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Socio-technical networks (e.g. social networking services, peer-to-peer systems, etc.)

provide a popular, cost-effective and scalable framework for sharing user-generated re-

sources or services. Achieving resource sharing efficiencyin socio-technical networks

is a challenging problem, because the information available about the various resources

is decentralized and it is changing dynamically; the agentsmay be heterogeneous and

have different learning abilities; the agents may make proactive decisions on link for-

mation; and most importantly, the agents may be self-interested, i.e. they take actions

which maximize their individual utilities rather than the collective social welfare and

thus choose to free-ride rather than share their resources.

The overarching goal of my dissertation is to develop a rigorous and unified paradig-

m for the joint design of efficient incentive mechanisms and resource management

schemes in socio-technical networks. It can be generally divided into two parts.

The first part focuses on the efficient resource sharing in socio-technical networks.

Existing distributed network optimization techniques that enable efficient resource allo-

cation when agents are obedient or cooperative are no longersuitable in socio-technical

networks which are formed by self-interested agents. The strategic interactions of such

self-interested agents lead in numerous socio-technical networks to (Nash) equilibria
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that are highly inefficient from a social perspective. To achieve social efficiency, in-

centives need to be provided to agents such that they find in their own self-interest to

cooperate and thus act in a socially-optimal way. I propose ageneral methodology for

the design and analysis of rating protocols and associated multi-agent learning algo-

rithms to sustain cooperation in socio-technical networks. Under a rating protocol, an

agent is rated based on its behavior. The rating affects the agent’s rewards received in

the network, which are typically determined according to a differential resource man-

agement scheme: compliant agents receive higher ratings and are rewarded by gaining

more access to resources compared to non-compliant agents.This preferential treat-

ment thus provides an incentive for agents to cooperate. I rigorously formalize and

study the design of rating protocols to optimize the social resource sharing efficiency

while encompassing various unique features of socio-technical networks, including the

anonymity of agents, asymmetry of interests between different parties in the network,

imperfect monitoring, dynamics in the agent population, and white-washing effects

(i.e., an individual agent creating multiple identities inthe network).

Different from the first part where the underlying network topology is exogenously

determined, the second part of my dissertation augments theproposed rating proto-

cols by investigating the endogenous formation of network topologies by the strategic,

self-interested agents who produce, disseminate or collect resources. I propose a novel

game-theoretic framework to model and analyze the trade-offs (of each individual agen-

t) between the costs and benefits of producing resources personally and forming links

to acquire and disseminate resources. A central point of my analysis, which depart-

s from the existing literature on social network formation,is the assumption that the

strategic agents are heterogeneous and that agents value this heterogeneity. The het-

erogeneity of agents and the ability of agents to strategically produce, disseminate or

collect resources have striking consequences on the endogenously emerging topology,

which provide important guidelines for the design of effective incentive mechanism-

s and resource management schemes in endogenous socio-technical networks. I first
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show that the network topology that emerges (at equilibrium) necessarily displays a

core-periphery type: hub agents (at the core of the network)produce most of the re-

sources and also create and maintain links to the agents at the periphery, while spoke

agents (at the periphery of the network) derive most of theirresources from hub agents,

producing little of it themselves. As the population becomes larger, the number of

hub agents and the total amount of resources produced grow inproportion to the total

population. I then show that the networks that emerge at equilibrium are frequently

minimally connected and have short network diameters. These “scale-free” conclu-

sions had been conjectured for many networks, such as the “small-world” phenomenon

in the World-Wide-Web, but not derived in any formal framework, and are in stark con-

tradiction to the “law of the few” that had been established in previous work, under the

assumption that agents solely benefit by forming links for resource acquisition, while

resources are homogeneous and part of the endowment of agents, rather than heteroge-

neous and produced.
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CHAPTER 1

Introduction

1.1 Motivation

People turn to the web to exchange services, data, and resource, as evidenced by the

popularity of online social networking services like Facebook and Twitter, peer pro-

duction sites like Wikipedia, peer-to-peer (P2P) systems like BitTorrent, local business

review sites like Yelp, and online labor markets like AmazonMechanical Turk. While

these online systems differ in many ways, they share a commonvulnerability to self-

ish behavior and free-riding. A worker on Amazon MechanicalTurk may attempt to

complete jobs with as little effort as possible while still being paid. Similarly, a us-

er in a peer-to-peer system may wish to download files from others without using its

bandwidth to upload files to others. In view of this fact, it isof critical importance to

properly motivate the self-interested participants to contribute their resource, knowl-

edge or services in order for these online systems to thrive.

Systems like these, which I refer to as socio-technical networks, have been attract-

ing unprecedented amount of attention. In order to fully realize the benefits of such

systems, tremendous technological efforts have been dedicated in the past decades to

enhance the system performance in terms of resource sharingefficiency, fairness, relia-

bility, derived revenues etc. Among the efforts, a major category of the existing research

in engineering has been devoted to proposing optimization techniques to enable the effi-

cient allocation of resource that largely relies on system-wide centralized/decentralized

management over obedient or cooperative agents. Nevertheless, this research typical-
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ly ignores the potentially devastating impact of selfish behavior and free-riding from

self-interested agents when they are not correctly motivated to contribute and thus sole-

ly have incentives to optimize their individual utilities rather than the collective so-

cial welfare. The strategic interactions of such self-interested agents lead in numerous

socio-technical networks to (Nash) equilibria that are highly inefficient from a social

perspective. Only recently have engineers started to investigate incentive issues in sys-

tems formed by self-interested agents. The existing mechanisms to combat free-riding

problems rely on some well-studied economic concepts such as pricing and direct reci-

procity. These mechanisms, though appropriate in some settings, do not make sense

for most socio-technical networks due to their unique technical characteristics (e.g. a-

gents are not willing or not capable to pay money for services, they are anonymous and

do not maintain long-lasting relationships, the underlying network topology is formed

endogenously due to agents’ proactive creation and dissemination of communication

links, no credible monitoring technology to track agents’ behavior, various accidents in

operation, etc.).

In this dissertation, I develop a rigorous and unified framework for the analysis as

well as the design of efficient incentive mechanisms and resource management schemes

for socio-technical networks, which take into account the unique technical character-

istics of the considered application, the environment in which it is deployed, and the

information available to both the agents and the designer (e.g. the entity running the

system or the distributed protocol designer). In the development of this framework, I

specifically seek answers to the following two questions: (i) how the platform designer

can configure and operate socio-technical networks at the highest level of efficiency

and robustness by designing optimal incentive mechanisms and associated resource

management rules; and (ii) how the agents’ self-interestednature, decentralized and

heterogeneous knowledge, and their learning and link formation abilities will shape

their interactions and impact the optimal incentive mechanism design.

Importantly, the proposed framework can serve as a guideline for platform design-
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ers when modeling, analyzing, comparing, and selecting incentive mechanisms and

resource management schemes for novel social-technical networks, and has the poten-

tial to influence a wide variety of related domains that include (but are not limited to)

social networking services, social sharing services, cloud/social computing, and cyber-

security.

