,k

, (2.21)
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and [Smax]mn = maxk F k
mn. By choosing the weighted Euclidean norm as the dis-

tance measure for the residual errors at+1
n − at

n after each best-response iteration,

Theorem 2.3 generalizes the results in [SPB08] for the family of utility functions

defined in (2.18).

Remark 2.4 (Relation between conditions (C1), (C2) and (C3)) The connec-

tions and differences between conditions (C1), (C2) and (C3) are summarized in

Table 2.2. We have addressed the implications of (C1) and (C2) in Remark 2.1.

Now we discuss their relation with (C3). First of all, condition (C1) is proposed

for general hk
n(·) and condition (C3) is proposed for the class of utility functions

defined in (2.18). However, Theorem 2.1 and Theorem 2.3 individually establish

the fact that best response dynamics is a contraction map by selecting different

vector and matrix norms. Therefore, in general, (C1) and (C3) do not imme-

diately imply each other. Note that [Smax]mn ≤ ζmn · maxk |F k
mn| in which ζmn

satifies

ζmn =

∑K
k=1(F

k
mm)1+ 1

θ

∑K
k=1(F

k
nn)1+ 1

θ

·max
k

(F k
nn)1+ 1

θ

(F k
mm)1+ 1

θ

∈
[
1,

maxk(F
k
nn/F

k
mm)1+ 1

θ

mink(F k
nn/F

k
mm)1+ 1

θ

]
. (2.22)

The physical interpretation of ζmn is the similarity between the preferences of user

m and n across the total K dimensions of their action spaces. Recall that both

Smax and Tmax are non-negative matrices and Smax is element-wise less than or

equal to maxm6=n ζmnT
max. By the property of non-negative matrix and condition

(C1), we can conclude ρ(Smax) ≤ ρ(maxm6=n ζmnT
max) < maxm6=n

ζmn

2
. The rela-

tion between (C1) and (C3) is pictorially illustrated in Fig. 2.1. Specifically, if

users have similar preference in their available actions and the upper bound of ζmn

that measures the difference of their preferences is below the following threshold:

maxk,m 6=n(F k
nn/F

k
mm)1+ 1

θ

mink,m 6=n(F k
nn/F

k
mm)1+ 1

θ

< 2, (2.23)
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C1 C1

C3 C3

In general

Figure 2.1: Relation between (C1) and (C3).

we know that (C1) implies (C3) in this situation because ρ(Smax) < maxm,n ζmn ·
ρ(Tmax) < 2 · 1

2
= 1. We also would like to point out that, the LHS of (2.23)

is a function of θ and the LHS ≡ 1 if θ = −1. When θ = −1, Tmax coincides

with Smax. Mathematically, in this case, (C3) is actually more general than (C2),

because it still holds even if coefficients F k
mn have different signs.

2.3.2 Extensions to General fk
n(·)

As a matter of fact, the results above can be extended to the more general

situations in which fk
n(·) is a nonlinear differentiable function, ∀n, k and its input

a−n consists of the remaining users’ action from all the dimensions. Accordingly,

equation (2.12) becomes

lkn(a−n, λ) ,
[{∂hk

n

∂x

}−1

(λ)− fk
n(a−n)

]amax
n,k

amin
n,k

. (2.24)

The conclusions in Theorem 2.1, 2.2, and 2.3 can be further extended as Theorem

2.4, and 2.5, 2.6 that are listed below. We only provide the proof of Theorem 2.4
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in Appendix D. The detailed proofs of Theorem 2.5 and 2.6 are omitted because

they can be proven similarly as Theorem 2.4.

For general fk
n(·), we denote

[T̄
max

]mn ,





maxa∈A,k′
∑K

k=1

∣∣∣∂fk
n(a−n)

∂ak′
m

∣∣∣, if m 6= n

0, otherwise.
(2.25)

Besides, for hk
n(·) defined in (2.18), we define

[S̄
max

]mn ,





∑K
k=1(F k

mm)1+
1
θ

∑K
k=1(F k

nn)1+
1
θ

maxa∈A,k′

{∑K
k=1

∣∣∣∂fk
n(a−n)

∂ak′
m

∣∣∣
(

F k′
nn

F k′
mm

)1+ 1
θ
}

, if m 6= n

0, otherwise.

(2.26)

Theorem 2.4 If

ρ(T̄max) <
1

2
, (C4)

then there exists a unique NE in game Γ and best response dynamics converges

linearly to the NE, for any set of initial conditions belonging to A with either

sequential or parallel updates.

Proof : This theorem can be proved by combining the proof of Theorem 2.1

and the mean value theorem for vector-valued functions. See Appendix D for

details. ¥

Similarly as in Theorem 2.2, for the general ACSCG models that exhibit

strategic complementarities (or strategic substitutes), we can further relax con-

dition (C4).

Theorem 2.5 For Γ with strategic complementarities (or strategic substitutes),

i.e. ∂fk
n(a−n)

∂ak′
m

≥ 0,∀m 6= n, k, k′, a ∈ A, (or ∂fk
n(a−n)

∂ak′
m

≤ 0,∀m 6= n, k, k′, a ∈ A), if

ρ(T̄max) < 1, (C5)

32



then there exists a unique NE in game Γ and best response dynamics converges

linearly to the NE, for any set of initial conditions belonging to A with either

sequential or parallel updates.

Theorem 2.6 For hk
n(·) defined in (2.18), if

ρ(S̄max) < 1, (C6)

then there exists a unique NE in game Γ and best response dynamics converges

linearly to the NE, for any set of initial conditions belonging to A with either

sequential or parallel updates.

Remark 2.5 (Implications of conditions (C4), (C5), and (C6)) Based on the

mean value theorem, we know that the upper bound of the additive sum of first

derivatives
∑K

k=1

∣∣∣∂fk
n(a−n)

∂ak′
m

∣∣∣ governs the maximum impact that user m’s action can make over

user n’s utility. As a result, Theorem 2.4, Theorem 2.5, and Theorem 2.6 in-

dicate that
∑K

k=1

∣∣∣∂fk
n(a−n)

∂ak′
m

∣∣∣ can be used to develop similar sufficient conditions

for the global convergence of best response dynamics. Table 2.2 summarizes the

connections and differences among all the aforementioned conditions from (C1)

to (C6). We can verify that, for the linear function fk
n(·) that is defined in (2.9)

and studied in Section 2.3.1, ∀a ∈ A,m 6= n, it satisfies

∂fk
n(a−n)

∂ak′
m

=





F k
mn, if k′ = k

0, otherwise.
(2.27)

In addition, we can see that, in Example 2.4, fk
n(·) is actually an affine function

with

∂fk
n(P−n)

∂P k′
m

=





γ(k − k′)Hk′
mn, if k′ = k

0, otherwise.
(2.28)
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and S̄max is reduced to

[S̄max]mn ,





maxk′
∑K

k=1 γ(k − k′)Hk′
mn, if m 6= n

0, otherwise.
(2.29)

As an immediate result of Theorem 2.6, we have the following corollary which

specifies a sufficient condition that guarantees the convergence of the iterative

water-filling algorithm for asynchronous transmissions in multi-carrier systems

[CHC07].

Corollary 2.1 In Example 2.4, if the matrix S̄max defined in (2.29) satisfies

ρ(S̄max) < 1, (2.30)

then there exists a unique NE in game Γ and the iterative water-filling algorithm

converges linearly to the NE, for any set of initial conditions belonging to A and

with either sequential or parallel updates.

Remark 2.6 (Impact of sum constraints) An interesting phenomenon that can be

observed from the analysis above is that, the convergence condition may depend on

the maximum constraints {Mn}N
n=1. This differs from the observation in [SPB08]

that the presence of the transmit power and spectral mask constraints does not

affect the convergence capability of the iterative water-filling algorithm. This is

because when functions fk
n(a−n) are affine, e.g. in Example 2.2, 2.3, and 2.4, the

elements in T̄max and S̄max are independent of the values of {Mn}N
n=1. Therefore,

(C1)-(C6) are independent of Mn for affine fk
n(a−n). However, for non-linear

fk
n(a−n), the values of {Mn}N

n=1 specify the range of users’ joint feasible action

set A, and this will affect T̄max and S̄max accordingly. In other words, in the

presence of non-linearly coupled fk
n(a−n), convergence may depend on the players’

maximum sum constraints {Mn}N
n=1.
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2.3.3 Connections to the Results of Rosen and Gabay

In [Ros65], Rosen proposed a continuous-time gradient projection based iterative

algorithm to obtain a pure NE under the assumption of DSC conditions. Here

we present a discrete version of the algorithm in [Ros65], named “gradient play”.

Specifically, at stage t, each user first determines the gradient of its own util-

ity function un(an, a
t−1
−n ). Then each user updates its action at

n using gradient

projection according to

a
′k,t
n = ak,t−1

n + κn
∂un(an, a

t−1
−n )

∂ak
n

(2.31)

and

at
n = [a1,t

n a2,t
n · · · aK,t

n ] =
[
a
′1,t
n a

′2,t
n · · · a′K,t

n

]‖·‖2
An

, (2.32)

where κn is the stepsize and [v]
‖·‖2
An

denotes the projection of the vector v onto

user n’s action set An with respect to the Euclidean norm ‖ · ‖2. If κn is chosen

to be sufficiently small, gradient play approximates the continuous-time gradient

projection algorithm. For each nonnegative vector κκκ = [κ1 . . . κN ], define

g(a,κκκ) = [κ1∇1u1(a) κ2∇2u2(a) . . . κN∇NuN(a)]T . (2.33)

The definition of DSC in [Ros65] is that, for fixed κκκ > 0 and every a0, a1 ∈ A,

we have

(a1 − a0)T g(a0,κκκ) + (a0 − a1)T g(a1,κκκ) > 0. (2.34)

A sufficient condition for DSC is that the symmetric matrix G(a,κκκ) + GT (a,κκκ)

be negative definite for a ∈ A, where G(a,κκκ) is the Jacobian with respect to a

of g(a,κκκ).

However, when using gradient play to search for a pure NE, the stepsize

κn needs to be carefully chosen and set to be sufficiently small, which usually

slows down the rate of convergence. As an alternative distributed algorithm, for
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Table 2.3: A summary of various convergence conditions in concave games.

Algorithms Sufficient conditions and the applicable games

Gradient play Rosen’s DSC conditions for concave games [Ros65]

Best response
Gabay’s dominance solvability condition for concave games

with An = R+ [GM80], conditions (C1)-(C6) for ACSCG

concave games with An = R+, ∀n ∈ N , Gabay and Moulin provided in [GM80]

a dominance solvability condition under which best response dynamics globally

converges to a unique NE. Specifically, the dominance solvability condition is

given by

−∂2un

∂2an

≥
∑

m6=n

∣∣∣ ∂2un

∂an∂am

∣∣∣. (2.35)

The sufficient conditions provided in this section and Gabay’s dominance solv-

ability condition specify the convergence conditions of best response dynamics

in different subclasses of concave games. Specifically, our results are developed

for concave games in which every user has a multi-dimensional action space sub-

ject to a single sum-constraint and Gabay’s dominance solvability condition is

proposed for concave games with single dimensional strategy.

2.4 Scenario II: Message Exchange among Users

In this section, our objective is to coordinate the users’ actions in ACSCG to

maximize the overall performance of the system, measured in terms of their total

utilities, in a distributed fashion. Specifically, the optimization problem we want

to solve is

max
a∈A

N∑
n=1

un(a). (2.36)
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We will study two distributed algorithms in which the participating users ex-

change price signals that indicate the “cost” or “benefit” that its action causes

to the other users. Allocating network resources via pricing has been well-

investigated for convex NUM problems [CLC07], where the original NUM prob-

lem can be decomposed into distributedly solvable subproblems by setting price

for each constraint resource, and each subproblem has to decide the amount of

resources to be used depending on the charged price. However, unlike in the

conventional convex NUM, pricing mechanisms may not be immediately appli-

cable in ACSCG if the objective in (2.36) is not jointly concave in a. Therefore,

we are interested in characterizing the convergence condition of different pricing

algorithms in ACSCG.

We know that for any local maximum a∗ of problem (2.36), there exist La-

grange multipliers λn, ν
1
n, · · · , νN

n and ν ′1n , · · · , ν ′Nn such that the following Karush-

Kuhn-Tucker (KKT) conditions hold for all n ∈ N :

∂un(a∗)
∂ak

n

+
∑

m6=n

∂um(a∗)
∂ak

n

= λn + νk
n − ν

′k
n , ∀n (2.37)

λn

( K∑

k=1

ak∗
n −Mn

)
= 0, λn ≥ 0 (2.38)

νk
n(ak∗

n − amax
n,k ) = 0, ν

′k
n (amin

n,k − ak∗
n ) = 0, νk

n, ν
′k
n ≥ 0. (2.39)

Denote πk
mn user m’s marginal fluctuation in utility per unit decrease in user n’s

action ak
n within the kth dimension

πk
mn(ak

m, ak
−m) = −∂um(a)

∂ak
n

, (2.40)

which is announced by user m to user n and can be viewed as the cost charged

(or compensation paid) to user n for changing user m’s utility. Using (2.40),
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equation (2.37) can be rewritten as

∂un(a∗)
∂ak

n

−
∑

m6=n

πk
mn(ak∗

m , ak∗
−m) = λn + νk

n − ν
′k
n . (2.41)

If we assume fixed prices {πk
mn} and action profile ak

−n, condition (2.41) gives the

necessary and sufficient KKT condition of the following problem:

max
an∈An

un(a)−
K∑

k=1

ak
n ·

( ∑

m6=n

πk
mn

)
. (2.42)

At an optimum, a user behaves as if it maximizes the differences between its

utility minus its payment to the other users in the network due to its impact over

the other users’ utilities. Different distributed pricing mechanisms can be devel-

oped based on the individual objective function in (2.42) and the convergence

conditions may also vary based on the specific action update equation.

When optimization program (2.36) is not convex, the pricing algorithms de-

veloped for convex NUM, e.g. gradient and subgradient algorithms, cannot be

directly applied. In the next two subsections, we will investigate two distributed

pricing mechanisms for non-convex ACSCG and provide two sufficient conditions

that guarantee their convergence. Specifically, under these sufficient conditions,

both algorithms guarantee that the total utility is monotonically increasing un-

til it converges to a feasible operating point that satisfies the KKT conditions.

Similarly as in Section 2.3.1, we first assume fk
n(a−n) takes the form in (2.9) and

users update their actions in parallel.

2.4.1 Gradient Play

The first distributed pricing algorithm that we consider is gradient play. The

update iterations of gradient play need to be properly redefined in presence of

real-time information exchange. Specifically, at stage t, users adopting this al-

gorithm exchange price signals {πk,t−1
mn } using the gradient information at stage
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t − 1. Within each iteration, each user first determines the gradient of the ob-

jective in (2.42) based on the price vectors {πk,t−1
mn } and its own utility function

un(an, a
t−1
−n ). Then each user updates its action at

n using gradient projection

algorithm according to

a
′k,t
n = ak,t−1

n + κ
(∂un(an, a

t−1
−n )

∂ak
n

−
∑

m6=n

πk,t−1
mn

)
. (2.43)

and

at
n = [a1,t

n a2,t
n · · · aK,t

n ] =
[
a
′1,t
n a

′2,t
n · · · a′K,t

n

]‖·‖2
An

. (2.44)

in which the stepsize κ > 0. The following theorem provides a sufficient condition

under which gradient play will converge monotonically provided that we choose

small enough constant stepsize κ.

Theorem 2.7 If ∀n, k,x,y ∈ A−n,

inf
x

∂2hk
n(x)

∂2x
> −∞, and

∥∥∥5 gk
n(x)−5gk

n(y)
∥∥∥ ≤ L′

∥∥x− y
∥∥, (C7)

gradient play converges for a small enough stepsize κ.

Proof : This theorem can be proved by showing the gradient of the objective

function in (2.36) is Lipschitz continuous and applying Proposition 3.4 in [BT97].

See Appendix E for details. ¥

Remark 2.7 (Application of condition (C7)) A sufficient condition that guar-

antees the convergence of distributed gradient projection algorithm is the Lips-

chitz continuity of the gradient of the objective function in (2.36). For exam-

ple, in the power control problem in multi-channel networks [HBH06], we have

hk
n(x) = log2(α

k
n +Hk

nnx) and gk
n(P−n) = log2(σ

k
n +

∑
m6=n Hk

mnP
k
m). For this con-

figuration, we can immediately verify that condition (C7) is satisfied. Therefore,
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gradient play can be applied. Moreover, as in [HBH06], if we can further ensure

that the problem in (2.36) is convex for some particular utility functions, gradient

play converges to the unique optimal solution of (2.36) at which achieving KKT

conditions implies global optimality.

2.4.2 Jacobi Update

We consider another alternative strategy update mechanism called Jacobi update

[LA02]. In Jacobi update, every user adjusts its action gradually towards the

best response strategy. Specifically, the maximizer of problem (2.42) takes the

following form

B
′k
n (a−n) =

{∂hk
n

∂x

}−1(
λn + νk

n − ν
′k
n +

∑

m6=n

πk
mn

)−
∑

m6=n

F k
mna

k
m, (2.45)

in which λn, νk
n, and ν

′k
n are the Lagrange multipliers that satisfy complementary

slackness in (2.38) and (2.39), and πk
mn is defined in (2.40). In Jacobi update, at

stage t, user n chooses its action according to

ak,t
n = ak,t−1

n + κ
[
B
′k
n (at−1

−n )− ak,t−1
n

]
, (2.46)

in which the stepsize κ ∈ (0, 1]. The following theorem establishes a sufficient

convergence condition for Jacobi update.

Theorem 2.8 If ∀n, k,x,y ∈ A−n,

inf
x

∂2hk
n(x)

∂2x
> −∞, sup

x

∂2hk
n(x)

∂2x
< 0, and

∥∥∥5 gk
n(x)−5gk

n(y)
∥∥∥ ≤ L′

∥∥x− y
∥∥,

(C8)

Jacobi update converges if the stepsize κ is sufficiently small.

Proof : This can be proved using the descent lemma and the mean value

theorem. The details of the proof are provided in Appendix F. ¥
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Remark 2.8 (Relation between condition (C8) and the result in [SBH08]) Shi

et al. considered the power allocation for multi-carrier wireless networks with

non-separable utilities. Specifically, un(·) takes the form

un(P) = ri

(
K∑

k=1

log2

(
1 +

Hk
nnP

k
n

σk
n +

∑
m6=n Hk

mnP
k
m

))
, (2.47)

in which ri(·) is an increasing and strictly concave function. Since the utilities

are non-separable, the distributed pricing algorithm proposed in [SBH08], which

in fact belongs to Jacobi update, requires only one user to update its action profile

at each stage while keeping the remaining users’ action fixed. The condition in

(C8) gives the convergence condition of the same algorithm in ACSCG. We prove

in Theorem 2.7 that, if the utilities are separable, convergence can still be achieved

even if these users update their actions at the same time. Therefore, we do not

need an arbitrator to select the single user that updates its action at each stage.

Remark 2.9 (Complexity of signaling) The complexity of message exchange mea-

sured in terms of the number of price signals to update in (2.40) is generally

of the order of O(KN2). It is worth mentioning that the amount of signaling

can be further reduced to O(KN) in the scenarios where gk
n(·) are functions of

∑
m6=n F k

mna
k
m. In this case, each user only needs to announce one price signal πk

n

for each dimension of its action space:

πk
n(ak

n,a
k
−n) = − ∂un(a)

∂
( ∑

m6=n F k
mna

k
m

) (2.48)

Consequently, πk
mn can be determined based on πk

mn = F k
nmπk

m, which greatly re-

duces the overhead of signaling requirement. It is straightforward to check that

only O(KN) messages need to be generated and exchanged per iteration in both

utility functions (2.3) and (2.4).
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Remark 2.10 (Extension to general cases) As a matter of fact, conditions (C7)

and (C8) apply to a broader class of multi-user interaction scenarios, including

the general model defined in (2.2). Specifically, as addressed in Remark 2.7, the

Lipschitz continuity of the gradient of
∑N

n=1 un(a) is sufficient to guarantee that

gradient play with a small enough stepsize achieves an operating point at which

KKT conditions are satisfied. In addition, we can use the same technique in

Appendix F to show the convergence of Jacobi update given that supx
∂2hk

n(x)
∂2x

< 0,

∀n, k, and the gradient of
∑N

n=1 un(a) is Lipschitz continuous.

2.5 Numerical Examples

In Section 2.2.2, we present several illustrative examples of ACSCG. This sec-

tion uses Examples 2.1 and 2.3 to illustrate the various distributed algorithms

discussed in the chapter.

We start with Example 2.1 to verify the proposed convergence conditions of

best response dynamics. Even though it is a simple two-user game with An ⊆ R2,

existing results in the literature cannot immediately determine whether or not

the best response dynamics in this simple game can globally converge to a NE.

Specifically, in Example 2.1, we have

∂f 1
n(a−n)

∂a1−n

=
a1
−n√

(a1−n)2 + 1
,
∂f 1

n(a−n)

∂a2−n

= − a2
−n√

(a2−n)2 + 1
,

∂f 2
n(a−n)

∂a1−n

= − a1
−n√

(a1−n)2 + 1
,
∂f 2

n(a−n)

∂a2−n

=
a2
−n√

(a2−n)2 + 1
.

(2.49)

According the definition of (2.25), we have

[T̄
max

]12 = max
{

maxa∈A
∑K

k=1

∣∣∣∂fk
2 (a−n)

∂a1
1

∣∣∣, maxa∈A
∑K

k=1

∣∣∣∂fk
2 (a−n)

∂a2
1

∣∣∣
}

= max
{

maxa1∈A1

2a1
1√

(a1
1)2+1

, maxa1∈A1

2a2
1√

(a2
1)2+1

}
= 2M1√

M2
1 +1

.
(2.50)

Similarly, we can obtain [T̄
max

]21 = 2M2√
M2

2 +1
. Therefore, ρ(T̄

max
) =

√
4M1M2√

M2
1 +1
√

M2
2 +1

.
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Figure 2.2: Actions versus iterations in Example 2.1.

It is easy to show that ρ(T̄
max

) < 1 ⇔ (M2
1 − 1

3
)(M2

1 − 1
3
) < 4

9
. By condition

(C4), we know that if (M2
1 − 1

3
)(M2

1 − 1
3
) < 4

9
, the best response dynamics is

guaranteed to converge to a unique NE. We numerically simulate a scenario with

parameters M1 = 2
3

and M2 = 1 in which condition (C4) holds. We generate

multiple initial action profiles of a0
1 and a0

2, iterate the best response dynamics,

and obtain the action sequences at
1 and at

2. Fig. 2.2 shows the trajectories of

a1,t
1 and a1,t

2 for different realizations. We can see that, best response dynamics

converges to a unique NE. If we set M1 = 2 and M2 = 1, condition (C4) does

not hold any more. We observe from simulations that in many circumstances

the best response dynamics will not converge, which agrees with our analysis in

Remark 2.6.

Now we consider Example 2.3, which is the problem of minimizing queueing

delays in a Jackson network. In particular, we consider a network with N = 5

nodes and K = 3 traffic classes. The total routing probability 1−rk
m0 that node m
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Figure 2.3: Probability of (C2) and (C3) versus 1− rk
m0 for ∀m, k, N = 5, K = 3.

will route packets of class k completing service to other nodes is the same for ∀m ∈
N . We varied the total routing probability 1−rk

m0 and generated multiple sets of

network parameters in which rk
mn are uniformly distributed for n = 1, 2, · · · , N ,

µk
n are uniformly selected in [4, 5] for ∀n, k, and ψmin

n are uniformly chosen in

[0.6, 1] for n = 1, 2, · · · , N .

First of all, we compare the range of validity of the proposed convergence

conditions. As we mentioned before, we have F k
mn = [(I−Rk)−1]nm

[(I−Rk)−1]nn
in this example.

Note that (I−Rk)−1 = I+
∑∞

i=1(R
k)i and Rk is a non-negative matrix. Therefore,

we can conclude F k
mn ≥ 0,∀m 6= n, k. Moreover, since hk

n(x) = − 1
µk

n−υk
nnx

, we

choose to compare conditions (C2) and (C3). In Fig. 2.3, we plot the probability

that conditions (C2) and (C3) are satisfied versus the total routing probability 1−
rk
m0. From Fig. 2.3, we can see that the probability of guaranteeing convergence

decreases as the routing probability 1− rk
m0 increases and condition (C3) shows

a similar but slightly broader validity than (C2). Fig. 2.4 shows the delay
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Figure 2.4: Delays of nodes versus iterations.

trajectories of three nodes using both sequential and parallel updates in a certain

network realization in which (C2) and (C3) are satisfied. We can see that, the

parallel update converges faster than the sequential update.

In Fig. 2.3, we also note that the probability that (C2) or (C3) is satisfied

transits very quickly from the almost certain convergence to the non-convergence

guarantee as 1−rk
m0 varies from 0.5 to 0.58. Similar observations have been drawn

in the multi-channel power control problem [SPB08], where θ = −1 in (2.18) and

the probability that condition (C3) is satisfied exhibits a neat threshold behavior

as the ratio between the source-interferer distance and the source-destination

distance varies. In Jackson networks, this threshold can be roughly estimated.

Define [Sk]mn = F k
mn for m 6= n and [Sk]nn = 0 for n ∈ N . If we fix 1 − rk

m0

for ∀m, k, we prove in Appendix G that ρ(Sk) ≤ 1
rk
m0
− 1 for ∀k. Therefore,

ρ(Sk) < 1 when rk
m0 > 0.5. We would like to estimate ρ(Tmax) and ρ(Smax) based

on ρ(Sk). Note that Tmax defined in (2.16) is the element-wise maximum over Sk
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Figure 2.5: Illustration of convergence for gradient play and Jacobi update.

for k = 1, 2, . . . , K. Since Tmax and Sk are all non-negative matrices, we know

that ρ(Tmax) ≥ maxk ρ(Sk). In addition, recall the effect of maxm,n ζmn discussed

in Remark 2.4. We can approximate ρ(Smax) defined in (2.20) using ρ(Smax) ≈
maxm,n ζmn maxk ρ(Sk). Therefore, we expect that ρ(Tmax) and ρ(Smax) exceeds

1 for rk
m0 < 0.5, which agrees with our observation from Fig. 2.3. The physical

interpretation is that, if the packets exit the network with a probability less than

50% after completing its service, i.e. more than half of the served packets will be

routed to other nodes, the strength of the mutual coupling among users becomes

too strong and the multi-user interaction in Jackson networks will gradually lose

its convergence guarantee.

In addition, we numerically compare two distributed algorithms in which users

pass coordination messages in real time, including Jacobi update and gradient

play. Fig. 2.5 shows the delay evolution of both distributed solutions for a

particular simulated network in which we set κ = 0.2. We initialize the system
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parameters such that infn,k µk
n−

∑N
m=1 υk

mnψ
k
m > 0 and both conditions (C7) and

(C8) are satisfied. We can verify that for Example 2.3, problem (2.36) is in fact a

convex program. Therefore, there exists a unique operating point at which KKT

conditions (2.37)-(2.39) are satisfied. We can see that, both algorithms cause the

total delay to monotonically decrease until it reaches the same performance limit

that is strictly better than NE. Using the same stepsize κ, Jacobi update converges

more quickly than gradient play in this example. Similar observations are drawn

in the other simulated examples. This is because the update directions of these

two algorithms are different. Jacobi update moves directly towards the optimal

solution of (2.42), which is a local approximation of the original optimization

program in (2.36), whereas the gradient play algorithm simply updates the actions

along the gradient direction of (2.36).

2.6 Concluding Remarks

In this chapter, we propose and investigate a new game model, which we refer

to as additively coupled sum constrained games, in which each player is subject

to a sum constraint and its utility is additively impacted by the remaining users’

actions. The convergence properties of various generic distributed adjustment

algorithms, including best response, gradient play, and Jacobi update, have been

investigated. The sufficient conditions obtained in this chapter generalize the

existing results developed in the multi-channel power control problem and can

be extended to other applications that belong to ACSCG.

2.7 Appendix A: Proof of Theorem 2.1

The following lemma is needed to prove Theorem 2.1.
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Lemma 2.1 Consider any non-decreasing function p(x) and non-increasing func-

tion q(x). If there exists a unique x∗ such that p(x∗) = q(x∗), and the functions

p(x) and q(x) are strictly increasing and strictly decreasing at x = x∗ respectively,

then x∗ = arg minx{max{p(x), q(x)}}.

Proof of Lemma 2.1: See Lemma 1 in [CHC07]. ¥

Denote ak,t
n as the action of user n in the kth dimension after iteration t. Recall

that
[
hk

n

]′
(·) > 0, for ∀n, k. Therefore,

∑K
k=1 ak,t

n = Mn is satisfied at the end of

any iteration t for any user n. Define [x]+ = max{x, 0} and [x]− = max{−x, 0}.
It is straightforward to see that

K∑

k=1

[ak,t
n − ak,t′

n ]+ =
K∑

k=1

[ak,t
n − ak,t′

n ]−,∀n, t, t′. (2.51)

We also define

pn,t(x) ,
K∑

k=1

[
lkn(at

−n, x)− ak,t
n

]−
(2.52)

and

qn,t(x) ,
K∑

k=1

[
lkn(at

−n, x)− ak,t
n

]+

, (2.53)

in which lkn(·) is defined in (2.12). Since hk
n(·) is a continuous increasing and

strictly concave function, it is clear that
{∂hk

n

∂x

}−1
(·) is a continuous decreasing

function. If pn,t(λt+1
n ) 6= 0 (i.e. it has not converged), pn,t(x) (qn,t(x), respec-

tively) is non-decreasing (non-increasing) in x, and strictly increasing (strictly

decreasing) at x = λt+1
n . From (2.51) it is always true that pn,t(λt+1

n ) = qn,t(λt+1
n ).

We first prove the convergence of the parallel update case in (2.15). For ∀n, we
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have

K∑

k=1

[ak,t+1
n − ak,t

n ]+

= max
{ K∑

k=1

[ak,t+1
n − ak,t

n ]+,

K∑

k=1

[ak,t+1
n − ak,t

n ]−
}

(2.54)

= max{pn,t(λt+1
n ), qn,t(λt+1

n )} (2.55)

≤ max{pn,t(λt
n), qn,t(λt

n)} (2.56)

≤ max
{ K∑

k=1

[ ∑

m6=n

F k
mn(ak,t

m − ak,t−1
m )

]+

,

K∑

k=1

[ ∑

m6=n

F k
mn(ak,t

m − ak,t−1
m )

]−}
(2.57)

≤ max
{ K∑

k=1

∑

m6=n

[
F k

mn(ak,t
m − ak,t−1

m )
]+

,

K∑

k=1

∑

m6=n

[
F k

mn(ak,t
m − ak,t−1

m )
]−}

(2.58)

= max
{ ∑

m6=n

K∑

k=1

[
F k

mn(ak,t
m − ak,t−1

m )
]+

,
∑

m6=n

K∑

k=1

[
F k

mn(ak,t
m − ak,t−1

m )
]−}

(2.59)

≤
∑

m6=n

max
k
|F k

mn| ·
{ K∑

k=1

[
ak,t

m − ak,t−1
m

]+

+
K∑

k=1

[
ak,t

m − ak,t−1
m

]−}
(2.60)

=
∑

m6=n

2 max
k
|F k

mn| ·
K∑

k=1

[
ak,t

m − ak,t−1
m

]+

, (2.61)

where (2.54) and (2.61) follows from (2.51), (2.55) follows from the definition of

pn,t and qn,t in (2.52) and (2.53), (2.56) is due to Lemma 1 in which x = λt
n, (2.57)

follows from the definition of pn,t and qn,t, the expression of ak,t
n in (2.15), and the

fact that
[
[x]ba− [y]ba

]+ ≤ [x−y]+ and
[
[x]ba− [y]ba

]− ≤ [x−y]−, (2.58) is due to the

fact that [x+ y]+ ≤ [x]+ + [y]+ and [x+ y]− ≤ [x]−+ [y]−, (2.60) follows by using

[
∑

k xkyk]
+ ≤ ∑

k |xk||yk| =
∑

k |xk|([yk]
+ + [yk]

−) ≤ maxk |xk|
∑

k([yk]
+ + [yk]

−).

