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Socio-technical networks (e.g. social networking selsjiqgeeer-to-peer systems, etc.)
provide a popular, cost-effective and scalable frameworlsharing user-generated re-
sources or services. Achieving resource sharing efficiamepcio-technical networks
is a challenging problem, because the information avalabbut the various resources
is decentralized and it is changing dynamically; the agerag be heterogeneous and
have different learning abilities; the agents may make giea decisions on link for-
mation; and most importantly, the agents may be self-istetk i.e. they take actions
which maximize their individual utilities rather than thellective social welfare and

thus choose to free-ride rather than share their resources.

The overarching goal of my dissertation is to develop a ngerand unified paradig-
m for the joint design of efficient incentive mechanisms aesource management

schemes in socio-technical networks. It can be generaligeli into two parts.

The first part focuses on the efficient resource sharing irogechnical networks.
Existing distributed network optimization techniquest@able efficient resource allo-
cation when agents are obedient or cooperative are no lsngeable in socio-technical
networks which are formed by self-interested agents. Tiag¢egfic interactions of such

self-interested agents lead in numerous socio-technetalarks to (Nash) equilibria



that are highly inefficient from a social perspective. Toiaeh social efficiency, in-
centives need to be provided to agents such that they finceindlwvn self-interest to
cooperate and thus act in a socially-optimal way. | propogeregeral methodology for
the design and analysis of rating protocols and associatdt-agent learning algo-
rithms to sustain cooperation in socio-technical netwotksder a rating protocol, an
agent is rated based on its behavior. The rating affectsgbeta rewards received in
the network, which are typically determined according tafeecential resource man-
agement scheme: compliant agents receive higher ratimjararmrewarded by gaining
more access to resources compared to hon-compliant agemits preferential treat-
ment thus provides an incentive for agents to cooperategorausly formalize and
study the design of rating protocols to optimize the so@aburce sharing efficiency
while encompassing various unique features of socio-teahnetworks, including the
anonymity of agents, asymmetry of interests between eéiffeparties in the network,
imperfect monitoring, dynamics in the agent populationd arhite-washing effects

(i.e., an individual agent creating multiple identitiesle network).

Different from the first part where the underlying networpdtogy is exogenously
determined, the second part of my dissertation augmentpriffsed rating proto-
cols by investigating the endogenous formation of netwopotogies by the strategic,
self-interested agents who produce, disseminate or todsources. | propose a novel
game-theoretic framework to model and analyze the traf$gt@ffeach individual agen-
t) between the costs and benefits of producing resourcesrig and forming links
to acquire and disseminate resources. A central point of mayyais, which depart-
s from the existing literature on social network formatiethe assumption that the
strategic agents are heterogeneous and that agents velleetérogeneity. The het-
erogeneity of agents and the ability of agents to stratégipeoduce, disseminate or
collect resources have striking consequences on the endoglg emerging topology,
which provide important guidelines for the design of efieetincentive mechanism-

s and resource management schemes in endogenous socicaéoetworks. | first



show that the network topology that emerges (at equilibyinecessarily displays a
core-periphery type: hub agents (at the core of the netwaddiuce most of the re-
sources and also create and maintain links to the agents aktiphery, while spoke
agents (at the periphery of the network) derive most of ttesiources from hub agents,
producing little of it themselves. As the population becenarger, the number of
hub agents and the total amount of resources produced grpwoportion to the total
population. | then show that the networks that emerge atlibum are frequently
minimally connected and have short network diameters. &ligsale-free” conclu-
sions had been conjectured for many networks, such as thal*srarld” phenomenon
in the World-Wide-Web, but not derived in any formal frametyand are in stark con-
tradiction to the “law of the few” that had been establishegrievious work, under the
assumption that agents solely benefit by forming links feouece acquisition, while
resources are homogeneous and part of the endowment osageher than heteroge-

neous and produced.



The dissertation of Yu Zhang is approved.

Jason L. Speyer

Ichiro Obara

Alan J. Laub

Panagiotis Christofides

Mihaela van der Schaar, Committee Chair

University of California, Los Angeles
2013



To my parents and my wife

Vi



TABLE OF CONTENTS

1 Introduction . . . . . . . ... 1
1.1 Motivation . . . . . . . . e 1
1.2 KeyChallenges . . . .. .. . . . . .. . .. 3
1.3 Contribution of the Dissertation . . . . . ... ... ... ..... 5

1.3.1 Chapter 2. A General Framework of Rating Protocol @esi

for Online Communities . . . . . ... ... ... ....... 6
1.3.2 Chapter 3: Strategic Learning in Online Communities ... . 7

1.3.3 Chapter 4: Information Production and Link Formatiioi$o-

cial Computing Systems . . . . . . .. ... L. 8

1.3.4 Chapter 5: Information Dissemination in Socio-tecahNet-

2 A General Framework of Rating Protocol Design for Online Canmunities 10

2.1

2.2

2.3

2.4

Introduction . . . . . .. 10
Model . . . . . . . 16
2.2.1 Repeated MatchingGame . . .. .. ... ... ........ 16
2.2.2 Incentive Schemes Based on a Rating Protocol . . .. .. .18
Problem Formulation . . . . . ... ... ... ... . ... ... 20
2.3.1 Stationary Distribution of Rating Scores . . . . . .. .. .. 20
2.3.2 Sustainable Rating Protocols . . . . . . ... ... ... ... 2 2
2.3.3 Rating Protocol Design Problem . . . . . .. ... ... .... 27
Analysis of Optimal Rating Protocols . . . . . .. ... ... ... 27

Vil



2.4.1 Optimal Value of the Design Problem . . . .. .. ... .... 27

2.4.2 Optimal Recommended Strategies Given a Punishmegthe 29

2.4.3 llustrationwithL, =landL =2 . . ... ... ... ..... 30
25 EXIENSIONS . . . . . . . . 35
2.5.1 Rating Schemes with Shorter Punishment Length . . . . . . 35
2.5.2 White-washing-Proof Rating Protocols . . . . . .. .. .. 39
2.5.3 One-sided Rating Protocols . . . .. ... ........... 44
2.6 lllustrative Examples . . . . . . .. ... .. ... .. . 74
2.7 Comparison with Existing Works on Repeated Games witbelfiect
Monitoring . . . . . . . e 50
2.8 Conclusions . . . . . ... 52
2.9 Appendices . . . . ... 53
2.9.1 Appendix A: Proof of Proposition1 . . . .. .. ........ 53
2.9.2 Appendix B: Proof of Proposition2 . . . . ... ... ..... 55
2.9.3 Appendix C: Proof of Proposition3 . . . . ... ........ 56
2.9.4 Appendix D: Proof of Proposition7 . . . . ... ... ..... 57
2.9.5 Appendix E: Proof of Proposition8 . . . . ... ........ 58
Strategic Learning in Online Communities . . . . . . .. .. ... ... 59
3.1 Introduction . . . . . . . . ... 59
3.2 SystemModel . . ... ... ... 62
3.2.1 Repeated MatchingGame . . ... ... ............ 62
3.2.2 ReputationProtocols . . . . .. ... ... ... L. 64
3.3 Community Evolution and Stochastic Stable Equilibrium . . . . . . 68
3.3.1 UsersDecisionProblem . . . .. ... ... .......... 68

viii



3.3.2 Long-run Evolution and Stochastic Stable Equilibriu . . . . 72

3.4 OptimalUser Strategy . . . . . . . . . . . 75

3.5 Optimal Reputation Protocol . . . . .. ... ... .......... 78

3.6 Numerical Examples . . . . . .. . ... .. .. 81
3.6.1 Performance Comparison. . . . . .. ... .. .. ... .... 81
3.6.2 ConvergenceSpeed . . . . .. ... ... ... 82

3.7 Conclusionsand Future Research . . . . . ... ... ... ..... 83

3.8 Appendices . . . . ... 84
3.8.1 Appendix A: Proof of Proposition1 . . . . ... .. ... ... 84
3.8.2 Appendix B: Proof of Proposition2 . . . . ... ........ 85

Information Production and Link Formation in Social Compu ting Systems 86

4.1 Introduction . . . . . . . . . . ... 86
4.2 BasicModel . . . ... ... ... 90
4.3 EquilibriuminthelPLFGame . .. .. .. .. .. ... ........ 95
4.3.1 Equilibrium analysis for the basicmodel . . . . . ... ... 95
4.3.2 Asymptotic equilibriainthe IPLFgame . . . . . . ... ... 99
4.3.3 Equilibriumefficiency . . .. ... .. ... ... ... .. 104
4.4 Indirect Information Sharing . . . . .. ... ... ... ... ... 107
4.5 Conclusion . . . . . .. 111
Information Dissemination in Socio-technical Networks. . . . . . . . . 112
5.1 Introduction . . . . . . . . . .. 112
5.2 SystemModel . . . ... ... .. ... 114
521 Settings . . . . . .. 114



5.2.2 Equilibrium and social welfare . . . . .. ... ........ 161

5.3 Equilibrium and Efficiency Analysis ofthe IDG . . . . . .. .... . . 117
5.3.1 Equilibriumanalysis . .. .. ... ... ... ......... 117
5.3.2 Equilibrium efficiency of the IDG . . . .. ... ... ..... az
5.4 IDG with Information Production . . . . ... ... ... ... .. 125
55 RelatedWorks . . . . . . . . . L 128
5.5.1 Differences in agents’ utilities and incentives . .. ... . . 128
5.5.2 Differences in agents’ equilibrium link formationHasior . . . 130
5.5.3 Differences in emerging equilibrium topologies . . . .. . . 131
5.6 Conclusion . .. .. . ... 131
5.7 Appendices . . . . ... 132
571 ProofofCorollaryl . ... ... ... .. ... ........ 132
5.7.2 Proofof Theorem2 . .. ... ... .. ... ... ... .... 133
6 Conclusion . . . . ... 135
References . . . . . . . . . 138



LIST OF FIGURES

2.1 Schematic representation of a maximal punishmentyatheme . . . 20
2.2 Optimal performance giving the punishmentlength . . . . . . . .. 30
2.3 Performance of the four candidate recommended stestedien. = 1. 33
2.4 Optimal social welfare and the optimal recommendedesiyeof DP. . 36

2.5 (a) Stationary distribution of rating scores and (b)¢hmulative dis-

tributionwhenL = 5. . . . . . . . ... 38

2.6 (a) Social welfare and (b) the incentive for cooperatioder recom-

mended strategy? whenL =3.. . . . ... ... ... ... ..... 40

2.7 (a) Social welfare and (b) the incentive for cooperatinder the opti-

mal recommended strategywhén=3. . . . . . . .. ... ... ... 40
2.8 Optimal punishmentlengthwhén=3. . . . . . ... .. ... .... 40

2.9 (a) Social welfare and (b) the incentive for whitewaghinder recom-

mended strategy¢ whenL =3 ande, =1. . .. ... ... ..... 43

2.10 (a) Social welfare and (b) the incentive for whitewaghinder the op-

timal recommended strategy whén= 3 andc, =1. . . . . .. .. .. 44
2.11 Optimal initial rating scorewhebh=3. . . . . ... ... ... .... 44

2.12 Performances of the optimal rating protodalo; ) and the fixed rating

protocol(L, o). . . . .. 48

2.13 Optimal social welfare giveh as (a)3, (b) o, and (C)s vary. . . . . .. 49
3.1 The schematic representation of the social rule ancefh@ation scheme 67

4.1 Exemplary equilibria in a network with = 100 agents¢ = 2, p = 0.8) 101

4.2 (a) The fraction of hub agents changing againgb) The normalized

production levels of agents changing agamét =2, p =0.8) . .. . 103

Xi



4.3

4.4

5.1

(a) The PoS against the network siz¢b) The PoS and its lower bound
against the link formation costk & 2, p = 0.8, n=500) . . . . . . . 106

The Price of Stability with indirect information shagitc = 1, p = 0.7) 107

The exemplary Nash equilibria in the network with groups . . . . . 123

Xii



2.1

2.2

3.1

3.2

3.3

LIST OF TABLES

Comparison with the existing literature . . . . . . ... ....... 15
Payoff matrix of a gift-givinggame . . . . . .. ... ... ... .. 18
Utility matrix of a gift-givinggame . . . . . . . .. .. .. .. . ... 63
Average social welfare under different protocols . . ...... . . ... 82
The convergence time to the stochastically stableibguin . . . . . . 83

Xiii



ACKNOWLEDGMENTS

Foremost, | would like to express my sincere appreciatioth @@epest gratitude to
my advisor Professor Mihaela van der Schaar for her genexguort and invaluable
guidance throughout the past five years on both researchfendreally appreciate her
comprehensive vision of research and her endeavor fordugltity work, and also have
benefited tremendously from her unique blend of enthusia&smargy, and technical
insights. | would also like to thank the other members of ngsdrtation committee,
Professor Panagiotis Christofides, Professor Alan J. LRrdiessor Ichiro Obara, and

Professor Jason L. Speyer for their time and efforts in etalg my work.

| am grateful to Dr. Deepak S. Turaga and Dr. Daby M. Sow fongeny mentors
during my internship at the Exploratory Stream Analyticpaiement in IBM T. J.
Watson Research Center, where | spent wonderful three madoihg very interesting

research with them.

| have also had the great fortune to learn from and work wittnaay incredible in-
dividuals at UCLA who made my five years here an unforgettakjeerience. | would
like to thank all my friends for the great time we had togetHarparticular, | would
like to thank all my amazing colleagues in the Networks, Eenits, Communication
Systems, Informatics and Multimedia Research Lab for deaatinspiring discussion-
s, comments, and advices, from every one of which | learnetkiung new: Fang-
wen Fu, Hsien-po Shiang, Yi Su, Hyunggon Park, Jaeok Padhadis Mastronarde,
Shaolei Ren, Yuanzhao Xiao, Jie Xu, Lingi Song, Luca CanZtam Tekin. My dear-
est friends outside UCLA, Yihong Wu, Bo Jiang, Shuo Guo, Yhaq, are always there

for me during both joyful and stressful times, to whom | wilvays be thankful.

Finally, | wish to express my deepest gratitude to my famdy their love, end-
less support, and encouragement throughout my Ph.D. sMdsgt importantly, | am
incredibly grateful for the love and support from my wife, ifa Chen, with whom

| have been through all the ups and downs, in happiness amatrions Words can-

Xiv



not describe my immense gratitude for my family whose kirssrend inspiration have

helped me pursue my life long dreams.

XV



VITA

1984 Born in Zhoushan, China.
2006 B.E. in Electrical Engineering Department
Tsinghua University, Beijing, China

2008 M.S. in Electrical Engineering Department
Tsinghua University, Beijing, China

2008-2013 Research Assistant, Electrical EngineeringaBe@nt
UCLA, Los Angeles, California

2011 Research Intern, IBM T. J. Watson Research Center
Yorktown Heights, New York

PUBLICATIONS

S. Won, I. Cho, K. Sudusinghe, J. Xu, Yu Zhang, M. van der S¢ch@a$S. Bhat-
tacharyya, “A Design Methodology for Distributed AdaptSgeam Mining Systems,”

International Conf. on Computational Scien@013.

Yu Zhang, M. van der Schaar, “Strategic Information Disgetion and Link Forma-

tion in Social Networks,|IEEE ICASSP2013.

J. Xu, Yu Zhang, M. van der Schaar, “Rating Systems for EnbdrCyber-security
Investments,IEEE ICASSP2013.

XVi



Y. Xiao, Yu Zhang, M. van der Schaar, “Socially-Optimal Dgsiof Crowdsourcing
Platforms With Reputation Update Errort£EE ICASSP2013.

Yu Zhang, D. Sow, D. Turaga, M. van der Schaar, “A Fast Onliaarhing Algorithm
for Distributed Mining of BigData, SIGMETRICS Workshog013.

Yu Zhang, M. van der Schaar, “Strategic Networks: InformatDissemination and
Link Formation Among Self-interested Agent$B2EE Journal on Selected Areas in
Communications, Special Issue on Network Scievale 31, no. 6, to be published in

June 2013.

Yu Zhang, M. van der Schaar, “Strategic Learning and RobegtuRation Protocol
Design for Online Communities: A Stochastic Stability Ayss,” IEEE Journal of S-
elected Topics in Signal Processing, Special Issue on liegimased Decision Making

in Dynamic Systems under Uncertairdgcepted in 2013.

Yu Zhang, J. Park, M. van der Schaar, “Rating Protocols folif@nCommunities,”

ACM Transactions on Economics and Computatextepted in 2012.

Yu Zhang, M. van der Schaar, “Incentive Provision and SenAdocation in Social
Cloud Systems JEEE Journal on Selected Areas in Communications, Spessald on

Emerging Technology in Communicatipascepted in 2012.

Yu Zhang, M. van der Schaar, “Information Production andkLiiormation in Social
Computing Systems,JEEE Journal on Selected Areas in Communications, Special
Issue on Economics of Communication Networks and Systerhs30, no. 11, pp.
2136-2145, 2012.

XVil



Yu Zhang, M. van der Schaar, “Peer-to-Peer Multimedia Slgdvased on Social Norm-
s,” Elesevier Journal on Signal Processing: Image Commurocatspecial Issue on

Advances in Video Streaming over P2P Netwpvksé. 27, no. 5, pp. 383-400, 2012.

Yu Zhang, F. Fu, M. van der Schaar, “On-line Learning and @ation for Wireless
Video Transmission,IEEE Transactions on Signal Processjngl. 58, no. 6, pp.
3108-3124, 2010.

Yu Zhang, M. van der Schaar, “Reputation-based Protocdlsamvdsourcing Applica-

tions,”|IEEE INFOCOM 2012.

Yu Zhang, M. van der Schaar, “Collective Rating for OnlindbbaMarkets,"Allerton
Conf, 2012.

C. J. Ho, Yu Zhang, J. Wortman Vaughan, M. van der Schaar, &fds/Social Norm
Design for Crowdsourcing MarketdiCOMP, 2012.

Yu Zhang, M. van der Schaar, “User Adaptation and Long-runl@ion in Online

Communities,TEEE CDC 2011.

Yu Zhang, M. van der Schaar, “Influencing the Long-Term Etioluof Online Com-

munities Using Social NormsAllerton Conf, 2011.

Yu Zhang, J. Park, M. van der Schaar, “Designing Social Noa®dsl Incentive Schemes

to Sustain Cooperation in a Large Communigadmenets2011.

Yu Zhang, M. van der Schaar, “Social Norm and Long-run Leagrin Peer-to-Peer

Networks,”IEEE ICASSP2011.

Xvili



Yu Zhang, J. Park, M. van der Schaar, “Social Norm based thaeNechanisms for

Peer-to-Peer Networks|EEE ICASSP2011.

Yu Zhang, M. van der Schaar, “Designing Incentives for P2Htikhedia Sharing,”
IEEE Globecom2011.

Yu Zhang, F. Fu, M. van der Schaar, “On-line Learning for \I¢iss Video Transmis-

sion with Limited Information,Packet Video Workshgog009.

Xix



CHAPTER 1

Introduction

1.1 Motivation

People turn to the web to exchange services, data, and oes@s evidenced by the
popularity of online social networking services like Fagek and Twitter, peer pro-
duction sites like Wikipedia, peer-to-peer (P2P) systekesBitTorrent, local business
review sites like Yelp, and online labor markets like Amaadechanical Turk. While
these online systems differ in many ways, they share a convuimerability to self-
ish behavior and free-riding. A worker on Amazon Mechanibalk may attempt to
complete jobs with as little effort as possible while stiditbg paid. Similarly, a us-
er in a peer-to-peer system may wish to download files fronerstivithout using its
bandwidth to upload files to others. In view of this fact, ibiscritical importance to
properly motivate the self-interested participants totgbate their resource, knowl-

edge or services in order for these online systems to thrive.

Systems like these, which | refer to as socio-technical agtsy have been attract-
ing unprecedented amount of attention. In order to fulljlizeathe benefits of such
systems, tremendous technological efforts have beenatediin the past decades to
enhance the system performance in terms of resource sledficigncy, fairness, relia-
bility, derived revenues etc. Among the efforts, a majoegaty of the existing research
in engineering has been devoted to proposing optimizagicmtiques to enable the effi-
cient allocation of resource that largely relies on systeighe centralized/decentralized

management over obedient or cooperative agents. NewesH)eahis research typical-



ly ignores the potentially devastating impact of selfishawedr and free-riding from
self-interested agents when they are not correctly metived contribute and thus sole-
ly have incentives to optimize their individual utilitieather than the collective so-
cial welfare. The strategic interactions of such selfyiestéed agents lead in numerous
socio-technical networks to (Nash) equilibria that arenhjignefficient from a social
perspective. Only recently have engineers started to igate incentive issues in sys-
tems formed by self-interested agents. The existing meshmsto combat free-riding
problems rely on some well-studied economic concepts ssighieing and direct reci-
procity. These mechanisms, though appropriate in someggttido not make sense
for most socio-technical networks due to their unique tezdircharacteristics (e.g. a-
gents are not willing or not capable to pay money for servittesy are anonymous and
do not maintain long-lasting relationships, the undedymetwork topology is formed
endogenously due to agents’ proactive creation and dissgimn of communication
links, no credible monitoring technology to track agenhavior, various accidents in

operation, etc.).

In this dissertation, | develop a rigorous and unified framewfor the analysis as
well as the design of efficient incentive mechanisms anduegamanagement schemes
for socio-technical networks, which take into account th&ue technical character-
istics of the considered application, the environment incWht is deployed, and the
information available to both the agents and the designgr (e entity running the
system or the distributed protocol designer). In the deyalent of this framework, |
specifically seek answers to the following two questionshdiw the platform designer
can configure and operate socio-technical networks at thieekt level of efficiency
and robustness by designing optimal incentive mechanisrdsaasociated resource
management rules; and (ii) how the agents’ self-interestddre, decentralized and
heterogeneous knowledge, and their learning and link foomabilities will shape

their interactions and impact the optimal incentive me@rardesign.

Importantly, the proposed framework can serve as a guigléinplatform design-



ers when modeling, analyzing, comparing, and selectingntice mechanisms and
resource management schemes for novel social-techniwvebries, and has the poten-
tial to influence a wide variety of related domains that idebut are not limited to)

social networking services, social sharing services,dfncial computing, and cyber-

security.

1.2 Key Challenges
The key design challenges brought forward by socio-tecthmietworks are:

e Asymmetry of interests. In socio-technical networks, agents usually have asym-
metric interests on a variety of resources. As an exampiesider a knowledge-
sharing website where users with different areas of exqeeghare knowledge
with each other. It will be rarely the case that a pair of ubasa mutual interest
in the expertise of each other simultaneously. In the designcentive mecha-
nisms and resource allocation schemes, | allow the poggibflasymmetric in-
terests by modeling the interaction between a pair of useasgift-giving game,
instead of a prisoner’s dilemma game which is commonly astbjst the existing

literature and assumes mutual interests between a paieds.us

e Imperfect monitoring. The design of effective incentive mechanisms in the
existing literature relies on the perfect monitoring ovgemts’ resource shar-
ing behavior. Nevertheless, the monitoring technologi@slémented in socio-
technical networks can never be perfect in practice. Thisam#he design prob-
lem more complicated. If monitoring was perfect, the platfadesigner can
employ a strong punishment on an agent’s selfish behavigr éetrigger strate-
gy): isolating an agent from the system if it is detected mairgg its resources
in a cooperative manner. Such approach provides the ssbmgentive for in-

dividual agents to cooperate. However, when monitoringuigdrfect, its results



cannot be guaranteed to be accurate and thus a strong pemishynthe incen-
tive mechanism would therefore lead to very low sharing iefficy due to the
false punishments on cooperative agents. Instead, clgposlder punishments
becomes more efficient. However, the punishment shouldradsde too mild

such that sufficient incentives are provided to agents tpe@ie. Therefore, an
optimal incentive mechanism needs to be designed as a ffdddween sharing

efficiency and incentive-compatibility.

Whitewashing. Another distinctive characteristic of socio-technicatworks is

that the agents are anonymous (i.e. their online identiesnot directly asso-
ciated with their real-world identities). Meanwhile, areagjcan create multiple
online identities by repeatedly entering the system. Assaltean agent who
has been detected to be non-cooperative and is subject tshpugnts may at-
tempt to switch its online identity by leaving and rejoinitige community as
a new member to avoid the punishments imposed by the system itgpold

identity, a behavior commonly known as “whitewashing”. Tiheentive mech-
anisms proposed in this dissertation consider this pdiggiand are designed to

be “whitewashing-proof”.

Distributed information availability and strategic learn ing. Due to the dis-

tributed availability of information in socio-technicaktworks, agents do not
have complete knowledge about the system and other ageritss, Tt is of

particular importance in this regard to investigate how ppraach the perfor-
mance bounds of incentive mechanisms when agents can ipedaetdapt their

strategies based on limited, heterogeneous and evolvioglkdge and reason-
ing about the system, the environment, and the strategieshef agents. It
should be also noted that taking into account the agenttesgfic learning over
time will couple the platform designer’s decision with thgeats’ self-interested
decisions, thereby significantly complicating the formadlgsis and design of

incentive mechanisms.



e Strategic link formation. One of the defining features that distinguish socio-
technical networks from traditional communication netkgis that agents make
strategic and independent decisions regarding formirkg land exchanging the
resources with other agents. For example, a user on Facefyobkitter can
strategically determine its friendship connections; ar peele in P2P networks
makes active decisions on which peers it should connectdalawnload con-
tent from. Hence, the resource management schemes projotes existing
literature, which assume that the network topology in thetesy is exogenously
determined and fixed, are no longer applicable to sociorieahnetworks that
are usually formed endogenously by self-interested agehtsdetermine their

link formation strategies in a way to maximize their indivad utilities.

1.3 Contribution of the Dissertation

The overarching goal of my dissertation is to develop a ngerand unified paradig-
m for the joint design of efficient incentive mechanisms aesource managemen-

t schemes for socio-technical networks. It can be genedatiged into two parts.

The first part (Chapter 2-3) focuses on the design of effictesburce sharing
schemes in socio-technical networks. | propose a genertiadelogy for the de-
sign and analysis of rating protocols and associated ragkit learning algorithms to
sustain cooperation in socio-technical networks. Fortmgahe agents’ interaction as
non-cooperative repeated games, | rigorously model amty she design of rating pro-
tocols to optimize the resource sharing efficiency amongagehile encompassing
various unique features of socio-technical networks. ¢ g@iopose practical bench-
marks and criteria to evaluate the performance of incemtigehanisms both in terms

of economic efficiency and implementation overhead for &etaof applications.

The second part of my dissertation (Chapter 4-5) augmeatsrtsposed rating pro-

tocols by explicitly considering the strategic resourcedurction and link formation



of agents, where the resource represents “informationy. (éles in P2P networks,
news on social networks, traffic/road conditions in vetacuietworks, etc.). | pro-
pose a novel game-theoretic framework to model and anahgérade-offs (of each
individual agent) between the costs and benefits of produciformation personally
and forming links to collect and disseminate resources. artadysis has implications
for the topology that emerges endogenously. For large pdipuals, the implication is
that the topology is necessarily of a core-periphery typeaMvhile as the population
grows, the agents’ degree distribution converges to a “pdawe’ distribution and the
network becomes “scale-free”. My conclusions had beensmbajed by numerous em-
pirical studies on distributed networking systems anda@amputing systems but had

not been previously derived formally.

1.3.1 Chapter 2: A General Framework of Rating Protocol Degin for Online

Communities

In Chapter 2 of the dissertation, | propose a general framethat enables the rigor-
ous design of rating protocols for service and resourcdrsipar online communities. |
model the agents’ interactions as anonymous random matglaimes, in which each a-
gentis matched with different partners over time to excleaseggvices. The goal of each
agentis to maximize its discounted long-term utility. Mpposed rating protocols rely
on the idea of social reciprocation. Under a rating protcaokhgent is rated based on it-
s behavior. The rating affects the agent’s rewards recénwtdte community, which are
typically determined according to a differential resour@nagement scheme: compli-
ant agents receive higher ratings and are rewarded by gaimime access to resources
compared to non-compliant agents. This preferentialimeat thus provides an incen-
tive for agents to cooperate. | derive conditions for sustilie rating protocols, under
which no agent gains by deviating from the socially-optineglource sharing strategy.
Given these sustainability conditions, | formulate and/edhe problem of designing

an optimal rating protocol and characterize the optimaldeelfare. As special cases,



| also analyze the one-sided rating protocol which onlyizé8 the rating score of one
party in the stage-game. | show that when only the ratingescof clients (i.e. agents
who request resources) are utilized, the optimal one-gidtalg protocol preserves a
simple structure with two-level rating scores, whereasmwiiely the rating scores of
servers (i.e. agents who share resources) are utilizedjstaisable one-sided rating
protocol can be designed. Under this framework, | also stivelympacts of punishment
lengths and whitewashing possibility on the design andoperance of optimal rating
protocols, identifying a trade-off between efficiency andentives. Lastly, | present
numerical results to illustrate the impacts of the discdaator, the turnover rate, and

the probability of report errors on the performance of oplinating protocols.

1.3.2 Chapter 3: Strategic Learning in Online Communities

Chapter 2 assumes that the community starts to operatdldie¢@ selected (“best”)

equilibrium, i.e. agents start by directly adopting a daslie equilibrium strategy when
joining the community, and rigorously designs rating pools that ensure agents will
not deviate from this equilibrium strategy and that the camity will indeed operate

at the selected equilibrium. Nevertheless, in practicarglare often multiple equilibria
in a community and agents can adopt arbitrary (non-equiliby strategies when they
join the community and learn to adapt their strategies basdtie accrued knowledge

about the community and other agents.