1.2 Key Challenges

The key design challenges brought forward by socio-technical networks are:

• Asymmetry of interests. In socio-technical networks, agents usually have asym-

metric interests on a variety of resources. As an example, consider a knowledge-

sharing website where users with different areas of expertise share knowledge

with each other. It will be rarely the case that a pair of usershas a mutual interest

in the expertise of each other simultaneously. In the designof incentive mecha-

nisms and resource allocation schemes, I allow the possibility of asymmetric in-

terests by modeling the interaction between a pair of users as a gift-giving game,

instead of a prisoner’s dilemma game which is commonly adopted in the existing

literature and assumes mutual interests between a pair of users.

• Imperfect monitoring. The design of effective incentive mechanisms in the

existing literature relies on the perfect monitoring over agents’ resource shar-

ing behavior. Nevertheless, the monitoring technologies implemented in socio-

technical networks can never be perfect in practice. This makes the design prob-

lem more complicated. If monitoring was perfect, the platform designer can

employ a strong punishment on an agent’s selfish behavior (e.g. a trigger strate-

gy): isolating an agent from the system if it is detected not sharing its resources

in a cooperative manner. Such approach provides the strongest incentive for in-

dividual agents to cooperate. However, when monitoring is imperfect, its results
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cannot be guaranteed to be accurate and thus a strong punishment by the incen-

tive mechanism would therefore lead to very low sharing efficiency due to the

false punishments on cooperative agents. Instead, choosing milder punishments

becomes more efficient. However, the punishment should alsonot be too mild

such that sufficient incentives are provided to agents to cooperate. Therefore, an

optimal incentive mechanism needs to be designed as a tradeoff between sharing

efficiency and incentive-compatibility.

• Whitewashing. Another distinctive characteristic of socio-technical networks is

that the agents are anonymous (i.e. their online identitiesare not directly asso-

ciated with their real-world identities). Meanwhile, an agent can create multiple

online identities by repeatedly entering the system. As a result, an agent who

has been detected to be non-cooperative and is subject to punishments may at-

tempt to switch its online identity by leaving and rejoiningthe community as

a new member to avoid the punishments imposed by the system upon its old

identity, a behavior commonly known as “whitewashing”. Theincentive mech-

anisms proposed in this dissertation consider this possibility and are designed to

be “whitewashing-proof”.

• Distributed information availability and strategic learn ing. Due to the dis-

tributed availability of information in socio-technical networks, agents do not

have complete knowledge about the system and other agents. Thus, it is of

particular importance in this regard to investigate how to approach the perfor-

mance bounds of incentive mechanisms when agents can proactively adapt their

strategies based on limited, heterogeneous and evolving knowledge and reason-

ing about the system, the environment, and the strategies ofother agents. It

should be also noted that taking into account the agents’ strategic learning over

time will couple the platform designer’s decision with the agents’ self-interested

decisions, thereby significantly complicating the formal analysis and design of

incentive mechanisms.
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• Strategic link formation. One of the defining features that distinguish socio-

technical networks from traditional communication networks is that agents make

strategic and independent decisions regarding forming links and exchanging the

resources with other agents. For example, a user on Facebookor Twitter can

strategically determine its friendship connections; a peer node in P2P networks

makes active decisions on which peers it should connect to and download con-

tent from. Hence, the resource management schemes proposedin the existing

literature, which assume that the network topology in the system is exogenously

determined and fixed, are no longer applicable to socio-technical networks that

are usually formed endogenously by self-interested agentswho determine their

link formation strategies in a way to maximize their individual utilities.

1.3 Contribution of the Dissertation

The overarching goal of my dissertation is to develop a rigorous and unified paradig-

m for the joint design of efficient incentive mechanisms and resource managemen-

t schemes for socio-technical networks. It can be generallydivided into two parts.

The first part (Chapter 2-3) focuses on the design of efficientresource sharing

schemes in socio-technical networks. I propose a general methodology for the de-

sign and analysis of rating protocols and associated multi-agent learning algorithms to

sustain cooperation in socio-technical networks. Formulating the agents’ interaction as

non-cooperative repeated games, I rigorously model and study the design of rating pro-

tocols to optimize the resource sharing efficiency among agents while encompassing

various unique features of socio-technical networks. I also propose practical bench-

marks and criteria to evaluate the performance of incentivemechanisms both in terms

of economic efficiency and implementation overhead for a variety of applications.

The second part of my dissertation (Chapter 4-5) augments the proposed rating pro-

tocols by explicitly considering the strategic resource production and link formation
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of agents, where the resource represents “information” (e.g. files in P2P networks,

news on social networks, traffic/road conditions in vehicular networks, etc.). I pro-

pose a novel game-theoretic framework to model and analyze the trade-offs (of each

individual agent) between the costs and benefits of producing information personally

and forming links to collect and disseminate resources. Theanalysis has implications

for the topology that emerges endogenously. For large populations, the implication is

that the topology is necessarily of a core-periphery type. Meanwhile as the population

grows, the agents’ degree distribution converges to a “power-law” distribution and the

network becomes “scale-free”. My conclusions had been conjectured by numerous em-

pirical studies on distributed networking systems and social computing systems but had

not been previously derived formally.

1.3.1 Chapter 2: A General Framework of Rating Protocol Design for Online

Communities

In Chapter 2 of the dissertation, I propose a general framework that enables the rigor-

ous design of rating protocols for service and resource sharing in online communities. I

model the agents’ interactions as anonymous random matching games, in which each a-

gent is matched with different partners over time to exchange services. The goal of each

agent is to maximize its discounted long-term utility. My proposed rating protocols rely

on the idea of social reciprocation. Under a rating protocol, an agent is rated based on it-

s behavior. The rating affects the agent’s rewards receivedin the community, which are

typically determined according to a differential resourcemanagement scheme: compli-

ant agents receive higher ratings and are rewarded by gaining more access to resources

compared to non-compliant agents. This preferential treatment thus provides an incen-

tive for agents to cooperate. I derive conditions for sustainable rating protocols, under

which no agent gains by deviating from the socially-optimalresource sharing strategy.

Given these sustainability conditions, I formulate and solve the problem of designing

an optimal rating protocol and characterize the optimal social welfare. As special cases,
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I also analyze the one-sided rating protocol which only utilizes the rating score of one

party in the stage-game. I show that when only the rating scores of clients (i.e. agents

who request resources) are utilized, the optimal one-sidedrating protocol preserves a

simple structure with two-level rating scores, whereas when only the rating scores of

servers (i.e. agents who share resources) are utilized, no sustainable one-sided rating

protocol can be designed. Under this framework, I also studythe impacts of punishment

lengths and whitewashing possibility on the design and performance of optimal rating

protocols, identifying a trade-off between efficiency and incentives. Lastly, I present

numerical results to illustrate the impacts of the discountfactor, the turnover rate, and

the probability of report errors on the performance of optimal rating protocols.