For user n, we define that et
n =

[
ak,t

m − ak,t−1
m

]+

. Inequality (2.61) can be written

as et+1
n ≤ ∑

m6=n[Tmax]mne
t
m in which Tmax is defined in (2.16).
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Since Tmax is a nonnegative matrix, by the Perron-Frobenius Theorem [BT97],

there exists a positive vector w̄ = [w̄1 . . . w̄N ] such that

‖Tmax‖w̄∞,mat = ρ(Tmax), (2.62)

where ‖ · ‖w̄∞,mat is the weighted maximum matrix norm defined as

‖A‖w̄∞,mat , max
i=1,2,··· ,N

1

w̄i

N∑
j=1

[A]ijw̄j, A ∈ RN×N . (2.63)

Define the vectors et+1 , [et+1
1 , et+1

2 , . . . , et+1
N ]T and et , [et

1, e
t
2, . . . , e

t
N ]T . The

set of inequalities in (2.61) can be expressed in the vector form as 0 ≤ et+1 ≤
Tmaxet. By choosing the vector w̄ that satisfies ‖Tmax‖w̄∞,mat = ρ(Tmax) and

applying the infinity norm ‖ · ‖w̄∞, we obtain the following

‖et+1‖w̄∞ ≤ 2‖Tmaxet‖w̄∞ ≤ 2‖Tmax‖w̄∞,mat‖et‖w̄∞, (2.64)

Finally, based on (2.61) and (2.64), it follows that

max
n∈N

et+1
n

w̄n

= ‖et+1‖w̄∞ ≤ 2‖Tmax‖w̄∞,mat‖et‖w̄∞

≤ 2‖Tmax‖w̄∞,mat ·max
n∈N

et
n

w̄n

= 2ρ(Tmax) ·max
n∈N

et
n

w̄n

(2.65)

Therefore, if ‖Tmax‖w̄∞,mat = ρ(Tmax) < 1
2
, the best response dynamics in (2.15) is

a contraction with the modulus ‖Tmax‖w̄∞,mat with respect to the norm maxn∈N
‖·‖wn

2

w̄n
.

We can conclude that, the best response dynamics has a unique fixed point a∗

and, given any initial value a0, the update sequence
{
at

}
converges to the fixed

point a∗.

In the sequential update case, the convergence result can be established by

using the proposition 1.4 in [BT97]. The key step is to obtain

max
n∈N

et+1
n

w̄n

≤ 2ρ(Tmax) ·max
{

max
j<n

et+1
j

w̄j

, max
j≥n

et
j

w̄j

}
. (2.66)
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A simple induction on n yields

max
n∈N

et+1
n

w̄n

≤ 2ρ(Tmax) ·max
n∈N

et
n

w̄n

(2.67)

for all n. Therefore, inequality (2.61) also holds for the sequential update and

the contraction iteration globally converges to a unique equilibrium. ¥

2.8 Appendix B: Proof of Theorem 2.2

If F k
mn ≥ 0,∀m 6= n, k, the inequalities after (2.59) become

max
{ ∑

m6=n

K∑

k=1

[
F k

mn(ak,t
m − ak,t−1

m )
]+

,
∑

m6=n

K∑

k=1

[
F k

mn(ak,t
m − ak,t−1

m )
]−}

(2.68)

≤
∑

m6=n

max
k

F k
mn ·max

{ K∑

k=1

[
ak,t

m − ak,t−1
m

]+

,
K∑

k=1

[
ak,t

m − ak,t−1
m

]−}
(2.69)

=
∑

m6=n

max
k

F k
mn ·

K∑

k=1

[
ak,t

m − ak,t−1
m

]+

. (2.70)

Similarly, for F k
mn ≤ 0,∀m 6= n, k, we have

max
{ ∑

m6=n

K∑

k=1

[
F k

mn(ak,t
m − ak,t−1

m )
]+

,
∑

m6=n

K∑

k=1

[
F k

mn(ak,t
m − ak,t−1

m )
]−}

(2.71)

≤
∑

m6=n

max
k

{−F k
mn

} ·max
{ K∑

k=1

[
ak,t

m − ak,t−1
m

]+

,
K∑

k=1

[
ak,t

m − ak,t−1
m

]−}
(2.72)

=
∑

m6=n

max
k

{−F k
mn

} ·
K∑

k=1

[
ak,t

m − ak,t−1
m

]+

. (2.73)

Therefore, if F k
mn ≥ 0,∀m 6= n, k or F k

mn ≤ 0,∀m 6= n, k, given (C2), the sequence

{at
n} contracts with the modulus ρ(Tmax) < 1 under the norm maxn∈N

∑
k[xk

n]+

w̄n

and the convergence follows readily. ¥
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2.9 Appendix C: Proof of Theorem 2.3

Let ‖ · ‖w2 denote the weighted Euclidean norm with weights w = [w1 . . . wK ]T ,

i.e. ‖x‖w2 , (
∑

i wi|xi|2)1/2 [HJ81]. Define the simplex

S ,
{
x ∈ RK :

1

K

K∑

k=1

xk = 1, xmin
k ≤ xk ≤ xmax

k , ∀k = 1, 2, . . . , K
}

. (2.74)

in which
∑

k xmax
k ≥ 1. The following lemma is needed to prove Theorem 2.3.

Lemma 2.2 The projection with respect to the weighted Euclidean norm with

weights w, of the K-dimensional real vector −x0 , −[x0,1, . . . , x0,K ]T onto the

simplex S defined in (2.74), denoted by [−x0]
w
S , is the optimal solution to the

following convex optimization problem:

[−x0]
w
S , arg min

x∈S

∥∥x− (−x0)
∥∥w

2
(2.75)

and takes the following form:

x∗k =
[ λ

wk

− x0,k

]xmax
k

xmin
k

, k = 1, . . . , K (2.76)

where λ > 0 is chosen in order to satisfy the constraint 1
K

∑K
k=1 x∗k = 1.

Proof of Lemma 2.2: See Corollary 2 in [SPB08]. ¥

For hk
n(·) defined in (2.18), user n updates its action according to

a∗kn = lkn(a−n, λ
∗) =

[( 1

F k
nn

)1+ 1
θ · (λ∗) 1

θ − αk
n

F k
nn

−
∑

m6=n

F k
mna

k
m

]amax
n,k

amin
n,k

. (2.77)

and λ∗ is chosen to satisfy
∑K

k=1 a∗kn = Mn. Define the vector update operator as

[BR(a−n)]k , a∗kn and the coupling vector as

[Cn(a−n)]k , αk
n

F k
nn

+
∑

m6=n

F k
mna

k
m (2.78)
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with k ∈ {1, . . . , K}. We also define

F′mn , diag
(
F 1

mn, F
2
mn, . . . , F

K
mn

)
(2.79)

and

α′
n ,

[ α1
n

F 1
nn

,
α2

n

F 2
nn

, . . . ,
αK

n

FK
nn

]T

. (2.80)

Therefore, the coupling vector can be alternatively rewritten as

Cn(a−n) = α′
n +

∑

m6=n

F′mnam. (2.81)

Define a weight matrix W = [w1 . . .wN ] in which the element [W]kn is chosen

according to

[W]kn = [wn]k =
(F k

nn)1+ 1
α

∑K
k=1(F

k
nn)1+ 1

α

. (2.82)

By Lemma 2.2, we know that the vector update operator BRn(a−n) in (2.19) can

be interpreted as the projection of the coupling vector −Cn(a−n) onto user n’s

action set An with respect to ‖ · ‖wn
2 , i.e.

BRn(a−n) =
[−Cn(a−n)

]wn

An
. (2.83)

Given any a(1), a(2) ∈ A, we define respectively, for each user n, the weighted

Euclidean distances between these two vectors and their projected vectors using

(2.83) as en =
∥∥a

(2)
n − a

(1)
n

∥∥wn

2
and eBRn =

∥∥BRn(a
(1)
−n) − BRn(a

(2)
−n)

∥∥wn

2
. Again,

we first prove the convergence of the parallel update case in (2.15). We have
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∀n ∈ N ,

eBRn =
∥∥∥
[−Cn(a

(1)
−n)

]wn

An
− [−Cn(a

(2)
−n)

]wn

An

∥∥∥
wn

2

≤
∥∥∥Cn(a

(2)
−n)−Cn(a

(1)
−n)

∥∥∥
wn

2
(2.84)

=
∥∥∥
∑

m6=n

F′mna
(2)
m −

∑

m6=n

F′mna
(1)
m

∥∥∥
wn

2
=

∥∥∥
∑

m6=n

F′mn

(
a(2)

m − a(1)
m

)∥∥∥
wn

2
(2.85)

≤
∑

m6=n

∥∥∥F′mn

(
a(2)

m − a(1)
m

)∥∥∥
wn

2
=

∑

m6=n

√√√√
K∑

k=1

[wn]k
(
[F′mn]kk

)2
(
a

(2)k
m − a

(1)k
m

)2

(2.86)

=
∑

m6=n

√√√√
K∑

k=1

[wm]k

(
[F′mn]kk

[wn]k
[wm]k

)2(
a

(2)k
m − a

(1)k
m

)2

(2.87)

≤
∑

m6=n

max
k

(∣∣[F′mn]kk

∣∣ · [wn]k
[wm]k

)
√√√√

K∑

k=1

[wm]k

(
a

(2)k
m − a

(1)k
m

)2

(2.88)

=
∑

m6=n

max
k

(∣∣[F′mn]kk

∣∣ · [wn]k
[wm]k

)∥∥a(2)
m − a(1)

m

∥∥wm

2
(2.89)

=
∑

m6=n

[Smax]mnem, (2.90)

where (2.84) follows from the non-expansion property of the projector [·]wn
An

in the

norm ‖ · ‖wn
2 (See Proposition 3.2(c) in [BT97]), (2.86) follows from the triangle

inequality [HJ81], and Smax in (2.90) is defined according to (2.20).

The rest of the proof is similar as the proof after equation (2.61) in Appendix

A. Details are omitted due to space limitations. ¥
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2.10 Appendix D: Proof of Theorem 2.4

The beginning part of the proof is the same as the proof of Theorem 2.1. For any

user n with general fk
n(·), the inequalities after (2.55) become

K∑

k=1

[ak,t+1
n − ak,t

n ]+ ≤ max{pn,t(λt
n), qn,t(λt

n)}

= max

{
K∑

k=1

[
fk

n(at
−n)− fk

n(at−1
−n )

]+

,
K∑

k=1

[
fk

n(at
−n)− fk

n(at−1
−n )

]−}
(2.91)

= max

{
K∑

k=1

[ ∑

m6=n

K∑

k′=1

∂fk
n

∂ak′
m

(ξt
−n)(ak′,t

m − ak′,t−1
m )

]+

,

K∑

k=1

[ ∑

m6=n

K∑

k′=1

∂fk
n

∂ak′
m

(ξt
−n)(ak′,t

m − ak′,t−1
m )

]−}
(2.92)

≤ max

{
K∑

k=1

∑

m6=n

K∑

k′=1

[ ∂fk
n

∂ak′
m

(ξt
−n)(ak′,t

m − ak′,t−1
m )

]+

,

K∑

k=1

∑

m6=n

K∑

k′=1

[ ∂fk
n

∂ak′
m

(ξt
−n)(ak′,t

m − ak′,t−1
m )

]−}
(2.93)

= max

{ ∑

m6=n

K∑

k′=1

K∑

k=1

[ ∂fk
n

∂ak′
m

(ξt
−n)(ak′,t

m − ak′,t−1
m )

]+

,

∑

m6=n

K∑

k′=1

K∑

k=1

[ ∂fk
n

∂ak′
m

(ξt
−n)(ak′,t

m − ak′,t−1
m )

]−}
(2.94)

≤
∑

m6=n

{
max

k′

K∑

k=1

∣∣∣ ∂fk
n

∂ak′
m

(ξt
−n)

∣∣∣
}
·
{

K∑

k′=1

[
(ak′,t

m − ak′,t−1
m )

]+

+
K∑

k′=1

[
(ak′,t

m − ak′,t−1
m )

]−}

(2.95)

=
∑

m6=n

2 ·
{

max
k′

K∑

k=1

∣∣∣ ∂fk
n

∂ak′
m

(ξt
−n)

∣∣∣
}
·

K∑

k′=1

[
(ak′,t

m − ak′,t−1
m )

]+

(2.96)

where (2.91) follows from the definition of pn,t and qn,t and the expression of ak,t
n

and Bk
n(a−n, λ) in (2.15) and (2.24), (2.92) follows from the mean value theorem

for vector-valued functions with ξt = αat + (1− α)at−1 and α ∈ [0, 1]. By (C4),
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it is straightforward to show that the iteration is a contraction by following the

same arguments in Appendix A. The rest of the proof is omitted. ¥

2.11 Appendix E: Proof of Theorem 2.6

The gradient play algorithm in (2.42) is in fact a gradient projection algorithm

with constant stepsize κ. In order to establish its convergence, we first need to

prove that the gradient of the objective in (2.36) is Lipschitz continuous, with a

Lipschitz constant given by L > 0, i.e.

∥∥∥5
( N∑

n=1

un(x)
)−5( N∑

n=1

un(y)
)∥∥∥ ≤ L

∥∥x− y
∥∥, ∀x,y ∈ A. (2.97)

It is known that it has the property of Lipschitz continuity if it has a Hessian

bounded in the Euclidean norm.

The Hessian matrix H of
∑N

n=1 un(a) can be decomposed into two matrices:

H = H1 + H2, in which the elements of matrix H1 are

∂2
[ N∑

n=1

K∑
k=1

hk
n

(
ak

n +
∑

m6=n

F k
mna

k
m

)]

∂ak
m∂aj

l

=





N∑
n=1

∂2hk
n

∂2x

(
ak

n +
∑

m6=n

F k
mna

k
m

)
F k

mnF
k
ln, if k = j

0, otherwise.

(2.98)

with F k
nn = 1 and the elements of matrix H2 are

−
∂2

[ N∑
n=1

K∑
k=1

gk
n(a−n)

]

∂ak
m∂aj

l

= −
N∑

n=1

K∑

k=1

∂2gk
n(a−n)

∂ak
m∂aj

l

. (2.99)

Recall that gk
n(·) is Lipschitz continuous and it satisfies

∥∥∥5 gk
n(x)−5gk

n(y)
∥∥∥ ≤ L′

∥∥x− y
∥∥, ∀n, k,x,y ∈ A−n.

Consequently, we have ‖H2‖2 ≤ NKL′. As a result, we can estimate the Lipschitz
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constant L using the following inequalities

‖H‖2 ≤ ‖H1‖2 + ‖H2‖2 ≤
√
‖H1‖1‖H1‖∞ + NKL′

≤ sup
x,n,k

∣∣∣∂
2hk

n

∂2x

∣∣∣ ·max
k,l

N∑
m=1

N∑
n=1

|F k
mnF

k
ln|+ NKL′.

(2.100)

We can choose the RHS of (2.100) as the Lipschitz constant L . By Proposition

3.4 in [BT97], we know that if 0 < κ < 2/L, the sequence at generated by the

gradient projection algorithm in (2.43) and (2.44) converges to a limiting point

at which the KKT conditions in (2.37)-(2.39) are satisfied. ¥

2.12 Appendix F: Proof of Theorem 2.7

We know from the proof of Theorem 2.6 that, under Condition (C7),
∑N

n=1 un(a)

is Lipschitz continuous and the inequality in (2.97) holds. Recall that
∑N

n=1 un(x)

is continuously differentiable. Therefore, by the descent lemma [BT97], we have

N∑
n=1

un(x) ≥
N∑

n=1

un(y)+(x−y)T ·5( N∑
n=1

un(y)
)−L

2

∥∥x−y
∥∥2

2
, ∀x,y ∈ A. (2.101)

Therefore, in order to prove
∑N

n=1 un(at) ≥ ∑N
n=1 un(at−1), we only need to show

that

(at − at−1)T · 5( N∑
n=1

un(at−1)
) ≥ L

2

∥∥at − at−1
∥∥2

2
(2.102)

for sufficiently small κ. Substituting (2.46) into (2.102), we can see that it is

equivalent to

N∑
n=1

K∑

k=1

(
B
′k
n (at−1

−n )−ak,t−1
n

) · ∂
∑N

n=1 un(at−1)

∂ak,t−1
n

≥ κ ·L
2
·

N∑
n=1

K∑

k=1

(
B
′k
n (at−1

−n )−ak,t−1
n

)2
.

(2.103)

By equation (2.45), we have

B
′k
n (at−1

−n )−ak,t−1
n =

{∂hk
n

∂x

}−1(
λn +νk

n−ν
′k
n +

∑

m6=n

πk,t−1
mn

)−
N∑

m6=n

F k
mna

k,t−1
m −ak,t−1

n

(2.104)
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and

∂
∑N

n=1 un(at−1)

∂ak,t−1
n

=
∂hk

n

∂x

(
ak,t−1

n +
N∑

m6=n

F k
mna

k,t−1
m

)−
∑

m6=n

πk,t−1
mn . (2.105)

By the mean value theorem, there exists ξk
n ∈ R such that

∂hk
n

∂x

(
ak,t−1

n +
N∑

m6=n

F k
mna

k,t−1
m

)−
∑

m6=n

πk,t−1
mn

=
∂hk

n

∂x

(
ak,t−1

n +
N∑

m6=n

F k
mna

k,t−1
m

)−
(
λn + νk

n − ν
′k
n +

∑

m6=n

πk,t−1
mn

)
+

(
λn + νk

n − ν
′k
n

)

=
∂2hk

n

∂2x
(ξk

n) ·
{

ak,t−1
n +

N∑

m6=n

F k
mna

k,t−1
m −

{∂hk
n

∂x

}−1(
λn + νk

n − ν
′k
n +

∑

m6=n

πk,t−1
mn

)}

+ λn + νk
n − ν

′k
n .

Multiplying (2.104) and (2.105) leads to

N∑
n=1

K∑

k=1

(
B
′k
n (at−1

−n )− ak,t−1
n

) · ∂
∑N

n=1 un(at−1)

∂ak,t−1
n

= −
N∑

n=1

K∑

k=1

∂2hk
n

∂2x
(ξk

n) ·
{{∂hk

n

∂x

}−1(
λn + νk

n − ν
′k
n +

∑

m6=n

πk,t−1
mn

)
− ak,t−1

n

−
N∑

m6=n

F k
mna

k,t−1
m

}2

+
N∑

n=1

K∑

k=1

(
B
′k
n (at−1

−n )− ak,t−1
n

) · (λn + νk
n − ν

′k
n ) (2.106)

In the following, we differentiate two cases in which the Lagrange multipliers

λn, ν
k
n, ν

′k
n take different values.

First of all, if λn = νk
n = ν

′k
n = 0 for all k, n, equation (2.106) can be simplified
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as

N∑
n=1

K∑

k=1

(
B
′k
n (at−1

−n )− ak,t−1
n

) · ∂
∑N

n=1 un(at−1)

∂ak,t−1
n

= −
N∑

n=1

K∑

k=1

∂2hk
n

∂2x
(ξk

n) ·
{{∂hk

n

∂x

}−1(
λn + νk

n − ν
′k
n +

∑

m6=n

πk,t−1
mn

)
− ak,t−1

n

−
N∑

m6=n

F k
mna

k,t−1
m

}2

. (2.107)

On the other hand, if λn > 0, νk
n > 0, or ν

′k
n > 0 for some k, n. Due to

complementary slackness in (2.38) and (2.39), We know that

λn > 0 ⇒
K∑

k=1

B
′k
n (at−1

−n ) = Mn ≥
K∑

k=1

ak,t−1
n ,

νk
n > 0 ⇒ B

′k
n (at−1

−n ) = amax
n,k ≥ ak,t−1

n ,

ν
′k
n > 0,⇒ B

′k
n (at−1

−n ) = amin
n,k ≤ ak,t−1

n .

As a result, the last term in (2.106) satisfy

N∑
n=1

K∑

k=1

(
B
′k
n (at−1

−n )− ak,t−1
n

) · (λn + νk
n − ν

′k
n ) =

N∑
n=1

λn

K∑

k=1

(B
′k
n (at−1

−n )− ak,t−1
n

)
+

N∑
n=1

K∑

k=1

νk
n

(
B
′k
n (at−1

−n )− ak,t−1
n

)
+

N∑
n=1

K∑

k=1

ν
′k
n

(
ak,t−1

n −B
′k
n (at−1

−n )
) ≥ 0. (2.108)

Therefore, in both cases, the following inequality holds

N∑
n=1

K∑

k=1

(
B
′k
n (at−1

−n )− ak,t−1
n

) · ∂
∑N

n=1 un(at−1)

∂ak,t−1
n

≥ −
N∑

n=1

K∑

k=1

sup
x

∂2hk
n(x)

∂2x
·
{{∂hk

n

∂x

}−1(
λn + νk

n − ν
′k
n +

∑

m6=n

πk,t−1
mn

)
− ak,t−1

n

−
N∑

m6=n

F k
mna

k,t−1
m

}2

= −
N∑

n=1

K∑

k=1

sup
x

∂2hk
n(x)

∂2x
· (B′k

n (at−1
−n )− ak,t−1

n

)2
. (2.109)
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Finally, we can conclude that the inequality in (2.103) holds for κ ≤ 2
L
·(−maxn,k

supx
∂2hk

n(x)
∂2x

). Recall that Jacobi update requires κ ∈ (0, 1]. The stepsize κ can

be eventually chosen as 0 < κ ≤ min{ 2
L
· (−maxn,k supx

∂2hk
n(x)

∂2x
), 1} ¥

2.13 Appendix G: Upper Bound of ρ(Sk)

Denote 1T = [1 1 · · · 1]T . If we fix 1−rk
m0 for ∀m, k, we have 1T Rk = (1−rk

m0)1
T .

Note that Υk = (I−Rk)−1 = I+
∑∞

i=1(R
k)i. We have 1T Υk = 1T

(
I+

∑∞
i=1(R

k)i
)

=

1T + (1− rk
m0)1

T Υk and 1T Υk = 1
1−rk

m0
1T . Therefore, |Υk|1 = 1

rk
m0

. Since F k
mn =

[Υk]nm

[Υk]nn
and Υk = I +

∑∞
i=1(R

k)i, we know [Υk]nn ≥ 1 for ∀n. Denote a diagonal

matrix diag(Υk) with the entries of Υk on the diagonal. Recall that [Sk]mn = F k
mn

for m 6= n, and [Sk]nn = 0 for n ∈ N . We can conclude that ρ(Sk) ≤ |Sk|∞ ≤
|(Υk)T − diag(Υk)|∞ ≤ |(Υk)T |∞ − 1 = |Υk|1 − 1 = 1

rk
m0
− 1.
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CHAPTER 3

Stackelberg Equilibrium in Power Control

Games

The previous chapter presents the model of ACSCG and provides several sufficient

conditions for various generic distributed algorithms. As a special subclass of the

ACSCG, the multi-user power control problem in frequency-selective interference

channels was investigated from the game-theoretic perspective in several prior

works, including [YGC02, EPT07, HBH06, CYM06, YL06, CHC07]. In these

multi-user wideband power control games, users are modeled as players having

individual goals and strategies. They are competing or cooperating with each

other until they agree on an acceptable resource allocation outcome. Existing

research can be categorized into two types, non-cooperative games and cooperative

games.

First, the formulation of the multi-user wideband power control problem as

a non-cooperative game has appeared in several recent works [YGC02, EPT07].

An iterative water-filling (IW) algorithm was proposed to mitigate the mutual

interference and optimize the performance without the need for a central con-

troller [YGC02]. At every decision stage, selfish users deploying this algorithm

try to maximize their achievable rates by water-filling across the whole frequency

band until a Nash equilibrium is reached. Alternatively, self-enforcing proto-

cols are studied in the non-cooperative scenario, in which incentive compatible
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allocations are guaranteed [EPT07]. By imposing punishments in the case of mis-

behavior and enforcing users to cooperate, efficient, fair, and incentive compatible

spectrum sharing is shown to be possible.

Second, there also have been a number of related works studying dynamic

spectrum management (DSM) in the setting of cooperative games [HBH06, CYM06]

[YL06, CHC07]. Two (near-) optimal but centralized DSM algorithms, the Op-

timal Spectrum Balancing (OSB) algorithm and the Iterative Spectrum Balanc-

ing (ISB) algorithm, were proposed to solve the problem of maximization of a

weighted rate-sum across all users [CYM06, YL06]. OSB has an exponential

complexity in the number of users. ISB only has a quadratic complexity in the

number of users because it implements the optimization in an iterative fash-

ion. An autonomous spectrum balancing (ASB) technique is proposed to achieve

near-optimal performance autonomously, without real-time explicit information

exchanges [CHC07]. These works focus on cooperative games, because it is well-

known that the IW algorithm may lead to Pareto-inefficient solutions [PPR07],

i.e. selfishness is detrimental in the interference channel.

In short, previous research mainly concentrates on studying the existence

and performance of Nash equilibrium in non-cooperative games and developing

efficient algorithms to approach the Pareto boundary in cooperative games. How-

ever, an important intrinsic dimension of this decentralized multi-user interaction

still remains unexplored. Prior research does not consider the users’ availability of

information about other users and their potential to improve their performance

when having this information. Hence, determining what is the best response

strategy of a selfish user if it has the information about how the competing users

respond to interference still needs to be determined. Moreover, it still needs to

be established if such strategies can lead to a better performance than adopting
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the IW algorithm. It is important to look at these scenarios in order to assess the

significance of information availability in terms of its impact on the users’ per-

formance in non-cooperative games, and show why selfish users have incentives

to learn their environment and adapt their rational response strategies [Hay05].

Intuitively, a “clever” user with more information in this non-cooperative game

should be able to gain additional benefits [Hay07].

Throughout this chapter, we differentiate two types of selfish users based on

their response strategies:

1) Myopic user : A user that always acts to maximize its immediate achiev-

able rate. It is myopic in the sense that it treats other users’ actions as fixed,

ignores the dependence between its competitors’ actions and its own action, and

determines its response such that maximize its immediate payoff.

2) Foresighted user : A user that selects its transmission action by considering

the long-term impacts on its performance. It anticipates how the others will

react, and maximizes its performance by considering their reactions. It should be

highlighted that additional information is required to assist the foresighted user

in its decision making.

As opposed to previous approaches considering myopic users [YGC02], we

discuss in this chapter how foresighted users should behave in non-cooperative

power control games. We explicitly show that a strategic user can gain more ben-

efit if it takes its competitors’ information and response strategies into account.

The concept of Stackelberg equilibrium is adopted in order to characterize the

optimal power control strategy of a foresighted user by considering the response

of its competing users. For the two-user case, we formulate the foresighted user’s

decision making to be a bi-level programming problem, show that the optimal

solution is computationally prohibitive, and provide a low-complexity algorithm
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based on Lagrangian duality theory.

We also note that there are already some papers applying Stackelberg equi-

librium to allocate the resources in networking [ABE06]. However, the problems

and the proposed solutions in these papers are completely different from this

chapter. The focus here is to study the strategic behavior of selfish users, which

has not been yet investigated in multi-user interference channels.

The rest of the chapter is organized as follows. Section 3.1 presents the non-

cooperative game model and introduces the concept of Stackelberg equilibrium.

In Section 3.2, using a simple two-user example, we formulate the foresighted

user’s optimal decision making as a bi-level programming problem and discuss

the computational complexity of its optimal solution. Section 3.3 proposes a low-

complexity dual-based approach and provides the simulation results. Section 3.3

also discusses how the required information can be obtained by the strategic users

and the problem formulation in general multi-user case. Concluding remarks are

drawn in Section 3.4.

3.1 System Model

In this section, we describe the mathematical model of the frequency-selective

interference channel and formulate the non-cooperative multi-user power con-

trol game. We introduce the concept of Stackelberg equilibrium and prove the

existence of this equilibrium in the power control game.

3.1.1 System Description

Fig. 3.1 illustrates a frequency-selective Gaussian interference channel model.

There are N transmitters and N receivers in the system. Each transmitter and
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Figure 3.1: Gaussian interference channel model.

receiver pair can be viewed as a player (or user). The whole frequency band

is divided into K frequency bins. In frequency bin k, the channel gain from

transmitter i to receiver j is denoted as Hk
ij, where k = 1, 2, . . . , K. Similarly,

denote the noise power spectral density (PSD) that receiver n experiences as σk
n

and player n’s transmit PSD as P k
n . For user n, the transmit PSD is subject to

its power constraint:
K∑

k=1

P k
n ≤ Pmax

n . (3.1)

Define Pn = {P 1
n , P 2

n , . . . , PK
n } as user n’s power allocation pattern. For a fixed

Pn, if treating interference as noise, user n can achieve the following data rate:

Rn =
K∑

k=1

log2

(
1 +

P k
n |Hk

nn|2
σk

n +
∑

j 6=n P k
j |Hk

jn|2
)

. (3.2)

To fully capture the performance tradeoff in the system, the concept of a rate

region is defined as

R =
{

(R1, . . . , RN) : ∃ (P1, . . . ,PN) satisfying (1) and (2)
}

. (3.3)
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Due to the non-convexity in the capacity expression as a function of power

allocations, the computational complexity of optimal solutions (e.g., doing ex-

haustive search) in finding the rate region is prohibitively high. Existing works

[CYM06, YL06, CHC07] aim to compute the Pareto boundary of this rate region

and provide (near-) optimal performance with moderate complexity. Moreover, it

is noted that cooperation among users is indispensable for this multi-user system

to operate at the Pareto boundary. On the other hand, the interference channel

can also be modeled as a non-cooperative game among multiple competing users.

Instead of solving the optimization problem globally, the IW algorithm models

the users as myopic decision makers [YGC02]. This means that they optimize

their transmit PSD by water-filling and compete to increase their transmission

data rates with the sole objective of maximizing their own performance regardless

of the coupling among users. Under a wide range of realistic channel conditions

[YGC02, SLS07], the existence and uniqueness of the competitive optimal point

(Nash equilibrium) is demonstrated and it can be obtained by the IW algorithm,

which significantly outperforms the static spectrum management algorithms.

Throughout this chapter, we also concentrate on the non-cooperative game

setting. In the IW algorithm, users are assumed to be myopic, i.e., they update

actions shortsightedly without considering the long-term impacts of taking these

actions. We argue that the myopic behavior can be further improved because it

neglects the coupling nature of players’ actions and payoffs. In contrast with pre-

vious approaches, we study the problem of how a foresighted user should behave

rather than taking myopic actions. This investigation provides us some insights

to the following question: why should a strategic user sense its environment and

learn the response strategies of its competitors and consequently, what is the

benefit that a foresighted user can achieve compared with the myopic case?
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Up Down Left           Right1, 0             3, 22, 1             4, 0
Figure 3.2: Stackelberg game: the row player’s payoff is given first in each cell, with the

column player’s payoff following.

To illustrate the foresighted behavior, Fig. 3.2 shows a simple Stackelberg

game [SPG07]. Note that in this game, the row player has a strictly dominant

strategy [FT91], Down. Therefore, two players will end up with a (Down, Left)

play if the row player is myopic. However, if the row player is aware of the column

player’s coupled reaction, they will end up with a (Up, Right) play, which leads

to an increased payoff for both players. It is worth noticing that additional infor-

mation is needed to attain this performance improvement. The row player needs

to know the payoff and the response strategy of the column player. To formulate

how a strategic user can take foresighted actions, we introduce the concept of

Stackelberg equilibrium. The next subsection will define the Stackelberg equilib-

rium and show its existence in the power control game.

3.1.2 Stackelberg Equilibrium

Let Γ = 〈N ,A, u〉 represent the power control game, in which user n’s payoff

un is the its achievable data rate Rn and its action set An is the set of transmit

PSDs satisfying constraint (3.1). Recall that the Nash equilibrium is defined to

be any (a∗1, . . . , a
∗
N) satisfying

un

(
a∗n, a

∗
−n

) ≥ un

(
an, a

∗
−n

)
for all an ∈ An and n = 1, . . . , N, (3.4)

67



where a∗−n = (a∗1, . . . , a
∗
n−1, a

∗
n+1, . . . , a

∗
N) [FT91]. The action a∗n is a best response

(BR) to actions a−n if

un (a∗n, a−n) ≥ un (an, a−n) , ∀ an ∈ An. (3.5)

The set of user n’s best response to a−n is denoted as BRn(a−n).