Chapter 3 augments the design in Chapter 2 by specificalgstigating how the
strategic learning of self-interested agents impacts #ségah of optimal rating proto-
cols. To optimize their individual long-term performancasers learn the environment
and adapt their strategies by solving individual stocleagintrol problems. The users’
learning and adaptation catalyze a stochastic dynamiepspn which the strategies
of users in the community evolve over time. | first charazeethe structural properties
of the users’ best response strategies. Subsequently, tiigise structural results | de-

sign rating protocols for governing the online communitigsich not only sustains the



best equilibrium, but also ensures the convergence of timeremity towards this equi-
librium in the long-run. | prove that by appropriately pemaig and rewarding users
based on their behavior in the community, such incentivehaeisms can eliminate
free-riding and ensure that the community converges to madds equilibrium select-
ed by the community designer such that social welfare is maed and in which users

learn that it is in their self-interest to cooperate withleather.

1.3.3 Chapter 4: Information Production and Link Formation in Social Com-

puting Systems

In Chapter 4, | focus on the analysis of strategic link fororatbehavior of self-
interested agents in social computing systems. This asalgonducted from sev-
eral points of view. First, | analyze the trade-offs (of eauwtiividual agent) between
the costs and benefits of producing information personaitlyfarming links to collect
information (from other agents), and the strategic impioes of these trade-offs. A
central point of the analysis is that information are assiitade heterogeneous (rather
than homogeneous as in previous analyses), which is fotetulay the well-known
Dixit-Stiglitz utility function, and agents value this legbgeneity. The analysis has
implications for the topology that emerges endogenousty. I&ge populations, the
implication is that the topology is necessarily of a corejgeery type: hub agents (at
the core of the network) produce and share most of the infoomavhile spoke agents
(at the periphery of the network) derive most of their infatran from hub agents,
producing little of it themselves. As the population becsrager, the number of hub
agents and the total amount of information produced growrapgrtion to the total
population. These conclusions had been conjectured foy macial computing sys-
tems but it has not been previously derived in any formal &awork, and are in stark
contradiction to the “law of the few” that had been estal@dgin previous work, under
the assumption that information is homogeneous and palnecéhdowment of agents,

rather than heterogeneous and produced.



1.3.4 Chapter 5: Information Dissemination in Socio-techical Networks

Chapter 5 analyzes an alternative problem in strategiddinkation, in which the self-
interested agents are benefit from disseminating its owornmdition (e.g. knowledge,
data, advertisement) instead of collecting the infornmapicoduced by other agents. |
formulate the agents’ interactions as a hon-cooperativeegavhere each agent proac-
tively determines its own information production and limkrhation strategies in order
to maximize its individual utility from disseminating itggduced information. The
strategic production and dissemination of informationehatriking consequences. |
show first that the network structure that emerges (in dajulm) typically displays a
core-periphery structure, with the few agents at the caagipy the role of “connec-
tors”, creating and maintaining links to the agents at th@ppery. | then determine
conditions under which the networks that emerge are mimyntainnected and have
short network diameters (properties that are importanéeficiency). Finally, | show
that the number of agents who produce information and tteg &mhount of informa-
tion produced in the network grow at the same rate as the pggutation. That is, the
“law of the few” also does not in socio-technical networksendagents benefit from

information dissemination.

1.3.5 Chapter 6: Conclusion

Chapter 6 concludes the dissertation and includes a discuabout future research

directions.



CHAPTER 2

A General Framework of Rating Protocol Design for

Online Communities

2.1 Introduction

Recent developments in technology have expanded the boesdéd communities in
which individuals interact with each other. For examplewadays individuals can
obtain valuable information or content from remotely l@htndividuals in an online
community formed through online networking services [1]-[However, a large pop-
ulation and the anonymity of individuals in such an onlinenoaunity make it difficult
to sustain cooperative behavior among self-interesteyighehls [8][9]. For exam-
ple, it has been reported that “free-riding” is widely ozl in peer-to-peer networks
[10][11]. Hence, incentive schemes are needed to cultivatgerative behavior in

online communities.

A variety of incentive schemes have been explored to indooperation in such
online communities. The most popular incentives are basepriaing schemes and
differential service provision. Pricing schemes use pays® reward and punish in-
dividuals for their behavior, which in principle can induself-interested individuals
to cooperate with each other to attain the social optimurmbsrimalizing their exter-
nal effects (see, for example, [12][13]). The main chalemgth the pricing scheme
is that the resources/services being exchanged need tacbetaty priced in order to
make the punishment scheme effective. However, this puesitg is difficult to fulfill

in many online communities, where agents interact fredquevith each other and the
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services being exchanged between them are not real goodsiveit solutions to small
tasks or small amounts of resources which are difficult togoriOne example of such
applications is the online question and answer forum [1lemsthe service represents
a small “favor” in answering the questions posted by othemésy i.e. knowledge is
what is being exchanged here. The difficulty in pricing susimall” services (i.e. the
knowledge and resources being exchanged) in these apphisairevents the pricing
scheme to be effective. Therefore, it is more effective temivizing agents to provide
services by rewarding them in the form of rating scoresfairicredits, which allow
them to obtain the same type of services in the future fronttmemunity as a return-
ing favor. Also, a pricing scheme often requires a complesoanting infrastructure,
which introduces substantial communication and computatverheads [14]. Hence,
it is impractical for the pricing scheme and the correspogdifrastructure to be im-
plemented in large-scale online communities, e.g. pe@ety systems [17], mobile
networks [2], etc., where agents have limited computing @mmunication capabil-
ities and are interacting frequently with each other for lkservices (i.e. frequent
transactions). For example, there have been some workslésagn monetary-based
incentive mechanisms for peer-to-peer systems where essmhnpaintains a bank ac-
count and use real money to purchase resources. Howevas liden measured that
significant overheads are introduced by the deployment ajanent infrastructure [14]
and hence, such pricing schemes were never actually impleshéen such online com-
munities. Finally, pricing the services in online commigstmight discourage agents

from participating into the community.

Differential service schemes, on the other hand, rewardpamish individuals by
providing differential services depending on their bebawstead of using monetary
rewards [15]-[30]. Differential services can be providgddmmmunity operators or
by community members. Community operators can treat iddads differentially (for
example, by varying the quality or scope of services) basethe information about

the behavior of individuals. Incentive provision by a cah&ntity can offer a robust
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method to sustain cooperation [15]. However, such an apprgampractical in a large
community because the burden of a central entity to monitividuals’ behavior and
provide differential services for them becomes prohikiiivheavy as the population
size grows. Alternatively, more distributed incentive exgtes exist where community
members monitor the behavior of each other and providerdiiteal services based
on their observations [16]-[30]. Such incentive schemesbased on the principle of
reciprocity and can be classified into personal reciproodir direct reciprocity) [16]-
[18] and social reciprocation (or indirect reciprocityPJ430]. In personal reciproca-
tion schemes, individuals can identify each other, and\deh#&ward an individual is
based on their personal experience with that individuats&eal reciprocation is ef-
fective in sustaining cooperation in a small community vehiedividuals can identify
each other and interact frequently with fixed opponentsithoses its power in a large
community where individuals have asymmetric interestsadfreely and frequently
change the opponents they interact with [26]. In socialmecation schemes, individ-
uals obtain some information about other individuals (fcaraple, rating) and decide
their actions toward an individual based on this availabfermation. Hence, an indi-
vidual can be rewarded or punished by other individuals énahline community who
have not had past interactions with it [26][27]. Therefa®gial reciprocation has a po-
tential to form a basis of successful incentive schemesrfiine® communities. As such,

this chapter is devoted to the study of incentive schemestbais social reciprocation.

Sustaining cooperation using social reciprocation has beestigated in the liter-
ature using the framework of anonymous random matching gaimevhich each indi-
vidual is repeatedly matched with different partners oweetfor service exchange and
tries to maximize its discounted long-term utility. To ireplent social reciprocation,
it is important for the community to share enough informatibout past interactions
such that the community members know how to reward or purtisérs. This exist-
ing literature makes different assumptions on the inforomatevealed to community

members about other members. In [28] each community meniisarees the entire
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history of the past plays of its current partner. In [29][36dmmunity members are
informed about the outcomes of the matches in which they baea directly involved.
Rating protocols have been proposed in [26] and [27], whach eommunity member
is attached a rating score indicating its social statusclwhakes a value from a finite
set and records its past plays, and community members wirett rating scores
are treated differently by other individuals they interatth. For online communities,
maintaining direct records of individuals’ past plays whiare used in [28]-[30] are
not appropriate, because the communication and storagdacagvealing the entire
history of the past plays of an individual grow unboundedite. Since the use of
rating score as a summary record requires significantlydessunt of information to
be maintained, we will design incentive schemes based argrptotocols for online
communities. A rating-based incentive scheme can be easpiemented in online
communities that deploy entities (e.g., a tracker in P2Rvoks [17], or a web portal
in web-based applications [1]) who can collect, procesd,dsiliver information about

individuals’ play history to generate rating scores.

Cooperation among community members can be sustainedimrealbove works on
anonymous random matching games. However, all of them lweeesé€d on obtaining
the Folk Theorem by characterizing the set of equilibriuyglts that can be achieved
when the discount factor of individuals is sufficiently cto® 1. Our work, on the
contrary, addresses the problem of designing a ratingebasentive scheme given a
discount factor and other parameters arising from prdaticasiderations, which are
not fully considered in the existing literature on anonymoandom matching games.

Specifically, our work takes into account the following f&&s of online communities:

e Asymmetry of interesté&.s an example, consider a community where individuals
with different areas of expertise share knowledge with edicar. It will be rarely
the case that a pair of individuals has a mutual interestenettpertise of each
other simultaneously. We allow the possibility of asymnueetnterests by mod-

eling the interaction between a pair of individuals as agiving game, instead
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of a prisoner’s dilemma game which assumes mutual intebesteeen a pair of
individuals [17][26]-[28]. It should be noted that the “asgnetry of interests”
in this chapter specifically refers to the fact that two agentone stage game
do not have mutual interests in the resources or servicesepsad by each oth-
er simultaneously. Such “asymmetry of interests” existganous applications.
For example, in an online question and answer forum such lasofaAnswers,
a user; who answers a question of another ugeloes not necessarily have to

propose questions to usgas well [1].

Report errors.In an incentive scheme based on a rating protocol, it is ptessi
that the rating score (or label) of a specific individual islaged incorrectly be-
cause of errors in the reports of its partners (i.e. othewiddals it interacts
with). Our model incorporates the possibility of reportoes;, which allows us to
analyze its impact on design and performance, whereas misting works on
rating schemes (e.g. [26][27]) adopt an idealized assumnpliat rating scores

are always updated correctly.

Whitewashing Whitewashing refers to the behavior of an individual drest
multiple identities by repeatedly entering to an anonynumlsie community. In
an online community, individuals with bad rating scores ragtgmpt to white-
wash their rating scores by leaving and rejoining the conityi@s new members
to avoid the punishments imposed by the system upon theiideldtities [17].
We consider this possibility and study the design of “whaetwproof” rating

protocols and their performance.

Note that our model and analysis also differ significanttyrirmost existing works

on reputation systems [23]-[25]. First, the models in [Z3} assume that individuals

assume fixed roles in the community (i.e. seller or buyer)clvis common in appli-

cations where the groups of sellers and buyers are separadadsually do not overlap

[21]. Nevertheless, in online communities such as P2P rm&yonline labor markets,
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Table 2.1: Comparison with the existing literature

[28]-[30][35] [26][27] [23][24] [25] Our work
Incentive Differential Differential Monetary Monetary Differential
device services services rewards rewards services
Asymmetry of
) N/A No No No Yes
interests
Report errors N/A No Yes Yes Yes

Information

requirement

Entire history of
stage game

outcomes

Individual rating

Individual rating

Individual rating

Individual rating

Sufficiently close

Sufficiently close

Discount factor Sufficiently large Arbitrary Arbitrary
tol tol
Number of
long-lived Multiple Multiple One One Multiple
players
Protocol design No No Yes Yes Yes
Optimization Individual Individual Individual Individual Sum utility of all

criterion long-term utility long-term utility long-term utility long-term utility players

etc., each agent can be both the provider and the receivernatss. Second, the rep-
utation systems in [23]-[25] rely on differential pricinglemes to incentivize sellers
to cooperate. We have already mentioned that the serviceg &echanged and shared
in online communities are difficult to price, thereby pretneg such pricing-based rep-
utation systems to be effectively deployed. Finally and mioportantly, [23]-[25]
consider the repeated game between a unique long-liveel sgld many short-lived
buyers, and the design principle there is to maximize theebga (discounted) long-
term utility of the individual long-lived seller. In consg we consider in this chapter
the interplay among a large number of long-lived individiaind aim to maximize the
social welfare (i.e. the sum utility) of the entire commuymnitzhich makes the design-
s in [23]-[25] inapplicable here. A more detailed and in4tepomparison between
our work and [23]-[25] is provided in Section 2.7. The difaces between our work
and the existing literature on social reciprocity are sumized in Table 2.1 in order to

highlight our contribution and novelty.

The remainder of this chapter is organized as follows. IrtiSe@.2, we describe
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the repeated anonymous matching game and incentive sclhasedon a rating proto-
col. In Section 2.3, we formulate the problem of designinggptimal rating protocol.

In Section 2.4, we provide analytical results about optimtihg protocols. In Section
2.5, we extend our model to address the impacts of varialispoment lengths, white-
washing possibility, and one-sided rating. We provide $aton results in Section 2.6,

discuss the related works in Section 2.7, and conclude thetehin Section 2.8.

2.2 Model

2.2.1 Repeated Matching Game

We consider a community where each member, or agent, careoffduable service to
other agents. Examples of services are expert knowledggroer reviews, job infor-
mation, multimedia files, storage space, and computing pdse consider an infinite-
horizon discrete time model with a continuum of agents [bAighlight our focus on
online communities with large agent populations. Suchioooim population model is
commonly adopted in the analysis for large-scale dynantworés, e.g. peer-to-peer
systems [3][17], grid networks [4], social sharing webs{tH[5], etc. In a period, each
agent generates a service request [37], which is sent th@nagent that can provide
the requested service We model the request generation and agent selection groces
using uniform random matching: each agent receives exagtdyequest in every peri-
od and each agent is equally likely to receive the request afy@nt, and the matching

is independent across periotlsSuch model well approximates the matching process
between agents in large-scale online communities whenmngtageeract with others in

an ad-hoc fashion and the interactions between agents astrected randomly over

time. For example, in a mobile relay network [2] where agé€atg. mobile devices)

't should be noted that our analysis can be readily extenul#fittcase where each agent generates
a service request with a probability< 1. We assume = 1 in this chapter only for the simplicity of
illustrations.

2The impact of matching schemes on the incentive of agentshengerformance of online commu-
nities falls out the scope of this chapter, but serves as poiitant next step in this line of research.
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within a certain area are able to relay traffic for each othemigh unlicensed spectrum
(e.g. WLAN) to the destination (e.g. nearby cellular bas¢i@hs), the relay node that
each mobile agent encounters at each moment could be apyai@ty assumed to be
random, since this mobile agent is moving around the aredoraty over time. In other
words, each idle agent in the same area has approximatesathe probability to be

chosen as the relay node.

In a pair of matched agents, the agent that requests a ses\daked a client while
the agent that receives a service request is called a sénvevery period, each agent
in the community is involved in two matches, one as a clieut ue other as a server.
Note that the agent with whom an agent interacts as a clienbealifferent from that
with whom it interacts as a server, reflecting asymmetrierggts between a pair of

agents at a given instant.

We model the interaction between a pair of matched agentggdsgving game
[32]. In a gift-giving game, the server has the binary cha€evhether to fulfill or
decline the request, while the client has no choice. Theessraction determines the
payoffs of both agents. If the server fulfills the client'sjuest, the client receives a
service benefit ob > 0 while the server suffers a service costcof 0. We assume
thatb > c so that the service of an agent creates a positive net scanalfib If the
server declines the request, both agents receive zerofpaybie set of actions for the
server is denoted byl = {F, D}, whereF stands for “fulfill” and D for “decline”.
The payoff matrix of the gift-giving game is presented in [€aB.2. An agent plays
the gift-giving game repeatedly with changing partnersluneaves the community.
We assume that at the end of each period a fracti@n [0, 1] of agents in the current
population leave and the same amount of new agents join tnencmity. \We refer to

« as the turnover rate [17].

Social welfare in a time period is measured by the averagefpaj/the agents in
that period. Sincé > ¢, social welfare is maximized when all the servers chooseract

Fin the gift-giving games they play, which yields payoéff- ¢ to every agent. On the
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contrary, actiorD is the dominant strategy for the server in the gift-givingg@awhich
constitutes a Nash equilibrium of the gift-giving game. WHewery server chooses its
action to maximize its current payoff myopically, an ineffist outcome arises where

every agent receives zero payoff.

Table 2.2: Payoff matrix of a gift-giving game
Server
F D

Client | b, —c

2.2.2 Incentive Schemes Based on a Rating Protocol

In order to improve the efficiency of the myopic equilibrivwe use incentive schemes
based on rating protocols. A rating protocol is defined asrtihes that a communi-
ty uses to regulate the behavior of its members. These mitbsaite the established
and approved ways of “operating” (e.g., exchanging sesyiocethe community: ad-
herence to these rules is positively rewarded, while faitorfollow these rules results
in (possibly severe) punishments [36]. This gives ratingtgeols a potential to pro-
vide incentives for cooperation. We consider a rating prokthat consists of a rating
scheme and a recommended strategy, as in [26] and [27]. Agratheme determines
the ratings of agents depending on their past actions aversehile a recommended
strategy prescribes the actions that servers should tgdendeng on the ratings of the

matched agents.

Formally, a rating scheme is represented by three parasréef, 7): © denotes
the set of rating scores that an agent can hélds © denotes the initial rating score
attached to newly joining agents, ands the rating update rule. After a server takes
an action, the client sends a report (or feedback) aboutdtienaof the server to the
third-party device or infrastructure that manages thengasicores of agents, but the
report is subject to errors with a small probability That is, with probabilitys, D

is reported when the server takes actionand vice versa. Assuming a binary set of
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reports, it is without loss of generality to restridn [0, 1/2]. Whene = 1/2, reports are
completely random and do not contain any meaningful infaionaabout the actions
of servers. We consider a rating scheme that updates ting satore of a server based
only on the rating scores of matched agents and the repartiech af the server. Then,
arating scheme can be represented by a mappirgx © x A — O, wherer (0, 0, ar)

is the new rating score for a server with current rating séoshen it is matched with
a client with rating scoré and its action is reported as,. A recommended strategy is
represented by a mapping: © x © — A, wheres (0, ) is the approved action for a

server with rating scoré that is matched with a client with rating scaté.

To simplify our analysis, we initially impose the followingstrictions on rating

schemes.

(1) © is a nonempty finite set, i.eq = {0, 1, ..., L} for some nonnegative integer

() K = L.

(3) 7 is defined by

- min{f + 1, L}  ifar =0(6,0)
0,

7(0,0,ar) = _ (2.1)
0 if ap # o

0)

Note that with the above three restrictions a nonnegatiteger L completely
describes a rating scheme, and thus a rating protocol caegresented by a pair
k = (L, o). We call the rating scheme determined/byhe maximal punishment rating
scheme (MPRS) with punishment length In the MPRS with punishment length,
there arel + 1 rating scores, and the initial rating score is specified.adf the re-
ported action of the server is the same as that specified byetilenmended strategy

o, the server’s rating score is increasedlowhile not exceeding.. Otherwise, the

3The strategies in the existing rating mechanisms [26][2T&dnine the server’s action based solely
on the client’s rating score, and thus can be considered pscas case of the recommended strategies

proposed in this chapter.
“We will relax the second and third restrictions in Sectidh 2.
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Figure 2.1: Schematic representation of a maximal punisiina¢ing scheme

server’s rating score is set @sA schematic representation of an MPRS is provided in

Figure 2.1.
Below we summarize the sequence of events in a time period:
(1) Agents generate service requests and are matched.
(2) Each server observes the rating of its client and theerates its action.
(3) Each client reports the action of its server.

(4) The rating scores of agents are updated, and each aga/eb its new rating

score for the next period.

(5) A fraction of agents leave the community, and the sameuatnaf new agents

join the community.

2.3 Problem Formulation

2.3.1 Stationary Distribution of Rating Scores

As time passes, the rating scores of agents are updated antsdgave and join the
community. Thus, the distribution of rating scores in thenoaunity evolves over time.

Let *(6) be the fraction ofi-agents in the total population at the beginning of an arbi-
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trary periodt, where &-agent means an agent with rathgSuppose that all the agents
in the community follow a given recommended strategyThen the transition from
{n'(0)}5_, to {n'(0)}5_, is determined by the rating scheme, taking into account the

turnover ratex and the error probability, as shown in the following expressions:

H10) = (1-a)

) = (1-a)
(L) = (1-a)

Since we are interested in the long-term payoffs of the agere study the distribution

N
nt—i—l(

l—em@—1)forl<<L—1. (2.2)

1—a)(l-
1—a)d=e){n'(L) +7" (L -1} +a

1

of rating scores in the long run.

Definition 1 (Stationary distribution){n(¢)} is a stationary distribution of rating
scores under the dynamics defined by (2.2) if it satisfigs , n(0) = 1, n(6) = 0, V0,

and
0) = (1—a)e

) = 1—-a)l—ep@—-1)forl<f<L—1. (2.3)
n(L) = (I—a)d—e)fn(Ll)+nlL—-1)}+a
The following lemma shows the existence of and convergemaeihique stationary

distribution.

Lemma 1. For anye € [0,1/2] anda € [0, 1], there exists a unique stationary

distribution{7(#)} whose expression is given by

) = (1—-a) (1 —-¢e), foro0<O<L—1
1 ifa=e=0 : (2.4)
n(L) = {

(1—a) ' (1—e)feta i
o gy (f_a)‘f otherwise

Moreover, the stationary distributidm(6)} is reached withir{ L + 1) periods starting

from any initial distribution.

Proof: Suppose that > 0 ore > 0. Then (2.3) has a unique solution

n0) = (1-a)*'(1—-¢)’%, for0<O<LL—1
(1—)t 1 (1—e) eta ; (2.5)

n(L) = I—(1—a)(1—e)
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which satisfiesZGL:0 n(f#) = 1. Suppose that = 0 ande = 0. Then solving (2.3)
together WichGLZOn(Q) = 1 yields a unique solution () = 0for0 < 0 < L —1
andn(L) = 1. Itis easy to see from the expressions in (2.2) ti{é} is reached within

(0 + 1) periods, for all, starting from any initial distributiorill

Since the coefficients in the equations that define a staiafistribution are inde-
pendent of the recommended strategy that the agents faHevgtationary distribution
is also independent of the recommended strategy, as carbés@.4). Thus, we will
write the stationary distribution &s;.,(0)} to emphasize its dependence on the rating

scheme, which is represented by

2.3.2 Sustainable Rating Protocols

We now investigate the incentive of agents to follow a priesct recommended strat-
egy. For simplicity, we check the incentive of agents at tia¢i@nary distribution of
rating scores, as in [27] and [31]. Since we consider a napermtive scenario, we
need to check whether an agent can improve its long-termfilay@ unilateral devi-
ation. Note that any unilateral deviation from an indivitlagent would not affect the
evolution of rating scores and thus the stationary distidin) because we consider a

continuum of agent%

Let ¢, (0, ) be the cost suffered by a server with rating sebtieat is matched with
a client with rating scord and follows a recommended strategyi.e., ¢ (0, é) =c
if 0(6,0) = F andc,(6,0) = 0if o(8,0) = D. Similarly, letb, (6, ) be the benefit
received by a client with rating scofethat is matched with a server with rating scére
following a recommended strategyi.e.,b,(,0) = bif o(6,0) = F andb,(#,0) = 0
if a(@,é) = D. Since we consider uniform random matching, the expecteidgpe
payoff of ad-agent under rating protocelbefore it is matched is given by

ve(0) = nL(0)bs(0,0) = > ni(0)c.(6,0). (2.6)

2e) 6O

5This is true for any deviation by agents of measure zero.
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To evaluate the long-term payoff of an agent, we use the diged sum criterion in
which the long-term payoff of an agent is given by the expéetue of the sum of
discounted period payoffs from the current period. hgt’|0) be the transition prob-
ability that af-agent becomes @-agent in the next period under rating protoeol

Under MPRSp,(¢'|0) can be expressed as

l—e if¢=min{d+1,L}
pe(010) = { e ifo’ =0 : (2.7)
0 otherwise
Then we can compute the long-term payoff of an agent from tineent period (before
it is matched) by solving the following recursive equations
v (0) = va(0) + 6 Y pu('[0)v(6)V0 € O, (2.8)
0'co
whered = B(1 — «) is the weight that an agent puts on its future payoff. Because
an agent leaves the community with probabitityt the end of the current period, the
expected future payoff of@agent is given byl —a) >, .o P« (0'|0)v°(0'), assuming
that an agent receives zero payoff once it leaves the contynuiie expected future
payoff is multiplied by a common discount fact@re [0, 1), which reflects the time

preference, or patience, of agents.

Now suppose that an agent deviates and uses a strategyler rating protocot.
Because the deviation of a single agent does not affect shiesary distribution, the
expected period payoff of a deviatidgagent is given by

Uno(0) = > _ 1 (0)b5(6,0) + ) nr(B)c(6,6). (2.9)
0c© 0coO
Let pw,(e’w,é) be the transition probability that &ragent using the strategy be-
comes &’-agent in the next period under rating protogolwhen it is matched with
a client with rating scoré. For eachy, @ = min{# + 1, L} with probability (1 — ¢)
and@’ = 0 with probabilitye if o(6,0) = o’(6,§) while the probabilities are reversed
otherwise. Them, . (¢|0) = > 5o 1(0)ps.0 (0|0, 0) gives the transition probability
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of a #-agent before knowing the rating score of its client, andldimg-term payoff of
a deviating agent from the current period (before it is matijfcan be computed by
solving

25 (0) = o (0) + 0 Y pror (010)025,(0)V0 € ©. (2.10)

0'c®
In our model, a server decides whether to provide a servinetafter it is matched
with a client and observes the rating score of the client.ddewe check the incentive
for a server to follow a recommended strategy at the pointnwh&nows the rating
score of the client. Suppose that a server with rating séasematched with a client
with rating scored. When the server follows the recommended strategyescribed
by rating protocok, it receives the long-term payoffc, (0, 0) + 6 3", p.(6'|0)v(6"),
excluding the possible benefit as a client in the currentoperOn the contrary, when
the server deviates to a recommended strateégyt receives the long-term payoff
—cor(0,0)+6 " P (010, 0)v22,,(0), again excluding the possible benefit as a client.
By comparing these two payoffs, we can check wheth@agent has an incentive to

deviate tos” when it is matched with a client with rating scate

Definition 2 (Sustainable rating protocolg).rating protocolx is sustainablef

—c,(0,0)+6 Ze, pa(010)02°(0) = —cor (6,0) 46 Ze, Do (010, 0)02,,(0) (2.11)
for all o, for all (6, 6).

In words, arating protocal = (L, o) is sustainable if no agent can gain from a uni-
lateral deviation regardless of the rating score of thentlies matched with when every
other agent follows the recommended strategyd the rating scores are determined by
the MPRS with punishment length L. Thus, under a sustainaltileg protocol, agents
follow the prescribed recommended strategy in their sglrest. Checking whether a
rating protocol is sustainable using the above definiti@quires computing deviation
gains from all possible recommended strategies, whose atatipn complexity can be
quite high for moderate values of L. By employing the crii@rof unimprovability in

Markov decision theory [38], we establish the one-shotatewn principle for sustain-
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able rating protocols, which provides simpler conditidhst notation, let,, be the cost
suffered by a server that takes actigrand letp,. ,(¢'|6, #) be the transition probability
that ad-agent becomes @-agent in the next period under rating protoeolvhen it
takes action to a client with rating scoré. The values of, ,(¢'|¢, ) can be obtained
in a similar way to obtaim, .- (¢'|6, §), by comparing: with & (6, 6).

Lemma 2 (One-shot Deviation Principle). A rating protocolx is sustainable if

and only if

Co(0,60) = ca <O | > {pu(0'10) — pra(6']6,6)}0°(6) (2.12)

6/
forall a # o(0,0), for all (9, 0).