1.3.2 Chapter 3: Strategic Learning in Online Communities

Chapter 2 assumes that the community starts to operate directly at a selected (“best”)

equilibrium, i.e. agents start by directly adopting a desirable equilibrium strategy when

joining the community, and rigorously designs rating protocols that ensure agents will

not deviate from this equilibrium strategy and that the community will indeed operate

at the selected equilibrium. Nevertheless, in practice, there are often multiple equilibria

in a community and agents can adopt arbitrary (non-equilibrium) strategies when they

join the community and learn to adapt their strategies basedon the accrued knowledge

about the community and other agents.

Chapter 3 augments the design in Chapter 2 by specifically investigating how the

strategic learning of self-interested agents impacts the design of optimal rating proto-

cols. To optimize their individual long-term performance,users learn the environment

and adapt their strategies by solving individual stochastic control problems. The users’

learning and adaptation catalyze a stochastic dynamic process, in which the strategies

of users in the community evolve over time. I first characterize the structural properties

of the users’ best response strategies. Subsequently, using these structural results I de-

sign rating protocols for governing the online communities, which not only sustains the
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best equilibrium, but also ensures the convergence of the community towards this equi-

librium in the long-run. I prove that by appropriately penalizing and rewarding users

based on their behavior in the community, such incentive mechanisms can eliminate

free-riding and ensure that the community converges to a desirable equilibrium select-

ed by the community designer such that social welfare is maximized and in which users

learn that it is in their self-interest to cooperate with each other.

1.3.3 Chapter 4: Information Production and Link Formation in Social Com-

puting Systems

In Chapter 4, I focus on the analysis of strategic link formation behavior of self-

interested agents in social computing systems. This analysis is conducted from sev-

eral points of view. First, I analyze the trade-offs (of eachindividual agent) between

the costs and benefits of producing information personally and forming links to collect

information (from other agents), and the strategic implications of these trade-offs. A

central point of the analysis is that information are assumed to be heterogeneous (rather

than homogeneous as in previous analyses), which is formulated by the well-known

Dixit-Stiglitz utility function, and agents value this heterogeneity. The analysis has

implications for the topology that emerges endogenously. For large populations, the

implication is that the topology is necessarily of a core-periphery type: hub agents (at

the core of the network) produce and share most of the information, while spoke agents

(at the periphery of the network) derive most of their information from hub agents,

producing little of it themselves. As the population becomes larger, the number of hub

agents and the total amount of information produced grow in proportion to the total

population. These conclusions had been conjectured for many social computing sys-

tems but it has not been previously derived in any formal framework, and are in stark

contradiction to the “law of the few” that had been established in previous work, under

the assumption that information is homogeneous and part of the endowment of agents,

rather than heterogeneous and produced.
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1.3.4 Chapter 5: Information Dissemination in Socio-technical Networks

Chapter 5 analyzes an alternative problem in strategic linkformation, in which the self-

interested agents are benefit from disseminating its own information (e.g. knowledge,

data, advertisement) instead of collecting the information produced by other agents. I

formulate the agents’ interactions as a non-cooperative game, where each agent proac-

tively determines its own information production and link formation strategies in order

to maximize its individual utility from disseminating its produced information. The

strategic production and dissemination of information have striking consequences. I

show first that the network structure that emerges (in equilibrium) typically displays a

core-periphery structure, with the few agents at the core playing the role of “connec-

tors”, creating and maintaining links to the agents at the periphery. I then determine

conditions under which the networks that emerge are minimally connected and have

short network diameters (properties that are important forefficiency). Finally, I show

that the number of agents who produce information and the total amount of informa-

tion produced in the network grow at the same rate as the agentpopulation. That is, the

“law of the few” also does not in socio-technical networks where agents benefit from

information dissemination.

1.3.5 Chapter 6: Conclusion

Chapter 6 concludes the dissertation and includes a discussion about future research

directions.
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CHAPTER 2

A General Framework of Rating Protocol Design for

Online Communities

2.1 Introduction

Recent developments in technology have expanded the boundaries of communities in

which individuals interact with each other. For example, nowadays individuals can

obtain valuable information or content from remotely located individuals in an online

community formed through online networking services [1]-[7]. However, a large pop-

ulation and the anonymity of individuals in such an online community make it difficult

to sustain cooperative behavior among self-interested individuals [8][9]. For exam-

ple, it has been reported that “free-riding” is widely observed in peer-to-peer networks

[10][11]. Hence, incentive schemes are needed to cultivatecooperative behavior in

online communities.

A variety of incentive schemes have been explored to induce cooperation in such

online communities. The most popular incentives are based on pricing schemes and

differential service provision. Pricing schemes use payments to reward and punish in-

dividuals for their behavior, which in principle can induceself-interested individuals

to cooperate with each other to attain the social optimum by internalizing their exter-

nal effects (see, for example, [12][13]). The main challenge with the pricing scheme

is that the resources/services being exchanged need to be accurately priced in order to

make the punishment scheme effective. However, this prerequisite is difficult to fulfill

in many online communities, where agents interact frequently with each other and the
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services being exchanged between them are not real goods butrather solutions to small

tasks or small amounts of resources which are difficult to price. One example of such

applications is the online question and answer forum [1], where the service represents

a small “favor” in answering the questions posted by other agents, i.e. knowledge is

what is being exchanged here. The difficulty in pricing such “small” services (i.e. the

knowledge and resources being exchanged) in these applications prevents the pricing

scheme to be effective. Therefore, it is more effective to incentivizing agents to provide

services by rewarding them in the form of rating scores/virtual credits, which allow

them to obtain the same type of services in the future from thecommunity as a return-

ing favor. Also, a pricing scheme often requires a complex accounting infrastructure,

which introduces substantial communication and computation overheads [14]. Hence,

it is impractical for the pricing scheme and the corresponding infrastructure to be im-

plemented in large-scale online communities, e.g. peer-to-peer systems [17], mobile

networks [2], etc., where agents have limited computing andcommunication capabil-

ities and are interacting frequently with each other for small services (i.e. frequent

transactions). For example, there have been some works thatdesign monetary-based

incentive mechanisms for peer-to-peer systems where each peer maintains a bank ac-

count and use real money to purchase resources. However, it has been measured that

significant overheads are introduced by the deployment of a payment infrastructure [14]

and hence, such pricing schemes were never actually implemented in such online com-

munities. Finally, pricing the services in online communities might discourage agents

from participating into the community.

Differential service schemes, on the other hand, reward andpunish individuals by

providing differential services depending on their behavior instead of using monetary

rewards [15]-[30]. Differential services can be provided by community operators or

by community members. Community operators can treat individuals differentially (for

example, by varying the quality or scope of services) based on the information about

the behavior of individuals. Incentive provision by a central entity can offer a robust
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method to sustain cooperation [15]. However, such an approach is impractical in a large

community because the burden of a central entity to monitor individuals’ behavior and

provide differential services for them becomes prohibitively heavy as the population

size grows. Alternatively, more distributed incentive schemes exist where community

members monitor the behavior of each other and provide differential services based

on their observations [16]-[30]. Such incentive schemes are based on the principle of

reciprocity and can be classified into personal reciprocation (or direct reciprocity) [16]-

[18] and social reciprocation (or indirect reciprocity) [19]-[30]. In personal reciproca-

tion schemes, individuals can identify each other, and behavior toward an individual is

based on their personal experience with that individual. Personal reciprocation is ef-

fective in sustaining cooperation in a small community where individuals can identify

each other and interact frequently with fixed opponents, butit loses its power in a large

community where individuals have asymmetric interests andcan freely and frequently

change the opponents they interact with [26]. In social reciprocation schemes, individ-

uals obtain some information about other individuals (for example, rating) and decide

their actions toward an individual based on this available information. Hence, an indi-

vidual can be rewarded or punished by other individuals in the online community who

have not had past interactions with it [26][27]. Therefore,social reciprocation has a po-

tential to form a basis of successful incentive schemes for online communities. As such,

this chapter is devoted to the study of incentive schemes based on social reciprocation.