The Stackelberg equilibrium is a solution concept originally defined for the

cases where a hierarchy of actions exists between users [FT91]. Only one player

is the leader and the other ones are followers. The leader begins the game by

announcing its action. Then, the followers react to the leader’s action. The

Stackelberg equilibrium prescribes an optimal strategy for the leader if its fol-

lowers always react by playing their Nash equilibrium strategies in the smaller

sub-game. For example, in a two player game, where user 1 is the leader and user

2 is the follower, an action a∗1 is the Stackelberg equilibrium strategy for user 1 if

u1 (a∗1, BR2 (a∗1)) ≥ u1 (a1, BR2 (a1)) ,∀a1 ∈ A1. (3.6)

For example, in Fig. 3.2, Up is the Stackelberg equilibrium strategy for the row

player.

Next, we define Stackelberg equilibrium in the general case. Let NE(an) be

the Nash equilibrium strategy of the remaining players if player n chooses to play

an, i.e. NE (an) = a−n, ∀ai = BRi (a−i) , ai ∈ Ai, i 6= n.

Definition 3.1 The strategy profile (a∗n, NE (a∗n)) is a Stackelberg equilibrium

with user n leading iff

un (a∗n, NE (a∗n)) ≥ un (an, NE (an)) ,∀an ∈ An. (3.7)

If multiple Nash equilibria exist in the followers’ sub-game, the definition of

Stackelberg equilibrium becomes more complicated. Interested readers can refer

68



to [ABE06, CMS05] for more details. This chapter does not consider this case

and focus on the channels where a unique Nash equilibrium exists in the sub-

game [SLS07]. In particular, the considered channels satisfies condition (C3). It

has shown that a unique Nash equilibrium for the power control game exists in

these channels and it can be achieved using the IW algorithm [SPB08, SLS07].

In fact, the requirement of hierarchic actions in the original definition of Stack-

elberg equilibrium can be removed in our problem if we consider the repeated

interaction among all the users. Regardless of the initial action order, the fore-

sighted user can always perform the Stackelberg strategy. As long as it changes

its transmit PSD, the other myopic users will water-fill with respect to their up-

dated noise-plus-interference PSDs to gain an immediate increase in transmission

rates until the system converges to an equilibrium. We are interested in the per-

formance achieved at the steady state. Therefore, the initial action order between

the foresighted user and the myopic users does not influence the final outcome

of this game. Note that initially we assume that a single foresighted user exists

in this game. How the users should decide to play foresightedly or myopically

and the extension to the cases where there are multiple foresighted users will

be discussed in Section 3.3. The following theorem establishes the existence of

Stackelberg equilibrium in the considered power control game.

Theorem 3.1 Under the considered channel conditions, the Stackelberg equilib-

rium always exists in the multi-user power control game.

Proof : Suppose user 1 is the only foresighted user in this game. First, user 1’s

maximal achievable rate in an interference-free environment is

Rmax
1 =

K∑

k=1

log2

(
1 + P k∗

1

∣∣Hk
11

∣∣2
/

σk
1

)
, (3.8)
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where P k∗
1 = (λ−σk

1/|Hk
11|2)+ is the water-filling solution, (x)+ = max (0, x), and

λ is a constant satisfying the constraint in (3.1) with equality.

Second, it has been shown that in the considered channels, the existence and

uniqueness of Nash equilibrium are always guaranteed [SLS07]. In the interference

channel consisting of the N−1 followers, whatever form of P1 ∈ A1 user 1 chooses,

they will regard user 1’s transmit PSD as part of the fixed background noise PSD,

i.e. σ̃k
j = σk

j +
∣∣Hk

1j

∣∣2 P k
1 , j 6= 1 . Since the channel gains in the followers’ sub-

game still satisfy the sufficient condition in [SLS07], the convergence to a unique

Nash equilibrium always holds, i.e. a single NE (a1) exists for ∀a1 ∈ A1.

To summarize, since R1 is bounded, and for ∀a1 ∈ A1, the remaining players’

action will always lead to a Nash equilibrium, we have

0 ≤ u1 (a1, NE (a1)) ≤ Rmax
1 , ∀a1 ∈ A1. (3.9)

Therefore, there exist a∗1 ∈ A1 such that

u1 (a∗1, NE (a∗1)) = sup
a1∈A1

{u1 (a1, NE (a1))} .

We can conclude that Stackelberg equilibrium always exists for this power control

game. ¥

3.2 Problem Formulation

In this section, we study how to achieve the Stackelberg equilibrium in the two-

user case, and formulate the foresighted behavior as a bi-level programming prob-

lem. We analyze the computational complexity of the optimal solution, and show

that the optimum is computationally intractable for the bi-level program. We

start from the simplest two-user version, because it is illustrative for understand-

ing the interactions emerging among competing users. The extension to the
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multi-user case will be discussed in Section 3.3.

3.2.1 A Bi-level Programming Formulation

The Stackelberg equilibrium applied to the two-user power control game can be

represented by a bi-level mathematical problem [CMS05], in which the foresighted

user acts as the leader and the other user behaves as the follower. The leader

chooses a transmit PSD to maximize its own benefits by considering the response

of its follower, who reacts to the leader’s transmit PSD by water-filling over

the entire frequency band. Hence, the Stackelberg equilibrium can be found by

solving the following optimization problem:

upper-level

problem





max
P1

K∑

k=1

log2

(
1 +

P k
1

Nk
1 + αk

2P
k
2

)
(a)

s.t.
K∑

k=1

P k
1 ≤ Pmax

1 , P k
1 ≥ 0, (b)

lower-level

problem





P2 = arg max
P′2

K∑

k=1

log2

(
1 +

P
′k
2

Nk
2 + αk

1P
k
1

)
(c)

s.t. P
′k
2 ≥ 0,

N∑

k=1

P
′k
2 ≤ Pmax

2 , (d)

(3.10)

where Nk
1 = σk

1/|Hk
11|2, αk

1 = |Hk
12|2/|Hk

22|2, Nk
2 = σk

2/|Hk
22|2, αk

2 = |Hk
21|2/|Hk

11|2.
The sub-problem in (3.10.a)- (3.10.b) is called the upper-level problem and (3.10.c)-

(3.10.d) corresponds to the lower-level problem. Recall that additional informa-

tion is indispensable to formulate this bi-level program. This information includes

the other user’s channel condition Nk
2 and αk

2, maximum power constraint Pmax
2 ,

and its response strategy, i.e. the IW algorithm. By letting P1 and P2 to be the

transmit PSDs of the IW algorithm PNE
1 and PNE

2 , we can see that the Nash

equilibrium actually gives a lower bound of the problem in (3.10). Furthermore,

by including the opponent’s reaction into the lower-level problem, the user can
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avoid the myopic IW approach and potentially improve its performance. In addi-

tion, as we will show later, user 1’s foresightedness turns out to even improve the

myopic user’s performance. Now we make several illustrative remarks by showing

two simple examples.

Remark 3.1 The Nash equilibrium achieved by the IW algorithm may not solve

the bi-level program (3.10). In other words, there exist other feasible power allo-

cation schemes that can attain strictly better performance than that of the Nash

equilibrium.

Example 3.1 We consider a two-user system with the parameters N = 2, N1
1 =

N2
2 = 4, N2

1 = N1
2 = 1, αk

n = 0.5 for ∀n, k, Pmax
1 = Pmax

2 = 10. In this simple

two-channel scenario, it is easy to derive that R1 = log2[1+P 1
1 /(8.5− 0.25P 1

1 )]+

log2[1 + (10 − P 1
1 )/(1.5 + 0.25P 1

1 )] bits. Because ∂R1

∂P 1
1

< 0, R1 is maximized

when P 1
1 = 0. The achievable rates attained at the Stackelberg equilibrium is

RSE
1 ≈ 2.939 bits and RSE

2 ≈ 3.474 bits. The unique Nash equilibrium is reached

by PNE
1 = {2, 8} and PNE

2 = {8, 2} and its achievable rates are RNE
1 = RNE

2 ≈
2.645 bits.

Remark 3.2 For some channel realizations, the Nash strategy solves the problem

(3.10). If αk
n = 0 for ∀n, k, the upper-level and lower-level problems in bi-level

program (3.10) are reduced to two uncoupled problems and the single user water-

filling solution can achieve the upper bound in (3.8). In addition, we give a

non-trivial example in which αk
n 6= 0 for ∀n, k and the Nash strategy still solves

the problem in (3.10).

Example 3.2 Set the parameters N1
1 , N2

2 in Example 3.1 to be 6, and keep the

remaining ones unchanged. We have R1 = log2[1 + P 1
1 /(11− 0.25P 1

1 )] + log2[1 +
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(10 − P 1
1 )/(1 + 0.25P 1

1 )] bits. In this channel realization, the Nash equilibrium

coincides with the Stackelberg equilibrium. Both equilibria are reached at PNE
1 =

{0, 10} and PNE
2 = {10, 0} and the resulting rates are R1 = R2 ≈ 3.460 bits.

Remark 3.3 As opposed to the narrow-band case [AA03], we would like to high-

light that the degrees of freedom in allocating the power across multiple bands is

essential for the foresighted user to improve its performance. Consider the single-

band case in which K = 1. Note that user i’s achievable rate Ri is monotonically

increasing in its transmitted power Pi. If users selfishly maximize their achiev-

able rates, all of them will transmit at their maximum power in the single band,

which results in the unique Nash equilibrium. It is easy to check that it is also

the unique Stackelberg equilibrium and it is also Pareto efficient.

Although these examples provide us some intuition about the relationship

between NE and SE, we are still interested in computing the Stackelberg equilib-

rium in general scenarios. The following subsection will reformulate the bi-level

program into a single-level problem, which helps us to understand the computa-

tional complexity of the Stackelberg equilibrium in the multi-user power control

games.

3.2.2 An Exact Single-level Reformulation

Bi-level programming problems belong to the mathematical programs having op-

timization problems as constraints. It is well-known they are intrinsically difficult

to solve [CMS05]. To understand the computational complexity, we first trans-

form the original bi-level program into a single-level reformulation with the form
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of

max
P1

K∑

k=1

log2

(
1 +

P k
1

Nk
1 + αk

2g
k
2 (P1, N 2,ααα1,P

max
2 )

)

s.t.

K∑

k=1

P k
1 ≤ Pmax

1 , P k
1 ≥ 0,

(3.11)

in which gk
2 (P1, N 2,ααα1,P

max
2 ) is a function that determines user 2’s allocated

power in the kth channel, N 2 =
{
N1

2 , N2
2 , . . . , NK

2

}
, and ααα1 =

{
α1

1, α
2
1, . . . , α

K
1

}
.

Note that the lower-level problem in (3.10) is a standard convex programming

problem. Its optimum is given by gk
2 (P1, N 2,ααα1,P

max
2 ) =

(
K2 −Nk

2 − αk
1P

k
1

)+
,

where K2 is a constant that satisfies
∑K

k=1 P k
2 = Pmax

2 . In practice, K2 is usually

obtained using numerical (e.g. bisection) methods. In fact, an explicit expression

of gk
2 (P1, N 2,ααα1,P

max
2 ) is needed to analytically handle single-level formulation.

Towards this end, we first define a permutation π : {1, 2, . . . , K} → {1, 2, . . . , K},
which ranks all the channels based on their noise plus interference PSDs and

satisfies

π (f1) < π (f2) , if N f1

2 + αf1

1 P f1

1 < N f2

2 + αf2

1 P f2

1 . (3.12)

Then, we can extend the results in [AAG08], and have the following closed-form

expression:

gk
2 (P1, N 2,ααα1,P

max
2 ) =





1
f

(
Pmax

2 +
f∑

m=1

(
N

π−1(m)
2 +

α
π−1(m)
1 P

π−1(m)
1

))−Nk
2 − αk

1P
k
1 , π(k) ≤ f,

0, π (k) > f,

(3.13)

where f can be found according to the condition:

f
(
N

π−1(f)
2 + α

π−1(f)
1 P

π−1(f)
1

)
−

f∑
m=1

(
N

π−1(m)
2 + α

π−1(m)
1 P

π−1(m)
1

)
< Pmax

2 ≤

(f + 1)
(
N

π−1(f+1)
2 + α

π−1(f+1)
1 P

π−1(f+1)
1

)
−

f+1∑
m=1

(
N

π−1(m)
2 + α

π−1(m)
1 P

π−1(m)
1

)
.

(3.14)
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We can see that function gk
2 (P1, N 2,ααα1,P

max
2 ) ranks all the frequency channels

based on the channel conditions and gradually increases the water-level until the

maximal power constraint is satisfied.

Even though we have the closed-form expression of gk
2 (P1, N 2,ααα1,P

max
2 ), the

single-level problem (3.11) is still intractable due to its non-convexity. Generally

speaking, the global optimum can only be found via an exhaustive search. If we

define the granularity in the foresighted user’s transmit power as ∆P , then the

value of P k
1 can be limited to the set {0, ∆P , . . . ,Pmax

1 } . By searching all the

possible combinations, the optimum can be found. Hence, such an exhaustive

search in
(
P 1

1 , . . . , PK
1

)
has a overall complexity of O((Pmax

1 /∆P )K).

Recently, Lagrangian duality theory has been successfully used to solve non-

convex weighted sum-rate maximization in interference channel with moderate

computational complexity [CYM06, YL06, CHC07]. We notice that the problem

in (3.11) are similar with the problems investigated in these works in that the

optimization variables P1 also appear in the denominators of the objective func-

tion. The following sections will revisit these dual approaches and show that these

methods cannot reduce the computational complexity of problem (3.11), thereby

demonstrating the challenges involved in optimally computing the Stackelberg

equilibrium.

3.2.3 Lagrangian Dual Approach for Non-convex Problems

We continue studying the simple two-user scenario to introduce the dual method.

In a two-user frequency-selective interference channel, the weighted sum-rate
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maximization investigated in [CYM06, YL06, CHC07] is given by

max
P1,P2

ω

K∑

k=1

log2

(
1 +

P k
1

Nk
1 + αk

2P
k
2

)
+ (1− ω)

K∑

k=1

log2

(
1 +

P k
2

Nk
2 + αk

1P
k
1

)

s.t.

K∑

k=1

P k
1 ≤ Pmax

1 , P k
1 ≥ 0,

K∑

k=1

P k
2 ≤ Pmax

2 , P k
2 ≥ 0,

(3.15)

in which ω ∈ [0, 1] is a fixed weight. The dual method forms the following

Lagrangian

L (P1,P2, λ1, λ2) =
K∑

k=1

{
ω log2

(
1 +

P k
1

Nk
1 + αk

2P
k
2

)
+

(1− ω) log2

(
1 +

P k
2

Nk
2 + αk

1P
k
1

)
− λ1P

k
1 − λ2P

k
2

}
,

(3.16)

where λ1, λ2 ≥ 0 are Lagrangian dual variables. The Lagrangian dual function is

defined as

D (λ1, λ2) = max
P1,P2Â−0

L (P1,P2, λ1, λ2) . (3.17)

Denote the objective function of problem (3.15) as f (P1,P2) and the overall

complexity of exhaustive search is O((
∏

i (P
max
i /∆P ))K). From optimization

theory [BV04], we know that, for arbitrary feasible P1,P2, we have f (P1,P2) ≤
D (λ1, λ2) . This leads to min

λ1,λ2

D (λ1, λ2) ≥ max
P1,P2

f (P1,P2) , and min
λ1,λ2

D (λ1, λ2)

provides an upper bound of the optimal value of the problem in (3.15). Gen-

erally speaking, if f (P1,P2) is non-convex, the duality gap min
λ1,λ2

D (λ1, λ2) −
max
P1,P2

f (P1,P2) is not zero.

Fig. 3.3 summarizes the three key steps of a dual method, the OSB algorithm

[CYM06, YL06], that can efficiently find the global optimum of the problem in

(3.15). First, for fixed λ1, λ2, the maximization of L (P1,P2, λ1, λ2) over P1,P2

in (3.17) is decomposed into N uncoupled sub-problems, and each of them cor-

responds to a per-bin optimization. Therefore, the overall complexity of maxi-

mizing L (P1,P2, λ1, λ2) over P1,P2 is only O(K
∏

i(P
max
i /∆P )). Second, it is
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Figure 3.3: Key steps of the dual approach of non-convex weighted sum-rate maximization.

shown that, for fixed n, the sum power of user n’s optimal power allocation in a

multi-carrier system is a monotonic function of λn(Lemma 1, in [CYM06]). This

property guarantees that the bi-section dual update over λ1, λ2 will converge to

the dual optimum. Third, it is also proven that, if the number of frequency

bins K is large enough and {Hk
mn} and {σk

n} are smooth in the spectral domain,

the optimization problem (3.15) satisfies the so-called “time-sharing property”

(Theorem 1 and 2, in [YL06]), and the duality gap of this non-convex problem

is zero. Combining the three properties together, the dual approach can find the

global optimum with the computational complexity of O(T1K
∏

i(P
max
i /∆P )),

where T1 is the number of iterations needed for dual-update. We can see that

the complexity of the dual approach is greatly reduced compared with that of

the exhaustive search in the primal domain. In addition, it is found in [YL06]

that, if D (λ1, λ2) is approximated using a local maximum of L (P1,P2, λ1, λ2),

the ISB algorithm can achieve near-optimal performance with the computational

complexity of O(T1T2K
∑

i(P
max
i /∆P )), where T2 is the number of iterations

required for evaluating the local maximum.
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Figure 3.4: Complexity and properties of the dual approach of computing the Stackelberg

equilibrium.

3.2.4 The Lagrangian Dual Approach for Computing Stackelberg Equi-

librium

Now we apply the dual approach for our problem in (3.11) to understand why

the Stackelberg equilibrium in our considered problem is intrinsically difficult to

compute. Fig. 3.4 summarizes the key properties of the dual approach that will be

addressed in the following parts. Denote the objective function of problem (3.11)

as f ′ (P1) . Consider its dual objective function D′ (µ) for a fixed Lagrangian

dual variable µ:

D′ (µ) = max
P1Â−0

L′ (P1, µ) , (3.18)

in which L′ (P1, µ) =
K∑

k=1

log2

(
1 +

P k
1

Nk
1 +αk

2gk
2(P1,N2,α1α1α1,Pmax

2 )

)
+µ

(
Pmax

1 −
K∑

k=1

P k
1

)
.

For a given µ, denote the optimal power allocation that maximizes (3.18) as

P1 (µ) = arg max
P1Â−0

L′ (P1, µ) and P k
1 (µ) = [P1 (µ)]k, The following lemma holds

for P1(µ):

Lemma 3.1
∑K

k=1 P k
1 (µ) is monotonic decreasing in µ. In addition, we have

lim
µ→∞

∑K
k=1 P k

1 (µ) = 0 and
∑K

k=1 P k
1 (0) = +∞.

Proof : It is easy to see that
∑K

k=1 P k
1 (0) = +∞. The rest of the proof is the

same as in Lemma 1 in [CYM06].¥
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Figure 3.5: Duality gap for the problem in (3.11).

Fig. 3.5 gives a graphical illustration of the above Lemma. Consider a se-

quence of optimization problems similar with (3.11). These problems are pa-

rameterized by the constraint imposed over user 1’s maximal sum power. The

solid curve in Fig. 3.5 is a plot of the optimal value
(∑K

k=1 P ∗k
1 , f ′ (P∗

1)
)

as this

constraint varies. The curve is plotted with
∑K

k=1 P ∗f
1 on the x -axis. The y-

axis is located at the point where
∑K

k=1 P ∗k
1 = Pmax

1 . The intersection of the

curve with the y-axis is the optimum of (3.11), i.e. max
P1

f ′ (P1). For a fixed

µ, by drawing a tangent line to the
(∑K

k=1 P ∗k
1 , f ′ (P∗

1)
)

curve and measuring

the intersection of this tangent line with the y-axis, the value of D′ (µ) can be

graphically obtained. According to Lemma 3.1, as µ increases, the x -axis value

of the tangent point monotonically increases. We denote µ∗ = arg min
µ

D′ (µ).

Recall that Lemma 3.1 does not claim the continuity of
∑K

k=1 P k
1 (µ) in µ. It

is because the allocated powers in different frequency bins are coupled due to

function gk
2 (P1, N 2,ααα1,P

max
2 ) and the time-sharing property in [YL06] is not
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guaranteed for problem (3.11). The discontinuity may lead to nonzero duality

gap, i.e. at least two tangent points exist on the tangent line in Fig. 3.5 and

they correspond to different power constraints Px
1 and Py

1. If the duality gap

is positive, the following theorem indicates that D′ (µ∗) provides a tighter upper

bound of the achievable rate than Rmax
1 in (3.8).

Theorem 3.2 If the duality gap is nonzero, i.e. D′ (µ∗) > max
P1

f ′ (P1), the dual

optimum provides a tighter upper bound of user 1’s maximal achievable rate than

the bound in (8), i.e. D′ (µ∗) < Rmax
1 .

Proof : As shown in Fig. 3.5, the non-zero duality gap implies that there exist at

least two possible values for
∑K

k=1 P k
1 (µ∗) , which are denoted as Px

1 and Py
1 and

they satisfy Px
1 < Pmax

1 < Py
1 . Denote the optimal power allocation of having

power constraints Px
1 and Py

1 as P−
1 and P+

1 respectively. We have

D′ (µ∗) = f ′
(
P−

1

)
+ µ∗

(
Pmax

1 −
K∑

k=1

P−k
1

)
= f ′

(
P+

1

)
+ µ∗

(
Pmax

1 −
K∑

k=1

P+k
1

)
.

(3.19)

Moreover, since Px
1 < Pmax

1 < Py
1, there exists 0 < υ < 1 such that Pmax

1 =

υPx
1 + (1 − υ)Py

1. Immediately, we get D′ (µ∗) = υf ′
(
P−

1

)
+ (1− υ) f ′

(
P+

1

)
.

It corresponds to the time-sharing scenario, in which the power allocation P−
1 is

adopted for time-fraction υ and P+
1 for time-fraction 1−υ. Consider the problem

of allocating user 1’s power subject to the maximal power constraint Pmax
1 in the

interference-free environment. We know that the optimal solution is the single-

user water-filling. Noting that Pmax
1 = υPx

1 + (1 − υ)Py
1 and Px

1 6= Py
1, the

aforementioned time-sharing strategy is sub-optimal for this problem. Therefore,
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we have

D′ (µ∗) = υf ′
(
P−

1

)
+ (1− υ) f ′

(
P+

1

) ≤ υ

K∑

k=1

log2

(
1 +

P−k
1

∣∣Hk
11

∣∣2
σk

1

)
+

(1− υ)
K∑

k=1

log2

(
1 +

P+k
1

∣∣Hk
11

∣∣2
σk

1

)
<

K∑

k=1

log2

(
1 +

P k∗
1

∣∣Hk
11

∣∣2
σk

1

)
= Rmax

1 ,

(3.20)

and this concludes the proof. ¥

By Theorem 3.2, evaluating the dual function leads to a tighter upper bound

of Stackelberg equilibrium than Rmax
1 . However, it is unfortunate that the compu-

tational complexity of optimally maximizing L′ (P1, µ) is still O((Pmax
1 /∆P )K).

This is because term gk
2 (P1, N 2,ααα1,P

max
2 ) in the denominator term of (3.11) is

also a function of the allocated power P k′
1 (k′ 6= k) , which makes it impossible to

decouple the maximization in (3.18) into K independent sub-problems. To con-

clude, the complexity of optimal solution in the dual domain is the same as the

primal approach, which again highlights the fact that the Stackelberg equilibrium

is difficult to compute.

3.3 Low-complexity Algorithm, Simulations, and Exten-

sions

In this section, we propose a low-complexity dual algorithm to search the Stackel-

berg equilibrium and examine its achievable performance via extensive numerical

simulations. We also discuss how the strategic users can obtain the required

information and the extensions to general multi-user scenarios.
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Table 3.1: Algorithm 3.1: A low-complexity dual algorithm.

Input: Pmax
1 ,Pmax

2 , Nk
1 , Nk

2 , αk
1, α

k
2 for ∀k

Initialize: P1 = PNE
1 , µmax, µmin

Repeat

µ = 1
2

(
µmax + µmin

)
.

Repeat

for k = 1 to K,

set P k
1 = arg max

P1

K∑
k=1

{
ln

[
1 +

P k
1

Nk
1 +αk

2gk
2(P1,N2,ααα1,Pmax

2 )

]
− µP k

1

}
by

keeping P 1
1 , . . . , P k−1

1 , P k+1
1 , . . . , PK

1 fixed.

end

until
(
P 1

1 , . . . , PK
1

)
converges

if
∑K

k=1 P k
1 > Pmax

1 , µmin = 1
2

(
µmax + µmin

)
; else µmax = 1

2

(
µmax + µmin

)
.

until it converges

3.3.1 A Low-Complexity Dual Approach

As we have shown, the dual approach cannot reduce the complexity of the global

optimum of problem (3.11). However, inspired by the ISB algorithm [YL06],

we develop an efficient dual approach, which is listed as Algorithm 3.1. The

basic idea of the algorithm is to approximately evaluate D′ (µ) by locally opti-

mizing L′ (P1, µ). For fixed µ, the algorithm finds the optimal P k
1 while keeping

P 1
1 , . . . , P k−1

1 , P k+1
1 , . . . , PK

1 fixed, and changes the index f until it converges to

a local maximum for L′ (P1, µ). Then the algorithm updates µ using bi-section

search and repeats the procedure above until the convergence is achieved.

As discussed in [YL06], the local optimum depends on the initial starting point

and the ordering of iterations. Moreover, the proof of convergence of the whole
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Table 3.2: User 1’s computational complexity for different algorithms.

Algorithm Computational complexity

Exhaustive search O((Pmax
1 /∆P )K)

Algorithm 3.1 O(T1T2KPmax
1 /∆P )

Iterative water-filling O(T3K)

algorithm becomes an issue. Algorithm 3.1 sets the Nash equilibrium as the initial

starting point. In most of the experimental setting we have tested, Algorithm 3.1

has been observed to converge to a feasible solution within 10-15 iterations. The

computational complexity of this iterative algorithm is only O(T1T2KPmax
1 /∆P )

and it reduces the complexity of the optimal exhaustive search by a factor of

O((Pmax
1 /∆P )K−1

/
(T1T2K)) , which is considerably large for small ∆P and large

K . Table 3.2 summarizes the computational complexity comparison for user 1

if it adopts different algorithms, in which T3 is the number of iterations required

in the iterative water-filling algorithm.

3.3.2 Illustrative Results

In this sub-section, we evaluate the performance of Algorithm 3.1 by comparing

with the IW algorithm. We simulate a wireless system with 20 sub-carriers over

the 6.25-MHz band. We assume that Pmax
1 = Pmax

2 = 200 and σk
1 = σk

2 = 0.01.

To evaluate the performance, we tested 105 sets of frequency-selective fading

channels where a unique Nash equilibrium exists, which are simulated using a

four-ray Rayleigh model with the exponential power profile and 160 ns delay

between two adjacent rays [Rap96]. The simulated power of each ray decreases

exponentially according to its delay. The total power of all rays of Hk
11 and Hk

22

is normalized as one, and that of Hk
12 and Hk

21 is normalized as 0.5.
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Figure 3.6: User 1’s power allocation using different algorithms.

Fig. 3.6 and 3.7 show the power allocations for both users using different

algorithms. In the IW algorithm, each user water-fills the whole frequency band

by regarding its competitor’s transmit PSD as background noise until the Nash

equilibrium is achieved. In contrast, user 1 does not water-fill if it adopts Algo-

rithm 3.1. For example, in Fig. 3.6, user 1 allocates a large amount of power

in frequency bin 3 even though it can gain an immediate increase in R1 by re-

allocating some of its power in the frequency bins 5 and 6 where the noise plus

interference PSD is below its water-levels in the frequency bins 7-12.

Denote user i’s achieved rate by deploying Algorithm 3.1 as R′
i . Fig. 3.8

shows the simulated cumulative distribution functions (cdf) of R′
i/R

NE
i . From

the curve, Algorithm 3.1 achieves a higher rate for the foresighted user in all

the simulated realizations. The average rate improvement that Algorithm 3.1

provides over the IW algorithm is 38%. In addition, it is surprising to find that,
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Figure 3.7: User 2’s power allocation using different algorithms.

in 95% of the simulation settings, Algorithm 3.1 also results in a higher rate R′
2

than RNE
2 for the myopic user, and the average rate improvement is 45%. This is

because user 1’s Stackelberg strategy mitigates its interference caused to user 2.

We also simulate the scenarios in which the total power of Hk
12 and Hk

21 is

normalized as 0.25 and all the other parameters remain the same as above. Fig.

3.9 shows the simulated cdfs of R′
i/R

NE
i . The average rate improvement for user 1

is 27% and that of user 2 is 32%. It is intuitive that the average rate improvement

is decreasing when the power of Hk
12 and Hk

21 decreases, because the interference

coupling between users and the foresighted user’s ability in shaping the myopic

user’s response are both reduced.
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Figure 3.8: Cdfs for the ratio of R′i/RNE
i (

∑
k

∣∣Hk
12

∣∣2 =
∑

k

∣∣Hk
21

∣∣2 = 0.5).

3.3.3 Information Acquisition

Previous sections mentioned that, in order to play the Stackelberg equilibrium,

the additional information about the competing user’s CSI, maximum power

constraint, and power allocation strategy is indispensable. In practice, there are

several possible methods to acquire this required information.

First, the myopic user has the incentive to provide the required information,

because its performance can be greatly improved if the foresighted player knows

the myopic player’s private information. In the distributed setting, users can

individually decide whether or not to play the Stackelberg strategy based on their

computational hardware constraints. The user that wants to behave myopically

can reveal its information to the foresighted user. This can be viewed as the

user’s cooperative behavior to avoid mutual interference.

When no information exchanges among users are possible, the alternative
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∣∣2 = 0.25).

way for users to gather this information is through predictive modeling. If the

foresighted user strategically changes its power allocation, it can measure and

model the resulting interference PSD, i.e. estimate the functional expression

of gk
2 (P1, N 2,ααα1,P

max
2 ), without any information exchange among users. For

instance, in the next chapter, we will show that the foresighted user can effectively

model its experienced interference as a linear function of its own allocated power,

formulate a local approximation of the original bi-level program, and substantially

improve both users’ achievable rates.

3.3.4 Extensions to Multi-user Games

The two-user formulation can be extended to the general cases in which multiple

users can be myopic or foresighted. The analysis in these cases becomes much

more involved. We denote the number of foresighted user as nf and the number

of myopic user as nm. We briefly address two remaining cases as follows.
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In the first case, nf = 1, nm > 1. As in (3.11), we can still have the following

single-level formulation:

max
P1

K∑

k=1

log2


1 +

P k
1

Nk
1 +

nm+1∑
n=2

αk
n1q

k
n

(
P1, N ,ααα,Pmax

2 , . . . ,Pmax
nm+1

)




s.t.

K∑

k=1

P k
1 ≤ Pmax

1 , P k
1 ≥ 0,

(3.21)

in which Nk
i = σk

i /|Hk
ii|2, N =

{
Nk

i : i = 2, . . . , nm + 1, k = 1, . . . , K
}

,ααα =
{
αk

ij :

i = 1, . . . , nm + 1, j = 2, . . . , nm + 1, k = 1, . . . , K
}
, and qk

n (P1, N ,ααα,Pmax
2 , . . . ,

Pmax
nm+1

)
is the function determining user n’s allocated power in channel k. As a

general from of the two-user case, problem (3.21) is also non-convex. It is easy

to verify that Lemma 3.1 and Theorem 3.2 still hold. Although it is difficult to

analytically derive qk
n

(
P1, N ,ααα,Pmax

2 , . . . ,Pmax
nm+1

)
, we are still able to numeri-

cally evaluate it. Hence, Algorithm 3.1 can be applied in this case by replacing

its lines 7 with numerically finding local maxima of

K∑

k=1


log2


1 +

P k
1

Nk
1 +

nm+1∑
n=2

αk
n1q

k
n

(
P1, N ,ααα,Pmax

2 , . . . ,Pmax
nm+1

)


− µP k

1


.