Proof: If rating protocolx is sustainable, then clearly there are no profitable one-
shot deviations. We can prove the converse by showing thatjs not sustainable,
there is at least one profitable one-shot deviation. Sip¢@ é) andc, are bounded,

this is true by the unimprovability property in Markov deois theory [33][34].1

Lemma 2 shows that if an agent cannot gain by unilaterallyadieng fromo only in
the current period and following afterwards, it cannot gain by switching to any other
recommended strategy either, and vice versa. The left-hand side of (2.12) can be
interpreted as the current gain from choosingvhile the right-hand side of (2.12) rep-
resents the discounted expected future loss due to theatifferansition probabilities
induced by choosing. Using the one-shot deviation principle, we can derive tive

constraints that characterize sustainable rating prégoco

First, consider a pair of rating scor@ ) such that (6, ) = F. If the server with
rating score serves the client, it suffers the service cost of the current period while
its rating score in the next period becomes{¢ + 1, L} with probability (1 — ¢) and
0 with probabilitye. Thus, the expected long-term payoff of-agent when it provides

a service is given by

Vo(F; F) = —c+6[(1 — e)v(min{f + 1, L}) + €v.°(0)]. (2.13)
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On the contrary, if @-agent deviates and declines the service request, it atioéds
cost ofc in the current period while its rating score in the next pgf@comes$ with
probability(1—¢) andmin{6+1, L} with probabilitye. The expected long-term payoff

of af-agent when it does not provide a service is given by
Vo(D; F) = 6[(1 — £)v>(0) + ev>°(min{f + 1, L})]. (2.14)

The incentive constraint thattaagent does not gain from a one-shot deviation is given

by Vu(F; F) > Vy(D; F'), which can be expressed as

(1 —2¢) [ (min{f + 1, L}) — v°(0)] = c. (2.15)

Now, consider a pair of rating scorés ) such thaw(6,0) = D. Using a similar
argument as above, we can show that the incentive constranaf-agent does not

gain from a one-shot deviation can be expressed as
0(1 —2¢) [ (min{f + 1, L}) —v°(0)] = —c. (2.16)

Note that (2.15) implies (2.16), and thus fosuch thats (6, 0) = F for somed, we
only have to check the first incentive constraint (2.15). réf@e, a rating protocot

is sustainable if and only if (2.15) holds for @luch that (6, §) = F for somef and
(2.16) holds for alb such that(6, §) = D for all §. The left-hand side of the incentive
constraints (2.15) and (2.16) can be interpreted as thdrmsspunishment that rating
protocolx applies to &-agent for not following the recommended strategy. In order
to induce a&j-agent to provide a service to some clients, the left-hadd should be

at least as large as the service cgstvhich can be interpreted as the deviation gain.
We usemingee{d(1 — 2¢)[v°(min{f + 1, L}) — v°(0)]} to measure the strength of
the incentive for cooperation under the rating protocolwhere cooperation means

providing the requested service in our context.
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2.3.3 Rating Protocol Design Problem

Since we assume that the community operates at the statidisdribution of rating

scores, social welfare under rating protoeaan be computed by
Ue =Y n(0)ve(6). (2.17)
0

The community operator aims to choose a rating protocoltizaimizes social welfare
among sustainable rating protocols. Then the problem afjdiew a rating protocol

can be formally expressed as

max Ue = np(0)v.(0)
(L,o) 0

subjectto 4(1 — 2¢)[v>(min{f + 1, L}) — v2°(0)] = ¢, 30 witho(h,0) = F

5(1 — 2¢)[v*(min{f + 1, L}) — v2(0)] > —¢, o(,0) = D, forall§
(2.18)

A rating protocol that solves the design problem (2.18) ikedaan optimal rating

protocol

2.4 Analysis of Optimal Rating Protocols

2.4.1 Optimal Value of the Design Problem

We first investigate whether there exists a sustainableggtiotocol, i.e., whether the
design problem (2.18s) has a feasible solution. Fix thegtument length. and con-
sider a recommended strateg}} defined byo? (6, 0) = D for all (¢, ). Since there is

no service provided in the community when all the agent®¥ot”, we have
Vizop)(0) =0

for all 6. Hence, the relevant incentive constraint (2.16) is satisfor all ¢, and the
rating protocol L, o?) is sustainable. This shows that the design problem (2. 2&)ye

has a feasible solution.
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Assuming that an optimal rating protocol exists,l&tbe the optimal value of the

design problem (2.18). In the following proposition, wedstihe properties of/*.

Proposition 1. The optimal value of the design problem (2.18) satisfies alev-

ing properties:

()0<U* <b— 1=

1-2¢

i * f C B(l—a)(1-2¢)
(ihU _Olfl—)>wa)(2_‘;€).

(i) U* > [1— (1 - a)el(b—c)if £ < B(1—a)(1 — 2¢).
(V) U* = b—cif e = 0 and$ < B(1 — a).

(v) U* = b— conlyif = = 0 and¢ < 20z,

Proof: See Appendix Al

Proposition 1(i) proves that the optimal social welfarergatrbe negative but is al-
ways strictly bounded away from— ¢, which is the social welfare when all agents
cooperates, when > 0. Hence full cooperation cannot be achieved in this scenari-
0. Since we obtain zero social welfare at myopic equilibrimvithout using a rating
protocol, we are interested in whether we can sustain agratiotocol in which agents
cooperate in a positive proportion of matches. In other woweke look for conditions
on the parameter®, ¢, 3, a, ¢) that yieldU* > 0. From Proposition 1(ii) and (iii), we
canregard/b < [f(1—a)(1—2¢)]/[1—p(1—a)(2—3¢)]andc/b < (1 —a)(1—2¢)
as necessary and sufficient conditions#or > 0, respectively. Moreover, when there
are no report errors (i.es, = 0), we can interpret/b < 5(1 — «)/[1 — B(1 — )]
andc/b < (1 — «) as necessary and sufficient conditions to achieve the mawimu
social welfareU* = b — ¢, respectively. As a corollary of Proposition 1, we obtaia th

following results in the limit.

Corollary 1. For any(b, ¢) such that) > ¢, (i) U* converges td — c asf§ — 1,

a — 0,ande — 0, and (ii)U* convergest® asf — 0, — 1,0re — 1/2. B

Corollary 1 shows that we can design a sustainable ratingpgobthat achieves

near efficiency (i.e.l/* close tob — ¢) when the community conditions are good (i.e.,
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S is close to 1, and ande are close to 0). Moreover, it suffices to use only two ratings
(i.e., L = 1) for the design of such a rating protocol. On the contrarycooperation
can be sustained (i.€/* = 0) when the community conditions are bad (i/is close

to 0, is close to 1, ok is close to 1/2), as implied by Proposition 1(ii).

2.4.2 Optimal Recommended Strategies Given a Punishment hgth

In order to obtain analytical results, we consider the depigblem (2.18) with a fixed
punishment lengtth, denotedD P;. Note thatD P, has a feasible solution, namety’,

for any L and that there are a finite number (t02é4+1)2) of possible recommended
strategies giverL. Therefore,DP;, has an optimal solution for any. We useU;
ando; to denote the optimal value and the optimal recommendetegiraf D Py,
respectively. We first show that increasing the punishmamgth cannot decrease the

optimal value.
Proposition 2. U; > U;, for all L andL’ such thatl > L'.
Proof: See Appendix B

Proposition 2 shows théaf; is non-decreasing if. SinceU; < b — cwhene > 0,
we haveU* = lim;_, U} = sup, U;. It may be the case that the incentive constraints
eventually prevent the optimal value from increasing witlso that the supremum is
attained by some finité. This conjecture is verified in Figure 2.2, whdrg stops
increasing wherd. > 5. Hence, it is plausible for the protocol designer to set gmeup
bound onL in practical designs with little efficiency loss incurredoWwe analyze the
structure of optimal recommended strategies given a poresihlength. The properties
characterized in the following proposition can effectiyedduce the design space of the
optimal recommended strategy givérand thus reduces the computation complexity

of the optimal rating protocol design.

Proposition 3. If we have that > 0 anda < 1, the optimal rating protocol exhibits

the following structures:
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Figure 2.2: Optimal performance giving the punishmentierig

(i) A 0-agent does not receive service from some agentsgii€d,0) = D, 30 €
O.

(i) If aZ(O,é) = F for somed, then agents with sufficiently high rating scores
always receive service from 0-agents, icg.(0,f) = F for all § > min{In £/In g3, L}.

(i) L- agents receive service from other agents whos@gagcores are sufficiently
high, i.e.,ifd € {1,...,L — 1} satisfie) > L — (In¢ —InY (a,e, L))/In 3, where

(1— ) (1 — e)le — (1 — a)*2(1 — o)b*1e

Ylae L) = 1-a)"*'(1-e)fe+a

, (2.19)
theno; (0, L) = F.

(iv) L-agents always provide service to other L-agents, &g(L, L) = F.

Proof: See Appendix CHi

As Proposition 3 shows, to construct an optimal rating prokosufficient pun-
ishment should be provided to agents with low rating scoreevsufficient rewards

should be provided to agents with high rating scores.

2.4.3 llustrationwith L=1and L =2

We can represent a recommended strateggs an(L + 1) x (L + 1) matrix whose

(1,7)-entry is given byo, (i — 1,7 — 1). Proposition 3 provides some structures of an
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optimal recommended strategy in the first column and the last row of the matrix
representation, but it does not fully characterize thetsmiuof DP;. Here we aim
to obtain the solution oD P, for L = 1 and2 and analyze how it changes with the
parameters. We first begin with the case of two ratings, L.e= 1. In this case, if
01(0,0) = F for some(d, §), the relevant incentive constraint to sustais- (1,0;) is
5(1 — 2¢)[v°(1) — v2°(0)] > ¢. By Proposition 3(ii) and (iv), it} (6, §) = F for some
(6,0), thenot(0,1) = 07(1,1) = F, provided that > 0 anda < 1. Hence, among the
total of 16 possible recommended strategies, only four aaogtimal recommended

strategies. These four recommended strategies are

. |\pF| , |FF , |DF , , |DD
oy = , 07 = , 0y = , 0y =0y = . (2.20)
F F D F D F D D
For notational convenience, we define a recommended sgra&goy o7°(6,0) =
D for all # andoP°(9,0) = F for all  and alld > 0. In (2.20), we haver? =
oD%, The following proposition specifies the optimal recommehdtrategy given the

parameters.

Proposition 4. Suppose thal < (1 — a)e < 1/2. Then

( 1 |f0<g< 6(1—a)2(1—2€)€

! 1+8(1—a)?(1—2¢)e
2 i B1-)2(1-20c _ ¢ _ B(l—a)(1-2¢)[1—(1—a)¢]
UT _ o1 if 1+5(1—a)2(1—2a)a < b S 1—5(1—04)2(1_25)5 . (221)
ob if U=l (oa)] e ¢ (1 — q)(1 — 2¢)

1-B(1—a)?(1—2¢)e b

o ifpl—a)(l—-2¢)<&<1

\

Proof: Let s’ = (1,07}), fori = 1,2, 3, 4. We obtain that

Uas = (1=m(0)0b—c), Ue = (1=m0)nD)(b-rc) .
UHS = (1 _n1<0))(b_ C), Un4 =0

(2.22)

Sincel < (1 —a)e < 1/2, we havey, (0) < n,(1). Thus, we havé/,: > U, > U, >

31



U.s. Also, we obtain that

v (1) =v3(0) = m@)(b—¢), v3(1)—v3(0) = b—m(O)(b—C).

v3(1) —v%(0) = b, v(1) —vX(0) = 0
(2.23)
Thus, we haves(1) —v5(0) > v35(1) —v35(0) > v (1) — 022 (0) > v (1) —v%(0).

By choosing the recommended strategy that yields the higloesal welfare among

sustainable ones, we obtain the resHt.

Proposition 4 shows that the optimal recommended strateggtermined by the
service cost-to-benefit ratigb. Whenc/b is sufficiently small, the recommended strat-
egyo; can be sustained, yielding the highest social welfare antomadour candidate
recommended strategies. A& increases, the optimal recommended strategy changes
from o to o7 to o} and eventually ter}. Figure 2.3 shows the optimal recommended
strategies with, = 1 asc varies. The parameters we use to obtain the results in the
figures of this chapter are set as follows unless otherwatedts = 0.8, a = 0.1,

e = 0.2, andb = 10. Figure 2.3(a) plots the incentive for cooperation of therfieec-
ommended strategies. We can find the region iof which each strategy is sustained
by comparing the incentive for cooperation with the sendastc for o{, 02, ando?,
and with—c for o{. The solid portion of the lines indicates that the stratagguistained
while the dashed portion indicates that the strategy isumstbined. Figure 2.3(b) plots
the social welfare of the four candidate strategies, witldsod dashed portions hav-
ing the same meanings. The triangle-marked line represeatsptimal value, which

takes the maximum of the social welfare of all sustainedesgias.

Next, we analyze the case of three ratings, ile.= 2. In order to provide a
partial characterization of the optimal recommendedetnat;, we introduce the fol-
lowing notation. Leto—f be the recommended strategy with= 2 that maximizes
min{v>X(1) — v2(0),v2(2) — v2(0)} among all the recommended strategies with

L = 2. Lety £ §(1 — ¢) as defined in Appendix A, and define a recommended s-

trategyo? by 0P (L —1,0) = D ando? (9, 6) = F forall (8,0) # (L —1,0). We have
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Figure 2.3: Performance of the four candidate recommentilatégies wherl. = 1.

the following conclusion about; ando? .

Proposition 5. Suppose that > 0, « < 1, and
@)1=y b (2.24)

¢
b (1) ~ c’
(i) o = o0 (ii) if 72(0) < 172(2), thenoy = 5.

Proof: (i) Let x = (2,02°). ThenvX(1) — v>°(0) = v>(2) — v>(0) = b.
We can show that, under the given conditions, any change #&ghresults in a de-
crease in the value af*(1) — v°°(0), which proves that° maximizesmin{v>°(1) —
v2(0),v2(2) — v (0) )

(il) Sincee > 0 anda < 1, we haven(0) > 0 for all @ = 0, 1,2, and thus replac-
ing D with F' in an element of a recommended strategy always improvealswel-
fare. Hence, we first consider the recommended stratggyefined by (6,6) = F

for all (4,0). of maximizes social welfar&/, among all the recommended strate-
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gies withL = 2, butv°(1) — v°(0) = v°(2) — v°(0) = 0. Thus, we cannot find
parameters such that satisfies the incentive constraints, and thidis# o;. Now
consider recommended strategies in which there is exaoy/belement. We can
show that, under the given conditions, having6, ) = D at (9, 6) such that) > 0
yields v>°(1) — v°(0) < 0, whereas having,(6,0) = D at (,6) such that) = 0
yields bothv°(1) — v2°(0) > 0 andv®(2) — v°(0) > 0. Thus, for any recommend-
ed strategy having the onlp element at(@,é) such thatd > 0, there do not exist
parameters in the considered parameter space with whicim¢kative constraint for
0-agents,§(1 — 2¢) [v>°(1) — v>°(0)] > ¢, is satisfied. On the other hand, for any
recommended strategy having the orilyelement at(6, §) such that) = 0, we can
satisfy both incentive constraints by choosifg> 0, « < 1, ¢ < 1/2, andc suffi-
ciently close to 0. This shows that, among the recommendategtes having exactly
one D element, only those having in the first column are possibly sustainable. S-
inceny(1) < n2(0) < 12(2), o achieves the highest social welfare among the three

candidate recommended strateglis.

Let us try to better understand now what Proposition 5 medhrsposition 5(i)
implies that the maximum incentive for cooperation that banachieved with three
ratings is5(1 — a)(1 — 2¢)b. Hence, cooperation can be sustained itk 2 if and
only if 8(1 — a)(1 — 2e)b > ¢. Thatis, ifc/b > B(1 — a)(1 — 2¢), thend? is the
only sustainable recommended strategy and thus- 0. Therefore, when we increase
c while holding other parameters fixed, we can expectdjathanges frono?’° to o2
aroundc = 5(1—a)(1—2¢)b. Note that the same is observed with= 1 in Proposition
4. We can see thai, (2)/n-(1)][(1 —v)/~] converges to 1 as goes to 0 and goes to
1. Hence, for given values of ¢, ande, the condition (2.24) is satisfied and thus some

cooperation can be sustainedvifind S are sufficiently close t6 and1, respectively.

Consider a rating protocal = (2, o). We obtain that

min{v*(1) = v7°(0),v2°(2) = v2°(0)} = v2°(2) = v2°(0) = (1 — @)*(1 — )e(b - fe)
(2.25)
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andU, = (1 — (1 —a)*(1 — €)&?)(b — ¢). Proposition 5(ii) is stating that; = o7
when the community conditions are “favorable”. More pretjswe haver; = o2 if
(1—a)*(1—¢)e(b— Bec) = ¢, or

¢ B(1—a)’(1—2e)(1—¢)e | (2.26)
b~ 14321 —a)’(1—20)(1—e)e

Also, Proposition 5(ii) implies that’; < (1 — (1 — «)*(1 —£)&?)(b — ¢) always holds.
In Figure 2.4, we show the optimal value and the optimal revemded strategy

of DP, as we varye. The optimal recommended strategychanges in the following

order before becomingl’ asc increases:

F F F D F F D F F
os=|D F F|,05=|F F F|,05=|D F F|,

F F F F F F F F F

F F F F F F D F F D F F
os=|F F F|.05=|D F F|.08=|F F F|.0=|D F F
D F F D F F D F F D F F

Note thatol = o for smallc andoj = ¢ for largec (but not too large to sustain
cooperation), which are consistent with the discussiomaBooposition 5. For the in-
termediate values af only the elements in the first column change in order to msee
the incentive for cooperation. We find that the order of theénosal recommended s-

trategies between! = o¢f ando] = oP° depends on the community’s parameters

(b,c, B, a, €).

2.5 Extensions

2.5.1 Rating Schemes with Shorter Punishment Length

So far we have focused on MPRS under which any deviation iorte@ actions results

in a rating score ofl. Although this class of rating schemes is simple in that egat
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Figure 2.4: Optimal social welfare and the optimal recomdeehstrategy oD P,.

scheme can be identified with the number of rating scoresayt not yield the highest
social welfare among all possible rating schemes when thereeport errors. When
there is no report error, i.es, = 0, an agent maintains rating scofeas long as it
follows the prescribed recommended strategy. Thus, indase, punishment exists
only as a threat and it does not result in an efficiency lossth@wrontrary, whea > 0
anda < 1, there exist a positive proportion of agents with any rafregn 0 to L — 1 in
the stationary distribution even if all the agents follow tecommended strategy. Thus,
there is a tension between efficiency and incentive. In dadsustain a rating protocol,
we need to provide a strong punishment so that agents do mobgadeviation. At the
same time, too severe a punishment reduces social welfars.olbservation suggests
that, in the presence of report errors, it is optimal to pievincentives just enough to
prevent deviations. If we can provide a weaker punishmeiievgstaining the same
recommended strategy, it will improve social welfare. Oraywo provide a weaker
punishment is to use a random punishment. For example, weasider a rating
scheme under which the rating score af-agent becomes in the next period with
probabilitygy, € (0, 1] and remains the same with probability- ¢y when it reportedly
deviates from the recommended strategy. By varying thesbument probabilityy, for
f-agents, we can adjust the severity of the punishment apfié-agents. This class

of rating schemes can be identified @y, {¢s} ). MPRS can be considered as a special
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case whergy = 1 for all 6.

Another way to provide a weaker punishment is to use a snmaligishment length,
denotedV/. Under the rating scheme witti. + 1) rating scores and punishment length

M, rating scores are updated by

(0.6, ap) = min{f + 1, L} if ar = o(6, 9~)~ . (2.28)
max{0 — M,0} ifag # o(0,0)
When af-agent reportedly deviates from the recommended straiesgsating score
is reduced byM in the next period if? > M and becomes 0 otherwise. Note that
this rating scheme is analogous to real-world rating sclsefiorecredit rating and auto
insurance risk rating. This class of rating schemes can éwtifted by (L, M) with

1 < M < L% MPRS can be considered as a special case whete L.

In this chapter, we focus on the second approach to invéstiba impacts of the
punishmentlength on the social welfdrgand the incentive for cooperatim%in{é(l —
2¢)[v°(min{f + 1, L}) — v°(max{# — M,0})]} of a rating protocok, which is now
defined ag L, M, o). The punishment length M affects the evolution of the ratiisy
tribution, and the stationary distribution of rating scovéth the rating schemd., M),

{ne.an(0)}i_,, satisfies the following equations:

e (0) = (1= )2 3 1 (6)
nan (@ € {1, L—M}) = (1 —a)l —e)newan(0 —1)+ (1 —a)enean @+ M)
’/](L’]\/[)(H € {L — M + 1,L — 1}) = (1 — Oé)(l — 8)7]([/’]\/[)(9 — 1)

Ny (L) = (1 —a)(1 = e){nw (L) + (L —1)} +
(2.29)

0
Let o (0) = D naa(k) for @ = 0,..., L. Figure 2.5 plots the stationary
k=0
distribution{n, a1 (0) }5—, and its cumulative distributiofizs(; a)(0) }5_, for L = 5
andM =1,...,5. We can see that the cumulative distribution monotoniaddigreas-

es wWith M, i.e., pr ) (0) < ey (0) for all 6 if A,y > M,. This shows that, as

SWe can further generalize this class by having the punishfeagth depend on the rating. That is,
when af-agent reportedly deviates from the recommended straitsgwting is reduced t6 — Mpy in
the next period for somé/y < 6.
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tion whenL = 5.

the punishment length increases, there are more agentsda@dower rating score.
As a result, when the community adopts a recommended sjritagtreats an agent
with a higher rating score better, increasing the punishnesgth reduces social wel-
fare while it increases the incentive for cooperation. Tthesle-off is illustrated in
Figure 2.6, which plots social welfare and the incentivedooperation under a rating
protocol(3, M, o) for M = 1,2, 3, where the recommended stratedyis defined by
0%(0,6) = Fifand only if§ > 6, for all .

In general, the recommended strategy adopted in the contyrisrdetermined to-
gether with the rating scheme in order to maximize socialfavelwhile satisfying
the incentive constraints. The design problem with vagghinishment lengths can
be formulated as follows. First, note that the expectedoplepayoff of af-agent,
v.(#), can be computed by (2.6), with the modification of the stetry distribution to
{nw.)(0)}6_,. Agents’ long-term payoffs can be obtained by solving (2vi}h the
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transition probabilities now given by

l—e if¢ =min{0+1,L}
pa(0']0) = § € if ¢ = max{f — M,0} . (2.30)

0 otherwise

Finally, the design problem can be written as

max Un= 2 mn (0)0:(0)
subjectto (1 — 2¢)[v°(min{f + 1, L}) — v (max{f — M,0})] > ¢
V0 such that 30 such that o(6,0) = F,
d(1 —2¢)[v(min{f + 1, L}) — v2°(max{0 — M,0})] > —c,

V0 such that o(0,0) = D Y0
(2.31)

We find the optimal recommended strategy given a rating seiém\/) for L = 3
andM = 1,2,3, and plot the social welfare and the incentive for cooperatif the
optimal recommended strategies in Figure 2.7. Since eéfftevalues ofM/ induce
different optimal recommended strategies given the valug there are no monotonic
relationships between the punishment length and socidhmehs well as the incentive
for cooperation, unlike in Figure 2.6. The optimal punisimiilength given. can be
obtained by taking the punishment length that yields thédsgysocial welfare, which
is plotted in Figure 2.8. We can see that, as the service«cinstreases, the optimal
punishment length increases from 1 to 2 to 3 before cooperdtecomes no longer
sustainable. This result is intuitive in that largerequires a stronger incentive for

cooperation, which can be achieved by having a larger pomesihlength.

2.5.2 White-washing-Proof Rating Protocols

So far we have restricted our attention to rating schemesentewly joining agents are
endowed with the highest rating score, i.E.= L, without worrying about the possi-

bility of whitewashing. We now make the initial rating scdkeas a choice variable of
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the design problem while assuming that agents can whitethashrating scores in or-

der to obtain rating scorg [17]. At the end of each period, agents can decide whether
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to whitewash their rating scores or not after observingrttaging scores for the next
period. If an agent chooses to whitewash its rating scoes itHeaves and re-joins the
community witha fraction of agents and receives initial rating scéfe The cost of

whitewashing is denoted hy, > 0.

The incentive constraints in the design problem (2.18) areed at preventing a-
gents from deviating from the prescribed recommendedesgfyatin the presence of
potential whitewashing attempts, we need additional iticerconstraints to prevent
agents from whitewashing their rating scores. A ratingquolx is whitewash-proof if
and only ifo>*(K)—v>(0) < ¢, forall@ = 0,..., L ". Note thaw>*(K)—v>(0) is the
gain from whitewashing for an agent whose rating score istgeiag). If v>°(K) —
v>°(0) < ¢y, there is no net gain from whitewashing fodagent. We measure the
incentive for whitewashing under a rating protogddy maxyco{v°(K) — v°(0)}. A
rating protocol is more effective in preventing whitewamshas the incentive for white-

washing is smaller.

To simplify our analysis, we fix the punishment lengthlét= L so that a rating
scheme is represented by, K) with 0 < K < L. Let{n, x)(0) }5_, be the stationary
distribution of rating scores under rating schefie K'). Then the design problem is
modified as follows (it should be noted here that similar tot®a 5.A, both{v,(0)}

and{v2°(#)} in this section are computed using a stationary distriloudiéferent than

"This condition assumes that an agent can whitewash itgyratity once in its lifespan in the com-
munity. More generally, we can consider the case where antag® whitewash its rating multiple
times. For example, an agent can use a deterministic stajiaecision rule for whitewashing, which
can be represented by a functien: © — {0, 1}, wherew(d) = 1 (resp.w(f) = 0) means that the
agent whitewashes (resp. does not whitewash) its ratinddlds ratingd in the next period. This will
yield a different expression for the gain from whitewashing
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(2.4), which depends on the value &)

B O O
¢, 30 witho(0,0) = F

Z
> —¢, o(6,0) =D, foralld

subjectto (1 — 2¢)[v°(min{f + 1, L}) — v>(0)]

( K K
d(1 —2¢)[v(min{d + 1, L}) — v°(0)]
vO(K) —v2(0) < ¢y, VO

K

(2.32)
Now an optimal rating protocol is the one that maximizesaogelfare among sustain-
able and whitewash-proof rating protocols. Note that theegieproblem (2.32) always
has a feasible solution for amy, > 0 since(L, K, o?) is sustainable and whitewash-
proof for all (L, K). Nevertheless,L, K, o) is trivial since no service takes place in
the community as a consequence. Next, we show that givexisteiece of sustainable
rating protocols which deliver a positive level of cooperat i.e., whenU* solved by

(2.18) is positive, whitewash-proof rating protocols adsdst.

Lemma 3. If a rating protocol(L, K, o) is sustainable, then the rating protocol

(L,0,0) is also sustainabld

Lemma 3 shows that it never reduces agents’ incentive of@atipn by assigning
the newly joined agents the lowest ratings. With this resudt prove the existence of

whitewash-proof rating protocols.
Proposition 6. If U* > 0, then whitewash-proof rating protocols always exist.

Proof: If U* > 0, then sustainable rating protocols that stimulate paslgvels of
cooperation always exist. According to Lemma 3, if a protocwith K = 0 > 0 is
sustainable, then a protocdlwith the same rating scheme and recommended strategy
andK = 0 is also sustainable. Meanwhile, it can be verified thas whitewash-proof
since an agent cannot get any benefit by leaving and rejoth@gommunity while

also suffering the whitewashing cost. Hence, Proposititolléws. B

Now we investigate the impacts of the initial rating scéfeon social welfare and

the incentive for whitewashing. We first consider the caseratihe recommended
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Figure 2.9: (a) Social welfare and (b) the incentive for whiashing under recom-

mended strategy? whenL = 3 andc,, = 1.

strategy is fixed. Figure 2.9 plots social welfare and themtige for whitewashing un-
der a rating protocdl3, K, o§) for K = 0, ... ., 3, wheres¢ is defined by:¢ (6, 0) = F

if and only if > 6, for all 6, as in the above section. We can see that larger K yields
higher social welfare and at the same time a larger incefdrwhitewashing since new
agents are treated better. Hence, there is a trade-off beteféciency and whitewash-
proofness as we increasé while fixing the recommended strategy. Next we consider
the optimal recommended strategy given a rating sch@né&’). Figure 2.10 plots
social welfare and the incentive for whitewashing underagpgmal recommended s-
trategy forL = 3andK =0, ..., 3. We can see that giving the highest rating score to
new agentsK = 3) yields the highest social welfare but it can prevent whiskng
only for small values of. With our parameter specification, choosiRg= 3 is opti-

mal only for smallc, and optimalK” drops to O for other values aefwith which some
cooperation can be sustained. Figure 2.11 plots the optmtial rating £ as we vary
the whitewashing cost,, for ¢ = 1, 2, 3. As¢,, increases, the incentive constraints for
whitewashing becomes less binding, and thiiss non-decreasing in,. On the other
hand, as: increases, it becomes more difficult to sustain cooperatioiie the differ-
ence between>(0) andv>*(min{f + 1, L}) increases for all such that(6,0) = F

for somed. As a resultK* is non-increasing in.
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Optimal Inltlal rating score

Figure 2.11: Optimal initial rating score whén= 3.

2.5.3 One-sided Rating Protocols

The above discussion focuses on the design of optimal ratiotpcols where the rec-
ommended strategy utilizes both the rating scores of tleatcand the server in order
to determine the server’s action. We refer to such recomegkattategies asvo-sided
recommended strategieBice they involve the rating scores of both players invdbive
the stage game.

In this section, we discuss the design of optimal ratingqarols with a simple class
of recommended strategies that only utilize one-sidedgagcores, which we refer to
as one-sided recommended strategies. Particularly, aided-recommended strategy

determines an agent’s serving action solely based on ¢ftbergent’s own rating score
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or the rating score of its client. To differentiate it withetpreviously discussed two-
sided recommended strategies, we denote a one-sided resutath strategy by,
which can be represented by a mapping © — A, and the corresponding rating
protocol, which is called as a one-sided rating protocolrbyt should be noted that
for a one-sided recommended strategyhat utilizes the clients’ rating scores, it is
equivalent to a two-sided recommended stratedys (6, 6) = ¢(0), V0 € © andvd €

©. Similarly, for a one-sided recommended strategyhat utilizes the servers’ rating
scores, it is equivalent to a two-sided recommended swatedf o'(6,60) = '(6),
Vh € © andVd € ©. Therefore, the one-sided recommended strategies reprase
subset of the class of two-sided recommended strategiéisisisection, we investigate
the emerging protocol designs which can be found using sogbier strategies and the
corresponding efficiency loss compared to the optimal perémce obtained in Section
4.

We first analyze one-side recommended strategies utilitiegclients’ rating s-
cores. Given a one-sided recommended strategihe expected period payoff of a
g-agent before it is matched, which is still denoted/a@) with slight abuse of nota-

tion, is given as follows
vr(0) = bI(p(0) = F) — Z ne(0)el (p(0) = F), (2.33)

where(x) is an indicator function which takes value of 1 when= 1. The corre-
sponding social welfare, which is denotedi&s, can be computed by
We =Y n(0)ve(0) =Y _n(0)(b— ) I((0) = F). (2.34)
USC] (ISC]

The following proposition characterizes the general desgrule of the optimal
rating protocol, which is denoted as = (L*, ¢*), with the corresponding optimal

social welfare denoted ag*.