Sustaining cooperation using social reciprocation has been investigated in the liter-

ature using the framework of anonymous random matching games, in which each indi-

vidual is repeatedly matched with different partners over time for service exchange and

tries to maximize its discounted long-term utility. To implement social reciprocation,

it is important for the community to share enough information about past interactions

such that the community members know how to reward or punish others. This exist-

ing literature makes different assumptions on the information revealed to community

members about other members. In [28] each community member observes the entire
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history of the past plays of its current partner. In [29][30], community members are

informed about the outcomes of the matches in which they havebeen directly involved.

Rating protocols have been proposed in [26] and [27], where each community member

is attached a rating score indicating its social status, which takes a value from a finite

set and records its past plays, and community members with different rating scores

are treated differently by other individuals they interactwith. For online communities,

maintaining direct records of individuals’ past plays which are used in [28]-[30] are

not appropriate, because the communication and storage cost for revealing the entire

history of the past plays of an individual grow unbounded with time. Since the use of

rating score as a summary record requires significantly lessamount of information to

be maintained, we will design incentive schemes based on rating protocols for online

communities. A rating-based incentive scheme can be easilyimplemented in online

communities that deploy entities (e.g., a tracker in P2P networks [17], or a web portal

in web-based applications [1]) who can collect, process, and deliver information about

individuals’ play history to generate rating scores.

Cooperation among community members can be sustained in allthe above works on

anonymous random matching games. However, all of them have focused on obtaining

the Folk Theorem by characterizing the set of equilibrium payoffs that can be achieved

when the discount factor of individuals is sufficiently close to 1. Our work, on the

contrary, addresses the problem of designing a rating-based incentive scheme given a

discount factor and other parameters arising from practical considerations, which are

not fully considered in the existing literature on anonymous random matching games.

Specifically, our work takes into account the following features of online communities:

• Asymmetry of interests.As an example, consider a community where individuals

with different areas of expertise share knowledge with eachother. It will be rarely

the case that a pair of individuals has a mutual interest in the expertise of each

other simultaneously. We allow the possibility of asymmetric interests by mod-

eling the interaction between a pair of individuals as a gift-giving game, instead
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of a prisoner’s dilemma game which assumes mutual interestsbetween a pair of

individuals [17][26]-[28]. It should be noted that the “asymmetry of interests”

in this chapter specifically refers to the fact that two agents in one stage game

do not have mutual interests in the resources or services possessed by each oth-

er simultaneously. Such “asymmetry of interests” exists invarious applications.

For example, in an online question and answer forum such as Yahoo! Answers,

a useri who answers a question of another userj does not necessarily have to

propose questions to userj as well [1].

• Report errors.In an incentive scheme based on a rating protocol, it is possible

that the rating score (or label) of a specific individual is updated incorrectly be-

cause of errors in the reports of its partners (i.e. other individuals it interacts

with). Our model incorporates the possibility of report errors, which allows us to

analyze its impact on design and performance, whereas most existing works on

rating schemes (e.g. [26][27]) adopt an idealized assumption that rating scores

are always updated correctly.

• Whitewashing. Whitewashing refers to the behavior of an individual creating

multiple identities by repeatedly entering to an anonymousonline community. In

an online community, individuals with bad rating scores mayattempt to white-

wash their rating scores by leaving and rejoining the community as new members

to avoid the punishments imposed by the system upon their oldidentities [17].

We consider this possibility and study the design of “whitewash-proof” rating

protocols and their performance.

Note that our model and analysis also differ significantly from most existing works

on reputation systems [23]-[25]. First, the models in [23]-[25] assume that individuals

assume fixed roles in the community (i.e. seller or buyer), which is common in appli-

cations where the groups of sellers and buyers are separatedand usually do not overlap

[21]. Nevertheless, in online communities such as P2P networks, online labor markets,
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Table 2.1: Comparison with the existing literature
[28]-[30][35] [26][27] [23][24] [25] Our work

Incentive

device

Differential

services

Differential

services

Monetary

rewards

Monetary

rewards

Differential

services

Asymmetry of

interests
N/A No No No Yes

Report errors N/A No Yes Yes Yes

Information

requirement

Entire history of

stage game

outcomes

Individual rating Individual rating Individual rating Individual rating

Discount factor
Sufficiently close

to 1

Sufficiently close

to 1
Sufficiently large Arbitrary Arbitrary

Number of

long-lived

players

Multiple Multiple One One Multiple

Protocol design No No Yes Yes Yes

Optimization

criterion

Individual

long-term utility

Individual

long-term utility

Individual

long-term utility

Individual

long-term utility

Sum utility of all

players

etc., each agent can be both the provider and the receiver of services. Second, the rep-

utation systems in [23]-[25] rely on differential pricing schemes to incentivize sellers

to cooperate. We have already mentioned that the services being exchanged and shared

in online communities are difficult to price, thereby preventing such pricing-based rep-

utation systems to be effectively deployed. Finally and most importantly, [23]-[25]

consider the repeated game between a unique long-lived seller and many short-lived

buyers, and the design principle there is to maximize the expected (discounted) long-

term utility of the individual long-lived seller. In contrast, we consider in this chapter

the interplay among a large number of long-lived individuals, and aim to maximize the

social welfare (i.e. the sum utility) of the entire community, which makes the design-

s in [23]-[25] inapplicable here. A more detailed and in-depth comparison between

our work and [23]-[25] is provided in Section 2.7. The differences between our work

and the existing literature on social reciprocity are summarized in Table 2.1 in order to

highlight our contribution and novelty.

The remainder of this chapter is organized as follows. In Section 2.2, we describe
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the repeated anonymous matching game and incentive schemesbased on a rating proto-

col. In Section 2.3, we formulate the problem of designing anoptimal rating protocol.

In Section 2.4, we provide analytical results about optimalrating protocols. In Section

2.5, we extend our model to address the impacts of variable punishment lengths, white-

washing possibility, and one-sided rating. We provide simulation results in Section 2.6,

discuss the related works in Section 2.7, and conclude the chapter in Section 2.8.