We simulate some three-user scenarios in which
∑K

k=1

∣∣Hk
ij

∣∣2 = 0.25 for i 6=
j, Pmax

i = 200, and σk
i = 0.01, and all the other parameters remain the same as

Section 3.3.2. Fig. 3.10 shows the simulated cdfs of R′
i/R

NE
i . The average rate

improvement for user 1 is 34% and that of user 2 and 3 is 10.5%. From Fig. 3.10,

we can see that, the Stackelberg strategy also benefits the two myopic users in

more than 83% of the channel realizations.

Assume now that we have multiple foresighted users, i.e. nf > 1, nm ≥ 1.

In this case, the single objective function in the original upper-level problem dis-

appears and it becomes a multi-objective optimization problem. Using similar
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Figure 3.10: Cdfs for the ratio of R′i/RNE
i (

∑
k

∣∣Hk
ij

∣∣2 =0.25, i 6= j).

arguments in Theorem 3.1, we can show that the Nash equilibrium still exists in

the followers’ game. For these foresighted users, a reasonable outcome is to choose

an operating point in the set Rnf =
{(

R1, . . . , Rnf

)
: Ri ≥ RNE

i ,∀i = 1, . . . , nf

}
,

where RNE
i is user i’s achievable rate if all the users are myopic. This point can

be determined based on the negotiation among the foresighted users. Coopera-

tive game theory provides many solution concepts, e.g. bargaining, for choosing

the operating point [FT91]. Note that the overall game in this scenario is a

mixture of cooperation and competition in that the cooperation exists among

the foresighted users while myopic players compete with each other. A possible

way of achieving the boundary point on Rnf is to let some coordinator solve the

following weighted sum-rate maximization and determine the transmitted PSDs
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for different foresighted users:

max
P1,...,Pnf

K∑

k=1

ωi log2


1 +

P k
i

Nk
i +

nf+nm∑
n=nf+1

αk
niq

k
n

(
P1, . . . ,Pnf

, N ,ααα,Pmax
nf+1, . . . ,P

max
nf+nm

)




s.t.

K∑

k=1

P k
i ≤ Pmax

i , P k
i ≥ 0, Ri ≥ RNE

i , i = 1, . . . , nf ,

(3.22)

in which ωi ≥ 0 is user i’s weight. Although this problem is generally difficult to

solve optimally, some low-complexity methods similar to Algorithm 3.1 can be

adopted to obtain sub-optimal solutions.

3.4 Concluding Remarks

This chapter considers the strategic behavior in determining the transmit power

PSD for selfish users sharing a frequency-selective interference channel. We adopt

the game theoretic concept of Stackelberg equilibrium and model the two-user

case as a bi-level programming problem. We show that the Stackelberg equilib-

rium is intrinsically difficult to compute and propose a low-complexity approach

based on Lagrangian dual theory. Numerical results show the strategic user

should avoid shortsighted Nash strategy and it can substantially improve both

users’ performance if it knows the CSI and response strategy of the competing

user. Operational methods for acquiring the necessary information and extensions

to multi-user scenarios are proposed. Obtaining satisfactory performance with

minimal information exchange while multiple foresighted users exist is identified

as a problem for further investigation.
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CHAPTER 4

Conjectural Equilibrium in Power Control

Games

For power control games, the previous chapter uses the Stackelberg equilibrium

(SE) formulation to investigate the best response strategy of a selfish user that

knows its myopic opponents’ private information, including their channel state

information and power constraints. It was shown that, surprisingly, a foresighted

user playing the SE can improve both its performance as well as the performance

of all the other users. These results highlight the significance of information avail-

ability in power control games. However, one key question remains unsolved: how

should a foresighted user acquire its desired information and adapt its response?

First, as opposed to the approach in the previous chapter, which assumes

a foresighted user having perfect knowledge of its competitors’ responses to its

actions, we discuss in this chapter how the foresighted user without any such

a priori knowledge can accumulate this knowledge and improve its performance

when participating in the power control game. We propose that the foresighted

user can explicitly model its competitors’ response as a function of its power

allocation by repeatedly interacting with the environment and observing the re-

sulting interference. Second, we introduce the concept of conjectural equilibrium

(CE) proposed by Wellman and others [WH98, FJQ04] to characterize the strate-

gic behavior of a user that models the response of its myopic competing users,
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and the existence of this equilibrium in the power control game is proven. Some

previously adopted solutions, including NE and SE, are shown to be special cases

of the CE. The basic notion of CE was first proposed by Hahn in the context of a

market model [Hah77]. A general multi-agent framework is proposed in [WH98]

to study the existence of and the convergence to CE in market interactions.

Specifically, a strategic user is assumed to model the market price as a linear

function of its desired demand. It is observed that it may be better or worse off

than without modeling, depending on its initial belief. However, we note that

using the linear model is purely heuristic in [WH98]. In contrast to this heuristic

belief formation, we apply CE in the power control game, because it provides a

practical solution concept to approach the performance bound of SE. Finally, we

show that deploying the linear model to form conjectures can suitably explore

the problem structure of the power control game, and therefore, it can lead to

a substantial performance improvement. Practical algorithms are developed to

form accurate beliefs and select desirable power allocation strategies. It is shown

that, a foresighted user without any a priori knowledge can effectively learn how

the other users will respond to its actions and guide the system to an operating

point having comparable performance to Algorithm 3.1, where perfect a priori

knowledge is assumed.

The rest of the chapter is organized as follows. Section 4.1 introduces the

concept of CE and Section 4.2 proves the existence of this CE in the power control

game. Section 4.3 develops practical algorithms to form beliefs and approach CE.

Numerical results are provided in Section 4.4 to show that a foresighted user can

achieve substantial performance improvement if it models its competitors in the

power control game. Concluding remarks are drawn in Section 4.5.
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4.1 Conjectural Equilibrium

As discussed in Chapter 3, to find the SE in the power control game, we need

to solve the bi-level programming problem in (3.21), where user 1 is assumed to

be the foresighted user. It should be pointed out that the foresighted user needs

to know the private information {σk
n}, {αk

mn}, {Pmax
n } of all its competitors in

order to formulate the above optimization. The approach in the previous chap-

ter assumes that the foresighted user has the perfect knowledge of this private

information. Importantly, it was shown in Chapter 3 that users’ performance is

substantially improved compared with that of IW algorithm if the foresighted

user plays the SE strategy, even though the remaining users behave myopically.

However, how such a foresighted user should accumulate this required informa-

tion remains unsolved. In the remaining part of this chapter, we will show that

the foresighted user can obtain this information and improve its performance

by forming conjectures over the behavior of its competitors through repeated

interaction with the environment.

In a game-theoretic setting, which equilibria will be played is determined

based on the existing assumptions about the players’ knowledge and beliefs. For

example, the standard NE solution is a set of strategies where no player has a

unilateral incentive to change its strategy. An implicit underlying assumption

is that each Nash player takes the other players’ actions as given. Therefore, it

chooses to myopically maximize its own payoff [FT91]. Another example is that

of a SE strategy, where the foresighted user needs to know the structure of the

resulting NE(an) for any an ∈ An and believes that all the remaining players

play the NE strategy. Summarizing, the players operating at equilibrium can be

viewed as decision makers behaving optimally with respect to their beliefs about

the policies adopted by the other players.
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To rigorously define the CE, we need to use the reformulation of the strategic

game Γ = (N ,A, u,S, s) defined in (1.4). S = ×n∈NSn is the state space, where

Sn is the part of the state relevant to the nth user. Specifically, the state in

the power control game is defined as the interference that users experience. The

utility function u = ×n∈Nun is a map from users’ state space and actions to real

numbers, un : Sn×An →R. The state determination function s = ×n∈N sn maps

joint actions to states for each component sn : A → Sn. Each user cannot directly

observe the actions chosen by the others, and each user has some belief about the

state that would result from performing its available actions. The belief function

s̃ = ×n∈N s̃n is defined to be s̃n : An → Sn such that s̃n (an) represents the state

that the player n believes that would result if it selects action an. Notice that

the beliefs are not expressed in terms of other player’s actions and preferences,

and the multi-user coupling in these beliefs is captured directly by individual

users forming conjectures of the effects of their own actions. In non-cooperative

scenarios, each user chooses the action an ∈ An if it believes this action maximizes

its utility.

Definition 4.1 In game Γ, a configuration of belief functions (s̃∗1, . . . , s̃
∗
N) and

a joint action a∗ = (a∗1, . . . , a
∗
N) constitute a conjectural equilibrium, if for each

n ∈ N ,

s̃∗n (a∗n) = sn(a∗1, . . . , a
∗
N) and a∗n = arg max

an∈An

un (s̃∗n (an), an) . (4.1)

From the definition, we can see that, at CE, all users’ expectations based

on their beliefs are realized and each user behaves optimally according to its

expectation. In other words, users’ beliefs are consistent with the outcome of the

play and they behave optimally with respect to their beliefs. CE considers the

users’ beliefs rather than their perfect knowledge NE (an) as in SE, which makes
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CE an appropriate solution concept when the perfect knowledge is not available.

The key problem is how to configure the belief functions such that it leads to a

CE having a satisfactory performance.

4.2 Existence of CE in Power Control Games

In this section, we discuss how to configure a user’s belief about its experienced

interference as a linear function of its transmit power, and show that such CE

exists and it is a relaxation of both NE and SE. We begin by stating several

fundamental assumptions used throughout the investigation hereafter.

Assumption 4.1 There is only one foresighted user modeling its competitors’

reaction as a function of its allocated power, and all the remaining users are

myopic users that deploy the IW algorithm. Without loss of generality, we assume

that this foresighted user is user 1.

Assumption 4.2 Every user is able to perfectly measure its experienced equiva-

lent noise PSD σk
n and interference PSD

∑N
i=1,i6=n αk

inP
k
i in all frequency channels.

Assumption 4.3 Users 2, . . . , N react to any small variation in their experi-

enced interference by setting their power allocations according to the water-filling

strategy.

Assumption 4.4 In the lower-level problem formed by user in (3.21), there al-

ways exists a unique NE and the IW algorithm converges to this unique NE. A

sufficient condition that guarantee the uniqueness of NE is condition (C3).

Next, we formally define the concept of stationary interference.
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Definition 4.2 The stationary interference that user 1 experiences in the kth

channel is the accumulated interference Ik
1 =

∑N
i=2 αk

i1P
k
i when best-response

users 2, . . . , N reach their NE in the lower-level problem in (3.21). Note that

Ik
1 is in fact a function of user 1’s power allocation P1 =

[
P 1

1 , . . . , PK
1

]
in the

power control game and it can also be denoted as Ik
1 (P1).

4.2.1 Linear Belief of Stationary Interference

As discussed before, both the state space and belief functions need to be defined

in order to investigate the existence of CE. In the market models for pure ex-

change economy [WH98], the market price is impacted by the other consumers’

announced demand. Therefore, it is natural to define the state to be the market

price in such scenarios. However, the proposed approach in [WH98] that mod-

els and updates the belief on the market price as a linear function of the excess

demand is entirely heuristic. This is not the case in our setting, where forming

linear conjectures fits the natural structure of the considered interference game.

In the power control game, we define state Sn to be the stationary interference

caused to user n, because besides its own power allocation, its utility only de-

pends on the interference that its competitors cause to it. Notice that the action

available to user n is to choose the transmitted power allocations subjected to

its maximum power constraint. By the definition of belief function, we need to

express the stationary interference as a function of the transmitted power. As

we will see later, it is natural to deploy linear belief models due to the linearity

of the caused stationary interference in terms of the allocated power, and hence,

forming such beliefs can lead to significant performance improvements because

they capture the inherent characteristics of the actual interference coupling.

Define Pk+
1 ,Pk−

1 as Pk+
1 =

[
P 1

1 , . . . , P k
1 + ε, . . . , PK

1

]
, Pk−

1 =
[
P 1

1 , . . . , P k
1 − ε,
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. . . , PK
1

]
for arbitrarily small positive variation ε in power. Given user 1’s power

allocation P1, NEk (P1) =
[
P k

2 , . . . , P k
N

]T
represents the power that user 2, . . . , N

allocate in the kth channel at equilibrium. Vector αααk =
{
αk

ij : i 6= j
}

contains

channel gains in the kth frequency bin. Indicator function y = sign (x) is a

mapping of RN−1 → {0, 1}N−1, which is defined to be: yi = 1, if xi > 0, and

yi = 0, otherwise. Based on these notations, the following theorem motivates us

to develop linear belief functions of stationary interference.

Theorem 4.1 If the number of frequency bins K is sufficiently large, the first

derivative of the stationary interference that user 1 experiences in the kth channel

with respect to its allocated power in the mth channel satisfies

∂Ik
1

∂P k
1

= c
(
αααk, sign (NEk(P1))

)
, if there does not exist n ∈ {2, . . . , N}

satisfying P k
n = 0 and λk

n = 0;

∂Ik
1

∂P k
1

∣∣∣∣
P k

1→P k+
1

= c
(
αααk, sign

(
NEk

(
Pk+

1

)))
,

∂Ik
1

∂P k
1

∣∣∣∣
P k

1→P k−
1

= c
(
αααk, sign

(
NEk

(
Pk−

1

)))
, otherwise;

∂Ik
1

∂Pm
1

= 0, if m 6= k,

in which λk
n (n ∈ {2, . . . , N}) is the Lagrange multiplier of P k

n ≥ 0 at the optimum

of lower-level problem in (3.21). The function sign (·) is the indicator of which

polyhedron the piece-wise affine water-filling function [SLS07] lies in. c
(
αααk,y

)

represents a constant determined by αααk and the non-zero elements of y.

Proof : By the definition of Ik
1 , we have

∂Ik
1

∂P m
1

=
N∑

i=2

αk
i1

∂P k
i

∂P m
1

. We differentiate two

different cases:

1) If there does not exist any n ∈ {2, . . . , N} satisfying P k
n = 0 and λk

n = 0,

i.e. there is a non-zero gap between the interference that users 2, . . . , N experi-
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ence and their water-levels, it is straightforward to see that sign (NEk (P1)) =

sign
(
NEk

(
Pk+

1

))
= sign

(
NEk

(
Pk−

1

))
.

Without loss of generality, we temporarily assume that P k
n > 0 for n ∈

{2, . . . , N}. When users 2, . . . , N reach the equilibrium, we have from the opti-

mality conditions of water-filling solution:

(I + G) ·NEk (P1) + gkP k
1 = ννν,

in which

G =




0 αk
32 αk

42 . . . αk
N2

αk
23 0 αk

43 . . . αk
N3

αk
24 αk

34

. . . . . .
...

...
...

... 0 αk
N,N−1

αk
2N αk

3N . . . αk
N−1,N 0




, gk =




αk
12

αk
13

...

αk
1N




, ννν =




ν2

ν3

...

νN




,

νννi (i = 2, . . . , N) are the water-levels of all the myopic users. We consider the

channel realizations satisfying ‖G‖2 < 1, which guarantees that the power control

game has a unique NE (Theorem 8 in [SLS07]). Therefore, I + G is invertible.

It then follows that

NEk (P1) = (I + G)−1 ννν − (I + G)−1 gkP k
1 (4.2)

We also have lim
K→∞

∂νi

∂P k
1

= 0 , because if the number of each frequency bin K is

sufficiently large, the fluctuation of the water-level is negligible. As a result, we

have

∂Ik
1

∂Pm
1

=
∂hk ·NEk (P1)

∂Pm
1

=




−hk (I + G)−1 gk, if m = k

0, otherwise
(4.3)

in which hk =
[
αk

21 αk
31 . . . αk

N1

]
. Note that if P k

n = 0 and λk
n > 0, all the

derivations above still apply by removing the nth column and nth row from
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G, NEk (P1) , gk, ννν correspondingly. Hence, we can conclude
∂Ik

1

∂P k
1

is a constant

c
(
αααk, sign (NEk (P1))

)
that depends on both αααk and the non-zero elements of

NEk (P1).

2) If there exists n ∈ {2, . . . , N} satisfying P k
n = 0 and λk

n = 0, the station-

ary interference caused to user n is the same as its water-level νn. Therefore, a

sufficiently small increment or decrement ε in user 1’s allocated power P k
1 may

cause sign
(
NEk

(
Pk+

1

))
and sign

(
NEk

(
Pk−

1

))
to be different, i.e. the station-

ary interference NEk (P1) lies on the boundary between two polyhedra that have

different piece-wise affine water-filling functions [SLS07]. We need to treat the

left-sided and the right-sided first derivatives respectively, and similar conclusions

can be derived in the same way as in the first part. ¥

Theorem 4.1 indicates that, the first derivative with respect to a foresighted

user’s allocated power in a certain channel is sufficient to capture how the sta-

tionary interference varies locally in that channel. We observe from equality (4.2)

that

Ik
1 = hk ·NEk (P1) = hk (I + G)−1 ννν − hk (I + G)−1 gkP k

1 .

Therefore, user 1 can define its belief function using the linear form 1 Ĩk
1 = βk −

γkP k
1 , in which γk is the estimate of − ∂Ik

1

∂P k
1

and βk is a constant representing the

composite effect of user 2, . . . , N ’s water-levels ννν. This linear characterization of

the stationary interference can greatly simplify the implicit functional expression

Ik
1 (P1) given by the solution of the lower-level problem (3.21), while maintaining

an accurate model of Ik
1 (P1) around the feasible operating point P1.

1Note that as long as the channel realization is random, for a fixed K, the probability that
the left-sided and right-sided derivatives in Theorem 4.1 are not equal is zero. We will assume
that the first derivative exists hereafter. If it does not exist, similar results can be derived by
treating the left-sided and right-sided first derivatives separately.
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Table 4.1: Comparison among NE, SE, and CE in power control games.

User 1 User 2, . . . , N

Nash
maxPn∈An

K∑
k=1

log2

(
1 + P k

n

σk
n+Ik

n

)

Equilibrium

Stackelberg
max
P1∈A1

K∑
k=1

log2

(
1 +

P k
1

σk
1+Ik

1 (P1)

)
max

Pn∈An

K∑
k=1

log2

(
1 + P k

n

σk
n+Ik

n

)

Equilibrium

maxPn∈An

K∑
k=1

log2

(
1 + P k

n

σk
n+Ĩk

n

)

Conjectural

Equilibrium
Ĩk
1 = βk − γkP k

1 = Ik
1 =

N∑
i=2

αk
i1P

k
i Ĩk

n = Ik
n =

N∑
i=1,i6=n

αk
inP

k
i

4.2.2 Existence of Conjectural Equilibrium

Under the same known sufficient conditions discussed in [SLS07, SPB08] and

Chapter 3 for guaranteeing the existence of NE and SE, the existence of CE can

be proven by showing that the first two types of equilibrium are special cases of

CE. To this end, Table 4.1 compares the optimality conditions of the three types

of equilibria in the power control game.

As shown in Table 4.1, the information requirement for playing various equi-

libria differs. At NE, each user includes its stationary interference Ik
n as a constant

in the optimization, and its action is the best response to Ik
n. To play SE, the fore-

sighted user needs to know the functional expression of the stationary interference

Ik
1 (P′

1) such that the bi-level program can be formed. Specifically, the required

information includes both the system-wide channel state information αααk, the noise

PSD σk
n, and the individual power constraint Pmax

n for ∀k ∈ {1, . . . , K} , n ∈ N .

In contrast, in the case of CE, the above information for playing SE is no longer
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required and the foresighted user behaves optimally with respect to its beliefs Ĩk
1

on how the stationary interference changes as a function of P k
1 .

Theorem 4.2 In the power control game, both the Nash equilibrium and the

Stackelberg equilibrium are special cases of conjectural equilibrium.

Proof : To solve the CE, the optimization solving CE in Table 4.1 is essentially

max
P1

K∑

k=1

log2

(
1 +

P k
1

σk
1 + βk − γkP k

1

)

s.t. P k
1 ≥ 0 , βk − γkP k

1 ≥ 0 and
∑K

k=1
P k

1 ≤ Pmax
1 .

(4.4)

In order to show that both NE and SE are special cases of CE, we only need

to verify that at NE and SE, user 1’s action is optimal with respect to its belief

and its belief agrees with its state. First, clearly, NE is a trivial CE with the

parameters βk =
N∑

i=2

αk
i1P

k
i , γk = 0 in user 1’s belief functions. Next, denote

PSE =
[
P 1

SE, . . . , PK
SE

]
the optimal solution of the discretized version of problem

(3.21). To prove SE is a CE, we need to find the corresponding βk and γk and

show that SE also solves problem (4.4). Consider the belief function in Table

4.1 with the parameters βk =
(
Ik
1 − P k

1 · ∂Ik
1

∂P k
1

)∣∣∣
P1=PSE

and γk = − ∂Ik
1

∂P k
1

∣∣∣
P1=PSE

.

As discussed before, such parameters preserve all the local information of the

objective of problem (3.21) around PSE into problem (4.4). KKT conditions

hold at PSE since it solves problem (3.21). A sufficient condition that ensures

SE to be a CE is that problem (4.4) belongs to convex optimization, because

KKT conditions are necessary and sufficient for convex programming to attain

its optimum. Appendix H provides a sufficient condition under which problem

(4.4) is convex, thereby proving that SE is a special CE if these conditions are

satisfied. ¥

Theorem 4.2 indicates that the two isolating points, NE and SE, are both

CE, if parameters βββ =
{
βk

}K

k=1
, γγγ =

{
γk

}K

k=1
are properly chosen. Therefore,
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CE can be viewed as an operational approach to attain the SE if the system-wide

information required for solving SE is not available. It is because only the local

information including stationary interference Ik
1 and its first derivative

∂Ik
1

∂P k
1

is

required to formulate problem (4.4), and this information can be obtained using

measurements performed at the receiver.

In addition, we are interested in the existence of other CEs besides these two

points. Denote the parameters of any CE, e.g. NE or SE, as βββ∗ =
{
βk
∗
}K

k=1
,

γγγ∗ =
{
γk
∗
}K

k=1
, and the optimal solution of problem (4.4) given parameters βββ,γγγ

as P1 (βββ,γγγ). Let F : RK × RK → RK be a mapping defined as F (βββ,γγγ) =
{
F k (βββ,γγγ)

}K

k=1
in which

F k (βββ,γγγ) = hk ·NEk (P1 (βββ,γγγ))− βk − γkP k
1 (βββ,γγγ) (4.5)

The following theorem gives a sufficient condition which ensures that infinite CEs

exist.

Theorem 4.3 Let Γ be a power control game that satisfies condition (C9). Sup-

pose that all the users form conjectures according to Table 4.1. If there exist

open neighborhoods A ⊂ RK and B ⊂ RK of βββ∗ and γγγ∗ respectively, such that

F (·, γ) : A →RK is locally one-to-one for any γγγ ∈ B , then Γ admits an infinite

set of conjectural equilibria.

Proof : See Appendix I.

In summary, Theorem 4.1, 4.2, and 4.3 characterize the existence and struc-

ture of conjectural equilibrium in power control games. As shown in Fig. 4.1, NE

and SE can be both special cases of CE. Open sets of CE that contain NE and

SE may exist in the βββ−γγγ plane and different conjectural equilibria correspond to

different values of βββ and γγγ. SE attains the maximal data rate that a foresighted
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Figure 4.1: Structure of conjectural equilibria in power control games.

user can achieve. According to theorem 4.3, if the foresighted user properly sets

up its parameters βββ,γγγ, the solution of CE in problem (4.4) coincides with the

solution of SE in problem (3.21). More importantly, as opposed to the SE in

which the knowledge of the system-wide private information is required, CE as-

sumes that the foresighted user knows only its stationary interference and the

first derivatives with respect to the allocated power, which greatly simplifies the

information acquisition. Therefore, in order to approach the performance upper

bound given by SE, this chapter adopts the approach of CE. The next Section

will develop practical conjecture forming and updating algorithms to select out

of the infinite CEs a desirable power allocation scheme that provides comparable

achievable rates with SE.

4.3 Conjecture-based Rate Maximization

Since Theorem 3 shows that infinite CEs may exist and SE is the most desir-

able CE for a foresighted user, the parameters βk, γk of belief functions should
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be wisely chosen in order to attain SE as a CE. Moreover, the one-shot game

formulation and declarative conclusions in the previous sections provide no hint

on how to approach the CE. In practice, it is also important to construct algo-

rithmic mechanisms to attain the desirable CE. To arrive at a CE, a multi-agent

learning approach is proposed for the repeated game setting [WH98]. Let s̃n,t

and an,t denote user n’s belief and action at time t. In the framework, at time t,

the users update their beliefs s̃n,t and select their actions an,t based on their past

observations. If we define learning as the players’ dynamic process of forming

conjectures about the effects of their actions, CE captures the achieved outcome

when consistency of conjectures within and across players emerges.

Similarly, this section proposes that users can update their beliefs in the re-

peated interaction setting and numerically examines their performance. Before

going into the technical details, it should be pointed out that the pursuit of the

practical solution’s convergence to CE is not the principal goal of our investi-

gation. Instead, computing power allocation strategies that require only local

information and achieve comparable rates with SE (which requires global infor-

mation) is the ultimate objective rather than the convergence. In other words,

any power allocation strategy that lies outside the open CE set in Fig. 4.1 is

favorable if it can improve the performance compared with NE.

Table 4.2 summarizes the dynamic updates of all users’ states, belief func-

tions, and optimal actions in the power control game. Specifically, at iteration

t, users’ states In,t are determined by their opponents’ power allocation. User 1

updates the parameters βk
t , γk

t in its belief functions based on its state Ik
1,t and

allocated power P k
1,t, and it also updates its power allocation P1,t+1 based on

current operating points P1,t and its belief Ĩ1,t. At the same time, myopic users

2, . . . , N set their beliefs equal to their experienced interference and update their
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Table 4.2: Dynamic updates of the play.

User 1 User 2, . . . , N

State In,t Ik
n,t =

∑N
i=1,i6=n αk

i1P
k
i,t

Belief function βk
t , γk

t ← Update1

(
Ik
1,t, P

k
1,t

)
Ĩk
n,t = Ik

n,t =
∑N

i=1,i6=n αk
inP

k
i,t

s̃n : An → Sn Ĩk
1,t = βk

t − γk
t P k

1,t

Action
P1,t+1 ← Update2

(
P1,t, Ĩ1,t

)
max

Pn∈An

K∑
k=1

log2

(
1 + P k

n

σk
n+Ĩk

n,t

)

a1,t, . . . , aN,t

power allocation based on the water-filling strategy. Note that Table 4.2 implic-

itly assumes that user 1 will update after user 2, . . . , N ’s IW algorithms converge

such that user 2, . . . , N ’s power allocations Pn,t at time t can be regarded as an

equilibrium state. The outcome of this dynamic play is a CE if lim
t→∞

Pn,t exists

and lim
t→∞

In,t = lim
t→∞

Ĩn,t. As discussed in the proof of Theorem 4.2, it is equivalent

to check the convergence of user 1’s updates. We can see from Table 4.2 that user

1 needs to complete two updates at each iteration. The entire procedure in Table

4.2 that enables the foresighted user to build beliefs and improve its performance

is named “Conjecture-based Rate Maximization”. Appropriate rules for updating

beliefs are discussed as follows.

Update1: βk
t , γk

t

Note that, we have Ik
1 = hk (I + G)−1 ν − hk (I + G)−1 gkP k

1 from Theorem

4.1, user 1’s belief function takes the form of Ĩk
1 = βk − γkP k

1 , and it satisfies

Ik
1 = Ĩk

1 at CE for any k ∈ {1, . . . , K} . As discussed in the previous sec-

tion, by setting the parameters βk = Ik
1 − P k

1 · ∂Ik
1

∂P k
1

and γk = − ∂Ik
1

∂P k
1
, we can

preserve all the local information of the original SE problem (3.21) around cur-

rent feasible operating point P1,t. Therefore, we can update βk
t and γk

t using
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βk
t =

(
Ik
1 − P k

1 · ∂Ik
1

∂P k
1

)∣∣∣
P1=P1,t

and γk
t = − ∂Ik

1

∂P k
1

∣∣∣
P1=P1,t

. By Assumption 4.3, user

1 can approximate the parameters using

∂Ik
1

∂P k
1

≈ Ik
1

({
P k

1 + ε
} ∪P−k

1

)− Ik
1

({
P k

1 − ε
} ∪P−k

1

)

2ε

for small ε in which P−k
1 =

{
P 1

1 , . . . , P k−1
1 , P k+1

1 , . . . , PK
1

}
.

After Update1 in each iteration, user 1 needs to solve problem (4.4). If

Theorem 4.2’s assumption is not satisfied, problem (4.4) belongs to the class of

non-convex optimization, which is generally hard to solve and standard optimiza-

tion algorithms can only be used to determine local maxima [BV04]. However, in

this application, we are able to show that, as long as the number of frequency bins

K is sufficiently large, problem (4.4) satisfies the time-sharing condition [YL06],

and its global optimum can be efficiently computed.

Definition 4.3 Consider an optimization problem with the general form:

max
K∑

k=1

ok (xk), s.t.
K∑

k=1

ck (xk) ≤ P, (4.6)

where ok (xk) are objective functions that are not necessarily concave, ck (xk)

are constraint functions that are not necessarily convex. Power constraints are

denoted by P. Let x∗k and y∗k be optimal solutions to the optimization problem

(4.6) with P = Px and P = Py, respectively. An optimization problem of the

form (4.6) is said to satisfy the time-sharing condition [YL06] if for any 0 ≤
v ≤ 1, there always exists a feasible solution zk, such that

K∑
k=1

ck (zk) ≤ vPx +

(1− v)Py and
K∑

k=1

ok (zk) ≤ v
K∑

k=1

ok (x∗k) + (1− v)
K∑

k=1

ok (y∗k).

Theorem 4.4 As the total number of sub-carriers K goes to infinity, problem

(4.4) satisfies the time-sharing condition.
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Table 4.3: Algorithm 4.3: A dual method that solves problem (4.4).

Input:
{
σk

1

}
,
{
βk

t

}
,
{
γk

t

}
,Pmax

1

Initialize: ηmin, ηmax, η0 = (ηmin + ηmax) /2, i = 0

Repeat

set P1 =
[
P 1

1 . . . PK
1

]
where

P k
1 = arg max

P
′k
1 ∈dom f

σk
1 ,βk,γk

log2

(
1 +

P
′k
1

σk
1+βk

t −γk
t P

′k
1

)
− ηiP

′k
1

if
∑

k P k
1 < Pmax

1 , ηmax = ηi; else ηmin = ηi.

ηi+1 ← (ηmin + ηmax) /2, i = i + 1

until ηi converges

Proof : Specifically, for problem (4.4), ok (xk) = fσk
1 ,βk,γk

(
P k

1

)
, ck (xk) = P k

1 ,

P = Pmax
1 . First, as the total number of sub-carriers K goes to infinity, con-

sider σk
n and αk

jn as σn (k) and αjn (k) that are continuous functions of k. By

rule Update1, βt (k) and γt (k) are piece-wise continuous, because Theorem 4.3

proves that P1 (β, γ) and F (β, γ) are continuous in (β, γ). With the piece-wise

continuity of β (k) , γ (k), it is easy to check that the time-sharing condition holds

by following the proof of Theorem 2 in [YL06]. ¥

Update2: P1,t+1

It is shown in [YL06] that, if the optimization problem satisfies the time-

sharing property, then it has a zero duality gap, which leads to efficient numerical

algorithms that solve the non-convex problem in the dual domain. Consider

the dual objective function d (η) =
K∑

k=1

{
max

P k
1

fσk
1 ,βk,γk

(
P k

1

)− ηP k
1

}
+ ηPmax

1 .

Since d (η) is convex, a bisection or gradient-type search over the Lagrangian

dual variable η is guaranteed to converge to the global optimum. Specifically,

Algorithm 4.3 summarizes such a dual method that solves non-convex problem
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Table 4.4: Conjecture-based rate maximization.

Initialize: t = 0,P1,0 = PNE
1

Repeat

I. βk
t , γk

t ← Update1

(
Ik
1,t, P

k
1,t

)

II. P1,t+1 ← Update2

(
P1,t, Ĩ1,t

)
, which includes

1) Consider problem

max
K∑

k=1

fσk
1 ,βk,γk

(
P k

1

)
, s.t. P k

1 ∈ dom fσk
1 ,βk,γk and

K∑
k=1

P k
1 ≤Pmax

1 .