Proposition 7. With one-sided recommended strategies utilizing the tdieating

scores, the optimal rating protocet that maximizes (34) satisfies the following con-

45



ditions: whenc/b < 6(1 — 2¢), W* = (1 — e + ea)(b — ¢) with L* = 1, ¢*(0) = D,
andy*(1) = F; whenc/b > §(1 — 2¢), W* = 0 with ¢*(8) = D, V0 € ©.
Proof: See Appendix Dl

The optimal rating protocol from Proposition 7 is surprgdinsimple and intuitive.
When the cost-to-benefit ratio is sufficiently small such thpositive level of cooper-
ation can be sustained in the community, the optimal rathe¢pogol contains only two
different rating values. Modulo the effects of noise, agaevito comply with the recom-
mended strategy in the previous period have rating scorenile @gents who deviate
from the recommended strategy have rating score 0. The meeoicted strategy then
says that agents should play a tit-for-tat-like strategyyialing services to agents with
rating score 1 and punishing those with rating score 0. Orother hand, when the
cost-to-benefit ratio is sufficiently large, no cooperaian be sustained anéi* = 0.
Hence, when the recommended strategy is one-sided ang sbl&les the clients’ rat-
ing scores, there is no need to construct complicated ratiofpcols that are difficult
for agents to understand, or to heavily optimize parametiise rating protocol based
on the properties of the community. Regarding the fact tmatiptimal social welfare
U* achieved by two-sided recommended strategies is upperdeolbyb — ¢, we have

the following corollary.
Corollary 2. Whene/b < §(1 —2¢), U*—W* <e(1—a)(b—c). R
Therefore, the efficiency loss introduced by one-sidedmenended strategies mono-

tonically decreases and approaches 0 when (0 or o — 1.

We then study one-sided recommended strategies utilizihgtbe servers’ rating
scores. It is shown in the following proposition that no cexgtion can be sustained
in this case, which always yields an optimal social welfdie = 0. Hence, one-sided
recommended strategies utilizing only the servers’ rafogres can never correctly

incentivize service provisions and prevent agents frore-fiding.

Proposition 8. With one-sided recommended strategies utilizing the ssrvating
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scores, the optimal rating protocol always delivers an optimal social welfaié* = 0
with o*(0) = D, V0 € ©.

Proof: See Appendix Dl

2.6 lllustrative Examples

In this section, we present numerical results to illustratdetail the performance of
optimal rating protocols. Unless stated otherwise, théngebf the community is as
follows: the benefit per serviceé (= 10), the cost per service: (= 1), the discount
factor (3 = 0.8), the turnover rateq{ = 0.1), the report error{ = 0.2), the punishment
step (M = L), and the initial rating scorel{ = L). Since the number of all possible
recommended strategies given a punishment lehgtitreases exponentially with,

it takes a long time to compute the optimal recommendedegfyatven for a moderate

value of L. Hence, we consider rating protoceis= (L, o;) for L = 1,2, 3.

We first compare the performances of the optimal rating patand the fixed
rating protocol for = 1,2, 3. For each, we use(L, c¢) as the fixed rating protocol.
Figure 2.12 illustrates the results, with the black bar @spnting the pareto-optimal
valueb — ¢, i.e., the highest social welfare that can be possibly sustdiaby a rating
protocol, the gray bar representing the social welfare efdptimal rating protocol,
and the white bar representing the social welfarélof>¢'). As it shows, the optimal
rating protocol(L, o} ) outperforms(L, o¢'). Whenc is small,(L, o} ) delivers higher
social welfare thariL, ). Whenc is sufficiently large such that no cooperation can
be sustained undér, o¢) (the height of the white bar becomes 0), a positive level of

cooperation can still be sustained unggro; ).

Next, we analyze the impacts of the community’s parameterthe performance

of optimal rating protocols.

Impact of the Discount Factor: We discuss the impact of the discount factbr

on the performance of optimal rating protocols. Ascreases, an agent puts a higher
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protocol(L, o%).

weight on its future payoff relative to its instant payoffeirte, with largep, it is easier
to sustain cooperation using future reward and punishnfreaugh a rating protocol.

This is illustrated in Figure 2.13(a), which shows that abwielfare is non-decreasing
in 5.

Impact of the Turnover Rate: Increasingy has two opposite effects on social wel-
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fare. Asa increases, the weight on the future payoffs+ 5(1 — «), decreases, and
thus it becomes more difficult to sustain cooperation. Orother hand, as increases,
there are more agents holding the highest rating score gfinerestriction’ = L. In
general, agents with the highest rating score are treatbdmaer optimal recommend-
ed strategies, which implies a positive effect of incregsiron social welfare. From
Figure 2.13(b), we can see that, whens large, the first effect is dominant, making
cooperation not sustainable. We can also see that the seetiadt is dominant for the
values ofa with which cooperation can be sustained, yielding an irsirgatendency

of social welfare with respect to.

Impact of the Report Errors: As ¢ increases, it becomes more difficult to sustain
cooperation because reward and punishment provided byrg qatotocol becomes
more random. At the same time, largelincreases the fraction df-agents in the
stationary distribution, which usually receive the lowkstg-term payoff among all

rating scores. Therefore, we can expect that optimal sagHihre has a non-increasing
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tendency with respect tg as illustrated in Figure 2.13(c). Whers sufficiently close
to 1/2,07 is the only sustainable recommended strategy and socifdnedalls to . On
the other direction, asapproaches 0, social welfare converges to its upper bbund
regardless of the punishment length, as can be seen frono$ttiop 1(iii). We can
also observe from Figure 13 that the regionsr@nds where some cooperation can be
sustained (i.el/; > 0) become wider ag increases, whereas that®fs independent

of L.

2.7 Comparison with Existing Works on Repeated Games with Im

perfect Monitoring

In this section, we compare our work with the existing litara on repeated games
with imperfect monitoring, including the works on reputetisystems [23]-[25] and the
seminal work of Fudenberg, Levine and Maskin [35]. Impatfiarour work exhibits
significant technical differences from the existing litera. We would like to point out
that although the results derived in this work exhibit sotnectural similarity to [23]-
[25], they are derived under completely different settiagd using different analytical

methods. Also, the methodology in [35] cannot be appliedlinveork.

We first compare our work with [23]-[25]. The models in [235] assume that
agents have fixed roles in the community (i.e. sellers aneéts)ywhich is common
in applications where the groups of sellers and buyers gg@ated and usually do not
overlap. However, in our work, agents are symmetric in timse¢hat each of them can
play both roles of server and of client. Our model is more appate to characterize

resource/knowledge sharing online communities.

More importantly, the objective in the protocol design of awrk is also different
from [23]-[25]. The design objective in [23]-[25] is to mamize the expected discount-
ed long-term payoff of the seller starting from the best tapan and a clean history

(e.g. Propositions 2 and 3 in [23]). Translating this inte thathematical representation
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adopted in this chapter, the objective function in [23]][B5

max U, = L 2.35
max v (L). (2.35)

Such objective function is reasonable in the setting of{23] because they as-
sume that there is a unique long-lived player (seller) ingame who is foresighted.
In each period, the seller selects one buyer to interact Wikierefore, it makes sense
to focus on the life-time discounted utility of this selléading from the moment it
joins the community. Also, it should be pointed out that thkestion of this objective
function (2.35) is the main reason why the optimal designbmachieved in [23]-[25]
using a two-level reputation set with = 1. Since the future utility is discounted, the
optimum of (2.35) can be achieved using a simple grim-tnigggeategy, i.e. the seller
cooperates as long as its reputation remains at “good” aesd dot cooperate when its

reputation falls to “bad”.

In contrast, our work assumes multiple long-lived playemxisting in the commu-
nity (i.e. each agent is long-lived and foresighted). Mehitey in each period, there
are multiple interactions between different players. Hgntis more reasonable to
maximize the average social welfare of all agents in thedamgas defined in (2.17),

which can be proved to be equivalent to the following objexfunction:

= ) 2.
ma?L(lgnlze U, = Z (0 (2.36)

It is easy to observe that given the grim-trigger strateggigieed in [23], the long-run
timing-average payoff of the seller is actually 0, even tioits expected discounted
long-term payoff is maximized. Therefore, the design in]{Z%] is never optimal

from a social welfare perspective, given- 0.

Finally, the works in [23] and [24] focus on deriving the regischemes that can
achieve the upper bound of (2.35) under the condition whers#ller is sufficiently
patient with its discount factar (i.e. 5 in this chapter) close to 1 or when the payment-

to-cost ratiop (i.e. b/c in this chapter) is sufficiently large. They did not providech
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insight on how to derive the optimal rating scheme and wh#tesoptimal expected
long-term utility that can be achieved whé&andp are small (They simply state that the
optimal expected long-term utility is below the upper bowfid2.35) in this case). In
contrast, our work tries to characterize the optimal ratidigeme design for the entire
region of the parameters, b, ¢, ¢), but not only the scenario when these parameters
are ideal. Next, we compare our work with [35]. The model i&][8oes not consider
the anonymity and random matching among agents. Also, itnass that the entire
history of public signals (i.e. the outcome of each stageeyamrevealed during the
repeated game. It should be noted that the proof of Propasitiin [23] also relies
on this assumption on the information structure in order litaim the upper bound
on the efficiency. Nevertheless, under the rating protoomb@sed in our work, each
agent only observes a limited set of pastignals from the past periods and hence, the

assumption that all past signals are revealed no longes ihalce.

Another difference between our work and [35] is that the cifbje in [35] is also to
maximize the expected long-term utility of players stagtfrom the beginning of the

game (as described in (2.35)), which is different from oyeotive function (2.17).

Regarding all the above reasons, we would like to point oait tine methodology

in [35] cannot be applied to our work.

2.8 Conclusions

In this chapter, we used the idea of rating protocols to éistah rigorous framework
for the design and analysis of a class of incentive schem&sstain cooperation in on-
line communities. We derived conditions for sustainabtaggprotocols, under which
no agent gains by deviating from the prescribed recommesilatégy. We formulated
the problem of designing an optimal rating protocol and abtarized optimal social
welfare and optimal recommended strategies given parasnefes special cases, we

analyzed the one-sided rating protocol which only utilitesrating score of one party
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in the stage-game. It was shown that when only the clientsigascores are utilized,
the optimal one-sided rating protocol preserves a simpletsire with two-level rat-

ing scores, whereas when only the servers’ rating scorestied, no sustainable
one-sided rating protocol can be designed. We also disdubsempacts of punish-
ment lengths and whitewashing possibility on the design@ertbrmance of optimal

rating protocols, identifying a trade-off between effi@grand incentives. Lastly, we
presented numerical results to illustrate the impactsetiiscount factor, the turnover
rate, and the probability of report errors on the perforneaocoptimal rating proto-

cols. Our framework provides a foundation for designingeime/e schemes which
can be deployed in real-world communities populated by gmamus, self-interested

individuals.

2.9 Appendices

2.9.1 Appendix A: Proof of Proposition 1

(i) U* > 0 follows by noting that(L, o) is sustainable. It is shown in [35] that in a
repeated game with public signal, the maximum long-rungiagquential equilibrium
payoff when the signal has full support is the solution offilowing linear program-

ming problem:

max u™>
a

subjectto u™ =u —c+ (1 — e)v>®(+) + dev>(—), fora=F
u—c+6(1—e)v>(+) + 6cv>(—), fora=D - (2.37)
u+0ev™(+) + 5(1 —e)v>(—), fora=F

u® =u+ 0ev>®(+) + 6(1 — e)v>(—), fora=D

uOO

o0

z
u>* =

Here,u is the benefit that the player can receive as a client in a glage, and>(+)
is the expected long-term utility of this player if his ragiacore is increased améd (—)

is the expected long-term utility when his rating score isrdased. With simple com-

putation, the maximum solution of (2.37) can be writter@gb — f_‘ic). Since no

2
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player can achieve a long-run payoff higher than this, itmaooncluded that the social

welfare is also upper-bounded by- 11—_250-

(i) By (2.8), we can expresg°(1) — v°(0) as

v (1) = v2(0)

= ve(1) +0[(1 = 2)v7(2) + ev(0)] — vk (0) = O[(1 — ) (1) + evz(0)] -
= Ue(1) = 0e(0) +6(1 — &) [v2(2) — v (1)]
(2.38)
Similarly, we have
v (2) = v (1) = vk(2) — v (1) +0(1 — &) [v2(3) — v (2)]
: (2.39)
UEO(L) - UEO(L - 1) = ,UH(L) - ,UH(L - 1)
In general, fo =1,... L,
vX(@) —vX(@—1) = iyl[vn(ﬁ +1)—v,(0+1—-1)], (2.40)
where we defing = 6(1 — ¢). Thus, we obtain
v (0) —v2(0)
= 0.(0) — v.(0) + Y[va (0 + 1) — v (1)] + -+ + ¥ v (L) — vo(L — 0)]
A o, (L) = v (L= 0+ D]+ + 9P (L) = (L= 1)
= l_io Y [oe(min{f + 1, L}) — v.(1)]
- (2.41)

foro =1,..., L.

Since—c < v,(0) < bforall 6, we havey, (/) —v,.(9) < b+cforall (9,6). Hence,

by (2.41),

1—~F b+c
b <

foralld =1,...,L, forallk = (L,o). Therefore, ifé(1 — 2¢)[(b+¢)/(1 — 7)] < ¢,

e (0) —07(0) < (2.42)

or equivalentlyc/b > [5(1 — a)(1 — 2¢)]/[1 — B(1 — a)(2 — 3¢)], then the incentive

constraint (2.15) cannot be satisfied for ahyfor any rating protocol L, o). This
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implies that any recommended strategguch thatr (0, 0) = F for some(d, §) is not

sustainable, and thus* = 0.

(iii) For any L, define a recommended strateg}’ by o2°(4,6) = D for § = 0
andoP(9,6) = F forall § > 0, for all 4. In other words, withr?° each agent declines
the service request of 0-agents while providing a servicether agents. Consider a
rating protocols = (1,P°). Thenv,(0) = —n(1)c andv, (1) = b — n1(1)e. Hence,
Us=1[1—-(1—a)](b—c) andvX(l) — vX(0) = b, and thus the incentive constraint
6(1 —2¢)(v°(1) — v2°(0)) > cis satisfied by the hypothesigh < 3(1 — a)(1 — 2¢).
Since there exists a feasible solution that achiéles: [1 — (1 — «)s|(b— ¢), we have

U >2[1—-(1—alb-—c).
(iv) The result can be obtained by combining (i) and (iii).

(v) Suppose that/* = b — ¢, and let(L, o) be an optimal rating protocol that
achieves/* = b — c. Itis easy to obtain that = 0. Then by (2.4)5.(0) = 0 for
allo < < L—1andn,(L) = 1. Hence,s should haves(L, L) = F in order to
attainU* = b — c. Sincev,(L) = b — candv,(0) > —cforall0 < 0 < L -1, we
havev*(L) — v(0) < b/(1 — ) by (2.41). Iféb/(1 — 9) < ¢, then the incentive

constraint forL-agents,0[v°(L) — v°(0)] > ¢, cannot be satisfied. Therefore, we
obtainc/b < §/(1—9). 1A

2.9.2 Appendix B: Proof of Proposition 2

Choose an arbitrary.. To prove the result, we will construct a recommended sate
or+1 using punishment length + 1 that is sustainable and achievés. Defineo,

by
ot (0,0 ford < Landd < L

or41(0,0) =

) for@=L+1andd <L
(2.43)
)

for0 < Landd =L +1
oi(L,L) for@=L+1landfd=L+1
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Letk = (L,o;) andx’ = (L + 1,0.41). From (2.4), we have,(0) = n.(0)
for0 =0,...,L—1andn,1(L) +np1(L + 1) = nr(L). Using this and (2.6), it is
straightforward to see thaj, (¢) = v,.() forall§ = 0, ..., L anduv, (L + 1) = v,(L).

Hence, we have that

Uy = ;i:olnL+1(¢9)UH/ (0) = :2::_: N1 (0)ve () + EUL—‘,J(H)UH’(H)
= S nOu®) + 3 n @) @4

= S 006 + (L)L) = U = U

Using (2.44), we can show thaf’(6) — v (0) = v2°(d) — v°(0) for all § =

L,...,Landv¥(L 4+ 1) — v(0) = v°(L) — v°(0). By the definition ofo,, the
right-hand side of the relevant incentive constraint,(z@r —c) for eachd =0,..., L
is the same both undei; and under . Also, undefs 4, the right-hand side of the
relevant incentive constraint fér= L + 1 is the same as that fér= L. Therefore,

0.1 Satisfies the relevant incentive constraints fova# 0,... . L + 1. B

2.9.3 Appendix C: Proof of Proposition 3

To facilitate the proof, we defing> () by
u’(0) = Z Y. (min{f + 1, L}) (2.45)
=0

for0 = 0,...,L. Then, by (2.41), we haveX(0) — v°(0) = u°(0) — u°(0) for
alld =1,...,L. Thus, we can useX(0) — u°(0) instead ofv>°(0) — v°(0) in the

incentive constraints ab P;..

Suppose that} (0,0) = F for somed. Then the relevant incentive constraint for
a 0-agent isf(1 — 2¢)[u>(1) — u>(0)] > c. Suppose that}(0,0) = D for some
0 € {1,...,L — 1} such tha > In</Inp3. Consider a recommended stratey
defined by

. { ot (0,0) for (0,0) # (0,0) . (2.46)

O-/L(@v 9) = ~ _
F for(0,0) = (0,6)
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That is, o}, is the recommended strategy that differs frotnonly at (0, 0). Letx =

(L,o%)andx’ = (L, o}). Note that, (0) —v,(0) = —n,(f)c < 0 andv, (0) —v,.(0) =

n-(0)b > 0 sincee > 0 anda < 1. Thus,U, — U, = n.(0)n.(0)(b — ¢) > 0. Also,

(1—a)(1—e)%[p%—c] ford =0,

Uy (0) — w2 (0) = S AP (0) — v.(0)] forg=1,...,0, . (2.47)
0 ford=0+1,...,L

Sinced > In¢/Inp, we haveu(0) — u(0) < 0. Thus,u¥(0) — w3 (0) >
u(0) — ue(0) forall = 1,..., L. Sinceo:(0,d) = F for somed, the relevant
incentive constraint for &-agent is the same both undej and under, for all 6.
Hence, o) satisfies the incentive constraintsof;, which contradicts the optimality
of 0. This proves that} (0,) = F for all § > In ¢/ In 3. Similar approaches can be

used to prove; (0, L) = F, (i), and (iii). B

2.9.4 Appendix D: Proof of Proposition 7

To prove this proposition, we first show that the recommerstesitegy in the opti-
mal rating protocol is always threshold based. That iseli®an integeh such that
©*(0) = D forall @ < handy*(#) = F forall & > h. We use a contradiction
to verify this. Suppose*(d) = F andy*(d + 1) = D for somed. Consider a s-
trategy’ satisfyingy’(6) = ¢*(0) forall 0 # 6 + 1 and¢/(6) = *(0). Sincey*
is sustainable, then according to (2.8), it is easy to vdhbt ¢’ is also sustainable.
Meanwhile,’ delivers a higher social welfare thari. Hence, the fact that* is op-
timal is contradicted and we can conclude that the optimn@menended strategy is
always threshold-based. According to (2.34), it is obvitha the social welfare upon
agents’ compliance monotonically decreases with the limds:. Next, we analyse

how h affects the sustainability of the recommended strategy.

Under a threshold-based recommended strategy with thHeghahe expected
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long-term utility can be recursively represented as
v =h) = b= n(f)c
0=h

+0(1 — e)v®(min{f + 1, L}) + dev®(max{f — 1,0})
O <h) = =T mO)e |

=h
+6(1 — e)v®(min{f + 1, L}) + dev(max{f — 1,0})

(2.48)

Hence, it can be shown that°(1) — v°(0) = m@in{vgo(@) —v°(0)}. Meanwhile,
v>X(1) — v2°(0) monotonically decreases agairist Therefore, if a recommended s-
trategy with threshold is sustainable, then the recommended strategy with thicesho
h — 1 is also sustainable. However, according to Propositiohshould be noted that
the recommended strategy with= 0 can never be sustainable. Therefore, to sum up,
for a given punishment length, when sustainable one-sided rating protocols exist, the
threshold of the optimal recommended strategys alwaysh = 1. It is easy to com-
pute that any threshold-based recommended strategyh 4 = 1 is sustainable if and
only if ¢/b < (1 — 2¢) with the resulting social welfare to B& = (1 —c +ca)(b—¢).

Hence, Proposition 7 followd

2.9.5 Appendix E: Proof of Proposition 8

The proof of this proposition is similar to that of Propositi7. First, it can be proved
that in the optimal rating protocol that uses servers’ gasoores, the recommended
strategy is always threshold-based. That is, there is @gént such thatp*(0) = F
forall @ < h andy*(#) = D for all & > h. However, under such threshold-based
recommended strategy;°(¢) — v2°(0) < ¢ hold for all§ € © and hence, (2.12) is

never satisfied and Proposition 8 follovil.
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CHAPTER 3

Strategic Learning in Online Communities

3.1 Introduction

Online communities play an increasingly central role inkdimagy individual users to
remotely share resources or crowdsource their servicesndé¢owever, they are vul-
nerable to intrinsic incentive problems which lead to plenafree-riding behaviors

among users that sacrifice the collective social welfar@®@tbmmunity [39][40].

Various incentive mechanisms have been proposed to emgmwa@operation in
online communities [40][41], with a large body of them relgion the idea of reci-
procity, in which users monitor the behavior of each othet provide differential
services based on their observations. Such reciprocggédaechanisms can be clas-
sified into direct reciprocity and indirect reciprocity. diirect reciprocity mechanisms
[40][41][43], users can identify each other, and determiether they should supply
services to a specific user based on their personal histangeyhctions with that spe-
cific user. Such mechanisms rely on the players’ ability tonta@n private histories
of other users’ play which involve frequent interactionsoa identifiable users and
hence are not effective in online communities with large ydapons of anonymous

users, who are randomly matched and interact infrequeB@ly [

Indirect reciprocity mechanisms [23]-[25][45], in cordtadeploy reputation proto-
cols that allow the users in a community to share informagioth observations to form
collective opinions about other users (e.g. assign rejpuigt In a reputation protocol,

a reputation score is assigned to each user upon entericgitin@unity and is updated
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based on the reports (which may be erroneous) provided ley oders who he interacts
with. Hence, an individual user can be rewarded or punishagdgd on his reputation
score) by other users who have not had past interactiondwwithTo encourage users
to contribute their services to the community, differelndiervices are provided to the
users based on their reputations, i.e. users with highertagpns will receive bet-

ter services from other users in return. Since indirecfprecity mechanisms require
neither observable identities (i.e. only a user’s repatabiut not his identity needs to
be revealed in order to determine the differential servioesards him), nor frequent
interactions, they form a suitable basis for designingmtize mechanisms for online

communities with large populations.

The reputation protocols designed in [23]-[25][45] areeatd sustain the selected
(“best”) equilibrium for various online communities. Thagsume that the community
starts to operate “directly” at the selected equilibrium, users start by directly adopt-
ing a desirable equilibrium strategy when joining the comityland design reputation
protocols that ensure users will not deviate from this eélopiilm strategy. Nevertheless
in practice, there are often multiple equilibria in a comrtyyand users can adopt ar-
bitrary (non-equilibrium) strategies when they join thersounity. In this case, all the
above works fail to determine 1) how the community evolvasstarts from an arbi-
trary (non-equilibrium) state and 2) whether in the long-i.can converge to the best
equilibrium given the deployed reputation protocol. Moreg none of the prior works
investigated the robustness of equilibria, i.e. to deteemi the community deviates
from an equilibrium due to stochastic perturbations, eajses, errors, whether it can

converge to this equilibrium again in the long run.

In summary, this chapter generalizes [23]-[25][45] anduB®s on the design of
reputation protocols that do not only sustain the best #aiuim, but also ensure the
convergence of the community towards this equilibrium mltng-run. To design such
a protocol, it is of critical importance to consider the éoling design aspects, which

were neglected in [23]-[25][45]:
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(1) how users learn, i.e. how they update their knowledgeiatitee community,
during their interactions and how they adapt their stratefased their limited (imper-

fect) knowledge;
(2) how the community evolves if users learn and adapt thdtegyies over time;

(3) how the designed reputation protocol impacts the ewwmiudf the community

and its convergence.

Some of the above three questions have been investigatbd iidrature on pre-
scriptive multi-agent learning [47]-[49], which studiesvh protocol designers should
construct protocols that induct users to learn certainegjras to achieve certain goals.
However, this strand of research mainly focuses on codpergames where the inter-
ests of the protocol designers and the interests of theitepnsers are aligned [48][49],
or users are compliant (obedient) and have no freedom tatefrom the prescribed

learning rules [47].

Our work brings a different perspective. Unlike [47]-[4®}e interests of the pro-
tocol designer (e.g. the designer of the community) anddhidie self-interested users
in our work are in conflict with each other. Therefore, thetpcol designer has to
carefully trade-off his goal to maximize the social welfagainst the need for provid-
ing sufficient incentives for users to comply with the pratbcinstead of assuming
that users are obedient and restricting the users’ leaamadgadaptation behavior, we
assume that users form their own beliefs about the commbaggd on their past in-
teractions and, using this knowledge, adapt their sentiegegies to maximize their
individual long-term utilities. By considering the usel®st response dynamics, we
focus on the design of effective reputation protocols wh&zgth users to learn and co-

operate with each other in the long-run, by contributingrtbervices to the community.

The remainder of this chapter is organized as follows. Irnti6e@.2, we formal-
ize the user interaction in an online community as a repeatiedom matching game

and introduce our proposed indirect reciprocity frameworkhe design of reputation
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protocols. Section 2.3 formulates the decision problemdaifidual users and then dis-
cusses the resulting evolution of the community: wheth&ilitonverge to a stationary
state in the long run when time goes to infinity and to whichestiawill converge. To
characterize the long run evolution, we introduce the cphogstochastically stable e-
quilibrium (SSE) (Definition 3), which is used to describe #tates that the community
will converge to in the long run. Generally speaking, an SB& acterizes a stationary
state of the community in which users are playing statiostigtegies that are best re-
sponses against each other. Meanwhile, different fromaheept of evolutionary sta-
ble equilibrium used in evolutionary game theory, an SSHsi@ stochastically stable,
indicating that if the community deviates from an SSE duedalsastic perturbations,
it can converge to this SSE again with probability 1 in theglwan. Understanding how
a community evolves over time enables us to define the desadrgm of the optimal
reputation protocol (Definition 4). To solve this optimalkdg problem, Section 3.4
studies the structures of user’s best response dynamiggdsition 1 and 2), i.e. their
optimal service strategies. By utilizing these structu®@sction 3.5 then solves the
optimal design problem (Theorem 2). Section 3.6 presemsithmerical results and

Section 3.7 concludes the chapter and discusses futur@cbsgirections.

3.2 System Model

3.2.1 Repeated Matching Game

We consider an online community consisting/@fusers, each of whom indexed by

an integer; € {1,..., N} and each possessing some resources or services which are
valuable to others. The community is modeled as a dischete-$ystem with time
divided into periods. In each period, each user generateservice request and is
randomly matched with another user who can provide the stgqdeservices [40]. We
model the request generation and user selection process wsiform random match-

ing: each user receives exactly one request in every peridceach user is equally
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Table 3.1: Utility matrix of a gift-giving game
Server

z=1 2z=0

Client 0,0

likely to receive the request of a user, and the matchingdsependent across periods
1. Such model well approximates the matching process betwsers in large-scale
online communities where agents interact in an ad-hoc dashind the interactions a-
mong users are constructed randomly over time, e.g. pegasedo networks [39] and
online crowdsourcing platforms [42]. The matched userg plawo-player stage game
in which the user requesting service is called the clienttheduser who is being re-
guested is called the server. Given the uniform random maj¢ckach individual user
in the community is involved in two stage games during a gkrame as a server and
one as a client. Also, the opponents in these two stage gam@s general different.
That is, a user does not request services from and suppligesite the same opponent

in the same period.

The stage game played by a pair of matched users is formazeth asymmetric
gift-giving game [32] where the server is the only stratggad who chooses his action
z from a binary se = {0, 1}. The utility matrix of a gift-giving game is presented in
Table 3.1. If the server supplies the service (choasesl), it incurs a cost > 0 to
him and the client receives a benéfit- 0. On the other hand, if the server refuses to
supply the service (chooses= 0), both users receive a utility of 0. Here we assume
thatb > ¢ such that the service exchange is socially valuable andahes ofb and
c are the same for all users. Hence, suppose aiusematched with usef; in the
stage game where useérs the server and is matched with ugemwhere usei is the

requester, then the utility received by usém a periodt can be represented as

ugt) = z](-z)b — zi(t)c, (3.1)

'The impact of matching schemes on the incentive of usershengerformance of online communi-
ties falls out of this chapter, but serves as an importantstep in this line of research.
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Wherez andz are the actions adopted by usend user, in periodt, respectively.
The social welfare of the community is thus defined as

= TN TN Z Z . (3-2)

t=1 i=1

It is obvious thal/ is maximized at the value— ¢, which is called the social optimum,
when each user supplies services in each period. Nevesthele- 0 is the dominant
action for the server in the gift-giving game, which congtis a Nash equilibrium.
When every server chooses= 0 to myopically maximize his utility in a period, an
inefficient social welfare arises where every user receaveslity of O in each period.
In the rest of this chapter, we focus on designing a reputgtiotocol by exploiting the
repeated nature of the gift-giving game, in order to incerdi users to supply services

within their self-interest and achieve the optimal socielfareb — c.