2.2 Model

2.2.1 Repeated Matching Game

We consider a community where each member, or agent, can offer a valuable service to

other agents. Examples of services are expert knowledge, customer reviews, job infor-

mation, multimedia files, storage space, and computing power. We consider an infinite-

horizon discrete time model with a continuum of agents [17] to highlight our focus on

online communities with large agent populations. Such continuum population model is

commonly adopted in the analysis for large-scale dynamic networks, e.g. peer-to-peer

systems [3][17], grid networks [4], social sharing websites [1][5], etc. In a period, each

agent generates a service request [37], which is sent to another agent that can provide

the requested service1. We model the request generation and agent selection process

using uniform random matching: each agent receives exactlyone request in every peri-

od and each agent is equally likely to receive the request of an agent, and the matching

is independent across periods2. Such model well approximates the matching process

between agents in large-scale online communities where agents interact with others in

an ad-hoc fashion and the interactions between agents are constructed randomly over

time. For example, in a mobile relay network [2] where agents(e.g. mobile devices)

1It should be noted that our analysis can be readily extended to the case where each agent generates
a service request with a probabilityλ < 1. We assumeλ = 1 in this chapter only for the simplicity of
illustrations.

2The impact of matching schemes on the incentive of agents andthe performance of online commu-
nities falls out the scope of this chapter, but serves as an important next step in this line of research.
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within a certain area are able to relay traffic for each other through unlicensed spectrum

(e.g. WLAN) to the destination (e.g. nearby cellular base stations), the relay node that

each mobile agent encounters at each moment could be approximately assumed to be

random, since this mobile agent is moving around the area randomly over time. In other

words, each idle agent in the same area has approximately thesame probability to be

chosen as the relay node.

In a pair of matched agents, the agent that requests a serviceis called a client while

the agent that receives a service request is called a server.In every period, each agent

in the community is involved in two matches, one as a client and the other as a server.

Note that the agent with whom an agent interacts as a client can be different from that

with whom it interacts as a server, reflecting asymmetric interests between a pair of

agents at a given instant.

We model the interaction between a pair of matched agents as agift-giving game

[32]. In a gift-giving game, the server has the binary choiceof whether to fulfill or

decline the request, while the client has no choice. The server’s action determines the

payoffs of both agents. If the server fulfills the client’s request, the client receives a

service benefit ofb > 0 while the server suffers a service cost ofc > 0. We assume

that b > c so that the service of an agent creates a positive net social benefit. If the

server declines the request, both agents receive zero payoffs. The set of actions for the

server is denoted byA = {F,D}, whereF stands for “fulfill” andD for “decline”.

The payoff matrix of the gift-giving game is presented in Table 2.2. An agent plays

the gift-giving game repeatedly with changing partners until it leaves the community.

We assume that at the end of each period a fractionα ∈ [0, 1] of agents in the current

population leave and the same amount of new agents join the community. We refer to

α as the turnover rate [17].

Social welfare in a time period is measured by the average payoff of the agents in

that period. Sinceb > c, social welfare is maximized when all the servers choose action

F in the gift-giving games they play, which yields payoffb − c to every agent. On the
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contrary, actionD is the dominant strategy for the server in the gift-giving game, which

constitutes a Nash equilibrium of the gift-giving game. When every server chooses its

action to maximize its current payoff myopically, an inefficient outcome arises where

every agent receives zero payoff.

Table 2.2: Payoff matrix of a gift-giving game
Server

F D

Client b,−c 0, 0

2.2.2 Incentive Schemes Based on a Rating Protocol

In order to improve the efficiency of the myopic equilibrium,we use incentive schemes

based on rating protocols. A rating protocol is defined as therules that a communi-

ty uses to regulate the behavior of its members. These rules indicate the established

and approved ways of “operating” (e.g., exchanging services) in the community: ad-

herence to these rules is positively rewarded, while failure to follow these rules results

in (possibly severe) punishments [36]. This gives rating protocols a potential to pro-

vide incentives for cooperation. We consider a rating protocol that consists of a rating

scheme and a recommended strategy, as in [26] and [27]. A rating scheme determines

the ratings of agents depending on their past actions as a server, while a recommended

strategy prescribes the actions that servers should take depending on the ratings of the

matched agents.

Formally, a rating scheme is represented by three parameters (Θ, K, τ): Θ denotes

the set of rating scores that an agent can hold,K ∈ Θ denotes the initial rating score

attached to newly joining agents, andτ is the rating update rule. After a server takes

an action, the client sends a report (or feedback) about the action of the server to the

third-party device or infrastructure that manages the rating scores of agents, but the

report is subject to errors with a small probabilityε. That is, with probabilityε, D

is reported when the server takes actionF , and vice versa. Assuming a binary set of
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reports, it is without loss of generality to restrictε in [0, 1/2]. Whenε = 1/2, reports are

completely random and do not contain any meaningful information about the actions

of servers. We consider a rating scheme that updates the rating score of a server based

only on the rating scores of matched agents and the reported action of the server. Then,

a rating scheme can be represented by a mappingτ : Θ×Θ×A → Θ, whereτ(θ, θ̃, aR)

is the new rating score for a server with current rating scoreθ when it is matched with

a client with rating scorẽθ and its action is reported asaR. A recommended strategy is

represented by a mappingσ : Θ × Θ → A, whereσ(θ, θ̃) is the approved action for a

server with rating scoreθ that is matched with a client with rating scoreθ̃ 3.

To simplify our analysis, we initially impose the followingrestrictions on rating

schemes4.

(1)Θ is a nonempty finite set, i.e.,Θ = {0, 1, . . . , L} for some nonnegative integer

L.

(2)K = L.

(3) τ is defined by

τ(θ, θ̃, aR) =





min{θ + 1, L} if aR = σ(θ, θ̃)

0 if aR 6= σ(θ, θ̃)
. (2.1)

Note that with the above three restrictions a nonnegative integerL completely

describes a rating scheme, and thus a rating protocol can be represented by a pair

κ = (L, σ). We call the rating scheme determined byL the maximal punishment rating

scheme (MPRS) with punishment lengthL. In the MPRS with punishment lengthL,

there areL + 1 rating scores, and the initial rating score is specified asL. If the re-

ported action of the server is the same as that specified by therecommended strategy

σ, the server’s rating score is increased by1 while not exceedingL. Otherwise, the

3The strategies in the existing rating mechanisms [26][27] determine the server’s action based solely
on the client’s rating score, and thus can be considered as a special case of the recommended strategies
proposed in this chapter.

4We will relax the second and third restrictions in Section 2.5.
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Figure 2.1: Schematic representation of a maximal punishment rating scheme

server’s rating score is set as0. A schematic representation of an MPRS is provided in

Figure 2.1.

Below we summarize the sequence of events in a time period:

(1) Agents generate service requests and are matched.

(2) Each server observes the rating of its client and then determines its action.

(3) Each client reports the action of its server.

(4) The rating scores of agents are updated, and each agent observes its new rating

score for the next period.

(5) A fraction of agents leave the community, and the same amount of new agents

join the community.

2.3 Problem Formulation

2.3.1 Stationary Distribution of Rating Scores

As time passes, the rating scores of agents are updated and agents leave and join the

community. Thus, the distribution of rating scores in the community evolves over time.