2) Use Algorithm 4.3 to calculate the global optimum Pc
1 of the above

problem.

3) Search in the interval of vP1,t + (1− v)Pc
1 (0 ≤ v ≤ 1) and find in

the interval the power allocation Ps
1 that maximizes user 1’s actual

achievable rate R1.

4) P1,t+1 ← Ps
1, t = t + 1.

until no improvement can be made.

(4.4) using bisection update. As long as the time-sharing condition is satisfied,

Algorithm 4.3 converges to the global optimum. Hence, we can always solve

problem (4.4) regardless of its convexity.

Table 4.4 summarizes the procedure of algorithm ”Conjecture-based Rate

Maximization” (CRM). Next, we make several remarks about this algorithm.

First, since we want to achieve better performance than NE, the initial operating

point P1,0 is set to be the power allocation strategy PNE
1 that user 1 will choose

if it adopts the IW algorithm. Second, in Update2, the global optimum Pc
1 is

not directly used to update P k
1,t+1. As shown in Fig. 4.2, this is because problem

(4.4) is only a local approximation at P1,t of the original SE problem (3.21) that

we want to solve. Using Pc
1 to update P1,t+1 may decrease the actual achievable
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Figure 4.2: Mismatch between problem (3.21) and (4.4).

rate R1, if a mismatch between problem (3.21) and (4.4) exists for the solution

Pc
1. Therefore, Update2 adopts line search and uses the transmit PSD that

lies in this interval and maximizes the actual achievable rate to update P1,t+1.

Therefore, it is guaranteed that the achievable rate will not decrease after each

iteration. Last, CRM stops in limited iterations, but it is not guaranteed to

converge to a CE. It is because the first step in Update2 may give P1,t 6= Pc
1

but the line search returns P1,t+1 = P1,t. However, if P1,t = Pc
1, CRM converges

to Pc
1 and the resulting outcome is a CE.

4.4 Simulation Results

This section compares the performance of CRM with the IW algorithm and Algo-

rithm 3.1 that searches SE assuming perfect knowledge of its opponent’s private

information. We simulate a system with 50 sub-carriers over the 15-MHz band.

We consider frequency-selective channels using a four-ray Rayleigh model with

the exponential power profile and 60 ns root mean square delay spread. The

power of each ray is decreasing exponentially according to its delay.

We first simulate the two-user scenario with Pmax
1 = Pmax

2 = 200 and σk
1 =
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Figure 4.3: User 1’s power allocation using different algorithms.

σk
2 = 0.01. The total power of all rays of Hk

11 and Hk
22 is normalized as one,

and that of Hk
12 and Hk

21 is normalized as 0.5. Fig. 4.3 shows an example of

user 1’s power allocations when deploying different algorithms under the same

conditions. In IW algorithm, user 1 water-fills the whole frequency band by

regarding its competitor’s interference as background noise. In contrast, user

1 will not water-fill if choosing CRM and Algorithm 3.1. It avoids the myopic

behavior and improves its performance by explicitly considering the stationary

interference caused by its opponent.

To evaluate the performance, we tested 105 sets of frequency-selective fading

channels that satisfy Assumption 4.4. Denote user i’s achievable rate using CRM,

IW and Algorithm 3.1 as Ri, RNE
i , and R

′SE
i respectively. Fig. 4.4 shows the

simulated cumulative probability of the ratio of Ri over RNE
i and R

′SE
i . The

curve indicates that there is a probability of 59% that CRM returns the same

power allocation strategy as IW. On the other hand, the average improvement for
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Figure 4.4: Cdfs of Ri/RNE
i and Ri/R

′SE
i (i = 1, 2).

Table 4.5: Iterations required by different CRM algorithms.

Algorithm
Probability of required iterations

t = 1 t = 2 t = 3 t = 4 t ≥ 5

CRM 0.59 0.29 0.06 0.04 0.02

Modified CRM 0.39 0.19 0.20 0.12 0.10

user 1 of CRM over IW is 24%, which achieves almost the same performance as

Algorithm 3.1. As shown in Fig. 4.4, R1/R
′SE
1 is distributed symmetrically with

respect to R1 = R
′SE
1 . CRM improves on average user 2’s data rate by 29% over

IW, which is smaller than Algorithm 3.1. Similarly as in the previous chapter, in

very few cases, CRM results in a rate R′
2 smaller than RNE

2 in the IW algorithm.

The iteration time required by CRM is summarized in Table 4.5. As men-

tioned above, CRM stops after just one iteration with a probability of 59% due
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to the problem mismatch shown in Fig. 3. In most scenarios, CRM terminates

within 4 iterations and the average number of required iteration is only 1.75. To

further improve the performance of CRM, we can modify the original CRM to

handle the problem mismatch between (3.21) and (4.4). Notice that problem

(4.4) is only a local approximation of problem (3.21) at P1,t. Additional con-

straints can be added in Algorithm 4.3, such that the optimum of problem (4.4)

is searched only in a certain region around P1,t rather than the whole domain of

fσk
1 ,βk

t ,γk
t
. For example,

∣∣P ′k
1 − P k

1,t

∣∣ can be restricted within a certain threshold

when performing Algorithm 4.3 for any k ∈ {1, . . . , K} . We simulated the two-

user scenarios with additional restriction of
∣∣P ′k

1 − P k
1,t

∣∣ ≤ 1. Fig. 4.5 shows the

simulated cumulative probability of Ri/R
NE
i for this modified CRM. As opposed

to CRM, the probability that the modified CRM returns the same power alloca-

tion strategy as IW is reduced to 39% and the average performance improvement

is also increased for both users. Specifically, the average performance improve-

ment for user 1 is 29% and that of user 2 is 31%. However, Table V shows that

the improvement is achieved at the cost of more iterations.

We also tested performance of modified CRM in multi-user cases where TSA

cannot be applied. We simulated the three-user scenarios with Pmax
n = 200 and

σk
n = 0.01. The total power of all rays of Hk

nn is normalized as one, and that

of Hk
ij (i 6= j) is normalized as 0.33. Fig. 4.6 shows the simulated cumulative

probability of Ri/R
NE
i . The average improvement for user 1 of modified CRM

over IW is 29%, and that of the rest users is 8%. We can see that, it benefits on

average most of the participants in the power control game if a foresighted user

forms accurate conjectures and plays the conjecture equilibrium strategy.
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i (i = 1, 2) for modified CRM.

4.5 Concluding Remarks

This chapter introduces the concept of conjectural equilibrium in non-cooperative

power control games and discusses how a foresighted user can model its experi-

enced interference as a function of its own power allocation in order to improve its

own data rate. The existence of conjectural equilibrium is proven and both game

theoretic solutions, including Nash equilibrium and Stackelberg equilibrium, are

shown to be special cases of this conjectural equilibrium. Practical algorithms

based on conjectural equilibrium are developed to determine desirable power allo-

cation strategies. Numerical results verify that a foresighted user forming proper

conjectures can improves both its own achievable rate as well as the rates of

other participants, even if it has no a priori knowledge of its competitors’ private

information. How to extend the framework to the scenarios in which multiple

foresighted users coexist is a topic for future investigation. While this chapter
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i (i = 1, 2, 3) for modified CRM.

has focused on the power control game, the idea of forming conjectures based

the available local information is also applicable to any communication system

where making foresighted decisions is beneficial, e.g. distributed routing in wired

network [KLO95].

4.6 Appendix H: A sufficient condition for problem (4.4)

to be convex

Define fa1,a2,b (x) = ln
(
1 + x

a1+a2−bx

)
in which the term a1 ≥ 0 represents the

noise PSD. The second derivative of fa1,a2,b (x) is

f ′′a1,a2,b (x) = −(a1 + a2) [− (a1 + a2) (2b− 1) + 2b (b− 1) x]

(a1 + a2 − bx)2 [a1 + a2 − (b− 1) x]2
.

Clearly, if b 6= 0 , f ′′a1,a2,b (x) is not always negative. We restrict the domain of

fa1,a2,b to be dom fa1,a2,b = {x ≥ 0}∩{a2 − bx ≥ 0}, because x is the transmitted
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power and a2 − bx represents the stationary interference, both of which are non-

negative. We derive a sufficient condition that guarantees fa1,a2,b (x) is concave

in dom fa1,a2,b:

a2 > 0 and b < 0.5

(
1− a2

a1

)
(4.7)

This condition can be simply verified by using inequality analysis. Clearly, a2 > 0

leads to a1 + a2 > 0 and b < 0.5
(
1− a2

a1

)
< 1. Therefore, f ′′a1,a2,b (x) < 0 is

equivalent to − (a1 + a2) (2b− 1) + 2b (b− 1) x > 0. We have

x ∈ dom fa1,a2,b ⇒ a2 − bx ≥ 0 ⇒ bx− a2 · a1 + a2

a2

· b− 0.5

b− 1
< 0

⇒ − (a1 + a2) (2b− 1) + 2b (b− 1) x > 0,

because a1+a2

a2
· b−0.5

b−1
> 1 when b < 0.5

(
1− a2

a1

)
. Hence, the condition (4.7) leads

to f ′′a1,a2,b (x) < 0.

Based on sufficient condition (4.7), we can see, if βk > 0 and γk < 0.5
(
1− βk

σk
1

)

for any k ∈ {1, · · · , K}, problem (4.4) belongs to convex programming. There-

fore, if the following sufficient condition

(
Ik
1 − P k

1 ·
∂Ik

1

∂P k
1

)∣∣∣∣
P1=PSE

> 0 and

− ∂Ik
1

∂P k
1

∣∣∣∣
P1=PSE

<
1

2
− 1

2σk
1

·
(

Ik
1 − P k

1 ·
∂Ik

1

∂P k
1

)∣∣∣∣
P1=PSE

(C9)

holds, SE satisfies the KKT optimality condition and solves the convex program-

ming problem (4.4), i.e. SE is also a CE.

4.7 Appendix I: Proof of Theorem 4.3

If the power control game Γ satisfies condition C9, then problem (4.4) is con-

vex. We can use the following ”maximum theorem” [SLS07, Ber97] to show that

P1 (βββ,γγγ) is continuous.
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(Maximum Theorem) Let φ (x, y) be a real-valued continuous function

with domain X × Y , where X ⊂ Rm and Y ⊂ Rn are closed and bounded

sets. Suppose that φ (x, y) is strictly concave in x for each y. The functions

Φ (y) = arg max {φ (x, y) : x ∈ X} is well-defined ∀y ∈ Y , and is continuous.

We can restrict the domain of parameters βββ and γγγ in closed and bounded set,

e.g.
∣∣γk

∣∣ ≤ M+, in which M+ is a bound satisfying M+ À max
k

hk (I + G)−1 gk.

Apply the maximum theorem with φ = R (P1,βββ,γγγ) =
∑K

k=1 fσk
1 ,βk,γk

(
P k

1

)
. The

optimal solution P1 (βββ,γγγ) of problem (4.4) is the function in the maximum the-

orem, and hence is a continuous function of (βββ,γγγ). As a result, F (βββ,γγγ) is also

continuous in (βββ,γγγ). Note that P1 (βββ,γγγ) and F (βββ,γγγ) are not necessarily contin-

uously differentiable.

By the definition of F (βββ,γγγ) and conjectural equilibrium, we have that F (βββ,γγγ) =

0 implies conjectural equilibrium. Note F (βββ∗, γγγ∗) = 0. If there exist open neigh-

borhoods A ⊂ RK and B ⊂ RK of βββ∗ and γγγ∗, and for ∀γγγ ∈ B , F (·, γγγ) : A →RK

is locally one-to-one, by the implicit function theorem [Kum80], there exists open

neighborhoods A0 ⊂ RK and B0 ⊂ RK of βββ∗ and γγγ∗ such that for each γγγ ∈ B0,

there is a unique βββ(γγγ) satisfying F (βββ(γγγ), γγγ) = 0. Therefore, Γ admits an infinite

set of conjectural equilibria.

Alternatively, we can view F (βββ,γγγ) = 0 as K equations with 2K unknowns,

hence, the equilibrium is usually not a single point but a continuous surface. We

can explore the structure of P1 (βββ,γγγ) to derive the expression of this surface.

Particularly, under condition (C9), the solution of convex problem (4.4) satisfies

γk
(
γk − 1

) (
P k

1

)2 − (
σk

1 + βk
) (

2γk − 1
)
P k

1 +
(
σk

1 + βk
)2 − σk

1 + βk

µ1 − λk
1

= 0, (4.8)

where λk
1 and µ1 are the Lagrange multipliers as in (4.4). The optimal P1 (βββ,γγγ) =

116



{
P k

1 (βββ,γγγ)
}

is given by

P k
1 (βββ,γγγ) =

(
σk

1 + βk
) (

2γk − 1
)

2γk (γk − 1)
+

√(
σk

1 + βk
)2

(2γk − 1)2 − 4γk (γk − 1)
[(

σk
1 + βk

)2 − σk
1+βk

µ1−λk
1

]

2γk (γk − 1)
.

(4.9)

Note that the other root of equation (4.8) is removed by checking its feasibility in

dom fσk
1 ,βk,γk . By substituting (4.9) into (4.2) and (4.5), we can explicitly express

F (βββ,γγγ) in terms of βββ and γγγ, resulting in a very complex form of the surface. ¥
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CHAPTER 5

Linearly Coupled Games

5.1 Introduction

In previous chapters, for ACSCG, we analyzed the sufficient condition under

which there exists a unique NE and best response dynamics globally converges to

such a NE. We also investigated how to improve the inefficiency of the NE. This

can be accomplished by either enabling users exchange coordination information

in real-time or letting one foresighted leader model the reaction of the other my-

opic users and play the SE or CE strategy. In this chapter, we present another

game model for a particular type of non-cooperative multi-user communication

scenario in which multiple users playing the CE strategy may achieve Pareto opti-

mality without any real-time information exchange. We name it linearly coupled

games, because users’ utilities are linearly impacted by their competitors’ actions.

In particular, the main contributions of this chapter are as follows. First, based

on the assumptions that we make about the properties of users’ utility, we char-

acterize the inherent structures of the utility functions for the linearly coupled

games. Furthermore, based on the derived utility forms, we explicitly quantify

the NE and Pareto boundary for the linearly coupled games. The price of anarchy

incurred by the selfish users playing the Nash strategy is quantified. In addition,

to improve the performance in the non-cooperative scenarios, we investigate the

CE-based solution. Using this approach, individual users are modeled as belief-
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forming agents that develop internal beliefs about their competitors and behave

optimally with respect to their individual beliefs. Sufficient (and necessary) con-

ditions that guarantee the convergence of different dynamic update mechanisms,

including best response, gradient play, and Jacobi update, are addressed. We

prove that these adjustment processes based on conjectures and non-cooperative

individual optimization can be driven to Pareto-optimality in the linearly coupled

games without the need of real-time coordination information exchange among

agents. The investigated models apply to a variety of realistic applications en-

countered in the multiple access design, including wireless random access and

flow control.

The rest of this chapter is organized as follows. Section 5.2 defines the linearly

coupled games. For the investigated game models, Section 5.3 explicitly analyzes

the NE and Pareto boundary of the achievable utility region and defines two

basic types of linearly coupled games. We will discuss Type I games in details in

Chapter 6. For Type II games, Section 5.4 quantifies the efficiency loss between

NE and Pareto boundary and investigates the properties of CE under both the

best response and Jacobi update dynamics. Concluding remarks are drawn in

Section 5.5.

5.2 Linearly Coupled Games

Definition 5.1 A multi-user interaction is considered a linearly coupled game if

the action set An ⊆ R+ is convex and the utility function un satisfies:

un(a) = aβn
n · sn(a), (5.1)

in which βn > 0. In particular, the basic assumptions about sn(a) include:

Assumption 5.1 sn(a) is non-negative;
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Assumption 5.2 Denote s′nm(a) = ∂sn(a)
∂am

and s′′nm(a) = ∂2sn(a)
∂a2

m
. sn(a) is strictly

linear decreasing in am,∀m 6= n, i.e. s′nm(a) < 0 and s′′nm(a) = 0; sn(a) is non-

increasing and linear in an, i.e. s′nn(a) ≤ 0 and s′′nn(a) = 0;

Assumption 5.3 sn(a)
s′nm(a)

is an affine function, ∀n ∈ N \ {m};

Assumption 5.4 s′nm(a)
sn(a)

=
s′km(a)

sk(a)
,∀n, k ∈ N \ {m}; s′mm(a)

sm(a)
= 0 or s′nm(a)

sn(a)
, ∀n 6=

m.

Assumptions 5.1 and 5.2 indicate that increasing am for any m 6= n within

the domain of sn(a) will linearly decrease user n’s utility. Assumptions 5.3 and

5.4 imply that a user’s action has proportionally the same impact over the other

users’ utility. The structure of the utility functions that satisfy assumptions

5.1-5.4 will be addressed in the next section.

5.3 Structure of Utility Functions

In this section, we show that the computation of the NE and the Pareto boundary

in linearly coupled games is equivalent to solving linear equations. Moreover, we

investigate the inherent structures of the utility functions satisfying assumptions

5.1-5.4 and define two basic types of linearly coupled games.

5.3.1 Nash Equilibrium

We are interested in computing the NE in the linear coupled games. From equa-

tion (5.1), we have

∂ log[un(a)]

∂am

=





βn/an + s′nn(a)/sn(a), if m = n;

s′nm(a)/sn(a), otherwise.
(5.2)
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On one hand, if s′nn(a) = 0,∀n ∈ N , since user n’s utility function strictly

increases in an, we have trivial NE at which a∗n is the maximal element in An

that lies in the domain of s(·), ∀n ∈ N .

On the other hand, if s′nn(a) 6= 0,∀n ∈ N , according to assumption 5.3, since

the multi-user interactions are linearly coupled, we have

sn(a) = fm
n (a−m) + gm

n (a−m)am, (5.3)

where fm
n (a−m), gm

n (a−m) are both polynomials and gn
n(a−n) 6= 0. From this, it

follows
s′nn(a)

sn(a)
=

[
fn

n (a−n)

gn
n(a−n)

+ an

]−1

. (5.4)

At NE, we have
∂ log[un(a)]

∂an

= 0,∀n ∈ N . (5.5)

Under assumption 5.3 and 5.4, fn
n (a−n)

gn
n(a−n)

is a affine function, which enables us to

explicitly characterize the NE. Denote fn
n (a−n)

gn
n(a−n)

= hn(a−n). Equation (5.5) can be

rewritten as

βn · hn(a−n) + (βn + 1) · an = 0,∀n ∈ N . (5.6)

Therefore, the solutions of Equations (5.6) are the NE of the linearly coupled

games and computing the NE is equivalent to solving N -dimension linear equa-

tions. The following theorem indicates the inherent structure of the utility func-

tions {un}N
n=1 when the requirements 5.1-5.3 are satisfied.

Theorem 5.1 Under assumptions 5.1-5.3, the irreducible factors of sn(a) over

the integers are affine functions and have no variables in common.

Proof : Denote the factorization of sn(a) as

sn(a) =
Mn∏
i=1

bi
n(a), (5.7)
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in which Mn represents the number of the non-constant irreducible factors in

sn(a). Define V(·) as the mapping from a polynomial to the set of variables that

appear in that polynomial. Based on assumption 5.2, we immediately have

V(bi
n(a)) ∩ V(bj

n(a)) = ∅,∀i, j(j 6= i), n.

Without loss of generality, we assume that aj ∈ V(b1
n(a)) and b1

n(a) = f j
b1n

(a−j)+

gj
b1n

(a−j)aj. Then f j
n(a−j), g

j
n(a−j) in (5.3) are given by

f j
n(a−j) = f j

b1n
(a−j) ·

Mn∏
i=2

bi
n(a), and gj

n(a−j) = gj
b1n

(a−j) ·
Mn∏
i=2

bi
n(a).

Therefore, fm
n (a−m)

gm
n (a−m)

=
fj

b1n
(a−j)

gj

b1n
(a−j)

. By assumption 5.3, we have that the degree of

fj

b1n
(a−j)

gj

b1n
(a−j)

is less than or equal to 1. Since b1
n(a) is irreducible, we can conclude

that gj
b1n

(a−j) is a constant and the degree of f j
b1n

(a−j) is less than or equal to 1.

Note that the arguments above hold, ∀j, n. Therefore, the degree of bi
n(a) is one,

∀n ∈ N , i = 1, . . . , Mn, which concludes the proof. ¥

5.3.2 Pareto Boundary

Since log(·) is concave and log[un(a)] is a composition of affine functions [BV04],

un(a) is log-concave in a and the log-utility region logU is convex. Therefore, we

can characterize the Pareto boundary of the utility region as a set of a optimizing

the following weighted proportional fairness objective1:

max
a

N∑
n=1

ωn log[un(a)], (5.8)

for all possible sets of {ωn} satisfying ωn ≥ 0 and
∑N

n=1 ωn = 1. Denote the

optimal solution of problem (5.8) as aPB, which satisfies the following first-order

1Note that the utility region U is not necessarily convex. Therefore, its Pareto boundary
may not be characterized by the weighted sum of {un(a)}N

n=1.
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condition:
∂

∑N
k=1 ωk log[uk(a)]

∂an

∣∣∣∣
a=aPB

= 0,∀n ∈ N , (5.9)

Under assumptions 5.1-5.3, the LHS of equation (5.9) can be rewritten as

∂
∑N

k=1 ωk log[uk(a)]

∂am

= ωm

(
βm

am

+
s′mm(a)

sm(a)

)
+

∑

k 6=m

ωk
s′km(a)

sk(a)
. (5.10)

By Theorem 5.1 and assumption 5.4, we have

s′km(a)

sk(a)
=

1

ψm(a)
, ∀k ∈ N \ {m}, (5.11)

in which ψm(a) is a affine function. Therefore, equation (5.10) is equivalent to

∂
N∑

k=1

ωk log[uk(a)]

∂am

=





βmωm/am + (1− ωm)/ψm(a), if s′mm(a) = 0;

βmωm/am + 1/ψm(a), otherwise.
(5.12)

We can compute the Pareto boundary of the linearly coupled games by solving

linear equations:

∂
N∑

k=1

ωk log[uk(a)]

∂am

= 0 ⇒




βmωmψm(a) + (1− ωm)am = 0, if s′mm(a) = 0;

βmωmψm(a) + am = 0, otherwise.

(5.13)

5.3.3 Two Types of Linearly Coupled Games

Theorem 5.1 reveals the structural properties of the utility functions {un}N
n=1

when assumption 5.1-5.3 are satisfied. Based on Theorem 5.1, the following the-

orem further refines these properties of {un}N
n=1 when the additional assumption

5.4 is imposed.

Theorem 5.2 Under assumptions 5.1-5.4, for any polynomial bi
n(a) in the fac-

torization sn(a) =
∏Mn

i=1 bi
n(a), ∀n ∈ N , if |V(bi

n(a))| ≥ 2 or V(bi
n(a)) = {an},
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bi
n(a) is an irreducible factor of sm(a), ∀m ∈ N ; if V(bi

n(a)) = {am},m 6= n,

bi
n(a) is an irreducible factor of sj(a), ∀j ∈ N /{m}.

Proof : By assumption 5.2, s′nm(a) < 0,∀m 6= n, we have |V(sn(a))| ≥ N −
1,∀n ∈ N . By Theorem 5.1, the irreducible factors of sn(a) have no common

variables and they are affine functions. Suppose |V(bi
n(a))| ≥ 2 and {am, al} ∈

V(bi
n(a). By assumption 5.4, we know that s′nm(a)

sn(a)
=

s′km(a)

sk(a)
= b′inm(a)

bi
n(a)

,∀n, k ∈
N \ {m}. Therefore, it follows

sk(a) =
s′km(a)bi

n(a)

b′inm(a)
. (5.14)

Since b′inm(a) is a constant, we can see that bi
n(a) is an irreducible factor of sk(a),

∀k ∈ N \ {m}. By symmetry, we can conclude that bi
n(a) must also be an

irreducible factor of sk(a), ∀k ∈ N \{l}. Therefore, bi
n(a) is an irreducible factor

of sk(a), ∀k ∈ N . Similarly, we can prove the remaining parts of Theorem 5.2.

¥

For the linearly coupled games satisfying assumptions 5.1-5.4, suppose we

factorize all users’ state functions. Theorem 5.2 indicates that any factor with at

least two variables must be a common factor of all the users’ state functions, and

any factor with a single variable ak must be a common factor of state functions

for users excluding k. In reality, it corresponds to the communication scenarios

in which the state, i.e. the multi-user coupling, is impacted by a set of users that

result in a similar signal to all the users.

We define two basic types of linearly coupled games satisfying the assumptions

5.1-5.4. In Type I games, user k’s action linearly decreases all the users’ states

but itself. Hence, the utility functions take the form

un(a) = aβn
n ·

∏

m6=n

(µm − τmam). (5.15)
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In Type II games, all the users share the same non-factorizable state function

and their utility functions are given by

un(a) = aβn
n · (µ−

N∑
m=1

τmam). (5.16)

5.3.4 Illustrative Examples

There are a number of multi-user communication scenarios that can be modeled

as linearly coupled games. For example, in the random access scenario, the action

of a node is to select its transmission probability and a node n will independently

attempt transmission of a packet with transmit probability pn. The action set

available to node n is An = [0, 1] for all n ∈ N . In this case, the utility function

is defined as

un(p) = pn ·
∏

m6=n

(1− pm). (5.17)

As an additional example, in flow control [ZD92], N Poisson streams of packets

are serviced by a single exponential server with departure rate µ and each class

can adjust its throughput rn. The utility function is defined as the weighted ratio

of the throughput over the average experienced delay:

un(r) = rβn
n · (µ−

N∑
m=1

rm), (5.18)

in which βn > 0 is interpreted as the weighting factor. Specifically, we can see

that the state determination functions are sn(p) =
∏

m∈N\{n}(1 − pm) in (5.17)

and sn(r) = µ − ∑N
m=1 rm in (5.18). It is straightforward to verify that these

functions satisfy assumptions 5.1-5.4 for both (5.17) and (5.18).

As special examples, the random access problem in (5.17) belongs to Type I

games and the rate control problem in (5.18) belongs to Type II games. In fact,

all the games that have the properties 5.1-5.4 can be viewed as compositions
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of these two basic types of games. Therefore, investigating the two basic types

provides us the fundamental understanding of the linearly coupled multi-user in-

teraction. We are interested in comparing the achievable performance attained

by different game-theoretic solution concepts. On one hand, it is well-known

that NE is generally inefficient in games [Dub86], but it may not require ex-

plicit message exchanges, while Pareto-optimality can usually be achieved only

by exchanging implicit or explicit coordination messages among the participating

users. On the other hand, in previous chapters, we have applied the CE-based

solution in different communication scenarios to improve the system performance

in non-cooperative settings. The remaining parts of the dissertation aim to com-

pare the solutions of NE, Pareto boundary, and CE in terms of the payoffs and

informational requirements in different types of linearly coupled games. Specif-

ically, Section 5.4 will focus on Type II games and Chapter 6 will use random

access to illustrate the properties of various solutions in Type I games.

5.4 Solutions for Type II Linearly Coupled Games

5.4.1 Nash Equilibrium and Pareto Boundary

For Type II games with utility functions given in (5.16), we have

s′nn(a)

sn(a)
=

−τn

µ−∑N
m=1 τmam

. (5.19)

Therefore, Equation (5.6) can be reduced to

(1 + βn)τnan + βn

∑

m6=n

τmam = βnµ,∀n ∈ N . (5.20)

The solution of the linear equations gives the NE, and its closed form has been

addressed in [DM92] for τn = 1,∀n ∈ N . For the general case, it is easy to verify
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that the NE is given by

aNE
n =

βnµ

τn(1 +
∑N

m=1 βm)
,∀n ∈ N . (5.21)

Similarly, to compute the Pareto boundary of Type II games, Equation (5.12)

can be reduced to

(1 + ωnβn)τnan + ωnβn

∑

m6=n

τmam = ωnβnµ, ∀n ∈ N . (5.22)

The solution is given by

aPB
n =

ωnβnµ

τn(1 +
∑N

m=1 ωmβm)
,∀n ∈ N . (5.23)

From Section 5.3.2, we know that the region logU is convex. Therefore,

we can compare the efficiency of aNE and aPB using the system-utility metric
∑N

n=1 ωn log[un(a)]. Specifically, we have

N∑
n=1

ωn log
un(aNE)

un(aPB)
=

N∑
n=1

ωnβn log
1 +

∑N
j=1 ωjβj

ωn(1 +
∑N

j=1 βj)
+log

1 +
∑N

j=1 ωjβj

1 +
∑N

j=1 βj

. (5.24)

Denote w0 = 1, x0 =
1+

∑N
j=1 ωjβj

1+
∑N

j=1 βj
, wn = ωnβn, and xn =

1+
∑N

j=1 ωjβj

ωn(1+
∑N

j=1 βj)
,∀n ∈ N .

Therefore,

N∑
n=1

ωn log
un(aNE)

un(aPB)
=

N∑
n=0

wn log xn =
N∑

n=0

wn · log (
N∏

n=0

xwn
n )1/

∑N
n=0 wn . (5.25)

Using the inequalities among the arithmetic, geometric and harmonic means

[Spi68], we have

(1 +
N∑

n=1

ωnβn)2

(1 +
N∑

n=1

ω2
nβn)(1 +

N∑
n=1

βn)

=

N∑
n=0

wn

N∑
n=0

wn

xn

≤ ( N∏
n=0

xwn
n

)
1

N∑
n=0

wn ≤

N∑
n=0

xnwn

N∑
n=0

wn

= 1. (5.26)
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Both inequalities hold with equality if and only if x0 = x1 = . . . = xN , i.e.

ω1 = . . . = ωN = 1. However, since we require
∑N

n=1 ωn = 1, (5.26) holds as

strict inequalities, which leads to

(1 +
N∑

n=1

ωnβn) · log

(1 +
N∑

n=1

ωnβn)2

(1 +
N∑

n=1

ω2
nβn)(1 +

N∑
n=1

βn)

<

N∑
n=1

ωn log
un(aNE)

un(aPB)
< 0. (5.27)

Based on Equation (5.27), we can make two important observations. First, due

to the lack of coordination, the NE in Type II games is always strictly Pareto

inefficient. Second, the efficiency loss in Type II games are lower bounded, which

means that every user receives positive payoff at NE. Noticing that the perfor-

mance gap between un(aNE) and un(aPB) is non-zero, we will investigate how

the non-cooperative CE solution can improve the system performance for Type

II games.

5.4.2 Linear Beliefs

According to the definition of CE in (4.1), all players’ expectations based on their

beliefs are realized and each agent behaves optimally according to its expectation.

In other words, agents’ beliefs are consistent with the outcome of the play and

they use “conjectured best responses” in their individual optimization program.

The key challenges are how to configure the belief functions such that cooperation

can be sustained in such a non-cooperative setting and how to design the evolution

rules such that the communication system can dynamically converge to a CE

having satisfactory performance.

To define the belief functions, we need to express agent n’s expected state

s̃n as a function of its own action an. The simplest approach is to design linear
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belief models for each user, i.e. player n’s belief function takes the form

s̃n(an) = s̄n − λn(an − ān), (5.28)

for n ∈ N . The values of s̄n and ān are specific states and actions, called reference

points and λn is a positive scalar. In other words, user n assumes that other

players will observe its deviation from its reference point ān and the aggregate

state deviates from the reference point s̄n by a quantity proportional to the

deviation of an− ān. How to configure s̄n, ān, and λn will be addressed in the rest

of this chapter. We focus on the linear belief represented in (5.28), because this

simple belief form is sufficient to drive the resulting non-cooperative equilibrium

to the Pareto boundary.

The goal of user n is to maximize its expected utility aβn
n · s̃n(an) taking into

account the conjectures that it has made about the other users. Therefore, the

optimization a user needs to solve becomes:

max
an∈An

aβn
n ·

[
s̄n − λn(an − ān)

]
. (5.29)

For λk > 0, user n believes that increasing an will further reduce its conjectured

state s̄n. The optimal solution of (5.29) is given by

a∗n =
βn(s̄n + λnān)

λn(1 + βn)
. (5.30)

In the following, we first show that forming simple linear beliefs in (5.28) can

cause all the operating points in the achievable utility region to be CE.