3.2.2 Reputation Protocols

In the repeated matching game, we consider each user to fbiateetsted and far-
sighted. Hence, he chooses his service strategy to maxmszadividual long-term
utility, which is the discounted sum of his utility in the cant period and that from the
future periods. The decision problem of an individual usgfve formally presented
in Section 3.3.1. In this section, we first discuss the desighe reputation protocol
in the repeated matching game. A reputation protocol reégsitne behavior of a self-
interested user by affecting his social status and thuseghace he receives from other

users.

A useri’s social status in the repeated game is represented withudiat@n score
0; € ©, which records the history of the user’s past plays and taskeees from a non-
empty and finite se®. Since any finite history can be represented by a finite set of
reputation scores and the elements in any finite set can legeddising a finite group
of integer numbers, we denote= {0, 1,2, .-, L} without loss of generality, where

L represents the highest reputation score @nepresents the lowest reputation score.
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The service strategy adopted by a usdescribes his choice of actions in each stage
game he involves as the server and can be represented by amappO x © — Z.
That is, in each stage game where u&ereputation i) and his client’s reputation is
0, useri chooses the actiam (6, §). Since® and Z are finite sets, the space of service
strategies that a user can choose is also finite and is deasifed {c|c : O©xO — Z}
with |I'| = 22°,

Formally, a reputation protocal, which is designed by the protocol/community

designer, consists of a reputation €gta social rule) and a reputation scheme

The social ruley € T is a service strategy that specifies the recommended behavio
for users within the communitys is broadcasted by the community operator (e.g. the
website portal, or the tracker in P2P networks) to all usdmwever, it is a user’'s own
strategic decision whether or not to comply with the recomadeel¢. In this chapter,
we restrict the protocol design to threshold-based soclatr because they are simple
to deploy and have been shown in [46] to be nearly optimal. rAghold-based social

rule can be formalized as follows:

1 ifé>Handd > H
¢0,0)=q 1 ifO<H : (3.3)

0 otherwise
Each social rule has a social threshélde {0, 1, ..., L 4+ 1}. It instructs a user whose
reputation is no less thaH, i.e. a “good user”, to play discriminatively and supply
services only to clients whose reputations are at |€AstOn the contrary, if a user
has a reputation less thah, i.e. a “bad user”, he has to supply services to all clients
regardless of their reputations. According to the socil@l, ragood user also can always
receive services from others upon his requests, while a sadgets served only when
he requests services from other bad users. Differentialcger are thus provided to

users based on their reputations.

A reputation scheme updates a user’s reputation based on his past behavior of

providing services. It works in the following manner: afeeserver takes an action
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(i.e. whether or not to supply services), his client repbrgsaction to the community
operator. The operator then uses this report to update thersereputation according
to 7. Since each user is involved as the server in one stage gaing éach period, his
reputation is also updated once per period. Formally, atatijon scheme is represented
as a mapping : © x © x © x Z — [0, 1], wherer(6,0,¢', z) is the probability that
a server of reputatiofl is assigned with a new reputatiéhin the next period, when
the reputation of his client i8and the reported action is To keep the protocol design

simple, we consider the following reputation scheme in thispter:

;

if 2> ¢(0,0) and®’ = min(0 + 1, L)

i 8 2 < ¢(6,0) andd’ =0
7(0,0,0,2) = R . (3.4)
1—p5  z<¢(0,0)andd’ =46

0 otherwise

Given this scheme, when a server is reported to deviate tersdcial rules by supply-

ing less service than what is required byn a stage game, his reputation is decreased
to 0 with a probabilitys and remains unchanged with a probability- 5. Otherwise,

his reputation is increased by 1 while not exceeding the mami reputation.. The
protocol designer can thus adjust the strength of punishimgrosed upon user devi-
ations by designing the value 6f where a highep indicates a stronger punishment.
We assume that the reputation schem@ncluding g) is also broadcasted or posted
by the community operator and known by all users. A schemagicesentation of the

reputation protocol is presented in Figure 3.1.

During its operation, we assume that the community expeegstochastic shocks,
which we model as small stochastic perturbations [44]. Acpce, such perturbations
arise due to various types of operation errors. For examaptéient is unsatisfied with
the received service (due to some network errors) even iséneer plays: = 1. To
model such errors we denai&ob(z,,:|2) as the conditional probability that the client
reportsz,,; while the server plays and we assume that a server’s reported action is

inconsistent with his actual action with a probabilityi.e. Prob(z,,, = 0|z = 1) = ¢
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0<Horb>H z2=1 2> ¢(6,0) z < ¢(0,0)

6>Hand 6 <H =0

(a) (b)

Figure 3.1: The schematic representation of the socialamkethe reputation scheme

and Prob(z,.,; = 1]z = 0) = ¢ 2 Hence, a server is reported to comply with the
social rule with probability: when he deviates, and vice versa. Since the stochastic
perturbations take place rarely in the repeated game arsdtiieuvalue ot is small

and difficult to be accurately measured, we focus on the mdrease of — 0 in the

design of reputation protocols, which will be formalizedSaction 3.3.2.

To summarize, the repeated matching game in each periode@hdracterized
by a strategy profiler = (0;)¥, representing the service strategies adopted by all
users and a reputation profile= (6;)~, representing the reputations of all users in
each period. The reputation protocol considered in thiptgtacan be parameterized as
k= (L, H, ), whereL represents the length of history recording a server’s pesay
ior, H indicates how to differentiate users, ahdetermines the strength of punishment
imposed upon the user deviations. In the rest of this chapeefirst discuss the evo-
lution of o and@ in the repeated matching game and formulate the designesrobf
the optimal reputation protocol in Section 3.3, which inelsi@ll users to cooperate,
i.e. find it in their self-interest to supply services in egsriod. In Section 3.4, we
characterize the structure of users’ best response (ie.oplimal service strategies

adopted in each period). Then in Section 3.5, we solve thenapprotocol design, i.e.

21t should be noted that our analysis straightforwardly &so the scenario where error probabilities
are asymmetric, i.e Prob(z,,x = 0|z = 1) # Prob(z,p: = 1|z = 0). We assume symmetric error
probabilities only for the simple illustrations.
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to determine the optimal reputation protoediat induces the full cooperation among

users in the long run.

3.3 Community Evolution and Stochastic Stable Equilibrium

In this section, we formalize the decision problem of indual self-interested users,
and then analyze the evolution of the community in the lang-Finally, we formalize

the considered protocol design problem.

3.3.1 User’s Decision Problem

We begin by investigating a typical usés decision problem in the repeated matching
game under the reputation protocol Users are assumed to be far-sighted. Each of
them adapts his strategy in order to maximize his expectegHerm utility, i.e. his
expected sum utilities from the current period to the indiriiiture. By analyzing the
expected one-period and long-term utilities in each pengglare able to formalize an

individual users decision problem.

A useri’s expected one-period utility is the sum of his expectelities received
in the stage games in which he is involved during one petioBue to the uniform
random matching, the expected one-period utility dependb® user’s own reputation
and strategy as well as the distribution of other users’tagmns and strategies. In the
rest of this subsection, we first discuss each user’'s kn@eleshd belief about other
users’ reputations and strategies, and then constructserés witility function and his

decision problem.

The reputation distribution of the community in each pengdeferred to as the
community state of this period and denoted by a vegtor (1(0))5_,, wherep(6)

represents the number of users of reputatio@iven the reputation profil@ = (6;)~

=1

31t should be noted that a user’s expected one-period uidlitiie utility he expects to receive at the
beginning of a period and thus is different from his realineé-period utility (3.1).
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the corresponding community state is derived.é%) = i 1(0; = 6), V0. For better
illustration, we usg:? to denote the community state thza:tois derived from the rejouta
profile . It should be noted that there are multiple reputation prsfihat can lead to
the same community state. Hence, we also define- {0|u® = p} as the set of repu-
tation profiles that lead to the community stateWe assume that the community state
is broadcasted by the community operator at the beginniegadf period and hence is
known by all users. Given the community state, a ugben calculates the reputation
distribution of all users other than himself, which is reéel to as his opponent state
and denoted as a vectgy = {n;(¢')}}_,, which can be derived ag(0') = (') for

all 9" # 0; andn;(0;) = p(6;) — 14 We also use;! to denote the usets opponent

state under the reputation proféle

Different from the reputation, the strategy adopted by alividual user is private
information and cannot be perfectly observed by either timemunity operator or other
users. Hence, each usehas to maintain a belief on other users’ strategies. In this
chapter, usei forms a simple belief represented by a vaiu@,), which denotes the
probability that he expects to receive services in one def@iven his opponent state,
the belief is calculated as:

H-1 )
2i(6:) = 021 n:(0") /(N — 1) ifo, < H | (3.5)
L-n(0)/(N~1) it >H
Equivalently, we are assuming that uséelieves that any user of reputation 0 will not

supply services while any user of reputattbr 0 complies with the social rule.

Remark: This belief model is based on the assumption that each ugsicitty
conjectures that all other users are playing stationaatesires which do not change

over time. This assumption is commonly adopted in the rdléiterature (e.g. the

41t should be noted that there is a deterministic mapping fittercommunity state and the opponent
state and they can be derived from each other. The reason whyti@duce the opponent state is for
the better illustration, since a user can never be matchédhivhself and hence it is easier to express a
user’s expected one period utility with his opponent state.
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frequency-based belief update model in fictitious play @djvell as in stochastic evo-
lutionary games [44][50]). Hence, the current strategy ihabserved as being played
by a user is believed to be played by him in the future. Stgiftiam this presumption,
each user believes that a user of reputafiomhich indicates his deviation in the previ-
ous period, will deviate again in the current period. Forerws reputatiord > 0, it is
unknown whether this user deviated in the previous periaibb(due to the existence
of random punishment in (3.4)). Therefore, other users lsirhglieve that this user
complied with the social rule in the previous period and wdhtinue his compliance

in the current period.

Based on this belief, the expected utility of a usierone period can be expressed as
a function of his current strategy, his current reputatiof;;, and his current opponent

staten),:

~

7:(6) (0:,0,0(0:,0)). (3.6)

villiloi,m) = pi0i)b — D ¢
=0

[%

Herec(0;, 0, z) is the one-period cost incurred by usevhen he plays action and his

matched client has a reputatién

A user’s expected long-term utility at any period is evatuhas the discounted
sum of his expected one-period utilities starting from fhesiod over the infinite time
horizon. When computing his expected long-term utilitycleaseri assumes that his
opponent state, in the current period does not change in the future. In otledsy
each user does not try to learn the evolution of his opportaite svhile making his
decision in each period. This assumption is reasonableghefact that users in the

online community normally have bounded rationafity

Given all the knowledge and beliefs, a ussrexpected long-term utility is given

°If a useri has the capability to infer the evolution of his opponentestg according to his be-
lief p;(0;) and incorporates such inference into his expected lormg-teitity, it can be proven that the
computation complexity of his optimal strategy in each peiis at the order of)(N ), which quickly
becomes intractable even for a moderate valu® of
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‘/2(91‘0-27 n;, ’%) = Ui<9i|gi7 nz) + 521)2(9/“9@7 Oy M, H)W(Q/‘O'i, n;, ’%)7 (37)
0/

whereé € [0, 1) is the discount factor anélp;(0'|0, o;,m,, <)} is the probability that
useri expects his reputation changes frérto ¢’ if he plays the strategy;, while the

reputation protocol is and the opponent statesjs °.

User:’s best-response play in each period is to select an optimrediegy that max-
imizes his expected long-term utility;(¢;|0;, n;, <). Due to the recursive structure of
the expected long-term utility (3.7), the optimal strate@ggach period can be obtained

by solving the following optimization problem
m2§%(9‘0u7’1w’€)7VG €0 (38)

by using well-known dynamic programming algorithms suchvalsie iteration’. It
should be noted that usehas to optimize his expected long-term utilities startirgf
any reputatiord, even if his current reputatiof) # 6. This is because of the recursive
structure of the expected long-term utilities and the t@syiffact thatV;(0;|o;, n;, k)
will be influenced by{V;(0|ci, n;, k) } g, @and thus{o; (0, -) }o,. To show the depen-
dency of the solution of (3.8) on the reputation protocol &mel opponent state, it is
denoted as;"", with the corresponding optimal long-term utilities beiregpresented
as{V;""(0)},_,. Importantly, it should be noted that because users hahiegame
reputation observe the same opponent state, they havertreeatimal strategy and
optimal long-term utilities, i.eo!™" = o™ and V"™ (0) = V;""(0),V0 if 6; = 0;.

In Section 3.4, we will unravel the structural propertieg6f":.

SHere we assume that users are not aware the existence oésticqterturbations and do not incor-
porate it into the calculation of;(¢'|0, 0;,n;, k). One explanation to this assumption is that the error
probability is negligible to users when— 0 since stochastic perturbations take place infrequently in
the community.

"To break the tie when the expected long-term utilities byioigz = 0 andz = 1 are the same, we
assume that the user always chooses1 in this case.
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3.3.2 Long-run Evolution and Stochastic Stable Equilibrium

In this section, we examine how the community statevolves over time, under the
users’ best response dynamics introduced by (3.8), anddineralize the design prob-

lem of the optimal reputation protocol.

The evolution ofu can be characterized by the following nonlinear stochaktic

ference equation:
200 1)+ 290 +200) ifo=L
ue(g) = { 2P0 - D+ w(0) the{l, .L—1} (39
200) + 3 29(0) if 6= 0
6'=0

Heret is the time index. xﬁf) (#) and 2 (0) are random variables representing the
numbers of users whose reputations change, in peri@dm 6 to 6 + 1 andf — 1,
respectively; Whilm(f%(e) representing the number of users whose reputations remains
unchanged. All of these variables follow binomial disttibas:

d20) — Bin(u®(60), 4rouara())

2(0) — Bin(u®(0), Sayin(0) (3.10)
(0) — Bin(u®(9), (1 = B)ayisn(0))

™ (6) and qﬁmsh(e) are the probabilities that a user of reputattbrs re-

whereq, ;44
ported to be complying with and deviating from the sociaertéspectively, when he
adopts his optimal strategy in periodAccording to (3.8), a user’s optimal strategy in
each period is implicitly determined by the community satend his reputatiosi and
hence, bothymwwd( ) andq;tu)msh(e) are also determined lyy andé. Also, qﬁgmd(e)

andqpmsh(e) are implicitly influenced by the error probability

The dynamic system (3.9) defines a Markov chain on the finaeep

u:{u:mw%g

L
,u(é’)eNforogegL,Z,u(é):N}, (3.11)
6=0

with the transition probability matrix being denotedfas, = [p. (1’| )] - NOte

that withe > 0, this Markov chain is communicating. Hence, it is well-kmowom
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[54] that this Markov chain is also irreducible and aperaéihich introduces a unique

stationary distribution oved. Let

A £ {w = (w())per € RM|w(p) >0 forVp € U and Y w(p) = 1}
pneu
(3.12)
be the|l/|-dimensional simplex, a stationary distribution is a rowteew. ,, satisfying
we , = we P .. When this Markov chain in communicating, irreducible apdrodic,

w. ., satisfies the following properties.
Lemma 1. w. , preserves the following properties:
(1) Stability: For anyw € Ay, we have thatﬂim wP!, — w. .
—00 ’

(2) Ergodicity: Starting from an arbitrary community stat®’, the fraction of time
that the community stays at a particular community state the long run isw. (1),
T
i.e. lim %t;](u(t) =p) = w. (), Vu € U, wherel(-) is the indicator function

T—o00

that takes the value 1 wherd?) = p.

Proof: This lemma is proved in [44] and is omitted helik.

The stability shows that independent of the initial comnystate, the asymptotic
distribution of the community state in the long run is alwagen byw. .. The ergod-
icity indicates that the proportion of time that the comntyrspends in each state is
equivalent to the corresponding term of this state in thiostary distributionw. .

Whene — 0, the resulting stationary distribution is referred to aslthit distribu-

tion and is defined as follows.

Definition 1 (Limit Distribution) The limit distribution is defined by

wy, = limw, . (3.13)

e—0

Due to the fact that each elementi, is a polynomial ofs and is thus contin-
uous ore, it could be concluded that the limit distribution also shéis the following
condition

@, Do = @,. (3.14)
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Therefore, the limit distribution is also a stationary dizition overl/ whene = 0

The limiting distribution characterizes the asymptotatistnary distribution of the
community state over the spaldewhen the error probability is sufficiently small. The
existence and the uniquenessgf has been proven in [44]. A community state that
receives a positive probability i@, are called a stochastically stable state under the

reputation protocok, which is defined as follows.

Definition 2 (Stochastically Stable Staté).community stateu is a stochastically

stable state under a reputation protoediand only if w, () > 0.

According to Definition 2, given a reputation protocglthe community stays at
a stochastically stable state with a positive fraction ofetiin the long run. On the
contrary, if a community state is not stochastically statile fraction of time that the
community stays at this state approaches to 0 when 0. Let C'(w) be the carrier
of a probability distributiony € Ay, i.e. C(w) = {p € Ulw(p) > 0}, the set of

stochastically stable states under the reputation prbtocan be denoted &S(w,).

Therefore, starting from an arbitrary initial state, thentounity converges with

probability 1 to states that belongtgcw,,) in the long run.

We then define the equilibrium concept in this chapter, wicteferred to as s-

tochastically stable equilibrium (SSE) [44].

Definition 3 (Stochastically Stable Equilibriumi\. strategy profileo# = (7)Y,

7

and a reputation profile” = (§7)Y, form an SSE under a reputation protogdf and
only if

(1) The community state undéf* belongs toC' (@,,), i.e. " e C(wy).

#
w,n?
i

(2) For each user; o is his best response, i.e/ = o

According to this definition, each SSE introduces a commyustiite which is s-

8]t is worth to be noted that there might be multiple statigrdistributions under the same reputation
protocol where = 0, while the limit distribution is always unique.

74



tochastically stable, and conversely, for each stoctelbtistable statgx € C(w,),
there is at least one SSE that introduces it. Eet {(a#,0%)|(c#,0%) is an SSE}
denote the set of stochastically stable equilibria, we hlagdollowing lemma.

Lemma 2. (1) For eacho#,0%) € E, u?” € C(@,); (2)C(@,) = {u?”|(c*,6%) €
E, 307},

Proof: This lemma is straightforward according to DefinitioniiB.

The protocol designer’s problem is to design a reputatiotogol that induces users

to cooperate in all SSE, which can be formally defined asalo

Definition 4 (Protocol Design ProblemY.he protocol designer’s goal is to select a

protocolx such that for any SSEr#, %) € E, the following is satisfied

o (07,07) =1, Vi,je{l,..,N}andi# j. (3.15)

177

Since the community stays at stochastically stable staitdsprobability 1 in the
long run, full cooperation among users is induced in the comity and hence the

community operates at its highest efficiency with the optisoaial welfarel/ = b — c.

3.4 Optimal User Strategy

In this section, we investigate the structure of a typicarus optimal strategy, i.e.
o™, Since users are homogeneous with respect to the stage gafithand cost

as well as the discount factér The results derived for usém this section is applicable
to the optimal strategy of any user in the community. The fg@othis section heavily
rely on the one-shot deviation principle of discounted agitaprogramming, which
is proven in [50]. Below we briefly explain the basic idea of thne-shot deviation

principle®.

9There is a little abuse of notations here since the termss"stand “action” are used to describe the
Markov decision process. It should be noted that the staleaation here are generic and are different
from the community state and user action in this chapter.
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Given a discrete-time Markov decision process with theessaiacesS, the action
spaceA, the state transition probability(s'|s, a), the policyr(s, a), the one-period
reward function(s, a) and the value functioW™(s), suppose a uses optimal policy
is 7* with the corresponding optimal value functi®fi . Starting from any period
when uset is at states®, then uset cannot increase his long-term utility by deviating
from 7* in this period and continues to comply with in the future, i.e.

VT (D) = r(sW a) + ) p(s']s,a)VT(s), Yt and Ya # 7 (s). (3.16)
s'es

Mapping the general MDP formulation above into our problemhaves = 6, a =
o(0,-) andm = o for each individual user. Hence, the optimization (3.8)dsiealent
to the derivation of the optimal policy of an MDP problem facé individual user.

Using this idea, we have the following lemma.
Lemma 3. For anyf,f € ©, 57" (6,0) = 0 if ¢(6,0) = 0.

Proof: First, it is easy to observe that given the social rule (3ri8) the user belief
(3.5), we havé/;(0|o;, m;, k) < Vi(0 + 1|oy,m;, k), V0 € {0, ..., L — 1}. Suppose that
for a useri, we haves!" (¢',6') = 1 for some(¢', ") with ¢(¢',6') = 0. If useri
chooses to play = 0 at reputatiord’ when he meets a client of reputatiéh(i.e.
adopting a one-shot deviation fromi""?), he receives a higher utility for the current
stage game because he saves the cost of supplying servittes stage game, while
his future utility remaining unchanged becausgé’, ') = 0 and he will not be punished
in this period regardless of his choice anThereforeV;(0'|o;, n,, k) increases if user
chooses;(¢',8") = 0. According to the one-shot deviation principté;” thus cannot

be optimal. Hence, we should hav&™ (¢'.6') = 0. B

The basic idea of Lemma 3 is that by supplying more servicas taquired by the
social rule, usef’s expected cost in the current period increases while tpsebed fu-
ture utility does not change. Hence, his expected long-teiiity is always maximized

by choosings"" (6, §) = 0.

Using Lemma 3, we first prove thaf " is always threshold-based for aryand
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Proposition 1. Givenk, n;, there exists a set of service threshadllls., (6))5_, €

NE+L such thaw™™ preserves the following property for afye O:

) {1 if 0> Ry, (6) (3.17)

0 0<hyy(0)

Proof: See Appendix Al

Remark: Proposition 1 proves that the optimal strategy always ulessrusetr;, at
any reputatior, to supply services only to clients of reputations highantbr equal to
athreshold, ,,. (7). This is because if usésupplies services to a client of reputatibn
in his optimal strategy, i.er”"™ (6, §) = 1, we should also have" (4, ') = 1 for any
' > 6, since serving a client with a higher reputation incurs e cost as serving a

client with a lower reputation but always brings a user high&ure benefit.

In the following proposition, we further analyse the prdapef the service thresh-

olds{h, ., (#)}¢_, that are derived in Proposition 1.

Proposition 2. For anyx andn;, (1) h,.,.(0) € {H, L+1},if 0 > H; (2) hy.,.(0) €
{0,L+1},if6 < H.

Proof: See Appendix Bl

Remark:Proposition 2 proves that the optimal choice of each usemateputation
¢ is binary: he either does not provide any service witfi (9, 9) =0, V0 € ©, orfully
complies with the social rule, i.er""™ (0,0) = ¢(0,0), Y0 € ©. Hence, Proposition
1 and 2 significantly simplify the set of strategies that casgibly serve as a user’s
optimal strategy, thereby facilitating the design of theiropl reputation protocol in

the next section.
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3.5 Optimal Reputation Protocol

This section employs the structural results obtained ini&@e8.4 to solve the problem
of optimal reputation protocol design. According to Lemmattie design problem
(3.15) could be decomposed into two steps: (1) determingghef stochastically stable
states”(w,); (2) determine whether full cooperation is induced undeheac C(w,),
i.e. whether{o™™ }N | satisfies (3.15) for alh € A,

We first prove that each stochastically stable state is aariemt state, which is

defined as follows.

Definition 5 (Invariant State).A community stateu is a invariant state under a

reputation protocok if and only if pg . (p|pe) = 1.

Hence, an invariant state is an absorbing state in the Mantkaw induced by users’
best response dynamics when the error probabhility0. Whens — 0, the community
will stay at an invariant state once it enters this statd stachastic perturbations occur.
It is important to note that in general, a stochasticallpkatate does not necessarily
to be invariant according to (3.14). A simple example woudabcycle consisting of
two statege and ' such thap . (p/|pe) = 1 andpy . (p|p’) = 1. These two states are
not invariant but could be stochastically stable. Sucheyxldefined as an absorbing

class as follows.

Definition 6 (Absorbing Class)A absorbing clasg- is a set of community states

such thapy .. (p'|pe) > 0, Ve, ' € G andpy (¢ |p) = 0,V € G andvp' ¢ G.

Nevertheless, the following theorem proves that in the agggerandom matching
game discussed in this chapter, each stochastically sttdikeis also invariant. Hence,
there will be no cycle of states existing in the limit distrilon carrierC'(w,;). The main
idea to prove this is to show that for any stationary distidnw such thatv 7, ,, = w,
each statgx € C(w) is invariant. Since we have, ), = w,, each stochastically

stable state is thus also invariant.
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Theorem 1.Eachu € C'(w,) is an invariant state.
Proof: See the online appendix [SAR
As a by-product of Theorem 1, we have the following corollary

Corollary 1. A community stateu = {u(0),---, (L)} that is stochastically

stable preserves the following property
w(d)=0,v0 e{1,...,L—1}. (3.18)

Proof: Any stateu’ that does not satisfy (3.18) cannot be invariant. Hence altso

not stochastically stable according to Theorerilil.

Corollary 1 shows that there are only+ 1 states that could possibly be stochasti-
cally stable. For better illustration, we define aldgt= {u|p satisfies (3.18)} and
index theseV + 1 states iri/z according to the valug(L). A statep;, hasu’ (L) = k
andp(0) = N — k with & € {0,..., N} . In the next corollary, we prove that full

cooperation cannot be induced in any sgafewith & < N.
Corollary 2. For eachy € C(w,) and for each reputation profie € A, the
following properties hold fon{o—f’"? N

o (0:) = H, if ;= L. (3.20)

Proof: If (3.19) is not satisfied for some usér Then there is always a positive
probability thatd; changes from 0 to 1 after one period and hencés not invariant.

Similarly, if (3.20) is not satisfied for some usgru is not invariantll

Using Corollary 2, the design problem (3.15) can be “trameslainto the design
of x with which C'(@,) contains a unique state®¥ with ;% (0) = 0, Vd < L and

(L) = N. This is solved in the next theorem.

Theorem 2. (1) If 6 > §, the optimal reputation protocol that solves the design

problem (3.15) isL. = H = 1, andf € [}, Beriticar), WHEre S, iica is the solution of
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the following equation:

(1 - 5)0 (1 - 5Bcritical>c _
5<b - 5criticalc) 5ﬁcritical(b - C)

(3.21)

(2) If § < £, there is no reputation protocol that can induce full coapen among

users in the long run.
Proof: See the online appendix [SAR

Remark: Theorem 2 provides various insights into the optimal protatesign.
First, a two-level reputation protocol with = H = 1 is sufficient to achieve the
optimality and solve the design problem (3.1%)When bothZ and / are larger than
1, we would always hava?; being a stochastically stable state, since it takes only one
stochastic perturbation for a good user to become bad andrbished, whereas it takes
multiple stochastic perturbations (proportionalfQ for a bad user to become a good
user again. Another important insight is that the punishtrsgengths cannot be too
small or too large. Whefg < ¢/bd, a good user does not have sufficient incentives to
comply with the social rule because the enforced punishifnentthe probability that
his reputation is degraded toupon his deviation from the social rule) is small. In this
case, the statg¥ is not invariant and stochastically stable. Wh&r> B..iica, the
enforced punishment is too severe and makes thegfattochastically stable and full

cooperation among users cannot be sustained in the long run.

Remark:It should also be noted that the optimal desigia$ a continuous region
instead of a particular value. This is because we focus omguieg the reputation
protocol under whichu is the unique stochastically stable state and as a reseit th

can be a range ¢f which could satisfy this requirement.

OHowever it should be noted that the reputation protocol Wite= H = 1 is not the only optimal
protocol. In fact according to the proof of Theorem 2xif= {1, 1, 3} is optimal, any protocok’ =
{L,1, 3} is also optimal.
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3.6 Numerical Examples

In our experiments, we illustrate the long run performanicthe reputation protocol
designed in Theorem 2. We deploy a numbeiNof= 1000 users in the community and

use a reputation sét = {0, 1}.

3.6.1 Performance Comparison

In the first experiment, we compare the performance of thetegion protocol designed

in Theorem 2 with those of other incentive protocols fromekisting literature.

Particularly, three protocols are considered. Protocd thé reputation protocol
from the optimal design in Theorem 2. Protocol 2 is the regmngrotocol designed in
our prior work [45]. Protocol 3 is the BitTorrent protocol igh implements the tit-for-
tat direct reciprocation mechanism [41]. In tit-for-tagch user records his personal
interactions with other users, and determines his recgtiae behavior with others
based on this personal record. Particularly, eachimsgpplies services to another user
j if and only if user;j has provided services to him in their last stage game. We run
an experiment in which the users in the community interact @ periods under each
protocol. In the experiment, we assume that each user hacautht factow = 0.8.

Table 3.2 presents the average social welfare receivedesetlo® periods which is
T N
> u

normalized by the social optimuin— ¢, i.e. tzl;l) with 7 = 10® and N = 1000,

TN(b—c
Whereugt) is defined in (1). The result shows that the protocol desigméicis chapter
(Protocol 1) delivers significantly better performancentlmher protocols. The main
reason for these gains is that Protocols 2 and 3 do not ettplamnsider the long-
run evolution of the community in their designs. For exampleotocol 2 optimizes
the social welfare when the community is sustained at thdiequm under which all
users comply with the social rule and are cooperative witthesher. Nevertheless,
when the community deviates from this equilibrium (i.e. gomsers no longer comply

with the social rule) due to stochastic perturbations, dtr@it2 cannot ensure that the
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Table 3.2: Average social welfare under different protscol

c=1,b=3, c=1,b=35, c=1,b=3, c=1,b=35,
e =0.01 e =0.01 e =0.05 e =0.05
Protocol 1 0.9328 0.9428 0.8536 0.8810
Protocol 2 0.6628 0.8234 0.2426 0.3072
Protocol 3 0.4372 0.6782 0.1728 0.2876

community converges back to this particular equilibriund drence, the community
stays at non-equilibrium states in the long run which restdta low average social

welfare over time.