Let ηt(θ) be the fraction ofθ-agents in the total population at the beginning of an arbi-
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trary periodt, where aθ-agent means an agent with ratingθ. Suppose that all the agents

in the community follow a given recommended strategyσ. Then the transition from

{ηt(θ)}Lθ=0 to {ηt+1(θ)}Lθ=0 is determined by the rating scheme, taking into account the

turnover rateα and the error probabilityε, as shown in the following expressions:

ηt+1(0) = (1− α)ε

ηt+1(θ) = (1− α)(1− ε)ηt(θ − 1) for 1 6 θ 6 L− 1

ηt+1(L) = (1− α)(1− ε){ηt(L) + ηt(L− 1)}+ α

. (2.2)

Since we are interested in the long-term payoffs of the agents, we study the distribution

of rating scores in the long run.

Definition 1 (Stationary distribution).{η(θ)} is a stationary distribution of rating

scores under the dynamics defined by (2.2) if it satisfies
∑L

θ=0 η(θ) = 1, η(θ) > 0, ∀θ,

and

η(0) = (1− α)ε

η(θ) = (1− α)(1− ε)η(θ − 1) for 1 6 θ 6 L− 1

η(L) = (1− α)(1− ε){η(L) + η(L− 1)}+ α

. (2.3)

The following lemma shows the existence of and convergence to a unique stationary

distribution.

Lemma 1. For anyε ∈ [0, 1/2] andα ∈ [0, 1], there exists a unique stationary

distribution{η(θ)} whose expression is given by

η(θ) = (1− α)θ+1(1− ε)θε, for 0 6 θ 6 L− 1

η(L) =





1 if α = ε = 0

(1−α)L+1(1−ε)Lε+α
1−(1−α)(1−ε)

otherwise

. (2.4)

Moreover, the stationary distribution{η(θ)} is reached within(L+ 1) periods starting

from any initial distribution.

Proof: Suppose thatα > 0 or ε > 0. Then (2.3) has a unique solution

η(θ) = (1− α)θ+1(1− ε)θε, for 0 6 θ 6 L− 1

η(L) = (1−α)L+1(1−ε)Lε+α
1−(1−α)(1−ε)

, (2.5)

21



which satisfies
∑L

θ=0 η(θ) = 1. Suppose thatα = 0 andε = 0. Then solving (2.3)

together with
∑L

θ=0 η(θ) = 1 yields a unique solutionη (θ) = 0 for 0 6 θ 6 L − 1

andη(L) = 1. It is easy to see from the expressions in (2.2) thatη(θ) is reached within

(θ + 1) periods, for allθ, starting from any initial distribution.�

Since the coefficients in the equations that define a stationary distribution are inde-

pendent of the recommended strategy that the agents follow,the stationary distribution

is also independent of the recommended strategy, as can be seen in (2.4). Thus, we will

write the stationary distribution as{ηL(θ)} to emphasize its dependence on the rating

scheme, which is represented byL.

2.3.2 Sustainable Rating Protocols

We now investigate the incentive of agents to follow a prescribed recommended strat-

egy. For simplicity, we check the incentive of agents at the stationary distribution of

rating scores, as in [27] and [31]. Since we consider a non-cooperative scenario, we

need to check whether an agent can improve its long-term payoff by a unilateral devi-

ation. Note that any unilateral deviation from an individual agent would not affect the

evolution of rating scores and thus the stationary distribution, because we consider a

continuum of agents5.

Let cσ(θ, θ̃) be the cost suffered by a server with rating scoreθ that is matched with

a client with rating scorẽθ and follows a recommended strategyσ, i.e., cσ(θ, θ̃) = c

if σ(θ, θ̃) = F andcσ(θ, θ̃) = 0 if σ(θ, θ̃) = D. Similarly, let bσ(θ, θ̃) be the benefit

received by a client with rating scorẽθ that is matched with a server with rating scoreθ

following a recommended strategyσ, i.e.,bσ(θ, θ̃) = b if σ(θ, θ̃) = F andbσ(θ, θ̃) = 0

if σ(θ, θ̃) = D. Since we consider uniform random matching, the expected period

payoff of aθ-agent under rating protocolκ before it is matched is given by

vκ(θ) =
∑

θ̃∈Θ

ηL(θ̃)bσ(θ̃, θ)−
∑

θ̃∈Θ

ηL(θ̃)cσ(θ̃, θ). (2.6)

5This is true for any deviation by agents of measure zero.
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To evaluate the long-term payoff of an agent, we use the discounted sum criterion in

which the long-term payoff of an agent is given by the expected value of the sum of

discounted period payoffs from the current period. Letpκ(θ
′|θ) be the transition prob-

ability that aθ-agent becomes aθ′-agent in the next period under rating protocolκ.

Under MPRS,pκ(θ′|θ) can be expressed as

pκ(θ
′|θ) =






1− ε if θ′ = min{θ + 1, L}

ε ifθ′ = 0

0 otherwise

. (2.7)

Then we can compute the long-term payoff of an agent from the current period (before

it is matched) by solving the following recursive equations

v∞κ (θ) = vκ(θ) + δ
∑

θ′∈Θ

pκ(θ
′|θ)v∞κ (θ′)∀θ ∈ Θ, (2.8)

whereδ = β(1 − α) is the weight that an agent puts on its future payoff. Because

an agent leaves the community with probabilityα at the end of the current period, the

expected future payoff of aθ-agent is given by(1−α)
∑

θ′∈Θ pκ(θ
′|θ)v∞κ (θ′), assuming

that an agent receives zero payoff once it leaves the community. The expected future

payoff is multiplied by a common discount factorβ ∈ [0, 1), which reflects the time

preference, or patience, of agents.

Now suppose that an agent deviates and uses a strategyσ′ under rating protocolκ.

Because the deviation of a single agent does not affect the stationary distribution, the

expected period payoff of a deviatingθ-agent is given by

vκ,σ′(θ) =
∑

θ̃∈Θ

ηL(θ̃)bσ(θ̃, θ) +
∑

θ̃∈Θ

ηL(θ̃)cσ′(θ, θ̃). (2.9)

Let pκ,σ′(θ′|θ, θ̃) be the transition probability that aθ-agent using the strategyσ′ be-

comes aθ′-agent in the next period under rating protocolκ, when it is matched with

a client with rating scorẽθ. For eachθ, θ′ = min{θ + 1, L} with probability(1 − ε)

andθ′ = 0 with probabilityε if σ(θ, θ̃) = σ′(θ, θ̃) while the probabilities are reversed

otherwise. Thenpκ,σ′(θ′|θ) =
∑

θ̃∈Θ ηL(θ̃)pκ,σ′(θ′|θ, θ̃) gives the transition probability
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of a θ-agent before knowing the rating score of its client, and thelong-term payoff of

a deviating agent from the current period (before it is matched) can be computed by

solving

v∞κ,σ′(θ) = vκ,σ′(θ) + δ
∑

θ′∈Θ

pκ,σ′(θ′|θ)v∞κ,σ′(θ′)∀θ ∈ Θ. (2.10)

In our model, a server decides whether to provide a service ornot after it is matched

with a client and observes the rating score of the client. Hence, we check the incentive

for a server to follow a recommended strategy at the point when it knows the rating

score of the client. Suppose that a server with rating scoreθ is matched with a client

with rating scorẽθ. When the server follows the recommended strategyσ prescribed

by rating protocolκ, it receives the long-term payoff−cσ(θ, θ̃)+ δ
∑

θ′ pκ(θ
′|θ)v∞κ (θ′),

excluding the possible benefit as a client in the current period. On the contrary, when

the server deviates to a recommended strategyσ′, it receives the long-term payoff

−cσ′(θ, θ̃)+δ
∑

θ′ pκ,σ′(θ′|θ, θ̃)v∞κ,σ′(θ′), again excluding the possible benefit as a client.