Theorem 5.3 For Type II games, all the positive operating points in the utility

region U are essentially CE.

Proof : For each positive operating point (u∗1, . . . , u
∗
N) (i.e. u∗n > 0,∀n ∈ N ) in

the utility region U , there exists at least one joint action profile (a∗1, . . . , a
∗
N) ∈ A
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such that u∗n = un(a∗), ∀n ∈ N . We consider setting the parameters in the belief

functions {s̃n(an)}N
n=1 to be:

λ∗n = βn · µ−∑N
m=1 τma∗m
a∗n

,∀n ∈ N . (5.31)

It is easy to check that, if the reference points are s̄n = µ−∑N
m=1 τma∗m, ān = a∗n,

we have s̃n(a∗n) = sn(a∗1, . . . , a
∗
N) and a∗n = arg maxan∈An un(s̃n(an), an). There-

fore, this belief function configuration and the joint action a∗ = (a∗1, . . . , a
∗
N)

constitute the CE that results in the utility (u∗1, . . . , u
∗
N). ¥

Theorem 5.3 establishes the existence of CE, i.e. for a particular a∗ ∈ A, how

to choose the parameters {s̄n, ān, λn}N
n=1 such that a∗ is a CE. However, it neither

tells us how these CE can be achieved and sustained in the dynamic setting nor

clarifies how different belief configurations can lead to various CE.

We consider the dynamic scenarios in which users revise their reference points

based on their past local observations over time. Let st
n, a

t
n, s̃

t
n, s̄

t
n, ā

t
n be user n’s

state, action, belief function, and reference points at stage t, in which st
n =

µ −∑N
m=1 τmat

m. We propose a simple rule for individual users to update their

reference points. At stage t, user n sets its s̄t
n and āt

n to be st−1
n and at−1

n . In

other words, user n’s conjectured utility function at stage t is

ut
n(s̃t

n(an), an) = aβn
n ·

[
µ−

N∑
m=1

τmat−1
m − λn(an − at−1

n )
]
. (5.32)

Since we have defined the users’ utility function at stage t, upon specifying the rule

of how user n updates its action at
n based on its utility function ut

n(s̃t
n(an), an),

the trajectory of the entire dynamic process is determined. The remainder of

this chapter will investigate the dynamic properties of the best response and

Jacobi update mechanisms and the performance trade-off among the competing

users at the resulting steady-state CE. In particular, for fixed {λn}N
n=1, Section

5.4.3 derives necessary and sufficient conditions for the convergence of the best
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response and the Jacobi update dynamics. Section 5.4.4 quantitatively describes

the limiting CE for given {λn}N
n=1 and investigates how the parameters {λn}N

n=1

should be properly chosen such that Pareto efficiency can be achieved.

5.4.3 Dynamic Algorithms

5.4.3.1 Best Response

In the best response algorithm, each user updates its action using the best re-

sponse that maximizes its conjectured utility function in (5.32). Therefore, at

stage t, user n chooses its action according to

at
n = Bn(at−1) :=

βn(µ−∑
m∈N\{n} τmat−1

m )

λn(1 + βn)
+

βn(λn − τn)at−1
n

λn(1 + βn)
. (5.33)

We are interested in characterizing the convergence of the update mechanism

defined by (5.33) when using various λn to initialize the belief function s̃n.

To analyze the convergence of the best response dynamics, we consider the

Jacobian matrix of the self-mapping function in (5.33). Let Jik denote the element

at row i and column k of the Jacobian matrix J. The elements of the Jacobian

matrix JBR of (5.33) are defined as:

JBR
ik =

∂at
i

∂at−1
k

=





βk(λk−τk)
λk(1+βk)

, if i = k,

− βiτk

λi(1+βi)
, if i 6= k.

(5.34)

For Type II games, the following theorem gives a necessary and sufficient condi-

tion under which the best response dynamics defined in (5.33) converges.

Theorem 5.4 For Type II games, a necessary and sufficient condition for the

best response dynamics to converge is

N∑
n=1

τnβn

λn(1 + 2βn)
< 1. (5.35)
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Proof : The best response dynamics converges if and only if the eigenvalues

{ξBR
n }N

n=1 of the Jacobian matrix JBR in (5.34) are all inside the unit circle of the

complex plane [GD03], i.e. |ξBR
n | < 1,∀n ∈ N . To determine the eigenvalues of

JBR, we have

det(ξI − JBR) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ξ − β1(λ1−τ1)
λ1(1+β1)

β1τ2
λ1(1+β1)

. . . β1τN

λ1(1+β1)

β2τ1
λ2(1+β2)

ξ − β2(λ2−τ2)
λ2(1+β2)

. . . β2τN

λ2(1+β2)

...
...

. . .
...

βN τ1
λN (1+βN )

βN τ2
λN (1+βN )

. . . ξ − βN (λN−τN )
λN (1+βN )

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

ξ − β1(λ1−τ1)
λ1(1+β1)

τ2
τ1

(
β1

1+β1
− ξ

)
. . . τN

τ1

(
β1

1+β1
− ξ

)

β2τ1
λ2(1+β2)

ξ − β2

1+β2
. . . 0

...
...

. . .
...

βN τ1
λN (1+βN )

0 . . . ξ − βN

1+βN

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

(
ξ − β1

1+β1

) · [1−
N∑

n=1

τn

λn(1− 1+βn
βn

ξ)

]
0 . . . 0

β2τ1
λ2(1+β2)

ξ − β2

1+β2
. . . 0

...
...

. . .
...

βN τ1
λN (1+βN )

0 . . . ξ − βN

1+βN

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Therefore, we can see that, the eigenvalues of JBR are the roots of

[ N∑
n=1

τn

λn(1− 1+βn

βn
ξ)
− 1

]
·

N∏
n=1

(
ξ − βn

1 + βn

)
= 0. (5.36)

Denote q(ξ) =
∑N

n=1
τn

λn(1− 1+βn
βn

ξ)
. First, we assume that βi 6= βj,∀i, j. With-

out loss of generality, consider β1 < β2 < · · · < βN . In this case, the eigen-

values of JBR are the roots of q(ξ) = 1. Note that q(ξ) is a continuous func-

tion and it strictly increases in (−∞, β1

1+β1
), ( β1

1+β1
, β2

1+β2
), · · · , ( βN−1

1+βN−1
, βN

1+βN
),

and ( βN

1+βN
, +∞). We also have limξ→( βn

1+βn
)− q(ξ) = +∞, limξ→( βn

1+βn
)+ q(ξ) =

−∞, n = 1, 2, · · · , N , and limξ→−∞ q(ξ) = limξ→+∞ q(ξ) = 0. Therefore, the
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roots of q(ξ) = 1 lie in (−∞, β1

1+β1
), ( β1

1+β1
, β2

1+β2
), · · · , ( βN−1

1+βN−1
, βN

1+βN
). Since

q(ξ) strictly increases in (−∞, β1

1+β1
), we have |ξBR

n | < 1,∀n ∈ N if and only

if q(−1) =
∑N

n=1
τnβn

λn(1+2βn)
< 1.

Second, we consider the cases in which there exists βi = βj for certain i, j.

Suppose that {βn}N
n=1 take K discrete values κ1, · · · , κK and the number of

{βn}N
n=1 that equal to κk is nk. In this case, Equation (5.36) is reduced to

[ N∑
n=1

τn

λn(1− 1+βn

βn
ξ)
− 1

]
·

K∏

k=1

(
ξ − κk

1 + κk

)nk = 0. (5.37)

Hence, equation q(ξ) = 1 has N + K − ∑K
k=1 nk roots in total, and ξ = κk

1+κk

is a root of multiplicity nk − 1 for Equation (5.37), ∀k. All these roots are the

eigenvalues of matrix JBR. Similarly, the roots of q(ξ) = 1 lie in (−∞, κ1

1+κ1
),

( κ1

1+κ1
, κ2

1+κ2
), · · · , ( κK−1

1+κK−1
, κK

1+κK
). A necessary and sufficient condition under

which |ξBR
n | < 1,∀n ∈ N is still q(−1) < 1, i.e.

∑N
n=1

τnβn

λn(1+2βn)
< 1. ¥

Remark 5.1 Theorem 5.4 indicates that, if the condition in (5.35) is satis-

fied, the best response dynamics converges linearly to the CE. The convergence

rate is mainly determined by maxn∈N |ξBR
n |. Suppose β1 < β2 < · · · < βN

and ξBR
1 < ξBR

2 < · · · < ξBR
N . From the proof of Theorem 5.4, we can see

that, under condition (5.35), −1 < ξBR
1 < β1

1+β1
< ξBR

2 < · · · < ξBR
N , and

βN−1

1+βN−1
< ξBR

N < βN

1+βN
. Therefore, the rate of convergence can be approximated by

max{|ξBR
1 |, |ξBR

N |}. Note that choosing larger {λn}N
n=1 increases ξBR

1 . Hence, if

−1 < ξBR
1 < −|ξBR

N |, increasing {λn}N
n=1, i.e. having more self-constraint users,

accelerate the convergence rate of the best response mechanism. On the other

hand, since ξBR
N > βN−1

1+βN−1
, the convergence rate is lower bounded by βN−1

1+βN−1
.

Therefore, if more than two users associate large weighting factors β with their

individual actions in the utility functions, we have βN−1

1+βN−1
→ 1 and the best re-

sponse dynamics converges slowly.
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Remark 5.2 Theorem 5.4 generalizes the necessary and sufficient condition de-

rived in [DM92], where users are assumed to be symmetric, i.e. τn = 1,∀n and

they adopt the Nash strategy by choosing λn = τn,∀n. Due to lack of symmetry,

the derivation in [DM92] is not readily applicable to analyze the convergence of

the best response dynamics. The proof of Theorem 5.4 instead directly character-

izes the eigenvalues of the Jacobian matrix, and hence, provides a more general

convergence analysis of the dynamic algorithms that allow users to update their

actions based on their independent linear conjectures.

Remark 5.3 In Type II games, a locally stable CE is also globally convergent,

which is purely due to the property of its utility functions specified in (5.16). From

(5.34), we can see that all the elements in JBR are independent of the joint play

at−1. This is in contrast with Type I games that will be considered in Chapter 6,

where local stability of a CE may not imply its global convergence and the best

response dynamics may only converge if the operating point is close enough to the

steady-state equilibrium.

5.4.3.2 Jacobi Update

We consider another alternative strategy update mechanism called Jacobi update

[LA02]. In Jacobi update, every user adjusts its action gradually towards the best

response strategy. At stage t, user n chooses its action according to

at
n = Jn(at−1) := at−1

n + ε
[
Bn(at−1)− at−1

n

]
, (5.38)

in which the stepsize ε > 0 and Bn(at−1) is defined in (5.33). The following

theorem establishes the convergence property of the Jacobi update dynamics.

Theorem 5.5 In Type II games, for given {τn, βn, λn}N
n=1, the Jacobi update

dynamics converges if the stepsize ε is sufficiently small.
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Proof : The Jacobian matrix JJU of the self-mapping function (5.38) satisfies

JJU = (1 − ε)I + εJBR. Therefore, its eigenvalues {ξJU
n }N

n=1 are given by ξJU
n =

1 − ε + εξBR
n . From the proof of Theorem 5.4, we know that ξBR

n < 1,∀n ∈ N .

Therefore, if ε < 2
1−minn ξBR

n
, we have ξJU

n ∈ (−1, 1),∀n ∈ N and the Jacobi

update dynamics converges. ¥

Remark 5.4 Theorem 5.5 indicates that, for any {τn, βn, λn}N
n=1 > 0, the Jacobi

update mechanism globally converges to a CE as long as the stepsize is set to

be a small enough positive number. In other words, the small stepsize in the

Jacobi update can compensate for the instability of the best response dynamics

even though the necessary and sufficient condition in (5.35) is not satisfied.

5.4.4 Stability of the Pareto Boundary

In order to understand how to properly choose the parameters {λn}N
n=1 such that

it leads to efficient outcomes, we need to explicitly describe the steady-state CE

in terms of the parameters {λn}N
n=1 of the belief functions. Denote the joint

action profile at CE as (a∗1, . . . , a
∗
N). From Equation (5.33), we know that

(λn + βnτn)a∗n +
∑

m∈N\{n}
βnτma∗m = βnµ,∀n ∈ N . (5.39)

The solutions of the above linear equations are

aCE
n =

βnµ

λn(1 +
∑N

m=1
τmβm

λm
)
,∀n ∈ N . (5.40)

Based on the closed-form expression of the CE, the following theorem indicates

the stability of the Pareto boundary in Type II games.

Theorem 5.6 For Type II games, all the operating points on the Pareto boundary

are globally convergent CE under the best response dynamics.
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Proof : Comparing Equations (5.23) and (5.40), we can see that, (aCE
1 , . . . , aCE

N ) =

(aPB
1 , . . . , aPB

N ) if and only if λn = τn/ωn. Substitute it into the LHS of (5.35):

N∑
n=1

τnβn

λn(1 + 2βn)
=

N∑
n=1

ωnβn

1 + 2βn

<

∑N
n=1 ωn

2
=

1

2
. (5.41)

Condition (5.35) is satisfied for all the Pareto-optimal operating points. In fact,

we have minn ξBR
n = 0, which is because q(0) =

∑N
n=1

τn

λn
=

∑N
n=1 ωn = 1.

Therefore, under the best response dynamics, the Pareto boundary is globally

convergent. ¥

In addition, we also note that Theorem 5.5 already indicates the stabil-

ity of the Pareto boundary under Jacobi update as long as the parameters

{τn, βn, λn}N
n=1 are properly chosen.

Remark 5.5 Since
∑N

n=1 ωn = 1, we can see from the previous proof that, the

belief configurations {λn}N
n=1 lead to Pareto-optimal operating points if and only

if
N∑

n=1

τn

λn

= 1. (5.42)

Therefore, we can see that, to achieve Pareto-optimality in these non-cooperative

scenarios, users need to choose the belief parameters {λn}N
n=1 to be greater than

or equal to the parameters {τn}N
n=1 in the utility function {un}N

n=1 and the sum-

mation of τn

λn
should be equal to 1. Define user n’s conservativeness as τn

λn
, which

reflects the ratio between the immediate performance degradation −τn∆an in the

actual utility function and the long-term effect −λn∆an in the conjectured utility

function if user n increases its action by ∆an. The condition in Equation (5.42)

indicates that, to achieve efficient outcomes, the non-collaborative users need to

jointly maintain moderate conservativeness by considering the multi-user coupling

and appropriately choosing {λn}N
n=1. By “moderate”, we mean that users are nei-

ther too aggressive, i.e. λn → τn and
∑N

n=1
τn

λn
→ N , nor too conservative, i.e.
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Figure 5.1: The trajectory of the best response and Jacobi update dynamics.

λn → +∞ and
∑N

n=1
τn

λn
→ 0. If more than one user plays the Nash strategy and

choose λn = τn, Equation (5.42) does not hold and the resulting operating point

is not Pareto-optimal. Therefore, myopic selfish behavior is detrimental.

Similarly as in (5.24), we have

N∑
n=1

ωn log
un(aCE)

un(aPB)
=

N∑
n=1

ωnβn log

τn(1 +
N∑

j=1

ωjβj)

λnωn(1 +
N∑

j=1

τjβj

λj
)

+ log

1 +
N∑

j=1

ωjβj

1 +
N∑

j=1

τjβj

λj

. (5.43)

Using Jensen’s inequality, we can conclude that
∑N

n=1 ωn log un(aCE)
un(aPB)

≤ 0 and
∑N

n=1 ωn log un(aCE)
un(aPB)

= 0 if and only if ωn = τn

λn
,∀n. Therefore, if a CE is Pareto

efficient, user n’s conservativeness τn/λn corresponds to the weight assigned to

user n in the weighted proportional fairness defined in (5.8).

As an illustrative example, we simulate a three-user system with parameters

β = [1.5 1 0.5], τ = [3 4 5], µ = 10, ωn = 1
3
,∀n. In this case, the joint actions
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Table 5.1: Actions and payoffs at NE and Pareto boundary.

User 1 User 2 User 3

aNE
i 1.25 0.625 0.25

uNE
i 3.4939 1.5625 1.25

aPB
i 0.833 0.417 0.167

uPB
i 3.8036 2.0833 2.0412

and the corresponding utilities at NE and Pareto boundary are summarized in

Table 5.1. The price of anarchy quantified according to (5.27) is −0.2877 and the

lower bound in (5.27) is −0.5754. As discussed in Section III.C, both the upper

bound and lower bound in (5.27) are not tight. Fig. 5.1 shows the trajectory

of the action updates under both best response and Jacobi update dynamics, in

which a0
n = 0.5, λn = τn

ωn
,∀n, and ε = 0.5. The best response update converges to

the Pareto-optimal operating point in around 8 iterations and the Jacobi update

experiences a smoother trajectory and the same equilibrium is attained after more

iterations.

5.5 Concluding Remarks

We derive the structure of the utility functions in the multi-user communication

scenarios where a user’s action has proportionally the same impact over other

users’ utilities. We define two basic types of linearly coupled games and inves-

tigate the properties of Type II game. The performance gap between NE and

Pareto boundary of the utility region is explicitly characterized. To improve the

performance in non-cooperative cases, we investigate a CE approach which en-

dows users with simple linear beliefs which enables them to select an equilibrium
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outcome that is efficient without the need of explicit message exchanges. The

properties of the CE under both the best response and Jacobi dynamic update

mechanisms are characterized. We show that the entire Pareto boundary in lin-

early coupled games is globally convergent CE which can be achieved by both

studied dynamic algorithms without the need of real-time message passing. A

potential future direction is to see how to extend the CE approach to the non-

linearly coupled multi-user communication scenarios.
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CHAPTER 6

Dynamic Conjectures in Random Access

Networks

6.1 Introduction

As discussed in the previous chapter, the multi-user interaction in random ac-

cess communication networks can be modeled as Type I linear coupled games.

It is well-known that myopic selfish behavior is detrimental in random access

communication networks [CGA05]. This chapter is concerned with developing

distributed algorithms in random access communication networks to improve the

throughput efficiency from the game-theoretic perspective. To avoid a network

collapse and encourage cooperation, we adopt the conjecture-based model and

enable the cognitive communication devices to build belief models about how

their competitors’ reactions vary in response to their own action changes. The

belief functions of the wireless devices are inspired by the concept of reciprocity,

which refers to interaction mechanisms in which the emergence of cooperative be-

havior is favored by the probability of future mutual interactions [Smi82, Now06].

Specifically, by deploying such a behavior model, devices will no longer adopt my-

opic, selfish, behaviors, but rather they will form beliefs about how their actions

will influence the responses of their competitors and, based on these beliefs, they

will try to maximize their own welfare. The steady state of such a play among
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belief-forming devices can be characterized as a conjectural equilibria (CE). At

the equilibrium, devices compensate for their lack of information by forming an

internal representation of the opponents’ behavior and preferences, and using

these “conjectured responses” in their personal optimization program [FJQ04].

More importantly, we show that the reciprocity among these self-interested de-

vices can be sustained.

In particular, the main contributions of this chapter are as follows. First, to

cultivate cooperation in random access networks, we enable self-interested au-

tonomous nodes to form independent linear beliefs about how their rival actions

vary as a function of their own actions. We design two simple distributed algo-

rithms in which all the nodes’ beliefs and actions will be revised by observing the

outcomes of past mutual interaction over time. Both conjecture-based algorithms

require little information exchange among different nodes and the internal com-

putation for each node is very simple. For both algorithms, we investigate the

stability of different operating points and derive sufficient conditions that guar-

antee their global convergence, thereby establishing the connection between the

dynamic belief update procedures and the steady-state CE. We prove that all the

operating points in the throughput region are stable CE and reciprocity can be

eventually sustained via the proposed evolution. We also provide an engineering

interpretation of the proposed design to clarify the similarities and differences

between the proposed algorithms and existing protocols, e.g. the IEEE 802.11

DCF.

Second, we investigate the relationship between the parameter initialization of

beliefs and Pareto-efficiency of the achieved CE. In the economic market context,

it has been shown that adjustment processes based on conjectures and individual

optimization may sometimes be driven to Pareto-optimality [JT06]. To the best of
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our knowledge, this is the first attempt in investigating the Pareto efficiency of the

conjecture-based approach in communication networks. Importantly, it is shown

that, regardless of the number of nodes, there always exist certain belief configura-

tions such that the proposed distributed algorithms can operate arbitrarily close

to the Pareto boundary of the throughput region while approximately maintain-

ing the weighted fairness across the entire network. Our investigation provides

useful insights that help to define convergent dynamic adaptation schemes that

are apt to drive distributed random access networks towards efficient, stable, and

fair configurations.

The rest of this chapter is organized as follows. Section 6.2 presents the system

model of random access networks, reviews the existing game theoretic solutions,

and introduces the concept of CE. Section 6.3 develops two simple distributed

algorithms in which nodes form dynamic conjectures and optimize their actions

based on their conjectures. The stability of different CE and the condition of

global convergence are established. This section also shows that nodes’ conjec-

tures can be configured to stably operate at any point that is arbitrarily close

to the Pareto frontier in throughput region. Section 6.4 addresses the topics of

equilibrium selection in heterogeneous networks and presents possible extension

to ad-hoc networks. Numerical simulations are provided in Section 6.5 to com-

pare the proposed algorithms with the IEEE 802.11 DCF protocol and P-MAC

protocol. We will compare the similarities and differences between Type I and

II linear coupled games in Section 6.6. Concluding remarks are drawn in Section

6.7.
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Figure 6.1: System model of a single cell.

6.2 System Description

In this section, we describe the system model of random access networks, define

the investigated random access game, and discuss the existing game-theoretic

solutions.

6.2.1 System Model of Random Access Networks

Following [LTH07, CCL08], we model the interaction among multiple autonomous

wireless nodes in random access networks as a random access game.

As shown in Fig. 6.1, consider a set K = {1, 2, . . . , K} of wireless nodes

and each node represents a transmitter-receiver pair (link). We define Txk as the

transmitter node of link k and Rxk as the receiver node of link k. We first assume

a single-cell wireless network, where every node can hear every other node in the

network, and we will address the ad-hoc network scenario in Section 6.4.2. The

system operates in discrete time with evenly spaced time slots [MM85, GS06].

We assume that all nodes always have a data packet to transmit at each time

slot (i.e. we investigate the saturated traffic scenario1), and the network is noise

1This chapter focuses on the saturated system because we are interested in throughput
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free and packet loss occurs only due to collision. The action of a node in this

game is to select its transmission probability and a node k will independently

attempt transmission of a packet with transmit probability pk. The action set

available to node k is Pk = [0, 1] for all k ∈ K2. Once the nodes decide their

transmission probabilities based on which they transmit their packets, an action

profile is determined. We denote the action profile in the random access game as

a vector p = (p1, . . . , pK) in P = P1 × · · · × PK . Then the throughput of node k

is given by3

uk(p) = pk

∏

i∈K\{k}
(1− pi). (6.1)

To capture the performance tradeoff in the network, the throughput (payoff)

region is defined as T = {(u1(p), . . . , uK(p))| ∃ p ∈ P}. The random access

game can be formally defined by the tuple Γ = 〈K, (Pk), (uk)〉 [FT91]. Denote

the transmission probability for all nodes but k by p−k = (p1, . . . , pk−1, pk+1,

. . . , pK). From (6.1), we can see that node k’s throughput depends not only

on its own transmission probability pk, but also the other nodes’ transmission

probabilities p−k.

6.2.2 Existing Solutions

The throughput tradeoff and stability of random access networks have been ex-

tensively studied from the game theoretic perspective [JK02, LTH07, CCL08,

CGA05]

[LCC07, MHC09, MMR09]. This subsection briefly reviews these existing results

maximization. The analysis can be extended to investigate the non-saturated networks where
the incoming packets of the individual nodes’ queues arrive at finite rates.

2The action set can be alternatively defined to be Pk = [Pmin
k , Pmax

k ] and the analysis in
this chapter still applies.

3This throughput model assumes that time is slotted and all packets are of equal length. We
use this model for theoretic analysis. The throughput of the scenarios in which packet lengths
are not equal, e.g. the IEEE 802.11 DCF, will be addressed in Section 6.5.
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and highlights the advantage and disadvantage of different approaches.

In the random access game, one of the most investigated problems is whether

or not a Nash equilibrium exists. The NE of the investigated random access game

has been addressed in the similar context of CSMA/CA networks where selfish

nodes deliberately control their random deferment by altering their contention

windows [CGA05]. Specifically, the transmission probability pk in our model can

be related to the contention window CWk in the CSMA/CA protocol, where

pk = 2
1+CWk

. It has been shown in [CGA05] that at the NE, at least one selfish

node will set CWk = 1 (i.e. always transmit). If more than one selfish node

sets its contention window to 1, it will cause zero throughput for all the nodes

in the system. This kind of result is known as the tragedy of the commons. We

can see that, myopic selfish behavior is detrimental in random access scenarios

and novel mechanisms are required to encourage cooperative behavior among the

self-interested devices. In addition, the existence of and convergence to the NE

in random access games have been studied also in other scenarios, where indi-

vidual nodes have utility functions that are different from (6.1) [JK02, LTH07].

For example, the nodes in [JK02] adjust their transmission probabilities in an

attempt to attain their desired throughputs. A local utility function is found for

exponential backoff-based MAC protocols, based on which these protocols can

be reverse-engineered in order to stabilize the network [LTH07]. However, due

to the inadequate coordination or feedback mechanism in these protocols, Pareto

optimality of the throughput performance cannot be guaranteed.

Several recent works also investigate how to design new distributed algorithms

that provably converge to the Pareto boundary of the network throughput re-

gion [CGA05, LCC07, MHC09]. A distributed protocol is proposed in [CGA05]

to guide multiple selfish nodes to a Pareto-optimal NE by including penalties
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into their utility functions. However, the penalties must be carefully chosen.

In [LCC07], the utility maximization is solved using the dual decomposition

technique by enabling nodes to cooperatively exchange coordination information

among each other. Furthermore, it is shown in [MHC09] that network utility max-

imization in random access networks can be achieved without real-time message

passing among nodes. The key idea is to estimate the other nodes’ transmis-

sion probabilities from local observations, which in fact increases the internal

computational overhead of individual nodes.

As discussed before, the goal of this chapter is to design a simple distributed

random access algorithm that requires limited information exchanges among

nodes and also stabilizes the entire network. More importantly, this algorithm

should be capable of achieving high efficiency and of differentiating among het-

erogeneous nodes carrying various traffic classes with different quality of service

requirements. As we will show later, the game-theoretic concept of conjectural

equilibrium defined in (4.1) provides such an elegant solution.

6.3 Distributed Algorithms

By the definition of CE, all nodes’ expectations based on their beliefs are realized

and each node behaves optimally according to its expectation. In other words,

nodes’ beliefs are consistent with the outcome of the play and they behave op-

timally with respect to their beliefs. The key challenges are how to configure

the belief functions such that reciprocal behavior is encouraged and how to de-

sign the evolution rules such that the network can dynamically converge to a

CE having satisfactory performance. In this section, to promote reciprocity, we

design a prescribed rule for each node to configure its belief about its expected

contention of the wireless network as a linear function of its own transmission

146



probability. It is shown that all the achievable operating points in the throughput

region T are CE by deploying these belief functions. Furthermore, we propose

two distributed algorithms for these nodes to dynamically achieve the CE. We

provide the sufficient conditions that guarantee the stability and convergence of

the CE. We also discuss the similarities and differences between the proposed

algorithms and the existing well-known protocols. Finally, it is proven that any

Pareto-inefficient operating point is a stable CE, i.e. we can approach arbitrarily

close to the Pareto frontier of the throughput region T .

6.3.1 Individual Behavior

As discussed before, both the state space and belief functions need to be defined

in order to investigate the existence of CE. In the random access game, we define

the state sk =
∏

i∈K\{k}(1− pi) to be the contention measure signal representing

the probability that all nodes except node k do not transmit. This is because

besides its own transmission probability, its throughput only depends on the

probability that the remaining nodes do not transmit. We can see that state

sk indicates the aggregate effects of the other nodes’ joint actions on node k’s

payoff. In practice, it is hard for wireless nodes to compute the exact transmission

probabilities of their opponents [MHC09]. Therefore, we assume that sk is the

only information that node k has about the contention level of the entire network,

because it is a metric that node k can easily compute based on local observations.

Specifically, from user k’s viewpoint, the probabilities of experiencing an idle time

slot is pidle
k = (1 − pk)sk. Let nidle

k denote the number of time slots between any

two consecutive idle time slots. nidle
k has an independent identically distributed

geometric distribution with probability pidle
k . Therefore, we have pidle

k = 1/(1 +

n̄idle
k ), where n̄idle

k is the mean value of nidle
k and can be locally estimated by node k
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through its observation of the channel contention history. Since node k knows its

own transmission probability pk, it can estimate sk using sk = 1/(1+n̄idle
k )(1−pk).

Notice that the action available to node k is to choose the transmission probability

pk ∈ Pk. By the definition of belief function, we need to express the expected

contention measure s̃k as a function of its own transmission probability pk. The

simplest approach is to deploy linear belief models, i.e. node k’s belief function

takes the form

s̃k(pk) = s̄k − ak(pk − p̄k), (6.2)

for k ∈ K. The values of s̄k and p̄k are specific states and actions, called refer-

ence points [JT06] and ak is a positive scalar. In other words, node k assumes

that other nodes will observe its deviation from its reference point p̄k and the

aggregate contention probability deviates from the referent point s̄k by a quan-

tity proportional to the deviation of pk − p̄k. How to configure s̄k, p̄k, and ak will

be addressed in the rest of this chapter. The reasons why we focus on the linear

beliefs represented in (6.2) are two-fold. First, the linear form represents the

simplest model based on which a user can model the impact of its environment.

As we will show later in Section 6.3.5, building and optimizing over such simple

beliefs is sufficient for the network to achieve almost any operating point in the

throughput region as a stable CE. Second, the conjecture functions deployed by

the wireless users are based on the concept of reciprocity [Smi82, Now06], which

was developed in evolutionary biology, and refers to interaction mechanisms in

which the evolution of cooperative behavior is favored by the probability of fu-

ture mutual interactions. Similarly, in single-hop wireless networks, the devices

repeatedly interact when accessing the channel. If they disregard the fact that

they have a high probability to interact in the future, they will act myopically,

which will lead to a tragedy of commons (the zero-payoff Nash equilibrium).

However, if they recognize that their probability of interacting in the future is
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high, they will consider their impact on the network state, which is captured in

the belief function by the positive ak.

The goal of node k is to maximize its expected throughput pk · s̃k(pk) taking

into account the conjectures that it has made about the other nodes. Therefore,

the optimization a node needs to solve becomes:

max
pk∈Pk

pk

[
s̄k − ak(pk − p̄k)

]
, (6.3)

where the second term is the expected contention measure s̃k(pk) if node k

transmits with probability pk. The product of pk and s̃k(pk) gives the expected

throughput for pk ∈ Pk. For ak > 0, node k believes that increasing its transmis-

sion probability will increase its experienced contention probability. The optimal

solution of (6.3) is given by

p∗k = min
{ s̄k

2ak

+
p̄k

2
, 1

}
. (6.4)

In the following, we first show that forming simple linear beliefs in (6.2) can

cause all the operating points in the achievable throughput region to be CE.

Theorem 6.1 All the operating points in the throughput region T are conjectural

equilibria.

Proof : For each operating point (τ1, . . . , τK) in the throughput region T ,

there exists at least a joint action profile (p∗1, . . . , p
∗
K) ∈ P such that τk = uk(p

∗),

∀k ∈ K. We consider setting the parameters in the belief functions to be:

a∗k =

∏
i∈K\{k}(1− p∗i )

p∗k
. (6.5)

It is easy to check that, if the reference points are s̄k =
∏

i∈K\{k}(1− p∗i ), p̄k = p∗k,

we have s̃k(p
∗
k) = sk(p

∗
1, . . . , p

∗
K) and p∗k = arg maxpk∈Pk

uk(s̃k(pk), pk). Therefore,
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this configuration of the belief functions and the joint action p∗ = (p∗1, . . . , p
∗
K)

constitute the CE that results in the throughput (τ1, . . . , τK).4 ¥

Theorem 6.1 establishes the existence of CE, i.e. for a particular p∗ ∈ P , how

to choose the parameters {s̄k, p̄k, ak}K
k=1 such that p∗ is a CE. However, it neither

tells us how these CE can be achieved and sustained in the dynamic setting nor

clarifies how different belief configurations can result in various CE.