3.6.2 Convergence Speed

Theorem 2 prescribes “how to design the reputation protsgoh that the communi-
ty converges to a fully cooperative equilibrium in the long't. In this section, we
analyze how fast the community will converge to this equilliln, i.e. starting from
an arbitrary community state, what is the expected waiiimg for the community to
enter a stochastically stable equilibrium. In the expentee set = 0.8, b = 5 and

¢ = 1. According to Theorem 2, it can be calculated tpa} is the unique stochas-
tically stable state whed > 0.25. We run the experiment with different selections
of (¢, 5) and different initial community states that are randomiygked from the set
{ul, ..., ug—l}. Table 3.3 presents the number of periods (i.e. the waitmg)tfor
the community to converge to the statg. A first observation is that the waiting time
is smaller with largee, which is intuitive since it is easier for the community tave

a state that is invariant but not stochastically stable where stochastic perturbations
take place in each period. Another interesting observdtimm Table 3.3 is that the
waiting time monotonically increases with the punishmerdgrggth/3. This is due to
the fact that whers decreases, it is more likely for a user not to be punished gon
deviation. Hence, it becomes more difficult for the commytotenter invariant states

that contain a large portion of bad users, eud;, and easier to enter invariant states
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Table 3.3: The convergence time to the stochastically stdplilibrium

€ B t (102 periods)
0.05 0.4 36
0.05 0.6 105
0.05 0.8 890
0.05 1.0 1049
0.1 0.4 23
0.1 0.6 98
0.1 0.8 650
0.1 1.0 820

that contain a large portion of good users, gif..

3.7 Conclusions and Future Research

We have studied the problem of designing reputation prd¢doo online communities
in which users adapt their behaviors and learn over timeud¢h sommunities, protocol
designers can determine the long-run evolution of the conityof users and use this
knowledge to induce cooperation among users in the long . framework can

be extended in several directions, among which we mentigethFirst, users in the
community do not necessarily need to be homogeneous wigieceso their stage-
game benefits and costs. Different users can have diffemdfits and costs for the
service received/provided. Also, they can choose diffedéscount factors) when

evaluating the long-term utility. Second, instead of alsvegporting truthfully, clients
can use more complicated decision rules while reportingstreers’ actions to the
community operator in order to maximize their own long-teutility. Third, users

adopt a simple belief model in this chapter. However, mophsticated belief models
can be introduced into our framework. For example, the foionaof user beliefs and
opinions in social networks are extensively studied in [&8¢ [53]. Understanding
how the evolutions of users’ beliefs and users’ strategiflsmpact each other will

also form an important future research direction.
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3.8 Appendices

3.8.1 Appendix A: Proof of Proposition 1

To prove this proposition, it is equivalent to showing thereotness of the following

statement for ang > 0: if o/°"(6,0) = 0, thena!"" (4,6 — 1) = 0 always holds.

We use contradictions to prove the above statement. Supipatsthere ard € ©
andd > 0 such that"™(,0) = 0 ando"" (9,6 — 1) = 1. According to Lemma
3, we havey(d,0 — 1) = 1 and$(#,0) = 1. Now consider an alternative strategy
such that"" (¢, 0") = o' (¢',0"),¥(¢',6") # (0,0) anda’(,0) = 1. That is,o’ and
o™ differ only at the reputation pai®, 5). Then according to the one-shot deviation
principle, the expected long-term utility of useby adoptingo.”"” at reputation,
i.e. V. (0), should be larger than the expected long-term utility wheratioptss”’
in the current period and continues to comply with™ in the future, which gives the

following inequality:

7

vi(0lo; ™, ;) + 6> pi(0')0, 07 g, K)Vi(O o)™y, K)
v (3.22)
> Ui<9|o-?m7ni> - %0_’_ 5;]91'(6/“970/7772'7 ’li)‘/i(e,‘af’mvniv H)'

By manipulating (3.22) , we have

c> 52 pi(0')0,0",n,;, K) Vi(‘9/|0'?m,’l7i,/<a). (3.23)
o _pi(e/w? 0-:7772" ;, K’)

77@'(@)
N —1

By solving its RHS, (3.23) can be transformed as follows

7:(0) . 7:(0) 5 V(O + o™, m;, k) — BV (0o, m;, k) (3.24)
N—-1  N-—1 —(1 =BV (6]07™, m;, k)

The LHS of (3.24) is the extra immediate cost that is incutcedser; when it is at
reputationd and provides services to a client of reputatiprand the RHS of (3.24) is

the extra future utility that is brought by doing so. Since tinmediate cost is higher
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than the extra future utility, useéichooses;"™ (0, 6) = 0in his optimal strategy. Using

the same idea, the following condition should be met wigh (6,6 — 1) = 1:

(6 — (0 — V(0 +1|o7™, K, ;) — BV (0o ™, K, m;
W00, @ 1) (VIO = VO™ ) g
- : ~(1 = AV (Ol )

It is easy to observe that (3.24) and (3.25) cannot hold asdihee time and hence,
we have a contradiction. Therefore, the statement at thieieg of this proposition

always holds for"" and Proposition 1 followsll

3.8.2 Appendix B: Proof of Proposition 2

According to Lemma 3p,.,.(¢) € [H,L + 1] if & > H. Similarly, we also have
By, (0) € [0,L+1]if0< 6 < H.

The rest of this proof follows the same argument as in Projposil. Suppose
hym,(0) € (0,L+1)forsomef) < H,i.e.0," (0, hir, (0) = 1ando; ™ (0, by, (6) —

1) = 0, then according to the one-shot deviation principle, weeltaat

K,M; R,M;

Wlhem @), o gmtien @) (VO 1) = BVTHO)

N-1 N_1 .
—(1=pB)V;""(0)

Ry1; Ry15 ’

milheny©-1) | smilhany(6)-1) Vit (0 +1) = BV (0)

No1 S No1 .
—(1 =)V (0)

(3.26)

which introduces a contradiction. Henég,,, (¢) ¢ (0, L + 1) and we havé, ,, (¢) €
{0,L + 1} for any§ < H. Similar arguments apply to good users and thys. (¢) €
{H,L+1}foranyd > H. &
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CHAPTER 4

Information Production and Link Formation in Social

Computing Systems

4.1 Introduction

Social computing is booming nowadays [5][42][57] and haeraly led to a new trend:
the integration of social computing techniques with comroaton networks to enable
individuals with similar interests to connect to each othr a mobile or low-cost net-
work infrastructure to share and disseminate user-gesgerasources, such as multi-
modal content, geographical information, event-relatédrmation, personal sensory
information, etc. For instance, [58] and [59] propose n®loibntent distribution ar-
chitectures relying on social relationship and providisgreomic incentives to offload
the bandwidth-intensive task of content disseminatiomfiservice providers to the
mobile subscribers in mobile and wireless networks. hsted spectrum sensing in
peer-to-peer cognitive networks is proposed in [60] to effity map the spectrum op-
portunities based on contributions from individual coyeitterminals. The work of
[61] formulates the location-aware information sharing &nk formation in vehicular
networks as a coalition game to improve the efficiency of io&armation dissemina-

tion among vehicles.

In all the aforementioned social computing applicatiohg, decentralized strate-
gic interactions of agents have decisive impact on the emgrietwork topologies as
well as the stability and the efficiency of emerging netwaaks distributed systems.

In this chapter, we are focusing on two key features thatattarize the strategic be-
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havior of agents: resource production and link formatioes®urce production refers
to the agents’ decisions to personally generating ressurdere we use the abstrac-
t concept of “resources” to represent any knowledge, nmidtal content, and other
kinds of data and service that can be exchanged and sharediai somputing sys-
tems. Several examples on resources production would bapoad and creation
of blogs, videos and photos on online platforms with useregated content [5], the
download and purchase of content from service provider ar-feepeer networks [57]
and content distribution networks [58], and the creatiofooél spectrum information
sensed by individual cognitive terminals in peer-to-pesgrstive networks [60]. Link
formation refers to all kinds of agents’ decisions regagdéxchanging the produced
resources with other agents, i.e. how agents create arah\aismks with each other to
acquire resources. For example, a peer node in P2P netwakesmactive decisions on
which peers it should connect to and download content frarpgier-to-peer spectrum
sensing, a cognitive terminal can request and exchangematamn about spectrum op-
portunities which have already been discovered by othemiterds [60][62]. Most of
the existing works assume that agents decisions on thésesetre exogenously de-
termined by a system designer aiming to maximize the oveedWork utility. Hence,
agents do not proactively make decisions but rather ob#gitow the actions pre-
scribed by the designer. While this assumption is realfsticraditional communica-
tion networks composed of obedient agents (e.g. sensoshatidoes no longer hold
in social computing systems, where networks are usuallpéaorin an ad-hoc fashion
by self-interested agents determining their own stragegieorder to maximize their
own utilities. Hence, a novel framework on studying the imoge of agents in the joint
decision on resources production and link formation adogrtb their own self-interest
is necessary. Such a framework does not only help to underst@ agents’ behavior
in social computing systems but also facilitates the desfgncentive protocols which
encourage the agents to cooperate with each other in a watitoipe the system ef-

ficiency. In the rest of this chapter, we use “social compmusgstem” and “network”
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interchangeably.

Self-interested link formation in social computing syssemas been studied by mi-
croeconomics and network science researchers (see ef), \® analyze how the
agents’ self-interests lead to strategic link creation meawork and determine what
network topologies arise. A simple model is proposed in,[64]jere the problem of
link formation is formulated as a non-cooperative game ayrgirategic agents. The
agents can select which links to create with other agentsderdo individually max-
imize their own utilities by trading off the potential rewdsrobtained from forming a
link (e.g. resources acquisition) against the incurreld tireation cost (e.g. payment
and maintenance costs for links). Analysis of this modellead to useful predictions
of what “equilibrium” topologies emerge. This basic modasisubsequently been ex-
tended in various directions. For example, [65] studiesileteral network formation
in which the link creation requires mutual consent and trs¢ otwo-sided. The net-
work formation problem for the scenario where agents arerbgeneous is analyzed in
[66], which shows that a strict equilibrium network is mirahand, conversely, every

minimal network is a strict equilibrium for suitable costsdebenefits2,

Importantly, there are two key drawbacks that prevent tleegsting models from
being successfully applied to social computing systemst,Fnost of these works as-
sume that agents are endowed with exogenous amounts ofeesa@und focus solely on
the strategic aspect of link formation. The fact that agastslly have the capability to
self-produce resources is neglected. Second, these wedtsesources collected from
different agents as homogeneous, i.e. being equally valndgerfectly substitutable,
while in social computing systems, resources from diffeggents is heterogeneous
with respect to location, devices used for gathering trs®ueces, content contained,
etc., and thus it cannot be perfectly substitutable witthedler. Meanwhile, given the

information heterogeneity, an agent’s benefit from infalioraconsumption no longer

LA strict equilibrium is a strategy profile in which each agentility is strictly larger than the result-
ing utility by choosing any other strategy.
2A minimal network is a topology where there is a unique patiween any two agents in the network.
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only depends on the total amount of information it consurbasalso on how many
types of information and what amount of each type it acquifégrefore, an agent nor-
mally has certain appreciation for information variety @uing information produced

by numerous sources higher than information produced biygessource [67].

Based on these characteristics of the agents, our work pesonovel Information
Production and Link Formation game (IPLF game) for sociahpating systems to
jointly study agents’ strategic behavior on informationguction and link formation.
To deal with the agents’ appreciation for information vgrigve deploy the well-known
Dixit-Stiglitz utility function [70] to capture the impaaif information heterogeneity
on the agents utilities. Using this formalism, we study wésymptotic equilibria e-
merge in networks of large sizes. Different from the ideadizvorks in economics, e.g.
[69], which assume perfectly substitutable informatiae.(iagents have no apprecia-
tion for variety) and predict the occurrence of “the law of few” [69] 2, our analysis
shows that when the size (population) of a network is sufiitydarge, every (strict)
non-cooperative equilibrium of the IPLF game consists aeaduchical core-periphery
structure with all agents belonging to one of the two typesdi &dgents producing large
amounts of information have a large number of connectionssamve as the major
source of information sharing; and spoke agents producelaae limited amounts of
information and mainly consume information acquired froaft lagents. Importantly,
as the network size grows, the population of hub agents dsawéthe total amount of
information produced in the network grows proportionatiythe network size. This
shows that in social computing systems where agents appeeciformation variety,
the “law of the few” does not exist with the production and rainga no longer being
dominated by a small group of powerful agents but rathergmiore distributed, and

the network structure remaining flat but not scale-free

3“The law of the few” [69] states that under perfect infornoatsubstitutability, only a small amount
of agents in a network will produce information with the ftiaa of information producers in the total
population goes to 0. Meanwhile, the total amount of infaioraproduced in the network is upper-
bounded.

4A scale-free network is a network whose degree distributitiows a power law asymptotically. If
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Following the characterization on the equilibria in the FPgame, we then analyze
the efficiency of such equilibrium topologies and companeiih the social optimum
by providing bounds on the Price of Stability and the PricAwérchy. Stemming from
this basic model, we further propose and investigate th& ggdme which incorporates
indirect information sharing, which is a common featureacial computing systems
that an agent cannot only consume and access informatiauged by its neighbors

but also that produced by the neighbors of its neighbors.

The remainder of this chapter is organized as follows. IrtiSeet.2, we describe
our basic model of the IPLF game. In Section 4.3, we charaetéine emerging non-
cooperative equilibria. In Section 4.4, the model of theRRjame with indirect infor-
mation sharing is presented and discussed. We concludeiim®d.5 and also outline

future research topics.

4.2 Basic Model

We consider information sharing in a social computing systéhere agents have the
capability to produce information personally as well asrfdinks with others in order
to acquire information that they produce. The definition a§ént” in this chapter is
very general. It can represent individual nodes, devicesrg) and also autonomous
sub-networks or groups of nodes cooperating with each dthé&rm an integrated
entity participating in the IPLF game. Examples of inforioatbeing shared are multi-
modal content, environmental sensory data in sensor nksywooad information in

vehicular networks, geographical information in locatlmased services, etc.

In all these different applications, the precise formwalatf actions and utilities of
the participating agents will depend on details of the ajapilon. For example, pre-

cisely how agents can form links with others, whether ther@ny budget or practical

a network is scale-free, the fraction of agents with largmbers of connections in the entire population
decays fast to 0 as the network size grows [71].
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constraints on connections such as physical locations andviadth limits, how does
an agent benefit/cost from the presence of a link, etc. Invibi¥k, we use a stylized
model to formulate the IPLF game without delving into theoglincrasies of any par-
ticular application, in order to capture the basic trads-ahd draw qualitative insights
about the effects of self-interested behavior on the ndtwtyucture of social comput-
ing systems. However, it should be noted that various atermmodels are ready to be
extended from this basic model for the analyses of parti@palications, as discussed

in Section 4.5.

Let N = {1,2,...,n} denote the set of agents in the system, whexed; repre-
sent typical members. Each agemtetermines the amount of information it produces,
which is called as its production level and is denoted:p¥ R*. We assume a linear
cost on information production as in [66] and hence, a cost®fR™ incurs to an a-
gent for each unit of information it produces. Examples eft¢bst could be the energy
consumption on spectrum sensing in P2P cognitive netwethksscription fees paid to
service providers for content download in content distidounetworks, etc. Besides
the self-production, each agent also determines whetr@etde links with other peer
agents in order to acquire information from them. Here weswter unilateral link for-
mation as in [73], where links are created by the unilatectibas of agents and link
costs are one-sided. An ageistlink formation action to another agents represented
by a binary variable;; = {0,1}. We setg;; = 1 if agent: forms a link to agenj # ¢
andg;; = 0 otherwise. For convenience, we ggt= 0 for all « € N. For illustration
purposes, we refer to the agent who forms a link and the agémtwtom the link is
formed as the creator and recipient of the link, respegtivEbrming a link incurs a
costk, which abstracts all the costs and payments for creatingramntaining the link,
as well as costs incurred in information exchange and tresssom (e.g. uploading
and downloading cost, energy consumption in transmisgiar),. Here we assume the
value ofk to be constant for each link. Meanwhile, since a link is fodroailaterally

without the consent of the recipient, we assume that theareadertakes the entire
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costk (i.e. if there is some cost incurred for the recipient in réiog a link, the creator

will also compensate the receiver by paying for it). The I[fokmation decision by
agenti is then represented by a row vector= (g;;)jen 2 € {0,1}""'. We assume
that the information exchange across a link is undirectetithus, the connection sta-
tus between agenisand; can be represented by a variable= maz{g;;, g;;} which
takes the value of when they are connected and called as “neighbors” of eadr.oth
We also assume that; = 1. Since the link is undirected and we assume that each link
has sufficient capacity to support the information transiaig, neighboring agents can

mutually access all information produced by each other.

We consider a simultaneous move game where agents makédsa®s informa-
tion production and link formation at the same time. The $atm@tegies of agenitis
thus denoted by; = R* x {0,1}"1. A strategy profile in the IPLF game is written
ass = (x,g), wherex = (x;), andg = (g;)", denote the information production
and link formation decisions of all agents, respectivelgt & = [g;;]; jen denote the
connectivity graph of the network, we also defiNgg) = {j|g;; = 1} as the set of
agents to whom agertforms a link andV;(g) = {j|g;; = 1} as the set of agents to

whom agent is connected, i.e. the neighbors of agént

Agents in the IPLF game benefit from consuming informaticailable to them. In
the basic model, we assume pure local externalities [693h e@ent only consumes
information personally produced by itself and its neiglsdpand cannot consume in-
formation produced by another agent who is more than one Wway &om it on the
connectivity graphg. As mention previously, existing works on strategic linknfa-
tion assume that information produced by different agestperfectly substitutable
[64][69], i.e. the total amount of information that an ageahsumes fully determines
its benefit. Therefore, an agent’s benefit from informationsumption is not affected
by where the information comes from as long as the total atnofuinformation con-

sumed remains constant. This assumption, however, fadagture agents’ interests

5An analysis about indirect information sharing can be foumn8ection 4.4
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and benefit from consuming diverse information in social pating systems. For ex-
ample, the spectrum information collected by differentratige terminals at different
locations should have different values in consumption aathot be fully replaced.
Hence, instead of assuming the perfect substitutabilieyuge the Dixit-Stiglitz pref-
erence model from [70] to capture agents’ appreciationrftarmation variety, under
which an agent’s benefit from information consumption is given by

fix.g) =v((={+ > af)'7) (4.1)

JeNi(8)

for some functiorv : R™ — R* and some € (0,1). p measures an agent’s appre-
ciation for information variety. Whep < 1, an agent obtains a higher benefit when
it consumes information from a more diverse bundle of agdhthould be noted that
whenp — 1, the agent’s appreciation for information variety disaageand hence,
the function (4.1) could also be used to model an agent’sfliemieen information is

perfectly substitutable as in [64] and [69] by settjng- 1.

. . - A
For the illustration purpose, we defifg = (27 +>_ v, g x%)'/7 as the amount of
agent:’s effective information. This could be interpreted as theant of information
that agenti really consumes after aggregating and processing all foenation it

acquires. The following two assumptions are imposed on émetit functiono:

Assumption 1v(+) is a twice continuously differentiable, increasing, aricty
concave function.

Assumption 2 v(-) satisfiesv(0) = 0, v/(0) £ lim,_,o+ v(z) < oo, v/(0) > «
wherea > 0 is a constant, antim,_,,v'(z) = 0.

These two assumptions capture the diminishing marginagfiten an agent’s in-
formation consumption with respect to the amount of itsaife information. That
is, an agent’s benefit increases with the amount of its efieasformation, while the
rate of this increase decreases and approaches to 0. Heaiaeatways exists an upper
bound on the amount of information that an individual agemtiiling to acquire given

the cost of information production and link formation.
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Next, we analyze the effect pfon an agent’s information consumption.

Lemma 1. Given a strategy profile = (x,g), (z} + >_;cn, (g 2}) Ur > (af +

Yien@ ® )1/P always holds foranyc Nandany0 < p< o/ < 1. R

Remark: For the proofs that are omitted in this chapter, the completefs and

computations can always be found in the online appendix [75]

This lemma can be proven by first showing that+ 2°)'/? > (y* + 2#")1/*" always
holds for anyy, z > 0 and0 < p < p/ < 1 through the first-order partial derivatives
of (y* + z#)'/? over p, which is always negative wheh< p < 1. Then this lemma

follows as a straightforward extension.

Lemma 1 shows that given a strategy profile, an agent’s |evappreciation for
information variety increases asbecomes smaller, which is reflected in the increase
on the amount of its effective information and the resulto@gpefit from information

consumption.

With the above two assumptionf(x, g) is also provably twice continuously dif-

ferentiable, increasing and strictly concaverjpnas shown in the following lemma.

Lemma 2. fi(x,g) = v((#]+>jcni(g) © x)!/7) is twice continuously differentiable,

increasing, and strictly concaveinonR*. B

Since f;(x, g) is twice continuously differentiable, we further assumiibe sub-

modular with the following assumption.

Assumption 3 )i

S yen < 0,V j € Ni(8).

Assumption 3 formalizes the substitutability among agenfermation. Agenti’s
marginal benefit of production decreases against the anofuntormation produced
by its neighbors. That is, the more informatibacquires, the less incentivehas to

produce information by itself.

To sum up, the utility of agenitis given by its benefit minus all incurred costs:

wi(x,8) = v((@f + Y @)"?) = ca; — KINi(g)|- (4.2)

JEN;(8)
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We analyze the case of homogeneous agents inthatt, andp are the same for all

agents. We assume that> ¢ to ensure the network is socially valuable.

4.3 Equilibrium in the IPLF Game

4.3.1 Equilibrium analysis for the basic model

We analyze the IPLF game as a non-cooperative one-shot gasneoasider pure s-
trategies. Each agent maximizes its own utility given tmatsgies of others. A Nash

equilibrium of the IPLF game is a strategy profite= (x*, g*) such that
ui(s),s*,) > u,(si, s*,), Vs € {0,1}"71 Vi € N. (4.3)

Here, we use the convention thgtands_; represents the strategies of agémtnd
all agents other thaf) respectively. This section analyzes the equilibrium poiidn
and link formation behavior of agents. Given the definitidrequilibrium (4.3), an

equilibrium production profile* satisfies the following equality for each agent:
V(X)X [2) T = e, Vi (4.4)

where X* = ((z})” + ZjeNi(g)(xj)p)l/P. That is, the marginal benefit of production
should equal to the marginal cost and thus, an agkas no incentive to produce more

thanz when the amount of its effective informations'.

We first derive the basic properties of agents’ equilibritghdwior on information
production and link formation. This is summarized in thédwaling lemma. Although
simple, these properties are important in characteriziegetmerging equilibrium later.

Lemma 3. In any equilibriums* = (x*, g*) of the IPLF game, (iy;;g;; = 0 for all
i,j € N; (i) 2 > 0foralli € N; (iii) 27 < z foralli € N wherez is the unique
solution of the equation’(z) = c. B

We briefly explain Lemma 3.
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(i) Since the information exchange across a link is undaecif an agent forms
a link to another agent it has already connected with, it incurs an additional cdst o
link formation but does not receive any extra informaticonfrj and hence, its utility
strictly decreases by doing so. Hence in an equilibriuntetisdould be no redundant

investment on link formation.

(ii) If an agent has no neighbors (i.e. no connections), & &gositive production
level asa > ¢. On the contrary, if an agent has neighbors, it also has diyp®si
production level according to (4.4). Hence, an agent alviegsa positive production
level and the information it acquires from neighbors canendully replace its self-

produced information.

(iif) According to Assumption 3, an agent has the largestgima utility from pro-
duction when it has no neighbors (i.e. it acquires no infaromafrom others). Hence,
the highest production level could also be achieved in thgea@nd is upper bounded

due to the concavity of the benefit function (4.1).

The dependence of the value @fon ¢ andv is neglected in the notation when
no confusion is brought in. In the rest of this chapters referred as the maximum

equilibrium production level.

The maximum equilibrium production level is critical in ¢chaterizing the rela-
tionship between the link formation cost and emerging doyudl of the IPLF game, as

shown in the following theorem on the existence of the Nashlibgium.

Theorem 1 (The Existence of Equilibrium). Pure strategy Nash equilibria always

exist in the IPLF game and each equilibrium belongs to onbefdllowing two types:

(i) each agent personally produces an amatuof information and no one forms
any link;
(i) each agent personally produces an amount strictly lem#ilanz and is con-

nected with at least one other agent.

Proof Sketch We first prove the existence of Nash equilibrium. In genetabk
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difficult to show the existence of pure Nash equilibrium inweark formation games
directly. Hence, in this proof, we first consider the IPLF gawhere agents play mixed
strategy, which is called as IPLFM. Particularly, in IPLFMg link formation choice
between two agents is not binary, but continuous. That &slittk formation strategy
of an agent now becomes a vectqr, = {p;1, ..., pin }, Wherep;; € [0, 1] andp;; = 0.
We define the strength of a link to lgg = g;; = maxz{p;;, p;i}. Since each agent plays
a mixed strategy on both information production and linkdation, it is always true
that the IPLFM game has at least one equilibrium. We then gshateach equilibrium
of the IPLFM game hag;; € {0,1} for any:,j € N, and thus is also an equilibrium

of the IPLF game where the link formation choice is binary.

To prove the second part of the theorem, we classify alleggsaprofiles into two
classes. The first clasg! contains strategy profiles with which there is no link in the
network. The second clast® = S/S4 contains all other strategy profiles. He¥ds
the set of all strategy profiles. It can be shown that an eaiiin in S belongs to
type (i) and an equilibrium irs® should contain no isolated agent and belongs to type
(ii). Otherwise, if a strategy profile if” contains isolated agents, then due to the fact
that an isolated agent always has the largest producti@h lewn-isolated agents will
be attracted to connect with it, and which contradicts tHendion of an equilibrium.

[ |

Theorem 1 shows that in an equilibrium of the IPLF game, thevokk either is
empty with all agents being isolated, or has no agent bewigtid. In the rest of this
section, we analyze the non-trivial case of strict equgilwith which the inequality
(4.3) is strict, and we use equilibrium to mean strict purategy equilibrium when no
confusion occurs. Without loss of generality, agents adei@d by their production
levels in a strategy profile = (x,g), i.e. xt;y > x3 > --- > x,,. Given such ordering,
there is always a positive intege(s) < n, such that;; = =, ) for alli < n,(s) and
x; < xp, s forall j > n,(s). We call an agent < n,,(s) to be a high producer and an

agent;j > ny(s) to be a low producer. According to Lemma 3(iii), the prodantievel
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of each high producer will never excegdnd is denoted a&(x). To avoid the trivial
case that the set of low producers is empty and all agentsthaveame production
level, we assume that,(s) < n in this chapter. A detailed analysis for strategy profiles
where all agents produce the same amount of information edound in the technical
report [76].

By separating agents into two types, we are able to chaiaetir the following

lemma the interactions between high and low producers alilgdgum.

Lemma 4. In an equilibriums* = (x*, g*), the following properties hold fog*: (i)
For eachi < ny(s*), gj; = 0, Vj > n,(s*); (i) For eachi < ny,(s*), g, = 0 for some
i' < ny(s*) andi # 4'; (i) For eachj > n;(s*), g;; = 1, for somei < ny,(s).

Proof: The proof in Lemma 4 heavily relies on the use of contraditgi Here we
only provide the proof of statement (i) due to the space &troh. The proofs for the

other two statements follow similar ideas and can be fourideéronline appendix [75].

Suppose that there is an aggnt- n;(s*) such thaty;; = 1. Itis always true that
i is connected with all other high producers, igy = 1, Vi’ < n,(s*) and? # i.
Otherwise,i could always strictly increase its payoff by switching itskl with ;j to
some other high producer that it does not connect with.idfalso connected with all
low producers, then according to Assumption:3js the smallest among all agents in
the network, which contradicts the fact that a high producer. Hence, there is an
agentj’ > ny,(s*) such thatg;;,. Clearly,gj,;» = 0 for all j” > n;(s*). Otherwisej’

can strictly increase its utility by switching the link froffi to .

Now we prove that each neighbor of agghis also a neighbor of agent Suppose
there is an agent” > n;(s*) such thaty;,, = 1. It can be concluded thagt,, = 1
also holds. Otherwisg,’ can strictly increase its utility by switching the link frojhto
1 . Regarding the fact thatis connected with all high producers, it implies that every
agent who is a neighbor of agefitis also a neighbor of agent Therefore, the amount

of information that agent’ receives from its neighbors is no more than what is received
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by agenti. According to Assumption 3, we have that > x7, which contradicts the

fact thatz}, < z;. Statement (i) followsH

Lemma 4 provides important insights on how agents will imtemwith each other
at equilibrium. Statement (i) and (ii) jointly characterithe redundancy on produced
information at equilibrium. With a non-zero cost of link foation, the total amount
of information produced by high producers will always be enthran what each agent
needs. Hence, each high producer neither has a full coonegfith all other high
producers nor forms links with any low producer. Stateméntgroves that a low

producer always forms links with some high producers.

Given the agents’ link formation behavior at equilibriundathe information re-
dundancy, we can further determine, in the next lemma, freataw producer forms
links to other low producers in an equilibrium, it should Bdermed links to all high

producers.

Lemma 5. In an equilibriums* = (x*, g*), g5, = 1, for somej, j' > ny,(s*) only
if g7, =1, Vi <ny(s*). W

With Lemma 5, low producers can be further classified into tyaes in order to
facilitate our analysis: (i) a low producer forming links atl high producers and to
some of the low producers; (ii) a low producer forming linkghasome (or all) high

producers and no low producer.