By comparing these two payoffs, we can check whether aθ-agent has an incentive to

deviate toσ′ when it is matched with a client with rating scoreθ̃.

Definition 2 (Sustainable rating protocols).A rating protocolκ is sustainableif

−cσ(θ, θ̃)+ δ
∑

θ′
pκ(θ

′|θ)v∞κ (θ′) > −cσ′(θ, θ̃)+ δ
∑

θ′
pκ,σ′(θ′|θ, θ̃)v∞κ,σ′(θ′) (2.11)

for all σ′, for all (θ, θ̃).

In words, a rating protocolκ = (L, σ) is sustainable if no agent can gain from a uni-

lateral deviation regardless of the rating score of the client it is matched with when every

other agent follows the recommended strategyσ and the rating scores are determined by

the MPRS with punishment length L. Thus, under a sustainablerating protocol, agents

follow the prescribed recommended strategy in their self-interest. Checking whether a

rating protocol is sustainable using the above definition requires computing deviation

gains from all possible recommended strategies, whose computation complexity can be

quite high for moderate values of L. By employing the criterion of unimprovability in

Markov decision theory [38], we establish the one-shot deviation principle for sustain-
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able rating protocols, which provides simpler conditions.For notation, letca be the cost

suffered by a server that takes actiona, and letpκ,a(θ′|θ, θ̃) be the transition probability

that aθ-agent becomes aθ′-agent in the next period under rating protocolκ when it

takes actiona to a client with rating scorẽθ. The values ofpκ,a(θ′|θ, θ̃) can be obtained

in a similar way to obtainpκ,σ′(θ′|θ, θ̃), by comparinga with σ(θ, θ̃).

Lemma 2 (One-shot Deviation Principle). A rating protocolκ is sustainable if

and only if

cσ(θ, θ̃)− ca 6 δ

[
∑

θ′

{pκ(θ
′|θ)− pκ,a(θ

′|θ, θ̃)}v∞κ (θ′)

]
(2.12)

for all a 6= σ(θ, θ̃), for all (θ, θ̃).

Proof: If rating protocolκ is sustainable, then clearly there are no profitable one-

shot deviations. We can prove the converse by showing that, if κ is not sustainable,

there is at least one profitable one-shot deviation. Sincecσ(θ, θ̃) andca are bounded,

this is true by the unimprovability property in Markov decision theory [33][34].�

Lemma 2 shows that if an agent cannot gain by unilaterally deviating fromσ only in

the current period and followingσ afterwards, it cannot gain by switching to any other

recommended strategyσ′ either, and vice versa. The left-hand side of (2.12) can be

interpreted as the current gain from choosinga, while the right-hand side of (2.12) rep-

resents the discounted expected future loss due to the different transition probabilities

induced by choosinga. Using the one-shot deviation principle, we can derive incentive

constraints that characterize sustainable rating protocols.

First, consider a pair of rating scores(θ, θ̃) such thatσ(θ, θ̃) = F . If the server with

rating scoreθ serves the client, it suffers the service cost ofc in the current period while

its rating score in the next period becomesmin{θ + 1, L} with probability(1− ε) and

0 with probabilityε. Thus, the expected long-term payoff of aθ-agent when it provides

a service is given by

Vθ(F ;F ) = −c+ δ[(1− ε)v∞κ (min{θ + 1, L}) + εv∞κ (0)]. (2.13)
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On the contrary, if aθ-agent deviates and declines the service request, it avoidsthe

cost ofc in the current period while its rating score in the next period becomes0 with

probability(1−ε) andmin{θ+1, L} with probabilityε. The expected long-term payoff

of aθ-agent when it does not provide a service is given by

Vθ(D;F ) = δ[(1− ε)v∞κ (0) + εv∞κ (min{θ + 1, L})]. (2.14)

The incentive constraint that aθ-agent does not gain from a one-shot deviation is given

by Vθ(F ;F ) > Vθ(D;F ), which can be expressed as

δ(1− 2ε)[v∞κ (min{θ + 1, L})− v∞κ (0)] > c. (2.15)

Now, consider a pair of rating scores(θ, θ̃) such thatσ(θ, θ̃) = D. Using a similar

argument as above, we can show that the incentive constraintthat aθ-agent does not

gain from a one-shot deviation can be expressed as

δ(1− 2ε)[v∞κ (min{θ + 1, L})− v∞κ (0)] > −c. (2.16)

Note that (2.15) implies (2.16), and thus forθ such thatσ(θ, θ̃) = F for someθ̃, we

only have to check the first incentive constraint (2.15). Therefore, a rating protocolκ

is sustainable if and only if (2.15) holds for allθ such thatσ(θ, θ̃) = F for someθ̃ and

(2.16) holds for allθ such thatσ(θ, θ̃) = D for all θ̃. The left-hand side of the incentive

constraints (2.15) and (2.16) can be interpreted as the lossfrom punishment that rating

protocolκ applies to aθ-agent for not following the recommended strategy. In order

to induce aθ-agent to provide a service to some clients, the left-hand side should be

at least as large as the service costc, which can be interpreted as the deviation gain.

We useminθ∈Θ{δ(1 − 2ε)[v∞κ (min{θ + 1, L}) − v∞κ (0)]} to measure the strength of

the incentive for cooperation under the rating protocolκ, where cooperation means

providing the requested service in our context.
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2.3.3 Rating Protocol Design Problem

Since we assume that the community operates at the stationary distribution of rating

scores, social welfare under rating protocolκ can be computed by

Uκ =
∑

θ

ηL(θ)vκ(θ). (2.17)

The community operator aims to choose a rating protocol thatmaximizes social welfare

among sustainable rating protocols. Then the problem of designing a rating protocol

can be formally expressed as

max
(L,σ)

Uκ =
∑
θ

ηL(θ)vκ(θ)

subject to δ(1− 2ε)[v∞κ (min{θ + 1, L})− v∞κ (0)] > c, ∃θ̃ with σ(θ, θ̃) = F

δ(1− 2ε)[v∞κ (min{θ + 1, L})− v∞κ (0)] > −c, σ(θ, θ̃) = D, for all θ̃

.

(2.18)

A rating protocol that solves the design problem (2.18) is called an optimal rating

protocol.