In distributed scenarios, nodes learn when they modify their conjectures based

on their new observations. Specifically, we first allow the nodes to revise their

reference points based on their past local observations. Let st
k, p

t
k, s̃

t
k, s̄

t
k, p̄

t
k be

user k’s state, transmission probability, belief function, and reference points at

stage t5, in which st
k =

∏
i∈K\{k}(1− pt

i). We propose a simple rule for individual

nodes to update their reference points. At stage t, node k set its s̄t
k and p̄t

k to be

st−1
k and pt−1

k . In other words, node k’s conjectured utility function at stage t is

ut
k(s̃

t
k(pk), pk) = pk

[ ∏

i∈K\{k}
(1− pt−1

i )− ak(pk − pt−1
k )

]
. (6.6)

The remainder of this chapter will investigate the dynamic properties of the re-

sulting operating points and the performance trade-off among multiple competing

nodes. In particular, for fixed {ak}K
k=1, Sections 6.3.2 and 6.3.3 will embed the

above individual optimization scheme in two different distributed learning pro-

cesses in which all the nodes update their transmission probabilities over time.

Section 6.3.5 further allows individual nodes adaptively update their parameters

4By the definition of CE, the configuration of the linear belief functions is a key part of CE.
Since this chapter focuses on the linear belief functions defined in (6.2), we will simply state
the joint action p∗ is a CE hereafter for the ease of presentation.

5This chapter assumes the persistence mechanism for contention resolution except in Section
6.3.4. In the persistence mechanism, each wireless node maintains a persistence probability and
accesses the channel with this probability [NKG00]. A stage contains multiple time slots. The
nodes estimate the contention level in the network and update their persistence probabilities
in the ”stage-by-stage” manner. The superscript t in this chapter represents the numbering of
the stages unless specified.
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Table 6.1: Algorithm 6.1: A Distributed Best Response Algorithm for Random Access.

Initialize: t = 0, the transmission probability p0
k ∈ [0, 1], and the parameter

ak > 0 in node k’s belief function, ∀k ∈ K.

procedure

Repeat

Locally at each node k, iterate through t:

Set t ← t + 1.

for all k ∈ K do

At stage t, pt
k ← min{pt−1

k /2 +
∏

i∈K\{k}(1− pt−1
i )/(2ak), 1}.

end for

Node k decides if it will transmit data with a probability pt
k (or

equivalently, maintain a window size of CW t
k = 2/pt

k − 1) for all the time

slots during stage t.

end procedure

{ak}K
k=1 such that desired efficiency can be attained. For given {ak}K

k=1, Section

6.4.1 will derive a quantitative description of the resulting CE p∗.

6.3.2 A Best Response Algorithm

Our first algorithm adopts the simplest update mechanism in which each node

adjusts its transmission probability using the best response that maximizes its

conjectured utility function (6.6). Therefore, at stage t, node k chooses a trans-

mission probability

pt
k = arg max

pk∈Pk

ut
k(s̃

t
k(pk), pk) = min

{pt−1
k

2
+

∏
i∈K\{k}(1− pt−1

i )

2ak

, 1
}

. (6.7)

The detailed description of the entire distributed best response procedure is

151



Update actionUpdate belief RandomAccessNetworkObservationsNode k ( )1/{ }Contention probability1 tii k p −∈ −∏ K( )k ks p� ( )( )arg maxkktk k k kpp u s p∈= �A tkpLearning
Figure 6.2: An illustration of the distributed algorithms.

summarized in Algorithm 6.1 and it is also pictorially illustrated in Fig. 6.2. Next,

we are interested in deriving the limiting behavior, e.g. stability and convergence,

of this algorithm. For ease of illustration, the sufficient conditions for stability

and convergence throughout this chapter are expressed in terms of {pk}K
k=1 and

{ak}K
k=1, respectively. The mapping from {pk}K

k=1 to {ak}K
k=1 is given in (6.5) and

the mapping from {ak}K
k=1 to {pk}K

k=1 will be addressed in Section 6.4.1.

6.3.2.1 Local Stability

Although Theorem 6.1 indicates that all the points in T are CE, they may not

be necessarily stable. An unstable equilibrium is not desirable, because any small

perturbation might cause the sequence of iterates to move away from the initial

equilibrium. The following theorem describes a subset in P in which all the points

are stable CE.

Theorem 6.2 For any p∗ = (p∗1, . . . , p
∗
K) ∈ P , if

K∑

k=1

p∗k < 1, or
∑

i∈K\{k}

p∗k
1− p∗i

< 1, ∀k ∈ K, (6.8)
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p∗ is a stable CE for Algorithm 6.1.

Proof : To analyze the stability of different CE, we consider the Jacobian

matrix of the self-mapping function in (6.7). Let Jik denote the element at row i

and column k of the Jacobian matrix J. If pt−1
k /2+

∏
i∈K\{k}(1−pt−1

i )/(2ak) ≤ 1,

the Jacobian matrix JBR of (6.7) is defined as:

JBR
ik =

∂pt
i

∂pt−1
k

=





1
2
, if i = k,

− 1
2ai

∏
j∈K\{i,k}(1− pt−1

j ), if i 6= k.
(6.9)

As proven in Theorem 6.1, for p∗ = (p∗1, . . . , p
∗
K) ∈ P to be a fixed point of the

self-mapping function in (6.7), ak must be set to be a∗k =
∏

i∈K\{k}(1− p∗i )/p
∗
k. It

follows that

JBR
ik |p=p∗, a=a∗ =





1
2
, if i = k,

− p∗i
2(1−p∗k)

, if i 6= k.
(6.10)

p∗ is stable if and only if the eigenvalues {λk}K
k=1 of matrix JBR in (6.10) are all

inside the unit circle of the complex plane, i.e. |λk| < 1,∀k ∈ K.

From Gersgorin circle theorem [HJ81], all the eigenvalues {λk}K
k=1 of JBR are

located in the region

K⋃

k=1

{
|λ− JBR

kk | 6
∑

i∈K\{k}
|JBR

ik |
}

and
K⋃

k=1

{
|λ− JBR

kk | 6
∑

i∈K\{k}
|JBR

ki |
}

.

Note that JBR
kk = 1/2, these regions can be further simplified as

K⋃

k=1

{
|λ− 1

2
| 6

∑

i∈K\{k}

p∗i
2(1− p∗k)

}
and

K⋃

k=1

{
|λ− 1

2
| 6

∑

i∈K\{k}

p∗k
2(1− p∗i )

}
.

If either condition in (6.8) is satisfied, all the eigenvalues of JBR must fall into

the region |λ− 1
2
| < 1

2
, which is located within the unit circle |λ| < 1. Therefore,

p∗ is a stable CE. ¥
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Remark 6.1 p∗k/(1 − p∗i ) can be interpreted as the worst case probability that

node k occupies the channel given that node i does not transmit. This metric

reflects from node k’s perspective the impact that node i’s evacuation has on the

overall congestion of the channel. Therefore, the sufficient conditions in (6.8)

means that if the system is not overcrowded from all the nodes’ perspectives,

the corresponding CE is stable. We can see from Theorem 6.2 that lowering

the transmission probabilities helps to stabilize the random access network. The

system can accommodate a certain degree of individual nodes’ “aggressiveness”

while maintaining the network stability. For example, if a node sends its packets

with a probability close to 1, as long as the other nodes are conservative and

they set their transmission probability small enough, the entire network can still

be stabilized. However, if too many “aggressive” nodes with large transmission

probabilities coexist, the system stability may collapse, leading to a tragedy of

commons.

6.3.2.2 Global Convergence

Note that Theorem 6.2 only investigates the stability for different fixed points,

i.e. Algorithm 6.1 converges to these points when initial values are close enough

to them. In addition to local stability, we are also interested in characterizing

the global convergence of Algorithm 6.1 when using various ak to initialize the

belief function s̃k.

Theorem 6.3 Regardless of any initial value chosen for {p0
k}K

k=1, if the param-

eters {ak}K
k=1 in the belief functions {s̃k}K

k=1 satisfy

∑

i∈K\{k}

1

ai

< 1,∀k ∈ K, (6.11)

Algorithm 6.1 converges to a unique CE.
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Proof : For ak > 1, the self-mapping function in (6.7) can be rewritten as

pt
k =

pt−1
k

2
+

∏
i∈K\{k}(1− pt−1

i )

2ak

. (6.12)

We can prove for Algorithm 6.1 the uniqueness of and the convergence to CE

by showing that function (6.12) is a contraction map if the condition in (6.11) is

satisfied.

Let d(·) be the induced distance function by certain vector norm in the Eu-

clidean space. Consider two sequences of the transmission probability vectors

{p0, . . . ,pt−1,pt, . . .} and {p̂0, . . . , p̂t−1, p̂t, . . .}. We have

d(pt, p̂t) = ‖pt − p̂t‖ ≤ ‖JBR‖ · ‖pt−1 − p̂t−1‖ = ‖JBR‖ · d(pt−1, p̂t−1). (6.13)

The matrix norm used here is induced by the same vector norm. Using ‖·‖1 for

the Jacobian matrix of (6.12) as given in (6.10), we have

‖JBR‖1 = max
k∈K

K∑
i=1

|JBR
ik | ≤ 1

2
+

1

2
max
k∈K

∑

i∈K\{k}

1

ai

. (6.14)

Therefore, if the condition in (6.11) is satisfied, there exist a constant q ∈ [0, 1)

and a positive ε, such that q = ‖JBR‖1 = 1 − ε < 1 and ‖pt − p̂t‖1 ≤ q‖pt−1 −
p̂t−1‖1. From the contraction mapping theorem [GD03], the self-mapping func-

tion in (6.7) has a unique fixed point and the sequence {pt}+∞
t=0 converges to the

unique fixed point. ¥

Remark 6.2 We can also alternatively derive a sufficient condition using ‖·‖∞
for (6.13) to be a contraction map. We have

‖JBR‖∞ = max
k∈K

K∑
i=1

|JBR
ki | ≤

1

2
+

1

2
max
k∈K

K − 1

ak

. (6.15)

Therefore, if ak > K − 1,∀k ∈ K, Algorithm 6.1 also globally converges. How-

ever, it is easy to verify that it is a special case of the sufficient condition given by
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(6.11). In addition, we can see from (6.11) that, if the accumulated “aggressive-

ness” of the nodes in the entire networks reaches a certain threshold, the global

convergence property may not hold. However, if all the nodes back off adequately

by choosing their algorithm parameters {ak}K
k=1 such that condition (6.11) is sat-

isfied, Algorithm 6.1 globally converges.

Remark 6.3 Under the sufficient condition in (6.11), by substituting (6.5) into

(6.11), the limiting points lie in the set

{
p∗ = (p∗1, . . . , p

∗
K)

∣∣∣
∑

i∈K\{k}

p∗i∏
l∈K\{i}(1− p∗l )

< 1,∀k ∈ K
}

. (6.16)

It is easy to check that this is a subset of {p∗ = (p∗1, . . . , p
∗
K)|∑K

k=1 p∗k < 1}
for K > 2, which verifies the intuition that the set that Algorithm 6.1 globally

converges to should be a subset of the set of locally stable CE.

6.3.3 A Gradient Play Algorithm

The best-response based dynamics may lead to large fluctuations in the entire

network, which may not be desirable if we want to avoid temporary system-wide

instability. Therefore, in this subsection, we propose an alternative gradient play

algorithm. At each iteration, each node updates its action gradually in the ascent

direction of its conjectured utility function in (6.6). Specifically, at stage t, node

k chooses its transmission probability according to

pt
k =

[
pt−1

k + γk
∂ut

k(s̃
t
k(pk), pk)

∂pk

∣∣∣∣∣
pk=pt−1

k

]1

0

, (6.17)

in which [x]ba means max{min{x, b}, a}. As long as the stepsize γk is small enough,

the entire network will “evolve” smoothly and temporary system-wide instability

will not occur. In the following, we assume that all nodes use the same stepsize
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Table 6.2: Algorithm 6.2: A Distributed Gradient Play Algorithm for Random Access.

Initialize: t = 0, stepsize γ, the transmission probability p0
k ∈ [0, 1], and the

parameter ak > 0 in node k’s belief function, ∀k ∈ K.

procedure

Repeat

Locally at each node k, iterate through t:

Set t ← t + 1.

for all k ∈ K do

At stage t, pt
k ←

[
pt−1

k + γ
{∏

i∈K\{k}(1− pt−1
i )− akp

t−1
k

}]1

0

.

end for

Node k decides if it will transmit data with a probability pt
k (or

equivalently, maintain a window size of CW t
k = 2/pt

k − 1) for all the time

slots during stage t.

end procedure

γk = γ, ∀k ∈ K and 0 < pt−1
k < 1. If γ is sufficiently small, substituting the

utility function (6.6) into (6.17), we have

pt
k = pt−1

k + γ
{ ∏

i∈K\{k}
(1− pt−1

i )− akp
t−1
k

}
. (6.18)

The detailed description of the distributed gradient play learning mechanism is

summarized in Algorithm 6.2. As for Algorithm 6.1, we investigate the stability

and convergence of this gradient play algorithm.

6.3.3.1 Local Stability

First of all, the following theorem describes a stable CE set in P for Algorithm

6.2.
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Theorem 6.4 For any p∗ = (p∗1, . . . , p
∗
K) ∈ P , if

K∑

k=1

p∗k < 1, or
∑

i∈K\{k}

p∗k
1− p∗i

< 1, ∀k ∈ K, (6.19)

and the stepsize γ is sufficiently small, p∗ is a stable CE for Algorithm 6.2.

Proof : Consider the Jacobian matrix JGP of the self-mapping function in

(6.18). We have JGP
ik = ∂pt

i/∂pt−1
k . As discussed above, for p∗ = (p∗1, . . . , p

∗
K) ∈ P

to be a fixed point of the self-mapping function in (6.18), ak must be set to be

a∗k =
∏

i∈K\{k}(1− p∗i )/p
∗
k. It follows that

JGP
ik |p=p∗, a=a∗ =





1− γ
∏

l∈K\{k}(1− p∗l )/p
∗
k, if i = k,

−γ
∏

l∈K\{i,k}(1− p∗l ), if i 6= k.
(6.20)

p∗ is stable if and only if the eigenvalues {λk}K
k=1 of matrix JGP are all inside the

unit circle of the complex plane, i.e. |λk| < 1,∀k ∈ K. Recall that the spectral

radius ρ(J) of a matrix J is the maximal absolute value of the eigenvalues[HJ81].

Therefore, it is equivalent to prove that ρ(JGP ) < 1.

To a vector www = (w1, · · · , wK) ∈ RK
+ with positive entries, we associate a

weighted `∞ norm, defined as

‖xxx‖www
∞ = max

k∈K
|xk|
wk

. (6.21)

The vector norm ‖ · ‖www
∞ induces a matrix norm, defined by

‖A‖www
∞ = max

k∈K
1

wk

K∑
i=1

|aki|wi. (6.22)

According to Proposition A.20 in [BT97], ρ(JGP ) ≤ ‖JGP‖www
∞. Consider the vector

www = (w1, · · · , wK) in which wk = p∗k(1− p∗k). We have

1

wk

K∑
i=1

|JGP
ki |wi = 1− γ

∏
l∈K\{k}(1− p∗l )

p∗k
+

∑

i∈K\{k}

γp∗i
∏

l∈K\{k}(1− p∗l )

p∗k(1− p∗k)

= 1− γ
∏

l∈K\{k}(1− p∗l )

p∗k

[
1−

∑

i∈K\{k}

p∗i
1− p∗k

]
.

(6.23)
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Therefore, if
∑

k∈K p∗k < 1, ∀k ∈ K, there exists some β > 0 such that
∏

l∈K\{k}(1− p∗l )

p∗k

[
1−

∑

i∈K\{k}

p∗i
1− pk

∗]
≥ β, ∀k ∈ K. (6.24)

If the stepsize γ satisfies 0 < γ < 1/β, we have

‖JGP‖www
∞ = max

k∈K

{
1−

γ
∏

l∈K\{k}
(1− p∗l )

p∗k

[
1−

∑

i∈K\{k}

p∗i
1− p∗k

]}
≤ 1−γβ < 1. (6.25)

Since ρ(JGP ) ≤ ‖JGP‖www
∞ < 1, all the eigenvalues of JGP must fall into the unit

circle |λ| < 1. Therefore, p∗ is a stable CE. Similarly, by choosing www = [1, · · · , 1],

we can show that, if
∑

i∈K\{k}

p∗k
1− p∗i

< 1, ∀k ∈ K, (6.26)

and γ is sufficiently small, p∗ is also stable. ¥

6.3.3.2 Global Convergence

Similarly as in the previous subsection, we derive in the following theorem a

sufficient condition under which Algorithm 6.2 globally converges.

Theorem 6.5 Regardless of any initial value chosen for {p0
k}K

k=1, if the param-

eters {ak}K
k=1 in the belief functions {s̃k}K

k=1 satisfy

∑

i∈K\{k}

1

ai

< 1,∀k ∈ K, (6.27)

and the stepsize γ is sufficiently small, Algorithm 6.2 converges to a unique CE.

Proof : For the self-mapping function in (6.18), the elements of its Jacobian

matrix JGP satisfy

JGP
ik =





1− γak, if i = k,

−γ
∏

l∈K\{i,k}(1− pl), if i 6= k.
(6.28)
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Consider the induced distance by weighted `∞ norm in the Euclidean space.

We have

‖pt − p̂t‖www
∞ ≤ ‖JGP‖www

∞ · ‖pt−1 − p̂t−1‖www
∞. (6.29)

Using www = (1/a1, · · · , 1/aK) for (6.29), we have

‖JGP‖www
∞ = max

k∈K

{
1− γak +

∑

i∈K\{k}

∏

l∈K\{i,k}

γak(1− pl)

ai

}

≤ max
k∈K

{
1− γak

(
1−

∑

i∈K\{k}

1

ai

)}
.

(6.30)

Therefore, if the condition in (6.27) is satisfied, there exists some β > 0 such that

ak

(
1−

∑

i∈K\{k}

1

ai

)
≥ β, ∀k ∈ K. (6.31)

If the stepsize γ satisfies 0 < γ < 1/β, we have

‖JGP‖www
∞ ≤ max

k∈K

{
1− γak

(
1−

∑

i∈K\{k}

1

ai

)}
≤ 1− γβ < 1. (6.32)

Therefore, there exist a constant q ∈ [0, 1) and a positive ε, such that q =

‖JGP‖www
∞ = 1 − ε < 1 and ‖pt − p̂t‖www

∞ ≤ q‖pt−1 − p̂t−1‖www
∞. From the contraction

mapping theorem [GD03], the self-mapping function in (6.18) has a unique fixed

point and the sequence {pt}+∞
t=0 converges to the unique fixed point. ¥

Remark 6.4 Compare Theorem 6.4 and 6.5 with Theorem 6.2 and 6.3. We can

see that, given the same target operating point p or parameters {ak}K
k=1, Algorithm

6.2 exhibits similar properties in terms of local stability and global convergence,

provided that its stepsize γ is sufficiently small. In other words, the limiting be-

havior of these two distinct algorithms are similar. However, we need to consider

some design trade-off for both algorithms and choose the desired algorithm based

on the specific system requirements about the speed of convergence and the per-

formance fluctuation. Generally speaking, the best response algorithm converges
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fast, but it may cause temporary large fluctuations during the convergence pro-

cess, which is not desirable for transporting constant-bit-rate applications. On the

other hand, the gradient play algorithm with small stepsize will evolve smoothly

at the cost of sacrificing its convergence rate.

6.3.4 Alternative Interpretations of the Conjecture-based Algorithms

In this section, we re-interpret the proposed algorithms using the the backoff

mechanism model in which the transmission probabilities change from time slot

to time slot [NKG00], which helps us to understand the key difference between

the proposed algorithms and 802.11 DCF. The superscript t in this subsection

represents the numbering of the time slots. We define T t
k and T t

−k as the events

that node k transmits data at time slot t and any node in K\{k} transmits data at

time slot t, respectively. If ak > 1, the RHS of (6.7) equals to
pt−1

k

2
+

∏
i∈K\{k}(1−pt−1

i )

2ak
,

and the best response update function in (6.7) can be rewritten as

pt
k =

1

2
E{pt−1

k 1{T t−1
−k =1}|pt−1}+

1

2ak

E{1{T t−1
−k =0}1{T t−1

k =0}|pt−1}

+
1

2
(1 +

1

ak

)E{1{T t−1
−k =0}1{T t−1

k =1}|pt−1},
(6.33)

where 1a is an indicator function of event a taking place, E{a|b} is the ex-

pected value of a given b, E{1{T t−1
k =1}|pt−1} = pt−1

k , and E{1{T t−1
−k =1}|pt−1} =

1−∏
i∈K\{k}(1− pt−1

i ). According to (6.33), we can provide an alternative inter-

pretation of the best-response update algorithm as follows. Consider the follow-

ing update algorithm. At each time slot, if node k observes that any other node

attempts to transmit, i.e. it senses a busy channel, it reduces its transmission

probability by a factor 1/2. If no transmission attempt is made by any node in the

system, node k sets its transmission probability to be 1/2ak. Otherwise, if node

k makes a successful transmission, it will transmit with probability 0.5(1 + 1/ak)

in the next time slot. We can see that equation (6.33) characterizes the expected
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Figure 6.3: Comparison between the best response algorithm and the IEEE 802.11 DCF

(Pmax is specified in the DCF protocol).

trajectory of this alternative update mechanism. Fig. 6.3 compares this new

interpretation with the IEEE 802.11 DCF [LTH07]. We can see that, node k

behaves similarly in the best response algorithm and the IEEE 802.11 DCF if

it made a transmission attempt in the previous time slot, and the fundamental

difference between these two protocols is how node k updates its action given

that it did not transmit in the previous time slot. In DCF, pt
k is kept the same

as pt−1
k . However, as we can see from (6.33), the best response algorithm either

performs back-off if the channel is busy or sets pt
k to be 1/2ak if the channel is

free.

Remark 6.5 Both Equation (6.5) and (6.33) intuitively explain the meaning of

the algorithm parameters {ak}K
k=1. Note that the numerator of (6.5),

∏
i∈K\{k}(1−

p∗i ), represents the probability that transmitter k experiences a contention-free en-

vironment at p∗. The value of 1/ak, i.e. the ratio between node k’s transmission

probability pk and its contention-free probability, indicates the “aggressiveness” of

this particular node at equilibrium. In addition, according to (6.33), the trans-

mission probability 1/2ak also reflects node k’s “aggressiveness” in selecting its

transmission probability after it sensed a free channel. It is straightforward to
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see the selection of {ak}K
k=1 introduces some trade-off between the stability and

throughput of the networks. First of all, large values of {ak}K
k=1 refrain nodes

from transmitting at a higher channel access probability, and hence, it stabilizes

the system at the cost of reducing the throughput. On the other hand, lower-

ing {ak}K
k=1 increases the nodes’ transmission probability, which may improve the

throughput performance. However, it can cause the conditions in (6.8) and (6.19)

to fail and the system becomes unstable. Therefore, the problems which we will

investigate in the next subsection are which part of the throughput region can be

achieved with stable CE and how the nodes can adaptively update their {ak}K
k=1

such that the system can attain efficient and stable operating points.

Before proceeding to the next subsection, similarly as for the best response

algorithm, we present an reinterpretation of the gradient play. Equation (6.18)

can be rewritten as

pt
k = (1− γak)p

t−1
k E{1{T t−1

−k =1}|pt−1}+ [pt−1
k + γ(1− akp

t−1
k )]E{1{T t−1

−k =0}|pt−1}.
(6.34)

If ak > 1, the interpretation of (6.34) is that at each time slot, if node k senses a

busy channel, it reduces its transmission probability by a factor 1−γak, otherwise

it increases its transmission probability by an amount γ(1− akp
t−1
k ). We can see

that, this interpretation of the gradient play learning resembles the well-known

AIMD (Additive Increase Multiplicative Decrease) control algorithm, which has

been widely applied in the context of congestion avoidance in computer networks

due to its superior performance in terms of convergence and efficiency [CJ89].

6.3.5 Stability of the Throughput Region

The results in the previous subsections describe the values of {pk}K
k=1 and {ak}K

k=1

for which local stability and global convergence can be guaranteed in both Algo-
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rithm 6.1 and 6.2. This subsection directly investigates for both algorithms the

stability of achievable operating points in the throughput region T .

Lemma 6.1 The Pareto boundary of the throughput region T is the set of all

points τττ = (τ1, . . . , τK) such that τk = pk

∏
i∈K\{k}(1− pi) where p = (p1, . . . , pK)

is a vector satisfying p ≥ 0 and
∑

k∈K pk = 1; and each such τττ is determined by

a unique such p.

Proof : See Theorem 1 in [MM85]. ¥

Theorem 6.6 Regardless of the number of nodes in the network, for any Pareto-

inefficient operating point τττ ∗ in the throughput region T , there always exists a

belief configuration {ak}K
k=1 stabilizing Algorithm 6.1 and 6.2, and achieve the

throughput τττ ∗. If K > 2, any Pareto-optimal operating point {p∗k}K
k=1 in T that

satisfies p∗k > 0,∀k ∈ K is a stable CE for Algorithm 6.1 and 6.2.

Proof : From Theorem 6.2, we know that
∑

k∈K pk < 1 is sufficient to guaran-

tee that the corresponding CE is stable. Therefore, it is equivalent to check that

any Pareto-inefficient operating point τττ ∗ can be achieved with a joint transmission

probability p∗ ∈ P satisfying
∑

k∈K p∗k < 1.

Define the throughput region

T (t) = {(u1(p), . . . , uK(p))| ∃ p ∈ P,
∑

k∈K
pk ≤ t}, (6.35)

in which an additional constraint
∑

k∈K pk ≤ t is imposed. We denote the Pareto

boundary of T (t) as

∂T (t) = {τττ | @ τττ ′ ∈ T (t) such that τ ′k ≥ τk, ∀k ∈ K and τ ′k > τk, ∃k ∈ K}.
(6.36)
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Following the proof of Lemma 6.1, we can draw a similar conclusion: all the

points on ∂T (t) satisfy
∑

k∈K pk = t. By Lemma 6.1, ∂T (1) corresponds to the

Pareto boundary of T . Note that ∂T (0) = 0. In other words, varying t from

1 to 0 will cause ∂T (t) to continuously shrink from the Pareto boundary of the

throughput region T to the origin 0. Therefore, for any Pareto inefficient point

τττ ∗ ∈ T , there exists 0 ≤ t′ < 1 such that τττ ∗ lie on ∂T (t′), i.e. τττ ∗ can be achieved

with an action profile p∗ satisfying
∑

k∈K p∗k = t < 1.

To prove the Pareto boundary are stable CE when K > 2, we need to show

that the eigenvalues {ξBR
k }K

k=1 of the Jacobian matrices JBR and JGP are all inside

the unit circle of the complex plane [GD03], i.e. |ξk| < 1,∀k ∈ K. Take the best

response dynamics for example. To determine the eigenvalues of JBR, we have

det(ξI − JBR) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ξ − 1
2

p1

2(1−p2)
. . . p1

2(1−pK)

p2

2(1−p1)
ξ − 1

2
. . . p2

2(1−pK)

...
...

. . .
...

pK

2(1−p1)
pK

2(1−p2)
. . . ξ − 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

ξ − 1
2

p1

2(1−p2)
. . . p1

2(1−pK)

p2

2(1−p1)
− p2

p1

(
ξ − 1

2

)
ξ − 1

2
− p2

2(1−p2)
. . . 0

...
...

. . .
...

pK

2(1−p1)
− pK

p1

(
ξ − 1

2

)
0 . . . ξ − 1

2
− pK

2(1−pK)

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
ξ − 1

2(1−p1)

) · [1 +
K∑

k=1

pk
2(1−pk)

ξ− 1
2(1−pk)

]
0 . . . 0

p2

2(1−p1)
− p2

p1

(
ξ − 1

2

)
ξ − 1

2(1−p2)
. . . 0

...
...

. . .
...

pK

2(1−p1)
− pK

p1

(
ξ − 1

2

)
0 . . . ξ − 1

2(1−pK)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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Therefore, we can see that, the eigenvalues of JBR are the roots of

[
1 +

K∑

k=1

pk

2(1−pk)

ξ − 1
2
− pk

2(1−pk)

] ·
K∏

k=1

(
ξ − 1

2
− pk

2(1− pk)

)
= 0. (6.37)

Denote f(ξ) =
∑K

k=1

pk
2(1−pk)

ξ− 1
2
− pk

2(1−pk)

. First, we assume that pi 6= pj,∀i, j. With-

out loss of generality, consider p1 < p2 < · · · < pK . In this case, the eigenvalues

of JBR are the roots of f(ξ) = −1. Note that f(ξ) is a continuous function

and it strictly decreases in (−∞, 1
2

+ p1

2(1−p1)
), (1

2
+ p1

2(1−p1)
, 1

2
+ p2

2(1−p2)
), · · · , (1

2
+

pK−1

2(1−pK−1)
, 1

2
+ pK

2(1−pK)
), and ( pK

2(1−pK)
, +∞). We also have limξ→( 1

2
+

pk
2(1−pk)

)− f(ξ) =

−∞, limξ→( 1
2
+

pk
2(1−pk)

)+ f(ξ) = +∞, n = 1, 2, · · · , K, and limξ→−∞ f(ξ) = limξ→+∞

f(ξ) = 0. Therefore, the roots of f(ξ) = −1 lie in (−∞, 1
2

+ p1

2(1−p1)
), (1

2
+

p1

2(1−p1)
, 1

2
+ p2

2(1−p2)
), · · · , (1

2
+ pK−1

2(1−pK−1)
, 1

2
+ pK

2(1−pK)
) respectively.

For the operating points on the Pareto boundary, we have
∑K

k=1 pk = 1. It is

easy to verify that f(0) = −1, i.e. ξ1 = 0. Therefore,

ρ(JBR) = max
k
|ξk| = ξK ∈ (

1

2
+

pK−1

2(1− pK−1)
,
1

2
+

pK

2(1− pK)
). (6.38)

To see ξK < 1 for 0 ≤ p1 < p2 < · · · < pK and
∑K

k=1 pk = 1. We differentiate

two cases:

1) If pK ≤ 0.5, we have ξK < 1
2

+ pK

2(1−pK)
≤ 1;

2) If pK > 0.5, we have 1
2

+ pK−1

2(1−pK−1)
< 1 and 1

2
+ pK

2(1−pK)
> 1. Since f(ξ)

strictly decreases in (1
2

+ pK−1

2(1−pK−1)
, 1

2
+ pK

2(1−pK)
), we have ρ(JBR) < 1 if and only

if f(1) < −1. In fact,

f(1)− (−1) =
K∑

k=1

pk

1− 2pk

+ 1 =
K−1∑

k=1

pk

( 1

1− 2pk

− 1

1− 2
∑K−1

m=1 pm

)
< 0. (6.39)

The inequality holds because 1
1−2pk

< 1

1−2
∑K−1

m=1 pm
for k = 1, 2, . . . , K − 1 when

pK > 0.5, 0 ≤ p1 < p2 < · · · < pK , and
∑K

k=1 pk = 1.
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2τ Nash equilibriaPareto boundaryLocally stable conjectural equilibriaGlobally convergent conjectural equilibria

Figure 6.4: Comparison among different solution concepts.