4.3.2 Asymptotic equilibria in the IPLF game

By analyzing the equilibrium properties of agents, we asntable to characterize the
asymptotic equilibria when the network size grows. We piiove following theorem
that when the network size is sufficiently large, low prodead type (i) will disappear

in any equilibriums* = (x*, g*), and there are only high producers and low producers
of type (ii) left in the network. Given this, we can furtherachcterize the equilibria

topologies. Particularly, we show that each high producedpces an amount(x*)
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and each low producer (type (ii)) produces a smaller amotimformation, denoted
asz(x*). Meanwhile, each low producer forms links wiglig*) high producers and
does not form any link to low producers. Therefore, in a nekwat equilibrium, all
links are formed towards high producers, which play the oleubs for information
sharing in the network. The network then exhibits a “coragteery” structure with

high producers form the core and low producers stay at thphpny.

Theorem 2 (Asymptotic Equilibria). Givenc, k, p, andv, and when the network
sizen goes to infinity: (i) only two types of agents exist in any didpium s* =
(x*,g*): a hub agent is a high producer who produces an amiguriy and form links
only with other hub agents; a spoke agent is a low producerprbduces an amount
z(x*) and forms links with;(g*) hub agents and no link to other spoke agent;

(il) lim, o infgecg: {np(s*)} = oo andlim, . infecg:{ny(s*)} = oo where
ni(s*) £ n — ny(s*) and S* denotes the set of equilibrium strategy profiles when

the network size is. B

A key observation in proving Theorem 2 is that because of tst of link for-
mation, an agent has to produce a sufficiently large amoumfofmation, which is
lower-bounded away frorf, in order to attract others to form links to it. Meanwhile,
an agent has an upper bound on the amount of informatiorttatid like to consume
due to the concavity of the benefit function (4.1). As a resbkre is an upper bound
on the number of links that an agent would like to maintairhvathers. Therefore,
whenn — oo, the number of hub agents (i.e. high producers) goes to tnts well
to provide sufficient information for the consumption of afjents in the network, and
low producers will become spoke agents by not mutually cotimg with each other

but only connecting with hub agents.

Theorem 2 proves that the core-periphery structure is assacg condition for an
equilibrium whenn is sufficiently large, which is shown in Figure 4.1 with twoaex-
ples of equilibrium topologies. Throughout this chaptes, wgev(x) = in(1 + z*)'/*

as an exemplary utility function in the experiments. Bothdiogies exhibit the core-
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spoke agent

spoke agent

(©) k=5

Figure 4.1: Exemplary equilibria in a network with= 100 agents{¢ = 2, p = 0.8)

periphery structure composed of two rings. The inner rirggrrepresents hub agents
and the outer ring (periphery) represents spoke agentd;ear results are consistent
with the empirical observations that a majority of usersanial sharing services get
most of their information from a relatively small group ofthagents [72]. By com-
paring Figure 4.1(a) and Figure 4.1(b), which portray efjaim topologies withk
changing fron? to 5, we can see that the network becomes sparse as the link format
cost increases, when, instead of forming links with mutipub agents, spoke agents
get information only from hub agents in their vicinity ane thetwork is virtually divid-
ed into many small sub-networks where each hub agent takegebf the information

provision to its local agents.

101



The core-periphery structure exhibits some similarityite $mall-world networks
[68], which is also predicted in [69] as the “law of the few”.eXertheless, different
from the scale-free property where the fraction of hub agéimhinishes td) as the
network size grows to infinity, we show that under agentsrapjation for information
variety, the population of hub nodes will grow proportidgab the network size, and
their fraction in the total population is lower-bounded sweom 0. Similar results
have also been illustrated in [72], which reveals, througipieical measurement, that
the probability of users who are followed by very large nurslad users on Twitter is
above what a scale-free distribution would predict. Thiigates that as more agents
join the network, information production which is domingtey a small number of
powerful producers can no longer satisfy the agents’ désirdiverse information. As
a result, new hub agents with different varieties of infotiorawill emerge to provide

the information and stabilize the network.

Theorem 3. The number of hub agents at equilibrium grows at the same asle
the entire population, i.einfs.cs-{n4(s*)} is ©(n). More specifically, there exists a
constant; > 0 such that

lim inf {n,(s*)}/n >mn. (4.5)

n—00 s*ES
Proof: It has been proved in Theorem 2 that we can always find a rifigi
large valu€el™ such that spoke agents will not mutually form links to eadireoin any
equilibrium when the network size > T'. It is obvious that we can find a constant
valuep € (0,1) such thatinfg-cg:{n,(s*)}/n > p, Vn < T. Now look at the case
whenn > T'. Due to the concavity of the benefit functioft) and the fixed cost of link
formationk, a spoke agent cannot connect to more tharmub agents, which upper-
bounds the amount of information it receives from others;at. Hence, there exists a
constant such that the production level of a low produgéx™) is no less tham in any
equilibriums* whenn > T'. The total number of links that each high producer receives
from low producers is thus also upper-bounded by a constangted agi,. Given the

population of high producers, i.e,,(s*), the population of low producers should be no
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-©-hub agent, k=2
~<4-hubagent, k=4

—¥—spoke agent, k=2
—©-spoke agent, k=4

Normalized production level
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n

(b)
Figure 4.2: (a) The fraction of hub agents changing againgb) The normalized

production levels of agents changing agamét = 2, p = 0.8)

more thanf;n;(s*), which further delivers a lower bound anfg-cg-{n,(s*)}/n as
1/(1+ H;), Yn < T. We taken = min(u, 1/(1+ H;)) and hence Theorem 3 follows.
|

Figure 4.2 plots how the fraction of high productions as \aslt(x*) andz(x*) at

equilibrium change as increases. Figure4.2(a) illustrates Theorem 3. The number

51t should be noted that for a given set of the network pararaétec, p, andv, there are multiple
equilibria. In the experiment, we run the experiment midtimunds. At the beginning of each round,
we assign a randomly chosen initial strategy prafifé to all agents in the network. Then in each step
t, agents sequentially update their individual strateggsgibest response dynamics with some inertia
probability v and the resulting strategy profile beisff) (i.e. an agent adapts its strategy to its best
response with probability — v and remains to use its strategy adopted at stepl with probability

103



of hub agents grows at a slower speed thaat the beginning and hencey,(s*)/n
monotonically decreases. However, whers sufficiently large, the number of spoke
agents that a hub agent can support reaches its upper boande Ho support an equi-
librium, more hub agents will emerge ang(s*)/n stops decreasing, which indicates
thatn, (s*) starts to grow proportionally ta. Figure 4.2(b) shows how the production
levels of agents change againstFor a better illustration, we plot the normalized pro-
duction levels which are compared with their values at 100 on each curve. As it
shows, the normalized production level of spoke agentstdmagre drastically than that
of hub agents as grows, since a spoke agent mainly relies on information iaedu
from others rather than self-production and will be moresigantly influenced by the

change on the network size.

As a direct result of Theorem 3, we quantify in the followirgallary the amount

of information generated in the network.

Corollary 1. The total amount of information produced in the network atieq
librium, i.e. > .\ z;, grows at the same order as the population sizeThat is,
inferes: {D iy 7} @Ndsupg. e {D iy 77} @reO(n). W

Therefore, as the network grows, it will become informagilbynricher with more

agent-generated information available.

4.3.3 Equilibrium efficiency

In this section, we analyze the social welfare of the IPLF gaonquantitatively study
the efficiency of equilibria. The social welfare of the IPLE&nge is defined to be the
sum of agents’ individual utilities. For a strategy profile- (x, g), the social welfare
is given byW (x,g) = >_,. v wi(x, g). A strategy profiles” = (x*, g*) achieves the

social optimum, denoted a8#, if and only if

W* LW (x* g% > W(x.g), V(x,g) (4.6)

~). Each round terminates when the strategy profile conveoggesme fixed poing. The result plot in
Figure 4.2 is averaged over all rounds of experiments.
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In the following proposition, an upper bound B is given.

Proposition 1. There is a valué such that the social optimui* € (n[v(z) —
cz], nfv(n'/?z,) — ci,) — nk/2) whenk < k andW# = n[v(z) — cz] whenk > k.
Herez is defined in Lemma 3(iii) and,, is the solution of the equationi(n'/?z,,) =
c/nt=0/r A

When the social optimum is achieved in an empty network etieeno cost for link
formation and thus, we ha®’* = n[v(Z) — cz]. On the other hand, if the social
optimum is achieved in a non-empty network, it is proven #wth agent has at least
one connection and hence, the minimum total link cost in #te/ark isnk /2 while the
maximum total utility from information consumption and gration isn[v(n'/?z,) —

cZ,], which gives the corresponding upper bound of the sociahaph.

In order to prove the existence of the threshb|dt is sufficient to show that if
the social optimum is achieved in a non-empty network whea £, then it is also
achieved in a non-empty network whén< k;. Similarly, if the social optimum is
achieved in an empty network whén = k,, then it is also achieved in an empty

network whenk > k.

Next, we characterize the efficiency of the equilibriumtgtgy profile. The follow-
ing proposition provides a lower bound on the social welthgg can be achieved by

an equilibrium.

Proposition 2. The social welfare of any equilibrium strategyis lower bounded
by nfv(z) — cz].

Proof: Since each agent can ensure a utility(f) — cz by choosing not to form

any link and produce an amountofthe utility it receives in an equilibrium is always

no less than thidll

By combining Proposition 1 and 2, the following theorem pdes an upper bound
for the Price of Stability (PoS) in the IPLF game. It shouldho¢ed that since the lower

bound in Proposition 2 applies to all equilibria in the IPL&hge, this result also applies
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Figure 4.3: (a) The PoS against the network siz¢éb) The PoS and its lower bound
against the link formation costk & 2, p = 0.8, n = 500)

to the Price of Anarchy (PoA).

Theorem 4 (Upper Bound for PoS).The Price of Stability satisfies th@toS €
(1, ([v(n**2,) — cin) — k/2)/[v(Z) — cZ]) whenk < k andPoS = 1 whenk > k. B
Figure 4.3 plots the PoS againstaindk. As Figure 4.3(a) shows, the PoS mono-
tonically increases withh when it is sufficiently large. This is due to the fact that the
set of available strategy profiles in the IPLF game is enthejeng withn, whereas the
set of equilibrium strategy profiles remains limited as dagh agent in an equilibrium

can only support a limited number of spoke agents. Howeherdte for such increase
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Figure 4.4: The Price of Stability with indirect informatisharing ¢ = 1, p = 0.7)

slows down as becomes larger. In other words, the PoS saturates winesufficient-
ly large. Figure 4.3(b) compares the PoS and our derivedruppend in Theorem 4.
The upper bound is not tight whéenis small and it is optimal to form as many links
as possible in order to increase the information sharingieffcy. Whenk increases,
the upper bound becomes tight, as the topologies produckdthythe socially optimal
profile and the equilibrium profile become sparse with theaia welfare approaching

nfv(z) — cz].

4.4 Indirect Information Sharing

In the basic model, an agent can only consume informatiodymed by itself and its
neighbors (i.e. agents it connects via links). In many pecatscenarios, the infor-
mation sharing in social computing applications could bétirmop. That is, an agent
can also consume information which its neighbors acquirech fother agents. In this

section, we consider such indirect information sharing.

Several concepts are defined below before we formalize ttfe g@me with indirect
information sharing. Given a connectivity gragh we say that there is a path in g
between two agentsandj if either g;; = 1 or there exist agents, . . ., j,, distinct

fromi andj such that{g;;, = g;,j, = -+ = gj..; = 1}.
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Definition 1 (Connected Networkd network is connected if there is a path between
every pair of agents in its connectivity graph. A connectetivork is also called as a

component.

Definition 2 (Minimally Connected Networld. network is minimally connected if

there is a unique path between every pair of agents on itseotinity graph.

Given any two agents and j, the distance between them, denotedigég) is
defined as the number of hops (links) on the shortest patipétiecontains the smallest
number of links) betweenand; in g. If there is no path betweerandy, thend;;(g) =

.

In the IPLF game with indirect information sharing, we assutinat each agent
can acquire the effective information from its neighbor$ick already included the
information that the neighbors acquire from other agentseréfore, it is equivalent
that each agent can acquire information produced by alltageimo are connected with
him via a path. However, if an agent receives certain inféiongproduced by another
agent from multiple paths, it will automatically remove tieglundancy and only keep
one copy of the information in consumption. LE}(g) denote the set of agents whose

distance to ageritis [, the utility of agent then can be formulated as follows:

wi(x,8) = v((zf + ni > a)r) = cxi — kINi(g)]. (4.7)
I=1 jeNi(g)

In this section, we will use all the terminologies (e.g. diguum, social optimum,
etc.) that we defined for the IPLF game with direct informatstaring in Section 4.3
wherever they apply. With indirect information sharing;ain be proved that the IPLF
game always has at least one equilibrium. The resultindibgaiare characterized in

the following theorem.

Theorem 5. In the presence of indirect information sharing and whengants
utility is given by (4.7), there are two valués,,, andk,,;, for any givemn, ¢, p, andv,

such that
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() Whenk < k..., there exists a unique equilibrium where each agent has-a pro

duction levelz and no agent forms links;

(i) When k < k.., then each equilibrium preserves the following propert(e3
each agent produces an amouptwhich is the solution ofy(n'/?z,) = ¢; (b) the
network is minimally connected; (c) each agent has at leastamnnection to other

agents;

(i) When k,,,;, < k < k..., there are multiple equilibria each of which contains a

minimally connected component with the rest of agents bisiolgted.

Proof SketchFirst, it is easy to show that for a component of diza an equilib-
rium strategy profiles*, it is always minimally connected with each agent in it havin
the same production level. Then, we show that at any equilibran agent’s utility
from information consumption and production monotonicaficreases with the size
of component it is in. With this result, we prove that at anyiggrium, there is at
most one component whose size is larger thaisuppose in an equilibrium strategy
profile s* where there are two componerits and Cs of sizeb; andb,. Without loss
of generality, we assume that< b; < b,. Then for an agent in C; who forms a
link, it is always beneficial to switching this link to any adgs in C,, which leads to
a contradiction to the fact that is an equilibrium. Now consider another equilibrium
where there is an isolated agerdnd a componert whose size i$ > 1. With a little
abuse of notation, this equilibrium is also denoted’aslt can be shown that agent
j has the incentive to connect with the compon@nt and only if the link formation
costk is smaller than a value, which is determined by the size which is proved to

monotonically increases with

Summarizing all the above, it can be concluded that i ~,, there is a unique
equilibrium which contains a uniqgue component and theregath between any two
agents; ify; < k < v,_1, there are two equilibria where all agents are either isdlat
with each other or fully connected in a unique component; i¥ ~,_1, the network

has a unique equilibrium where all agents are isolated vaitihh@ther. Hence, we have
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kmam = Tn—1 andkmin = 71- n

Corollary 2. Givenc, p, andv(-), k... monotonically increases with, while k,,,;,

is constantl

It should be noted that different from the core-peripheracture in the case of
direct information sharing, where high producers are dieaain source of informa-
tion sharing and plays the role of hubs in the network, heeeatlients with the most
connections form the hubs of the network and take the redpbtysto share informa-
tion. Next, we analyze the social optimum of the IPLF gamdawitirect information

sharing. The proof is omitted due to its similarity to Theuarg.

Theorem 6. In the presence of indirect information sharing and whengents
utility is given by (4.7),

(i) There is a valug? > k., for any givenn, ¢, p, andv, such that the social

max

optimum is achieved in an empty network whien- k¢ -

max?

opt
min

(ii) There is a value:”: > k,,;, for any givenn, ¢, p, andv, such that the social

opt .
man?

optimum is achieved in a minimally connected network when &

(iii) When k%' < k < k°P'_the social optimum is achieved in a network which

contains a minimally connected component with the rest ehegbeing isolatedll
Hence, the Price of Stability in the IPLF game with indirediormation sharing,
which is plotted in Figure 4.4, achievéswhenk > k°°' and is strictly larger than

1 whenk < k2 . With indirect information sharing, the topologies of thetwork
are similar under both the socially optimal strategy pradihel an equilibrium profile.
Hence, the difference on the social welfare is highly infeezhby how much informa-
tion the agents produce in total. Whéns small, the discrepancy between the total
information productions of the socially optimal strateggfile and an equilibrium pro-
file is higher than that wheh is large, which gives a PoS monotonically decreasing

againstk.
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45 Conclusion

In this chapter, we investigate the problem of informatiooduction and network for-
mation in social computing systems. Different from the gngsliterature, the agents’
incentives for producing information themselves and fonfimg links to consume the
information of others are jointly considered. Moreover, determine rigorously how
the agents’ appreciation for information variety impadtsit interactions and the e-
merging connectivity between them. We then analyze theiafity of the emerging
equilibrium topologies and compare their performances what of the social opti-
mum. We also study the IPLF game which incorporates indirdotmation sharing.
Our analysis can be extended in several directions, amonchwie mention three.
First, we assume in this model that agents are homogenedasms of their benefit
functions and costs. The analysis on heterogeneous agentd vepresent an impor-
tant future research direction which can hopefully prowiée insights into the IPLF
game, e.g. agents’ heterogeneity could lead to the sefeatiequilibria and reduce the
set of possible equilibrium topology as predicted in [66¢c&nd, alternative formula-
tions on information transmission and link formation carelRgended from our current
model to encompass the features of various applicationer&eexamples include the
bilateral link formation which requires the mutual consehagents, the unilateral in-
formation transmission with which the information flow owetink is one-sided, and
non-constant link formation cost with which the cost of bfishing a link depends on
the characteristics of the creator and the recipient as agethe amount of informa-
tion (i.e. traffic) across this link. Finally, the design dfegtive incentive protocols
(e.g. pricing schemes to subsidize or tax link formation$ticmulate the information
production and sharing in order to reduce the Price of Stalaihd achieve the social

optimum also forms an important future research direction.
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CHAPTER 5

Information Dissemination in Socio-technical Networks

5.1 Introduction

The traditional analysis of communication networks assuthat the topology of the
network is fixed exogenously or determined by the centrabaes and that the actions
of users are obedient to the wishes of the designer. (It isajlp assumed that the
objective of the designer is to maximize social welfare [78], but other objectives
might be considered as well.) However, these assumption®tapply at all to social
networks such as Facebook [79] and Twitter [72], expert neta/such as Amazon
Mechanical Turk [42], vehicular networks [61], social miemetworks [59], peer-to-
peer overlay routing systems [80], etc. To the contrarytdpelogies of such networks
are determined endogenously by the actions of self-inkesd strategic users (which
leads us to use the term “strategic networks”). Aspectsrategjic networks that are
of particular interests include the topology that emertjes efficiency/inefficiency of
behavior and especially the protocols that the designehmiigplement to promote

social welfare even in the face of self-interested behawausers.

A central aspect of the strategic networks we study hereaiditiks in the network
can be created and maintained by individual users. Creatidgnaintaining links are
costly, so will only be carried out if they provide sufficidmgnefits for these individual
users. In some earlier work, especially in the economiesditire, the benefits of
links are that they permit the acquisition of informatiorte@iin P2P networks, news

on social networks, traffic/road conditions in vehiculatwaks, etc.); our point of
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departure in this chapter is that we emphasize that links@dsmit the dissemination
of information (advertising/marketing in social netwoifi8d][82][88], routing traffic

in overlay routing systems [83], etc.). The central mess#ghis chapter is that the
emphasis on the dissemination of information leads to véfgrdnt conclusions about

the structure of networks and the behavior of users in thesgarks.

To be precise, we consider the behavior of a group of seti@sted and strategic
agents/users who may create and maintain links to othes,uaed produce and dis-
seminate information. We formalize the strategic intecaxst among agents as a non-
cooperative game, the Information Dissemination Game {I[B8&cause we emphasize
information dissemination, we assume that link format®uaonilateral: the decision to
create a link from one agent to another is made unilaterallthb first agent and the
cost of creating that link is borne entirely by the agent wreates it; this is a reason-
able description of behavior and cost when the benefit otioiga link is disseminat-
ing information (advertising) rather than gathering imh@tion (see e.g. [63][64][86]).
We consider a setting in which agents and information ark beterogeneous: agents
differ in terms of their locations, access to devices, imfation and link production
capabilities and costs. Agents are self-interested: aateimds to maximize its own
benefit from information dissemination net of the cost oflthks it forms. Our notion

of solution in the Information Dissemination Game is a howjerative equilibrium.

We prove first that the typical network that emerges from tieiaterested behav-
ior of agents displays a core-periphery structure, with alennumber of agents at
the core (center) of the network and a larger number of agerite periphery (edges)
of the network. Agents in the core create many links and comaoate with many
other agents; agents in the periphery create few (or no$ lamd communicate mostly
(or entirely) with agents in the core. We go on to show thattyipécal networks that
emerge are minimally connected and have short network deamevhich are indepen-
dent of the size of the network. When agents’ strategic hehaworporates both link

formation and information production (with the objectiviernaximizing information
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dissemination), we show that the number of agents who pethformation and the
total amount of information produced grow with the size @& tietwork; this is in sharp
contrast with the “law of the few” which has been demonsttate[64] with settings

where the purpose of forming links is the acquisition of mfation.

Our analysis is important for a number of reasons. At theretexal level: small
diameters tend to make information dissemination efficaam minimal connectivi-
ty tends to minimize the total cost of constructing the nekwa@\t the empirical level:
they are consistent with the findings of numerous empirioastigations. More gener-
ally, our analysis provides guidance and tools for netwasighers to create protocols
providing incentives for agents to take actions that aresisb@nt with self-interest and

still promote social welfare.

The remainder of this chapter is organized as follows. 8edi2 describes our
basic model of the IDG. Section 5.3 characterizes the nap&ative equilibria that
emerge in the basic model. Section 5.4 analyzes the IDG wigiegjic information

production. Section 5.5 discusses the related literatuteSection 5.6 concludes.

5.2 System Model

5.2.1 Settings

In this section, we propose a basic model to formulate the, IDGrder to capture
the fundamental trade-offs between agents’ benefit andmststrategic information
dissemination. Although simple, our formulation alreadgyides qualitative insights
on how the incentives of self-interested agents impact ¢étvwaork structure, and can be

applied to numerous network applications (with slight nficdtions).

Let N = {1,2,...,n} be the set of agents in the system with> 3 and leti
andj denote typical agents. Each agemqossesses some information in the amount

x; € RT, which it finds in its own benefit to disseminate to other agel¥e consider
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a non-cooperative game where each agent strategicallyndets whether to create
links with other agents in order to disseminate its infoiorat As in e.g. [64][73],
links are created by the unilateral actions of an agent wharsbthe entire cost.
Thus, the mutual consent of two agents is not required inraereate a link be-
tween them. The link formation strategy adopted by an agentlenoted by a tuple
g = (9ij)jeqr,.mir € {0,1}"7% gi; = 1 if agent: forms a link with ageng and
gi; = 0 otherwise. The creation of a link incurs a cost to the creatat hence, the
decision to form a link involves trading-off the benefit reeel from disseminating in-
formation using this link and the incurred cost. A strateggfite in the information

dissemination game is defined@$ (g;)7_, € G, whereG is a finite space.

The information flow across a link is assumed to be undirecliduht is, given a
link between any two agents, the information can be tranisohih both directions (i.e.
from the creator to the recipient and vice versa) acrosslititks We thus define the
topologyof the network ast, = {(i,j) € N x N|i # jand max{gi;,g;;} = 1}.
In the rest of this chapter, we will use the terms “topologyidd'network” inter-
changeably. Given a topology,, a path between two agentsindj is a sequence
path;; = {(i,71), (J1,72), - - -+ (Jm, J) } for somem > 0 such thapath;; C E,. Agent
i canreachan ageny in a topologyE,, denoted — 7, if and only if there is at least
one path from agenitto j in Eg, otherwise; cannot reach agernit denoted —» j. We
assume that an agentan disseminate its information to every agg¢mhom it can

reach. Given this, the utility of an agenin the IDG can be expressed as:

ui(g) = f (x| Ni(E) =Y ki (5.1)

jeNi®) "
Here N;(Eg) = {j|i — j} is the set of agents whom agentan reach, andV;(g) =

{jlg;; = 1} is the set of agents with whom agenforms links. f (z;|N;(Eg)|) thus

'The precise formulations of link formation and informatibow among participating agents in an
IDG depend on details of the considered application. Dubeartfeasibility of enumerating all possible
models, we use a stylized model in this work as an examplertoutate the IDG. Our current formula-
tion has the great merit of being simple to work with and caayglied to most existing applications to
date with slight modifications, e.g. the telephone netw§tk4] and the Voice over IP applications such
as Skype [102].
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represents the total benefit that agerdgceives from information dissemination, which
depends on the amount of information it disseminatesgj,eas well as the total num-
ber of agents it can reach, i.6V;(Eg)|. We assume thaf(-) is twice continuously dif-
ferentiable, increasing and concave witti)) = 0. Hence, an agent’s benefit increases,
while the marginal benefit decreases, wittand|N;(Eg)|. >_ ;e v, o) ij represents the
total link formation cost of agent wherek;; € R* denotes the cost for ageitio form

a link with agentj.

We assume that an agent cannot benefit from disseminatirigaligol copies of its
information to any other agent. That is, when there are plelppaths from agentto
agent; and multiple copies of agelis information arrive at agent, agent; receives a
fixed benefit regardless of the number of copies that agemteives. We assume that
each agent benefits only from disseminating its own infoionatand forwarding the

information that is received from other agents does notatiany benefit.

5.2.2 Equilibrium and social welfare

We consider pure (not mixed) link formation strategies.Eagent maximizes its own
utility given the strategies of others. A Nash equilibriuNE) is defined as a strategy
profile g* such that the strategy of each agém a best response to the strategies of
others:

ui(gr,g";) > uilgi g ;). Ve € {0, 1}, Vi € N. (5.2)

Hereg , represents the strategies of all agents other than adgefite set of NE is
defined asG* = {g*|g" satisfies (2)}. A strict NE is an NE such that the strategy of
each agentis a strict best response to the strategies of others (watmgrquality in (2)
being strict wheneveg’ # g;). It is shown in the online appendix [23] that a network
will always converge to a strict NE in a dynamic link formatiprocess. Therefore, a
strict NE characterizes a steady state in the dynamic link&bion process. Note that

strict NE are NE and thus, the results below on NE also appdyrict NE.
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The social welfare of the IDG is defined to be the sum of agemdsvidual utilities.
For a strategy profilg, the social welfare is given by (g) = >"._ u:(g). A strategy
profile g is called socially optimal if it achieves the social optimuenoted by/#,
ie.

U* £ U(g") > U(g), Vg € G. (5.3)

5.3 Equilibrium and Efficiency Analysis of the IDG

This section studies the IDG described in Section 5.2. Rivetanalyze the equilib-
rium link formation strategies of individual self-inteted agents. Next, we explicitly
compare the equilibrium social welfare of the IDG to the aboptimum. The result-
s provide important insights on the efficiency loss occunad to the self-interested
behavior of the agents in the IDG as compared to the case weesgents obediently

follow the link formation actions dictated by some centresiginer.

5.3.1 Equilibrium analysis

Given a strategy profilg, acomponent” is a set of agents such that> j, Vi,j € C
andi - j', Vi € C andVj’ ¢ C. Hence, each component defines a connected
sub-network in a networl,: any two agents in this component can mutually reach
each other, whereas no agent in the component can reachletyagient outside the
component. An agent who is not connected with any other agetite network (i.e. an
isolated agent) forms a component by itself, callsthgletoncomponent; a component
that is not singleton is called @on-singletoncomponent. A componerit' is called
minimalif and only if there is only one path if, from any agent € C' to any other
agentj € C'. Theshortest patlirom agent to j is the path that contains the minimum
number of links. Thedistanced,(7, j) betweeni and j is the number of links on a
shortest path between them. By conventidy(s, j) £ oo wheni - j. Thediameter

of a componen€’ is defined as the largest distance between any two agentsvinich
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is denoted a®) = max dg(1, 7). The diameter of a singleton component is defined to
1,]€
be 0. The diameter of the network is defined to be the largastelier of all components

it contains.

It should be noted that the strategy space for each ageng i@ is compact and
convex. Meanwhile, an agent’s utility is quasi-concaveragdink formation strategy.
Hence, it has been shown in [90] that pure NE always existsan@G. We first derive
some basic properties of the equilibria in the IDG. Althowsyhple, these properties

are important for characterizing the emerging equilibate.
Proposition 1. Under an NEg* of the IDG, each component is minimal.

Proof: Suppose that there is a componéhsuch that there are two agerntandj
who are connected by two path&th;;, path;; C Eg- With path;;/path}; # ¢. Here
pathg;/path;; represents the relative complementpoth;; in path;; and contains all
elements that belong f@:th;; but do not belong tpath;;. Then there are always two
agent’ and;” in C' who satisfy: (1)y;;, = 1; and (2) there is ath;;; C Eg- such that
pathy o # ((7, 7). Therefore, by setting,;; = 0, agent;’ always receives a strictly
higher utility compared to what it can receivegn, which contradicts the fact that

is an NE. Hence, this proposition followlk

Proposition 1 shows that in an equilibrium of the IDG, eachrexted sub-network
(component) is minimal with no cycles in it. As we will showSection 5.3.2, the social
optimum in the IDG is always achieved by networks consistifwinimal components
and hence, the equilibria in the IDG can frequently achiéeedocial optimum (i.e.
being efficient).

Proposition 1 characterizes individual components in thaldrium network, but
it does not characterize the connectedness of the netwerkyhether the network will
be composed of a unique component where all agents are d¢omgphedth (and can
disseminate information to) each other or several compsritiat are isolated from

each other. The following proposition provides a sufficiemdition under which the
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network is connected at equilibrium.