Second, we consider the cases in which there exists pi = pj for certain i, j. Sup-

pose that {pk}K
k=1 take M discrete values κ1, · · · , κM and the number of {pk}K

k=1

that equal to κm is nm. In this case, Equation (6.37) is reduced to

[
1 +

K∑

k=1

pk

2(1−pk)

ξ − 1
2
− pk

2(1−pk)

] ·
M∏

m=1

(
ξ − 1

2
− κm

2(1− κm)

)nm
= 0. (6.40)

Hence, equation f(ξ) = −1 has K + M −∑M
k=1 nm roots in total, and ξ = 1

2
+

κm

2(1−κm)
is a root of multiplicity nm−1, ∀m. All these roots are the eigenvalues of

matrix JBR. Similarly, the remaining roots of f(ξ) = −1 lie in (−∞, 1
2
+ κ1

2(1−κ1)
),

(1
2
+ κ1

2(1−κ1)
, 1

2
+ κ2

2(1−κ2)
), · · · , (1

2
+ κM−1

2(1−κM−1)
, 1

2
+ κM

2(1−κM )
). If K > 2,

∑K
k=1 pk = 1

is still sufficient to guarantee that f(1) < −1. Therefore, |ξBR
k | < 1,∀k ∈ K. ¥

Fig. 6.4 compares the throughput performance among various game-theoretic

solution concepts, including Nash equilibria, Pareto frontier, locally stable conjec-

tural equilibria, and globally convergent conjectural equilibria, in random access

games. As proven in Theorem 6.6, Fig. 6.4 shows that, the entire space spanning

between the Nash equilibria and Pareto frontier essentially consists of stable con-
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jectural equilibria. In addition, as discussed in Remark 6.3, the set of globally

convergent CE is a subset of the stable CE set.

In practice, it is more important to construct algorithmic mechanisms to at-

tain the desirable CE that operate stably and closely to the Pareto boundary.

To this end, we develop an iterative algorithm and summarize it as Algorithm

6.3. Specifically, this algorithm has an inner loop and an outer loop. The inner

loop adopts either Algorithm 6.1 or 6.2 to achieve convergence for fixed {ak}K
k=1.

This algorithm initializes ak > |K| such that it initially globally converges. After

converging to a stable CE, the outer loop adaptively adjusts {ak}K
k=1 until desired

efficiency is attained. The outer loop updates {ak}K
k=1 in the multiplicative man-

ner due to two reasons. First, reducing {ak}K
k=1 individually increases {pt

k}K
k=1

and
∑K

k=1 pk and hence, moves the operating point towards the Pareto boundary.

Second, multiplying {ak}K
k=1 by the same discount factor can maintain weighted

fairness among different nodes. Both reasons will be analytically explained in

the Section 6.4. It is also worth mentioning that individual nodes can measure

the Pareto efficiency in a fully distributed manner during the outer loop itera-

tion. For example, individual nodes can estimate the other nodes’ transmission

probabilities {pt
k}K

k=1 based on its local observation and figure out whether the

current operating point is close to the Pareto boundary by calculating
∑

k∈K pt
k

[MHC09]. When the network size grows bigger, individually estimating different

nodes’ transmission probabilities becomes challenging. An alternative solution

is that individual nodes can instead monitor their common observation of the

aggregate throughput
∑

k∈K ut
k and terminate the update of {ak}K

k=1 once the ag-

gregate throughput starts to decrease. Next, we discuss several implementation

issues regarding Algorithm 3. First, it is not necessary that all the nodes update

their parameters {ak}K
k=1 synchronously. However, these nodes need to maintain

the same update frequency, e.g. each node will update its parameter after a cer-
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Table 6.3: Algorithm 6.3: Adaptive Distributed Algorithm for Random Access.

Initialize: stepsize γ and δ, the transmission probability p0
k ∈ [0, 1], and the

parameter ak > |K| in node k’s belief function, ∀k ∈ K.

procedure

outerloop: For each node k, ak ← ak(1− δ).

innerloop: Locally at each node k, use Algorithm 6.1 or 6.2 to update pt
k.

until it converges.

until the aggregate throughput is maximized or
∑

k∈K pt
k ≈ 1.

end for

end procedure

tain number of timeslots or seconds. As long as δ is small, the performance gap

between the actual CE and the intended one will not be large. Moreover, in order

to guarantee fairness, the new incoming nodes need to know the real-time pa-

rameters of the old nodes in the same traffic class. This initialization only needs

to be done once, when the new nodes enter the cell by tracking the evolution of

the transmission probabilities of the nodes in the same traffic class.

6.4 Extensions to Heterogeneous Networks and Ad-hoc

Networks

In this section, we first investigate how users with different qualify-of-service

requirements should initialize their belief functions and interact in the heteroge-

neous network setting and show that the conjecture-based approaches approxi-

mately achieve the weighted fairness. Furthermore, we discuss how the single-cell
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solution can be extended to the general ad-hoc network scenario, where only the

devices within a certain neighborhood range will impact each other’s throughput.

6.4.1 Equilibrium Selection for Heterogeneous Networks

Consider a network with N > 1 different classes of nodes. Let φn denote the

parameter that class-n nodes choose for their conjectured utility functions (i.e.

the parameter ak if node k belongs to class-n) and Fn denote the set of nodes

that set their algorithm parameters to be φn, 1 ≤ n ≤ N . At equilibrium, the

transmission probabilities of the same class of nodes are equal, denoted as p̃n.

Before we proceed, we first define the weighted fairness for the random access

game [QS02]. For each traffic class n, we associate with a positive weight χn.

Then the weighted fairness intended for the random access game satisfy

∀i, j ∈ {1, 2, · · · , N}, s ∈ Fi, s
′ ∈ Fj,

E{1{T−s=0}1{Ts=1}}
χi

=
E{1{T−s′=0}1{Ts′=1}}

χj

,

(6.41)

which means that the probability of an successful transmission attempt for traffic

class n is proportional to its weight χn. By simple manipulation, we have the

equivalent form for equation (6.41) [QS02]:

∀i, j ∈ {1, 2, · · · , N}, pWF
i

(1− pWF
i )χi

=
pWF

j

(1− pWF
j )χj

. (6.42)

Recall that Theorem 6.1 showed how to choose {ak}K
k=1 given a desired op-

erating point {p∗k}K
k=1 such that it is a CE. The following theorem indicates the

quantitative relationship between the chosen algorithm parameters {φn}N
n=1, the

sizes of different classes {Fn}N
n=1, and the resulting steady-state transmission

probabilities {p̃n}N
n=1. More importantly, it also shows that if the network size is

large, the conjecture-based algorithms approximately achieve weighted fairness.
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Theorem 6.7 Suppose that φn ≥ 2, ∀1 ≤ n ≤ N . The achieved steady-state

transmission probabilities {p̃n}N
n=1 are given by

p̃n =
1

2

(
1−

√
1− 4%

φn

)
, (6.43)

where % satisfies

% =
1

2K

N∏
n=1

[(
1 +

√
1− 4%

φn

)|Fn|]
. (6.44)

Proof : As shown in Theorem 6.1, a∗kp
∗
k =

∏
i∈K\{k}(1 − p∗i ). Denote % =

∏
i∈K(1− p̃i). Therefore, we obtain

φnp̃n(1− p̃n) = %, ∀ 1 ≤ n ≤ N. (6.45)

Since φn > 2, we have p̃n < 0.5. Such a root of the quadratic equation in (6.45)

is given in (6.43). Note that % =
∏

i∈K(1 − p̃i). Substituting (6.43) into this

equality, we get (6.44).

We can verify that a unique % satisfying the equality in (6.44) exists if φn ≥
2, ∀1 ≤ n ≤ N . This is because the RHS of (6.44) is feasible for % ≤ min

1≤n≤N
{φn}/4

and it is a strictly decreasing function in %. Meanwhile, the LHS of (6.44) is

strictly increasing on % ∈ [0, min
1≤n≤N

{φn}/4]. Note that when % = min
1≤n≤N

{φn}/4,

LHS of (6.44) = min
1≤n≤N

φn

4
≥ 1

2
≥ RHS of (6.44). (6.46)

if φn ≥ 2. Therefore, a unique % ∈ [0, min
1≤n≤N

{φn}/4] satisfies (6.44) exists. ¥

Remark 6.6 There are several intuitions and observations that we can obtain

from Theorem 6.7. First, the multiplicative decreasing update in Algorithm 6.3

aims to move the operating points towards Pareto boundary. A quantitative ap-

proximation between the steady-state transmission probability p̃n and the algo-

rithm parameter φn of each traffic class can be derived if a large number of nodes

171



coexist. Since % → 0 when |Fn| is large, using the Taylor expansion, p̃n can be

approximated as %/φn, i.e. the steady-state transmission probability p̃n decays

as the inverse first power of parameter φn that indicates the “aggressiveness” of

traffic class n. Finally, we also observe from (6.45) that, if |Fn| is large, p̃n → 0

and 1− p̃n ≈ 1. Therefore,

∀i, j ∈ {1, 2, · · · , N}, φip̃i(1− p̃i) = φj p̃j(1− p̃j) ⇒ φip̃i

1− p̃i

≈ φj p̃j

1− p̃j

. (6.47)

Equation (6.47) indicates that Algorithm 6.1 and 6.2 approximately achieve weighted

fairness given in (6.42) with weight χn = 1/φn. Moreover, it is worth mentioning

that the weighted fairness is purely an implicit by-product of the conjecture-based

approach and it can be sustained with stability. Therefore, Algorithm 6.3 chooses

to multiply {ak}K
k=1 by the same discount factor 1 − δ such that the weighted

fairness can be maintained.

6.4.2 Extension to Ad-hoc Networks

Consider a wireless ad-hoc network with a set K = {1, 2, . . . , K} of distinct node

pairs in Fig. 6.5. Each link (node pair) consists of one dedicated transmitter and

one dedicated receiver. We assume that the transmission of a link is interfered

from the transmission of another link, if the distance between the receiver node

of the former and the transmitter node of the latter is less than some threshold

Dth [LZL07, LCC07]. For any node i, we define Ii ⊆ K as the set of nodes whose

transmitters cause interference to the receiver of node i and Oi ⊆ K as the set of

nodes whose receivers get interfered from the transmitter of node i. For example,

in Fig. 6.5, I1 = {K} and O1 = {2, K}. Then, the throughput of node i is

uk(p) = pk

∏
i∈Ik

(1− pi). (6.48)
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Figure 6.5: System model of ad hoc networks.

In this scenario, the state, namely, the contention measure signal, can be redefined

according to sk =
∏

i∈Ik
(1−pi). Applying the conjecture-based approach, we have

the following conjectured utility function for node k:

ut
k(s̃

t
k(pk), pk) = pk

[∏
i∈Ik

(1− pt−1
i )− ak(pk − pt−1

k )
]
. (6.49)

Parallel to the theorems proven in Section 6.3.2 and 6.3.3, we have the follow-

ing theorems on the stability and convergence of conjecture-based algorithms in

ad-hoc networks. These theorems can be shown similarly as in Section 6.3, and

hence, the proofs are omitted.
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6.4.2.1 Stability and Convergence

Theorem 6.8 For any p∗ = (p∗1, . . . , p
∗
K) ∈ P , if

∑

i∈Ok∪{k}
p∗i < 1, ∀k ∈ K, or

∑
i∈Ik

p∗k
1− p∗i

< 1, ∀k ∈ K, (6.50)

p∗ is a stable CE for Algorithm 6.1 and Algorithm 6.2 with sufficiently small γ.

Theorem 6.9 Regardless of any initial value chosen for {p0
k}K

k=1, if the param-

eters {ak}K
k=1 in the belief functions {s̃k}K

k=1 satisfy

ak > |Ok|, ∀k ∈ K, or
∑
i∈Ik

1

ai

< 1,∀k ∈ K, (6.51)

Algorithm 6.1 and Algorithm 6.2 with sufficiently small γ converge to a unique

CE.

Remark 6.7 We observe that the sufficient conditions in Theorem 6.8 and 6.9

are more relaxed compared with the theorems in Section 6.3. As opposed to the

single-cell case, the mutual interference is reduced in ad-hoc networks due to the

large scale geographical distance, therefore, these nodes can potentially improve

their throughput by increasing their transmission probabilities while still main-

taining the local stability as well as global convergence.

Remark 6.8 In ad-hoc networks, the parameters {ak}K
k=1 can be determined in

a distributed fashion such that the sufficient conditions in Theorem 6.9 are sat-

isfied. For example, consider the symmetric case where transmitter i interferes

with receiver j if and only if transmitter i can receive signals from receiver j.

Each transmitter can listen to the channel and estimate |Ok| by intercepting the

ACK packets sent by the receivers of the nodes in set Ok. An alternative dis-

tributed solution is that each transmitter broadcasts its parameter ak, and receiver

k calculates
∑

i∈Ik

1
ai

and notifies the nodes in set Ik to adjust their parameters

accordingly.
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6.4.2.2 Stability of the Throughput Region

We also extend the stability analysis of the throughput region from the single-cell

scenario to the ad-hoc networks. The following lemma explicitly describes the

Pareto frontier of the throughput region.

Lemma 6.2 The Pareto boundary of the throughput region T can be charac-

terized as the set of points τττ = (τ1, . . . , τK) optimizing the weighted proportional

fairness objective [GS06]:

max
p∈P

∑

k∈K
ωklogτk, (6.52)

in which τk = pk

∏
i∈Ik

(1 − pi) for all possible sets of positive link “weights”

{ωk}K
k=1. Specifically, for a particular weight combination {ωk}K

k=1, the optimal

p′ is given by

p′k =
ωk

ωk +
∑

i∈Ok
ωi

. (6.53)

Proof : See [GS06] for details.

Based on Lemma 6.2, we derive in the following theorem the necessary and

sufficient condition under which a particular Pareto-efficient operating point is

a stable CE for Algorithm 6.1. Similar results can be derived for Algorithm 6.2

with sufficiently small γ.

Theorem 6.10 Suppose p∗ = (p∗1, . . . , p
∗
K) ∈ P satisfies (6.53) and maximizes

the problem in (6.52). The elements of the Jacobi matrix J at p∗ satisfy

Jik =





1
2
, if i = k,

− p∗i
2(1−p∗k)

, if k ∈ Ii,

0, otherwise.

(6.54)

If ρ(J) < 1, p is a stable CE for Algorithm 1.
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Remark 6.9 Theorem 6.10 generalizes the result in Theorem 6.6 from the single-

cell scenario to the ad-hoc networks. Consider the l1 norm for J at p. We have

‖J‖1 = max
k∈K

ωk

ωk +
∑

i∈Ok
ωi

+
∑
i∈Ok

ωi

ωi +
∑

j∈Oi
ωj

. (6.55)

In the single-cell case, Ok = K\{k}, ∀k ∈ K, and ‖J‖1 equals to 1 for any Pareto-

optimal operating point. Therefore, any Pareto inefficient operating point can be

achieved with stability due to ρ(J) ≤ ‖J‖1 < 1. However, in ad-hoc networks,

the form of the Jacobi matrix J depends on the actual network topology and it

is difficult to bound the spectral radius for a generic setting using certain matrix

forms, such as l1 norm or l∞ norm. Alternatively, according to Theorem 6.10,

we will numerically test the stability of the Pareto-optimal operating points in the

simulation section.

6.5 Numerical Simulations

In this section, we numerically compare the performance of the existing 802.11

DCF protocol, the P-MAC protocol [QS02] and the proposed algorithms in this

chapter.

We first illustrate the evolution of transmission probabilities of Algorithm 6.1

and 6.2. We simulate a single-cell network of 5 nodes. For each node, the initial

transmission probability p0
k is uniformly distributed in [0, 1] and ak is uniformly

distributed between 5 and 10. The stepsize in the gradient play is γ = 0.02. Fig.

6.6 compares the trajectory of the transmission probability updates in both Al-

gorithm 6.1 and 6.2 in a single realization, under the assumption that node k can

perfectly estimate the probability
∏

j∈K\{k}(1 − pj), ∀k ∈ K. The best response

update converges in around 8 iterations and the gradient play experiences a more

smooth trajectory and the same equilibrium is attained after 35 iterations. In

176



0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Stage

T
ra

ns
m

is
so

n 
P

ro
ba

bi
lit

y

Best response, node 1
Best response, node 2
Best response, node 3
Best response, node 4
Best response, node 5
Gradient Play, node 1
Gradient Play, node 2
Gradient Play, node 3
Gradient Play, node 4
Gradient Play, node 5

Figure 6.6: Dynamics of Algorithms 6.1 and 6.2.

addition, to illustrate how individual nodes can adaptively adjust their algorithm

parameters and improve their throughput, we simulate a scenario with two traffic

classes. Each traffic class consists of 5 nodes and the initial algorithm parameters

of class 1 and 2 are φ1 = 30 and φ2 = 60, respectively. The discount factor in

Algorithm 6.3 is δ = 0.05. The blue dotted curve in Fig. 6.7 indicates that

the operating point moves towards the red Pareto boundary until the outer loop

detects that the desired efficiency is reached.

In practice, packet transmission over wireless links, e.g. IEEE 802.11 WLANs,

involves extra protocol overheads, such as inter-frame space and packet header.

Assuming these realistic communication scenarios, we compare various perfor-

mance metrics, including throughput, fairness, convergence, and stability, be-

tween our proposed conjecture-based algorithms, the P-MAC protocol in [QS02],

and the IEEE 802.11 DCF. To evaluate these metrics, the physical layer parame-

ters need to be specified. In the simulation, we assume that each wireless device
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Figure 6.7: The trajectory of Algorithm 6.3.

operates at the IEEE 802.11a PHY mode-8 [80299], and the key parameters are

summarized in Table 6.4. We assume no transmission errors and the RTS/CTS

mechanism is disabled. The aggregate network throughput can be calculated

using Bianchi’s model [Bia00]

T =
PsLd

(1− Ptr)Tslot + PsTs + PtrTc − PsTc

, (6.56)

where Ps =
∑N

n=1 |Fn| ·pn ·(1−pn)|Fn|−1 ·∏m6=n(1−pm)|Fn| is the probability that

a transmission occurring on the channel is successful, Ptr = 1−∏N
n=1(1−pn)|Fn| is

the probability that at least one transmission attempt happens, Ts is the average

time of a successful transmission, and Tc is the average duration of a collision.

The detailed derivation of Ts and Tc using the given network parameters in Table

6.4 can be found in [QS02, Bia00]. The parameters in P-MAC are set according

to [QS02]. The contention window sizes in the IEEE 802.11 DCF are CWmin = 16

and CWmax = 1024. In Algorithm 6.3, individual nodes monitor the aggregate

throughput to determine whether to adjust the parameter ak. The numerical
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Table 6.4: IEEE 802.11a PHY mode-8 parameters

Parameters Value

Duration of an Idle Slot (Tslot) 9 µs

Duration of PHY Header (TPHY ) 20 µs

SIFS Time (TSIFS) 16 µs

DIFS Time (TDIFS) 34 µs

Propagation Delay (Td) 1 µs

MAC Header (LMAC) 28 octets

Packet Payload Size (Ld) 2304 octets

ACK Frame Size (LACK) 14 octets

Data Rate (Rt) 54 Mbps

results are obtained using a MAC simulation program in [Bia00]. Our comparison

results are summarized as follows.

First, the throughput of the three algorithms is compared. We vary the total

number of nodes K from 4 to 50, in which dK/2e nodes carry class-1 traffic

and the remaining nodes carry class-2 traffic. The positive weights of class-1

and class-2 are χ1 = 1 and χ2 = 0.5. The initial parameters in Algorithm 6.3

are chosen to be φ1 = 3K/χ1 and φ2 = 3K/χ2. As shown in Fig. 6.8, both

the conjecture-based algorithm and P-MAC significantly outperform the IEEE

802.11 DCF. The IEEE 802.11 DCF achieves the lowest throughput, because

the lack of adaptation mechanism of the contention window size causes more

frequent packet collisions as the number of nodes increases. Surprisingly, the

performance of the conjectural equilibrium attained by Algorithm 6.3 achieves

the maximum achievable throughput. It also outperforms P-MAC, because P-

MAC uses approximation to derive closed-form expressions for the transmission
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Figure 6.8: Comparison of the accumulative throughput in the IEEE 802.11 DCF, P-MAC,

and conjecture-based algorithms. Error bars correspond to the standard deviation of the mean

of the 100 measurements sampled at each point. The error bars in the remaining figures are as

in this figure.

probabilities of different traffic class.

Next, we evaluate the short-term fairness of different protocols using the quan-

titative fairness index introduced in [QS02]

F =
µ(Tk/χn)

µ(Tk/χn) + σ(Tk/χn)
, k ∈ Fn (6.57)

in which Tk denote the throughput of node k that belongs to traffic class n, and

µ and σ are, respectively, the mean and the standard deviation of Tn/χn over all

the active data traffic flows. We simulate a transmission duration of 3 minutes.

The stage duration in Algorithm 6.3 is set as 50 successful transmissions. As

shown in Fig. 6.9, we can see that Algorithm 6.3 and P-MAC are comparable

in their fairness performance and the achieved fairness index is always above
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Figure 6.9: Comparison of the achieved fairness of the IEEE 802.11 DCF, P-MAC, and

Algorithm 6.3.

0.95 regardless of the network configuration. On the other hand, the fairness

performance of 802.11 DCF is much poorer than the previous two algorithms

because the DCF protocol provides no fairness guarantee.

Last, in order to compare the convergence and the stability of different proto-

cols for time-varying traffic, we simulate a network in which the number of active

nodes fluctuates over time. In order to cope with traffic fluctuation, we slightly

modify the outer loop in Algorithm 6.3. Once some nodes join or leave the net-

work (this can be detected either by tracking the contention signal
∏

k∈K(1− pk)

or estimating the total number of nodes in the network [BT03]), the adaptation

of ak is activated. Specifically, if more nodes join the network, ak ← ak(1 + δ),

otherwise, ak ← ak(1− δ). At the beginning, |F1| = |F2| = 25. At stage 200, 15

class-1 and 15 class-2 nodes join the network. These nodes leave the network at

the 400th stage. The algorithm parameter ak is updated every 5 stages and the

181



0 100 200 300 400 500 600
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Stage

T
ra

ns
m

is
si

on
 P

ro
ba

bi
lit

y

P−MAC, Class 1 

P−MAC, Class 2 

Gradient play, Class 1 

Gradient play, Class 2 

Figure 6.10: The dynamics of the transmission probabilities in P-MAC and Algorithm 6.3.

stepsize in the gradient play is γ = 0.003. Fig. 6.10 and Fig. 6.11 show the vari-

ation of the transmission probabilities for both traffic classes and the expected

accumulative throughput over time. P-MAC does not converge due to the lack

of feedback control, which agrees with the observation about the instability of

P-MAC reported in [CCL08]. In addition, the optimal transmission probabilities

computed by P-MAC and the conjecture-based algorithms are different under

the same network parameters because of the approximation used in P-MAC.

As shown in Fig. 6.10, nodes deploying P-MAC transmit with a higher prob-

abilities than the conjecture-based algorithms, which creates a more congested

environment. As a result, the accumulative throughput achieved by P-MAC is

slightly lower than the optimal throughput. In contrast, the conjecture-based

algorithms enable the nodes adaptively tune their parameters ak to maximize

the network throughput while maintaining the weighted fairness as well as the

system stability. As shown in Fig. 6.10 and Fig. 6.11, during stage [200,300] and
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Figure 6.11: The dynamics of the accumulative throughput in P-MAC and Algorithm 6.3.

[400,470], both the best response and the gradient play autonomously adapt their

parameter ak until it converges to the optimal operating point. As discussed be-

fore, the best response learning converges faster than the gradient play learning.

To give a quantitative measure of the stability, the standard deviations of the

expected accumulative throughput in Fig. 6.11 for different algorithms satisfy

σ(T Expected
P−MAC )/σ(T Expected

CB ) ≈ 7 and the actual achieved accumulative throughput

satisfy σ(T Actual
P−MAC)/σ(T Actual

CB ) ≈ 2. We can see that, thanks to the inherent

feedback control mechanism, both conjecture-based algorithm exhibit superior

stability performance than P-MAC.

We also simulate the evolution trajectory of the transmission probabilities

of the proposed Algorithm 6.1 and the algorithm in [MHC09]. Both algorithms

are essentially the best-response based algorithms. Specifically, we consider a

network with K = 6. The peak data rates for different nodes are r1 = 6, r2 = 36,

r3 = 9, r4 = 12, r5 = 18, and r6 = 54, all in Mbps. We apply the algorithm in
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Figure 6.12: Comparison between Algorithm 6.1 and the algorithm in [MHC09].

[MHC09] to solve the following network utility maximization problem:

max
p∈P

∑

k∈K

1

1− α

[
rkpk

∏

j∈K\{k}
(1− pj)

]1−α
, (6.58)

in which α = 2. The optimal solution corresponds to the belief configuration

a1 = 2.03, a2 = 3.93, a3 = 2.32, a4 = 2.55, a5 = 2.97, and a6 = 4.74. The trajec-

tory of both algorithms are shown in Fig. 6.12. We can see that, both algorithms

converge very fast and oscillate around the neighborhood to the optimal solu-

tion after several iterations. However, as we discussed before, the algorithm in

[MHC09] requires individual nodes to decode all the received packet headers and

estimate the transmission probabilities of the other nodes individually, which in-

troduces a great internal computational overhead when the network size grows

large. In contrast, nodes deploying Algorithm 6.1 only have to estimate the

probability of having a free channel without the need of decoding all the packets,

which substantially reduces their computational efforts.
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Figure 6.13: Cumulative distribution function of ρ(JBR) in ad-hoc networks.

We simulate the performance of the proposed algorithms in an ad-hoc network

contained in a 100m× 100m square area. Nodes in the square area are placed in

the random manner. Two nodes can interfere with each other if their distance

is no more than 40m, i.e. Dth = 40m. We simulate three scenarios with the

node numbers K = {10, 20, 40}. The Pareto-efficient point that we select is

the associated operating point with the link weighted vector ωk = 1, 1 ≤ k ≤
K/2, and 0.5, K/2 < k ≤ K in (6.53). We can see from Fig. 6.13 that, ρ(JBR) ≤ 1

holds for all the simulated topologies. As shown in Fig. 6.13, in some realizations,

ρ(JBR) = 1, and hence, the associate operating points are not asymptotically

stable. This will occur when two nodes interfere with each other and they do

not interfere and are not interfered by the remaining nodes in the entire ad-hoc

network. On the other hand, the stability improves as the number of nodes

increases. As long as the density of nodes is sufficiently large, the stability of

the conjecture-based algorithm on the Pareto-efficient operating point can be
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Figure 6.14: Transmission probabilities of Algorithm 6.1 and the IEEE 802.11 DCF in ad-hoc

networks.

achieved. Fig. 6.14 and Fig. 6.15 show the evolution of transmission probabilities

and accumulative throughput for the IEEE 802.11 DCF and Algorithm 6.1 in a

10-node ad-hoc network with a randomly generated topology. The trajectory of

the IEEE 802.11 DCF is obtained using the model in [LTH07]. The parameter ak

in Algorithm 6.1 is chosen to be |Ok|. The intuition behind is that, if |Ok| = 0,

node k can transmit at the maximal probability without interfering with any

node. On the other hand, if |Ok| is large, node k should backoff adequately such

that the reciprocity can be established. As shown in the figures, Algorithm 6.1

converges faster and achieves higher throughput than DCF. Similar results have

been observed in the other simulated topologies.
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6.6 Discussions

6.6.1 Comparison between Type I and Type II games

The properties of Type II games have been investigated in the previous chap-

ter. Table 6.5 summarizes some similarities and differences between both types

of games. First, the two algorithms exhibit different properties under the best

response dynamics. In Type I games, the stable CE may not be globally con-

vergent. However, the local stability of a CE implies its global convergence in

Type II games. Second, it is shown that any operating point that is arbitrarily

close to the Pareto boundary of the utility region of Type I games is a stable CE.

Similarly, the entire Pareto boundary of Type II games is also stable. At last,

different relationships between the parameter selection and the achieved utility

at equilibrium have been observed for the two types of games. In particular, in

187



Table 6.5: Comparison between Type I and Type II games.

Games
Best response Stability vs. Fairness vs.

dynamics efficiency parameter selection

Type I
local stability ⇐ stable at near-

un ∝ τn/λn
global convergence Pareto-optimal points

Type II
local stability ⇔ stable at ωn = τn/λn at

global convergence Pareto boundary Pareto boundary

Type I games, user k’s utility uk is approximately proportional to the inverse of

the parameter λk in its belief function. In contrast, in Type II games, if the CE

is Pareto-optimal, as addressed in Remark 5.5, the ratio τk/λk coincide with the

weight ωk assigned to user k in the proportional fairness objective function. In

other words, based on the definition of proportional fairness [Kel97], we know

K∑

k=1

τk(u
′
k − u∗k)

λku∗k
≤ 0, (6.59)

in which (u′1, u
′
2, . . . , u

′
K) is the users’ achieved utility associated with any other

feasible joint action and (u∗1, u
∗
2, . . . , u

∗
K) is the optimal achieved utility for prob-

lem (5.8) with ωk = τk/λk and
∑K

k=1 ωk = 1.

6.6.2 Pricing Mechanism vs. Conjectural Equilibrium

In order to achieve Pareto-optimality, information exchanges among users is gen-

erally required in order to collaboratively maximize the system efficiency. The

existing cooperative communication scenarios either assume that the informa-

tion about all the users is gathered by a trusted moderator (e.g. access point,

base station, selected network leader etc.), to which it is given the authority to

centrally divide the available resources among the participating users, or, in the
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distributed setting, users exchange price signals (e.g. the Lagrange multipliers

for the dual problem) that reflect the “cost” for consuming per unit constrained

resources to maximize the social welfare and reach Pareto-optimal allocations. As

an important tool, the pricing mechanism has been applied in the distributed op-

timization of various communication networks [CLC07]. However, we would like

to point out that, the pricing mechanism generally requires repeated coordina-

tion information exchange among users in order to determine the optimal actions

and achieve the Pareto-optimality. In contrast, for the linear coupled games,

since the specific structure of the utility function is explored, the CE approach

is able to calculate the Pareto efficient operating point in a distributed manner,

without any real-time information exchange among users. In fact, the underly-

ing coordination is implicitly implemented when the participating users initialize

their belief parameters. Once the belief parameters are properly initialized by

the protocols, using the proposed dynamic update algorithms, individual users

are able to achieve the Pareto-optimal CE solely based on their individual local

observations on their states and no message exchange is needed during the con-

vergence process. Therefore, the conjecture equilibrium approach is an important

alternative to the pricing-based approach in the linearly coupled games.

6.7 Concluding Remarks

In this chapter, we propose distributed solutions that enable autonomous nodes

to improve their throughput performance in random access networks. It has been

observed in the context of random access control that a tragedy of commons might

take place if nodes behave selfishly and myopically. Hence, we investigate whether

forming internal belief functions and learning the impact of various actions can

alter the interaction outcome among these intelligent nodes. Specifically, two
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distributed mechanisms are proposed to dynamically update individual nodes’

transmission probabilities. It is analytically proven that the entire throughput re-

gion essentially consist of stable conjectural equilibria. In addition, we prove that

the conjecture-based approach achieves the weighted fairness for heterogeneous

traffic classes and extend the distributed learning solutions to ad-hoc networks.

Simulation results have shown that the proposed algorithms achieve significant

performance improvement against existing protocols, including the IEEE 802.11

DCF and the P-MAC protocol, in terms of not only fairness and throughput but

also convergence and stability. A potential future direction is to investigate how

to detect and prevent misbehavior.
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CHAPTER 7

Conclusion

This dissertation illustrates the optimal strategies for users to improve their per-

formance in an informationally decentralized multiuser communication environ-

ment. First, we propose and investigate a new game model, which we refer to

as additively coupled sum constrained games, in which each player is subject to

a sum constraint and its utility is additively impacted by the remaining users’

actions. We derive sufficient conditions under which a pure unique NE exist

and best response dynamics converges globally and linearly to the NE without

any real-time information exchange among users. Second, we investigate the

multi-channel power control game to understand how to further improve the per-

formance of inefficient NE in ACSCG. Specifically, we consider game theoretic

solutions Stackelberg equilibrium and conjectural equilibrium. It is shown that if

a foresighted leader can explore the inter-user coupling by considering the utility

structures and model its own state (i.e. experienced interference) as a function

of its own action, a leader forming proper conjectures can improves both its own

utility as well as the utilities of its competitors, even if it has no a priori knowledge

of their private information. Third, we propose and investigate linearly coupled

games in which users’ utilities are linearly impacted by their competitors’ actions.

For linearly coupled games, we prove that if every user is playing the CE strategy

with appropriate belief configuration, the entire system can be induced to a stable

Pareto-optimal operating point without exchanging any real-time information .
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