Proposition 2. The network in each NE is always minimally connected if there
an agent such thatf (z;(|N| — 1)) — f(x;(|N| — 2)) > %%c{kij}.

Proof. Suppose there is a Ng* which contains more than one component. We
consider two components; and C,. Suppose agentis in C1, then it can always
increase its utility by forming a link to any other agentdh since f(x;(|N| — 1)) —
f(xi(IN| = 2)) > max {k;;}; jen, Which contradicts the fact thgf* is an NE. This

proposition thus followsHl

Proposition 2 shows that the network will be connected atlibgum when the
benefit from information dissemination is sufficiently lar@.e. x; is sufficiently large)
with respect to the link formation cost. The properties @f tietwork topology at equi-
librium (i.e. the shape and diameter of the network) depemdhe specific values of
{z;}ien and{k;;}; jen. In the rest of this section, we analyze two exemplary netg/or

with particular structures in order to obtain further ingigon the equilibrium topology.

5.3.1.1 Networks with recipient-dependent costs

In the first example, we consider the network where the costrafing a link is exclu-
sively recipient specific. In particular, we hakg = k;, Vi € N/{j}. This can capture
the practical networks in which the link formation cost onlgpends on the type of
the recipient and there are some agents to which it is ease@rmnect with than other
agents (i.e. with smaller costs to form links with). For exédenin networks where the
link formation cost represents the subscription fee thatctteator sends to the recipi-
ent, each agent charges the same price to any agent who wdotsta link with it.

In the following theorem, we show that if the link formatioost in the network is not
arbitrary but only takes values from a finite 4ét, ..., k*}, i.e. there ard. different
types of link formation costs and € {k',...,k*},Vi € N (e.g. the subscription fee is

guantized to several discrete levels depending on the siggpes but not takes arbi-
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trary values), then the diameter of the network at eachtgquilibrium should be no

more thar L + 2.

Theorem 1. Suppose that there afedifferent types of link formation costs, e.g.
{k, ..., kL}, such thaty; € {k',...,kL},Vi € N, then under any strict Nig* of the
IDG, the diameter of the network is at madt + 2.

Proof: Consider a strict NEg* and a non-singleton component in it, there is at
least one agent in the component such thgf; = 1 for some;j. Consider a path
pathi;, = ((,7), (4. j1), (i, J2)s - - -, (Ja-1. Ja)). Sinceg;; = 1, we should havek; <
kjy kj < kjy, ...,k < kj, ;. Now there are two caseg; ; = 1 org;; = 1.

In the first case, supposg,;, = 1, then we havek;, < kj;, which leads to a
contradiction to the fact thdt; < k;,. Hence, we havg; ;, = 1, which givest;, < kj;.

Using the same arguments, we hgye = 1andk; , <k;,,, foralll e {1,...,d —

Ji4+1 Ji42?
2}. Therefore, along the patputh;;, = ((j,71), (j1,72), - -, (Ja—1,Ja)), there are at
leastd different link formation costs. We thus have < L and the length of path

path;;, is smaller tharl + 1.

Now consider the second case whefe = 1. Then we have;, < kj,. Similar
to that for the first case, we have that pith;;, = ((j,71), .-, (Ja—1.Ja)), there are
at leastd different link formation costs and hence the length of patit;;, is still no

more thanl + 1.

Consider the longest path in this component, which is dehate

((bos b1), (b1,b2), ..., (bp_1,b7)). (5.4)

Supposd’ > 2(L+1) and consider the ageritg>) andb|ryzj+1- 1 g5, ) 5170 = 1
then the path((b;7/2), bj7/2)+1) - - -, (br—1,br)) has a length longer thafl + 1). If
Gozysjrbpry, — Lo then the path{((bizyzj 41, b17/2)), - - -, (b1, bo)) has a length longer
than(L + 1). Both scenarios contradict our argument above. Therefegezan con-

clude thatl" < 2(L + 1) always holds and this theorem followll.

The link formation cost thus plays an important role in shgpthe equilibrium
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network in the IDG. As shown in Theorem 1, if there are only @dinumber of differ-
ent link formation costs in the network, then the size of eammponent (a connected
sub-network) cannot be arbitrarily large but is upper-lmthby some constant value,
which is independent of the population size but proporticm#éhe number of different
link formation costs. Based on Proposition 1 and Theorenh&,“minimally con-
nected” and “short diameter” properties of the equilibnairategic networks are thus

proven.

As a special case of Theorem 1, we prove in the following d¢argthat when the
link formation cost is the same for all agents, each compboimea strict NE forms a

star topology, regardless of the valdes}c .

Corollary 1. If k;; = k,Vi,57 € N, then under a strict Nig*, each non-singleton

component forms a star topology.
Proof: See Appendixll

Hence when the link formation cost is the same for all agedgsh component at
equilibrium preserves the “core-periphery” property wathe single agent staying at
the center of it and playing the role of the “connector” whawects (maintains links)

with all other agents to support their information disseation.

5.3.1.2 Networks with groups

We discuss a network where agents are divided into groupagerts within the same
group have the same type. The cost of forming links withinaugr(i.e. between agents
of the same type) is lower than the cost of forming links asr@®ups (i.e. between
agents of different types). Examples of strategic netwarkere such groups exist are
users of close social relationships or close interests atebknetwork [92], devices or

processing nodes located in the same area [93], etc.

Formally, we consider that all agents are divided idtdifferent groupsVy, ..., Ny

with |[N,| > 2 forall 1 < z < Z, such thatV = U{N.}Z, andN, N N,, = ¢ for
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anyl < z < 2/ < Z. For two agents from the same group, the cost of forming a
link between them ig, while for two agents from different groups, the cost of form
a link between them i > k. Here we assume that = z,Vi € N to make our
analysis tractable. The following theorem characteribesstrict equilibria with the
presence of groups and proves that each non-empty stridtbegun preserves the
“core-periphery” property.

Theorem 2. In the presence of groups, the Nash equilibria can be claizet as

follows:
(i) When f(z) < k, the unique strict NEg* satisfiesy;; = 0, Vi, j;

(i) When f(z) € (k, k), the unique strict NE consists &f components, where
each component contains only agents from the same grouphandpology of each

component is a star;

(iii) When f(z) > k, in each strict NEg*, there is a groupV, and an agentc N,
such thay;; = 1,Vj € N./{i}. Also for each agent’ ¢ N_, there is an agente N,
such thay;, = 1.

Proof: See Appendixll

Several examples of the equilibrium topologies discuseethieorem 2 are illus-
trated in Figure 5.1 in a network af = 10 agents who are divided into 2 groups. The
number on each node represents the group to which each aglengb. Theorem 2
provides several important insights. First, in a strictilloium, agents from the same
group always belong to the same component (i.e. are corthedtie each other). Sec-
ond, each non-singleton component exhibits the “coreppery” property. The agents
that form the core are from the same group, while agents fribr@roups access the
network via links maintained by the core. This analyticatliing is reflected in numer-
ous real world examples. For instance, in a large-scaldayssuting network [83], it
is usually the case that a group of nodes who can inter-commadower cost form the

backbone of the network, while all other nodes connect tontevork via this back-
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Figure 5.1: The exemplary Nash equilibria in the networkwvgtoups

bone. Third, in each component, there is always a centraitayel all paths within
this component initiate from this agent. Also, the distainom the central agent to any
periphery agent is no more than 2. Hence, the diameter ofetveonk is no more than

4, which is also independent of the population size in thevak.

5.3.2 Equilibrium efficiency of the IDG

In this section, we analyze the efficiency (social welfare)he IDG. Because there
are multiple equilibria, we use two metrics to measure thélibgium efficiency: (i)
the Price of Stability (PoS) is defined as the ratio betweersttial optimum and the
highest social welfare that is achieved at equilibrium arehsures the efficiency of
the “best” equilibrium in the IDG, i.e.PoS = U#/maxg-cq-U(g"); (ii) the Price
of Anarchy (PoA) is defined as the ratio between the sociahaph and the lowest
social welfare that is achieved at equilibrium and measinesfficiency of the “worst”
equilibrium in the IDG, i.e.PoA = U# /ming.cq-U(g*). In the rest of this section,
we quantify the PoS and PoA in the IDG and show with multiplaregles that the

equilibria in the IDG frequently achieve the social optimum

We first characterize the socially optimal strategy profilds with NE, it can be
proven that the minimal property still holds in the networider any socially optimal

strategy profile.

Proposition 3. In the IDG, each component under a socially optimal profile is

always minimally connected.
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Proof: This can be proven using the same idea as Propositilih 1.

With the minimal property, we prove in the next theorem thaewthe link forma-
tion cost is recipient-dependent, ik; = k;,Vi € N/{j}, there is always an NE that
can achieve the social optimum when the link formation cestifficiently small: the

PoS of the IDG is always 1.

Theorem 3.1f k;; = k;,Vi € N/{j} andmijg flz) = mi]\rfl k;, the PoS of the IDG
1€ S

is always 1.

Proof: Let k;, = m‘%l k; and consider a periphery-sponsored gfawith g;;, =
(S
1,Vj € N/{ig} andg;;; = 0,V5,5" € N/{ip}. It is obvious thatg is both social

optimal and an NE. Hence, this theorem is provllin.

However, the PoA of the IDG is not necessarily 1 in this case,there are some

NE that incur positive efficiency loss. This is quantifiediie next proposition.

Proposition 4. If k;; = k;,Vi € N/{j} and%ijg flz;) = rlre%q k;, the PoA of the
IDG is upper-bounded byax; jenk;/k;.

Proof: We consider an arbitrary Ng*. Letk;, = 521]51 k; and consider a compo-
nentC; that containg,. Now consider another componefit. If C5 is a singleton
component which contains a unique agg¢nthen; can always increase its utility by
forming a link withiy. If C5 is a non-singleton component, then there is always an
agentj’ € Cy such thatyy, = 1,31 € Cy with max{g;,, g;;} = 0,VI' € N/{l}. In
this case,j’ can also increase its utility by switching its link frohto io. Therefore,
it can be concluded thgt* forms a connected network. From Proposition 3, we know
that the network formed by* is also minimal which containsV| — 1 links and hence,
U#/U(g*) < max; jenki/k; . Since this conclusion applies to any E Proposition

4 thus follows.H

Proposition 4 shows that the upper bound of PoA depends onhelnk formation
cost varies among agents. In the special case where theolimiafion cost is the same

for all agents, i.ek;; = k,Vi, 57 € N, each NEg* achieves the social optimum: PoA is
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Corollary 2. If k;; = k,Vi,j € N andr%i]? f(x;) > k, every NEg* achieves the

social optimum and the PoA of the IDG is 1.

Proof: This can be proven straightforwardly using Propositioli4.

5.4 IDG with Information Production

In the IDG discussed so far, we assumed that the informaissgssed by the each
agent is exogenously determined and fixed during the gameertiheless in practical
networks, it is usually the case that each ageran proactively determine the amount
of information that it wants to disseminate throughout teéwork, i.e. the value of
x;. In this section, we consider such IDG with strategic infatimn production from

individual agents.

In the IDG with information production, the strategy of areaty can be repre-
sented agz;,g;), and the agent jointly maximizes its decisions on the infaion
production and link formation in order to maximize its oveuility from information
dissemination. A strategy profile of the IDG with informatiproduction is written
ass = (x,g), wherex = (z;), denotes the information production decisions of all

agents. Given a strategy profile, the utility of agérgt expressed as:

ui(x,8) = f(zi|Ni(Eg)|) — cx; — Z Kij. (5.5)

JEN;(g)
Herecx; represents the cost of producing an amoynif information, where: is the

unit production cost.

A Nash equilibrium of the IDG with information production #&strategy profile
s* = (x*,g*) such that
ui(s},8%;) = wui(si,s%,),Vs; € RT x {0,1}"7 1, Vi € N. (5.6)

When information production is a strategic choice, cergtedstions are how many
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agents will produce information at equilibrium and how tb&at amount of information
produced in the network changes with the population sizee S¢minal work in [69]
analyzes the network formation game with information piitiun where agents benefit
from acquiring and consuming the information produced theotgents. It predicts
the occurrence of the “law of the few” at equilibrium. That is each equilibrium
there are only a small number of agents in the network whoymea positive amount
of information (i.e. being information producers). As thepplation size grows to
infinity, the fraction of information producers in the ag@opulation goes to 0. Based
on the “law of the few”, [69] also predicts that the total ambuof information that
is produced (by all agents) in the network remains constaagailibrium, which is

independent of the population size.

The reason for the emergence of the “law of the few” in [69h&tteach agent ben-
efits solely from information consumption and hence itstytis not affected by how
many agents it connects with and with whom it is connectedsg &s the total amount
of its acquired information remains constant. Also, whesre¢his a sufficient amount
of information that has been acquired by an agent, it wilpgtocoducing information
personally. Therefore, the information production at &lguium is always dominated
by a small fraction of information producers who producetia# information to be

consumed by all agents.

In the rest of this section, we study the asymptotic inforaraproduction behavior
of agents in the IDG when the population size grows. It shda@doted that in the
IDG, the benefit of an individual agent is jointly determingdthe amount of its own
production, i.e.z;, as well as the number of agents it connects with, j&;(Eg)],
whereas the information produced by other agents has n@nd&ion its information
production decision. This makes the resulting asymptaficrmation production be-
havior at equilibrium exhibits significant differences t@t in [69]. Importantly, we
prove in the following theorem that the “law of the few” doest hold in the IDG. To

illustrate this theorem, we define several auxiliary veaabS3, represents the set of
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equilibrium strategy profiles when the populatiomNis Iy (s) = {i|i € N and = > 0}
represents the set of information producers under theeglyqitrofiles, andz represents

the solution of the equatioff(z) = c.

Theorem 4. In the IDG with information dissemination, whena;\c[ ki < cz, (i)
ZJE
insf {In(s*)}/|N| = 1; (ii) the total amount of information produced in the networ
s*eSy

at equilibrium, i.e. > zf, grows to infinity when the population sizé&/| — oo, i.e.
1EN
lim inf xi} — oo.
IN| o S*esz*v{z’eZN i
Proof: To prove Statement (i), it is sufficient to see that each agetit connect to
at least one other agent in any NE and thus hgve 0 whenmax;;k;; < cz, which is

independent of the population sizg|.

By taking the first order derivative of (4), we have th&t(Eg- )| f'(|Ni(Eg-)|x}) =
c and thus|N;(Eg-)|zf > z. Also, for any two agents, j within the same compo-
nent, we have;; = x}. Therefore for any component, the total amount of informa-

tion produced by agents within this component at equilitoris Z xf, which satisfies
f'(X a7) = c/|Cland )] o7 > z. Suppose that there is a sﬁfcficiently large constant
Wlseﬁch that for anyV \ﬁg haves*inf%{gvxj} < W. Selects}, = arg s*igbf%{gvxj}.
Due to the concavity of (-), we have thaf’(%ﬁ) =c¢/|C| = f'(W) for any compo-

1€
C| < ¢/f'(W), and we havey = > |N|f'(W)z/c. This
1€EN
shows that there is always a sufficiently laf@g such that V| f'(W)z/c > W which

nentC' undersy,. Hence,

contradicts the assumption tha’hsf {>> xr} < W for any N. Therefore, we have a
S*ESN ieN

contradiction and Statement (ii) followl

Theorem 4 shows that when agents benefit from informaticsedignation instead
of information consumption, both the number of informatfmoducers and the total
amount of information produced in the network grow at ledsd Bnear order of the
population size at equilibrium. Therefore, the informatproduction at equilibrium is
no longer dominated by a small number of information prodsiead the “law of the

few” predicted in [69] no longer holds.
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5.5 Related Works

There is a broad literature studying the information digsation in social network-

s [94]-[100], which focuses on explaining how the informati(e.g. epidemics, job
openings, etc.) is propagated in social networks and hovagleats’ actions (e.g. be-
coming “infected” or not, buying products or not, etc.) anfluenced by the dissem-
inated information. However, the analysis in these worksaised on the assumption
that the underlying topologies of the social networks amgexously determined and

none of them explicitly considers the strategic link formoatof self-interested agents.

There are also numerous works in network science investgy#tte evolution of
social and information networks whose topologies are farerelogenously by agents’
self-interested actions [87]-[89]. These works focus orpieical measurements of
existing social networks and they fail to provide theom@tioundations which can ex-
plain and emulate the relationship between agents’ ineesitio form links based on

their own self-interest and the emerging network topolsgie

Theoretical study of network formation in social and ecoronetworks has been
conducted by micro-economists as well as computer scisiitise e.g. [63][64][69][84]-
[86]), who analyze how the agents’ self-interest in acaugjrinformation from other
agents leads to strategic link formation and particulawonek topologies. Howev-
er, these works focus on the scenario in which agents bewéilySrom consuming
acquired information. In the rest of this section, we disdhe relationship and differ-
ences between our proposed information dissemination ganthi¢he existing models

on network formation games with information acquisition.

5.5.1 Differences in agents’ utilities and incentives

First, note that analysis of the IDG and that of the networknfation game with in-
formation acquisition (which is referred to as the InforiroatAcquisition Game (I1AG)

below) exhibit significant differences in both the agentdities and the problem for-
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mulation. To illustrate the differences, we write the tyiliunction in the IDG below
as well as an exemplary utility function in the IAG. To make tey differences even

clearer, we assume that = k,Vi, j € N throughout the analysis:
w4 (g) = f(@i| Ni(Eg)|) — kINi(g)], (5.7)

ul*(g) = Jlait 3 @) = kINi(g)l. (5.8)

From these two utility functions, it can be observed thatia tAG, the benefit of an
individual agent is determined by the total amount of infation which it acquires,
€. zi + > cn,(m, Tj» @nd agents lose the incentive to form links as long as they ar
able to acquire sufficient information from the existingkbn regardless of with how
many agents they are connected and from which agents wasftmenation acquired
(i.e. the variety of agents). In contrast, in the IDG, thedj@rof an individual agent is
jointly determined by the amount of its own information, kg, as well as the number
of agents with whom it is connected, i|&V;(Ey)|, while the information possessed by
other agents has no influence on its link formation decisibime humber and variety
of agents that each agent is connected with thus form the mmpsirtant factor that

shapes its incentives.

It is important to note that in the IDG and the IAG, the amouindio agent’s own
information have opposite impacts on its incentive to famks with others: in the IAG,
the more information an agent possesses, i.e. the latger the smaller incentive it
has to form links with other agents; whereas in the IDG, ambtgéh a largerr; has a
larger incentive to form links with others. As a result, tixéséng models used for IAG
are not suitable to analyze the trade-off between the berefd costs of information
dissemination and link formation as well as the mutual innpatween agents’ strategic
link formation decisions in an IDG. In fact, the existing IA@odels can be applied to
analyze the IDG only if agents are homogeneous with= z, Vi, so that the total
amount of an agent’s acquired information is proportionalhe number of agents it

connects with.
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5.5.2 Differences in agents’ equilibrium link formation behavior

A simple example show that these differences lead to higiffgrdnt link formation
behaviors thereby resulting in significant differencesha équilibrium topologies as
opposed to those in the IAG. This pointis further illustchibelow using a simple exam-
ple. For a fair comparison, we assume in the examplefthat = y* with A € (0, 1).
Suppose that there areagents in the network. There is one agemossessing an
amountz; of information withz; > In &/ while all the other agents possess no infor-
mation. Then in the IAG, it is easy to show that agefdrms no link at equilibrium,
i.e. g;; = 0,Vj # 4, and each agent € N/{i} forms exactly one link with agent
i.e. g5, = 1,Vj # iandgj;, = 0,Vj # i,j° # i. Hence, the unique equilibrium in
the IAG is a periphery-sponsored star. Nevertheless indi@& bgent forms at least
one link with some other agent at equilibrium, i.g¢; = 1,35 # ¢, and each agent
J € N/{i} forms no link with any other agent, i.x;;, = 0,Vj # i,j’ € N. Mean-
while, the largerr; is, the more links that agemforms in the IDG. We can show that

whenz; > % In agent forms links with all other agents in the network,

with the unique equilibrium being a center-sponsored star.

This example provides two important insights: (1) agent& formation behaviors
at equilibrium exhibit significant differences when theg pfaying the 1AG or the IDG,
even if they possess the same amount of information and thewgame link formation
cost; (2) although the resulting equilibrium topologieshia IAG and IDG may exhibit
some similarity with respect to their shapes (e.g. both IA@E DG have the star
topology as the unique equilibrium when > {1In m), they may have
completely different underlying structures which leadiféedent properties in practice,
e.g. the center-sponsored star formed in the IDG has alhks supported by its center
node and is more vulnerable to single-node failures thampénghery-sponsored star

formed in the I1AG.
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5.5.3 Differences in emerging equilibrium topologies

The differences between the IDG and the IAG become even mistiect in the sce-
nario where agents self-produce information. For instatiee“law of the few”, which
is shown as a robust feature at equilibrium in the 1AG [69])arger holds in the IDG

as shown by Theorem 4.

5.6 Conclusion

In this chapter, we investigated the problem of informatisssemination and link for-
mation in strategic networks. We rigorously determined hiogvagents’ desire to dis-
seminate their own information throughout the network iotpdheir interactions and
the emerging connectivity/topology among them. Our anslgsoved several impor-
tant properties of the strategic networks (arising fromagents’ strategic link forma-
tion) at equilibria, such as “core-periphery”, “minimattpnnected”, “short diameter”.
These properties are important because they characthezdficiency and robustness
of the resulting equilibrium networks. We also studied ttrategic information pro-
duction by individual agents and its impact on the equidibof the information dis-
semination games. Importantly, we showed that when agemtsfib from information
dissemination, the information production at equilibriismo longer dominated by a
small number of information producers and hence, the “latheffew” derived for tra-

ditional network formation games where agents benefit froiormation consumption

no longer holds.
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5.7 Appendices

5.7.1 Proof of Corollary 1

This can be proved using the same idea as Theorem 1. We first fine following

claim.

Claim 1. Given a strict NEg* and whenk;; = k,Vi,j € N, if g;; = 1 for some
i,j € N, thenmax{g;,, g;,;} = 0foranyj’ # i andj’ # j.

Proof of Claim 1:Suppose, in contrasy;; = 1 andmax{gj;, g;,;} = 1 for some
j" #iandj’ # j. By deleting its link withj and forming a new link witly’, i receives
the same utility as what it receivesgri, which contradicts the fact thagt is an (strict)

equilibrium and hence this claim followl

In the next step, we show that for each non-singleton comuadeays has a star

topology in a strict NE.

Without loss of generality, we select two agentg € C whereC' is a component
in Eg-, such thay;; = 1. According to Claim 1, we have thatax{g};, g;,;} = 0 for
any;j’ € C'andj’ ¢ {i,j}. According to Proposition 1, we should also haye= 0,
since agenj can strictly increase its utility otherwise by removing thk it forms to
agenti.

Now suppose thag;,;, = 1 for somej’ € C'andj’ ¢ {i,j}. Itis obvious that
agentj’ can switch its link from agentto agent; without decreasing its utility, which
gives a contradiction. Therefore, we can conclude that= 1, Vj € C andj # i.
Meanwhile,g?;, = 0, Vj,j" € C'andj,j" # i. In other words(" has a star topology
where agent stays in the center and forms links with all other agents whyg & the
periphery, while all the other agents do not form links miyuaThis corollary thus

follows. &
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5.7.2 Proof of Theorem 2

(i) When f(z) < k, suppose that there is an equilibriugh which contains a non-
singleton componert'. Leti and; be two agents i’ such thay;; = 1, it is obvious
that agent can strictly increase its utility by setting; = 0. Hence, there is a contra-

diction and this statement follows.

(i) When f(z) € (k, k), consider a componeqt and one of its periphery agents
such thaimax{g;;, g5;} = 1,35 andmax{g;;/, g;,,} = 0,Vj" # j.

Supposey;; = 10 If ki = k and|C| > 2, agenti can always switch its link
to some other agent € C without decreasing its utility, It;; = k and|C| = 2,
agenti can always increase its utility by switching its link to sootber ageny’ ¢ C.
Both cases contradict the fact thgit is a strict NE. Hence, we havg; = k and
95, = 0,¥i" € C/{i, j} (otherwisei’ can switch its link fromy to i without decreasing
its utility). Sincei is a periphery agent, we haye, = 1,3i' € C/{i, j}. If |C| = 3,
thenk;;, = k and agent can switch its link fromy to " without decreasing its utility.
Therefore, we haveC| > 3 andg;,, = 1,3" € C/{i,j,i'}. If k;» = k, agentj can
switch its link froms’ to " without decreasing its utility, whereas/f;, = k, agent;
can switch its link fromj to i’ without decreasing its utility. Both cases contradict the
fact thatg™ is a strict NE. It can be thus concluded thgt= 1 cannot hold ing* and

we haveg;; = 1. As aresult;j should belong to the same groupiasith ;; = k.

Now consider another agejite C/{i,j}. If g;,; = 1, thenj’ can switch its link
from j to ¢ without decreasing its utility, which leads to a contraidict Therefore, we
haveg:,, = 1,Vj" € C'/{j} and the component forms a star topology. Also, if there is
an agent” € C who is not from the same group asthen; can always increase its

utility by removing its link with;” sincef(z) < k. Hence, this statement follows.

(iiiy When f(z) > k, itis still true that agents from the same group belong to the
same component. Also, the network should be connected withigue component

existing undeg*. It is always true that we can find two agentndi’ from one group
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N, such thaty};, = 1. Using the same argument as that in statement (ii), it is &asy
show thatg;;,, = 1,Vi” € N./{i}. Now consider an agent¢ N.. We havegj, =
0,Vi’ € N, (otherwise the condition of a strict NE is violated). Now sater a path
pathy; = ((I', 1), (J1s J2)s -os (Gm, J)) With J1, ..., jm, j ¢ N, andid’ € N,. Obviously,
we haveg;; = 1. Hence,i’ can switch its link fromj; to j without decreasing its
utility, which again violates the fact thgt is a strict NE. It can be thus concluded that
foreachj ¢ N., g;; = 1,3' € N, andgj; = 0,Vj’ ¢ N.. Therefore, this statement

follows.
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CHAPTER 6

Conclusion

In this dissertation, | developed a rigorous and formal gauork that integrates in-
centive mechanisms design with system resource managemens applicable to a
wide range of socio-technical networks including onlineiabnetworking platform-
s, online trading markets, social computing systems, afidenser-generated content
platforms. This framework encompasses various featuegsth common to a wide va-
riety of socio-technical networks, including the anonynaihd asymmetric interests of
agents, the agents’ strategic learning and adaptatiomgéets’ ability to make proac-
tive link formation decisions, and the imperfect monitgrion the agents’ behavior. A
central point of my analysis, which departs from the exgsliterature on distributed
optimization for large-scale systems, is the assumptiahttie agents are selfish and
only interested in maximizing their individual utilitieg)stead of the collective social

welfare of the network.

As the first part of the proposed framework, | establishedhayier 2 a rigorous
framework for the design and analysis of a class of ratinggmals to sustain cooper-
ation in online communities. | rigorously formulated thagbrm designer’s problem
of designing an optimal rating protocol and derived cowdisi for sustainable rating
protocols, under which no agent gains by deviating from tlesgribed recommend-
ed strategy. Then, | continued to study in Chapter 3 the prolbf designing rating
protocols under which agents adapt their behaviors and ®aer time. In such com-
munities, the platform designer can determine the longenoiution of the commu-

nity of agents. With this knowledge, the goal of the platfatesigner is not only to
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design a rating protocol that is sustainable, but also taded the community’s con-
vergence towards the (desirable) equilibrium in the long texplicitly showed that a
simple two-label rating protocol is sufficient to inducel faboperation among agents
and achieve the optimal performance in terms of the collecocial welfare. Next,
| turned to another important problem in socio-technicawoeks: the strategic infor-
mation production and link formation of the self-interestegents. Chapter 4 and 5
provide complementary analyses for both the informatiajquasition and dissemina-
tion. | rigorously determined how the trade-off of produgimformation personally
and forming links to acquire/disseminate information ircigahe interactions between
agents and thus the network topology that endogenouslygemethe key finding here
is that the network topology that emerges (at equilibriuegessarily displays a core-
periphery type. Meanwhile, as the population becomesiatigenumber of hub agents
and the total amount of information produced grow in proiporto the total popula-
tion. Importantly, this conclusion holds for both netwovkish information acquisition
and information dissemination, which indicates that tlusré-periphery” structure is
a robust feature of endogenously formed socio-technidatar&s. | then showed that
the networks that emerge at equilibrium are frequently mailly connected and have
short network diameters. My conclusions had been conjedttor many networks,
such as the “small-world” phenomenon in the World-Wide-Walt not derived in any

formal framework.

My framework can be extended in several directions, amorgiwimention three.
First, the effectiveness of the incentive mechanisms @egan this dissertation relies
on the truthful reporting from agents. For instance, theatipaf a server’s rating de-
pends on the report of its client. In an extension of my frawréwl will consider the
scenario in which clients can use more complicated decisit@s while reporting the
servers’ actions to the community operator in order to ma&entheir own long-term
utility, instead of always reporting truthfully. Secondjests considered in this disser-

tation adopt simple beliefs about the system and the stesteg other agents. More
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sophisticated belief models can be introduced into my fraonk. Understanding how
the evolutions of users’ beliefs and users’ strategiesimitlact each other form an im-
portant future research direction. Third, alternativenfalations on information trans-
mission and link formation can be extended from my currenti@eh¢o encompass the
features of various applications. Several examples ircthd bilateral link formation

which requires the mutual consent of agents, the unilatefaimation transmission

with which the information flow over a link is one-sided, ar@hrconstant link forma-

tion cost with which the cost of establishing a link depenashee characteristics of the
creator and the recipient as well as the amount of informdiie. traffic) across this
link.
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