2.4 Analysis of Optimal Rating Protocols

2.4.1 Optimal Value of the Design Problem

We first investigate whether there exists a sustainable rating protocol, i.e., whether the

design problem (2.18s) has a feasible solution. Fix the punishment lengthL and con-

sider a recommended strategyσD
L defined byσD

L (θ, θ̃) = D for all (θ, θ̃). Since there is

no service provided in the community when all the agents follow σD
L , we have

v∞(L,σD
L )(θ) = 0

for all θ. Hence, the relevant incentive constraint (2.16) is satisfied for all θ, and the

rating protocol(L, σD
L ) is sustainable. This shows that the design problem (2.18) always

has a feasible solution.
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Assuming that an optimal rating protocol exists, letU∗ be the optimal value of the

design problem (2.18). In the following proposition, we study the properties ofU∗.

Proposition 1. The optimal value of the design problem (2.18) satisfies the follow-

ing properties:

(i) 0 6 U∗ 6 b− 1−ε
1−2ε

c.

(ii) U∗ = 0 if c
b
> β(1−α)(1−2ε)

1−β(1−α)(2−3ε)
.

(iii) U∗ > [1− (1− α)ε](b− c) if c
b
6 β(1− α)(1− 2ε).

(iv) U∗ = b− c if ε = 0 and c
b
6 β(1− α).

(v) U∗ = b− c only if ε = 0 and c
b
6 β(1−α)

1−β(1−α)
.

Proof: See Appendix A.�

Proposition 1(i) proves that the optimal social welfare cannot be negative but is al-

ways strictly bounded away fromb − c, which is the social welfare when all agents

cooperates, whenε > 0. Hence full cooperation cannot be achieved in this scenari-

o. Since we obtain zero social welfare at myopic equilibrium, without using a rating

protocol, we are interested in whether we can sustain a rating protocol in which agents

cooperate in a positive proportion of matches. In other words, we look for conditions

on the parameters(b, c, β, α, ε) that yieldU∗ > 0. From Proposition 1(ii) and (iii), we

can regardc/b 6 [β(1−α)(1−2ε)]/[1−β(1−α)(2−3ε)] andc/b 6 β(1−α)(1−2ε)

as necessary and sufficient conditions forU∗ > 0, respectively. Moreover, when there

are no report errors (i.e.,ε = 0), we can interpretc/b 6 β(1 − α)/[1 − β(1 − α)]

andc/b 6 β(1 − α) as necessary and sufficient conditions to achieve the maximum

social welfareU∗ = b− c, respectively. As a corollary of Proposition 1, we obtain the

following results in the limit.

Corollary 1. For any(b, c) such thatb > c, (i) U∗ converges tob − c asβ → 1,

α → 0, andε → 0, and (ii)U∗ converges to0 asβ → 0, α → 1, or ε → 1/2. �

Corollary 1 shows that we can design a sustainable rating protocol that achieves

near efficiency (i.e.,U∗ close tob − c) when the community conditions are good (i.e.,
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β is close to 1, andα andε are close to 0). Moreover, it suffices to use only two ratings

(i.e.,L = 1) for the design of such a rating protocol. On the contrary, nocooperation

can be sustained (i.e.,U∗ = 0) when the community conditions are bad (i.e.,β is close

to 0,α is close to 1, orε is close to 1/2), as implied by Proposition 1(ii).

2.4.2 Optimal Recommended Strategies Given a Punishment Length

In order to obtain analytical results, we consider the design problem (2.18) with a fixed

punishment lengthL, denotedDPL. Note thatDPL has a feasible solution, namelyσD
L ,

for anyL and that there are a finite number (total2(L+1)2) of possible recommended

strategies givenL. Therefore,DPL has an optimal solution for anyL. We useU∗
L

andσ∗
L to denote the optimal value and the optimal recommended strategy ofDPL,

respectively. We first show that increasing the punishment length cannot decrease the

optimal value.

Proposition 2.U∗
L > U∗

L′ for all L andL′ such thatL > L′.

Proof: See Appendix B.�

Proposition 2 shows thatU∗
L is non-decreasing inL. SinceU∗

L < b− c whenε > 0,

we haveU∗ = limL→∞U∗
L = supLU

∗
L. It may be the case that the incentive constraints

eventually prevent the optimal value from increasing withL so that the supremum is

attained by some finiteL. This conjecture is verified in Figure 2.2, whereU∗
L stops

increasing whenL > 5. Hence, it is plausible for the protocol designer to set an upper

bound onL in practical designs with little efficiency loss incurred. Now we analyze the

structure of optimal recommended strategies given a punishment length. The properties

characterized in the following proposition can effectively reduce the design space of the

optimal recommended strategy givenL and thus reduces the computation complexity

of the optimal rating protocol design.

Proposition 3. If we have thatε > 0 andα < 1, the optimal rating protocol exhibits

the following structures:
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Figure 2.2: Optimal performance giving the punishment lengthL.

(i) A 0-agent does not receive service from some agents, i.e., σ∗
L(θ, 0) = D, ∃θ ∈

Θ.

(ii) If σ∗
L(0, θ̂) = F for someθ̂, then agents with sufficiently high rating scores

always receive service from 0-agents, i.e.,σ∗
L(0, θ̃) = F for all θ̃ > min{ln c

b
/ ln β, L}.

(iii) L- agents receive service from other agents whose rating scores are sufficiently

high, i.e., ifθ ∈ {1, . . . , L− 1} satisfiesθ > L− (ln c
b
− lnY (α, ε, L))

/
ln β, where

Y (α, ε, L) =
(1− α)L+1(1− ε)Lε− (1− α)L+2(1− ε)L+1ε

(1− α)L+1(1− ε)Lε+ α
, (2.19)

thenσ∗
L(θ, L) = F .

(iv) L-agents always provide service to other L-agents, i.e., σ∗
L(L, L) = F .

Proof: See Appendix C.�

As Proposition 3 shows, to construct an optimal rating protocol, sufficient pun-

ishment should be provided to agents with low rating scores while sufficient rewards

should be provided to agents with high rating scores.

2.4.3 Illustration with L = 1 andL = 2

We can represent a recommended strategyσL as an(L + 1) × (L + 1) matrix whose

(i, j)-entry is given byσL(i − 1, j − 1). Proposition 3 provides some structures of an
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optimal recommended strategyσ∗
L in the first column and the last row of the matrix

representation, but it does not fully characterize the solution of DPL. Here we aim

to obtain the solution ofDPL for L = 1 and2 and analyze how it changes with the

parameters. We first begin with the case of two ratings, i.e.,L = 1. In this case, if

σ1(θ, θ̃) = F for some(θ, θ̃), the relevant incentive constraint to sustainκ = (1, σ1) is

δ(1− 2ε)[v∞κ (1)− v∞κ (0)] > c. By Proposition 3(ii) and (iv), ifσ∗
1(θ, θ̃) = F for some

(θ, θ̃), thenσ∗
1(0, 1) = σ∗

1(1, 1) = F , provided thatε > 0 andα < 1. Hence, among the

total of 16 possible recommended strategies, only four can be optimal recommended

strategies. These four recommended strategies are

σ1
1 =


D F

F F


 , σ2

1 =


F F

D F


 , σ3

1 =


D F

D F


 , σ4

1 = σD
1 =


D D

D D


 . (2.20)

For notational convenience, we define a recommended strategy σD0
L by σD0

L (θ, 0) =

D for all θ andσD0
L (θ, θ̃) = F for all θ and all θ̃ > 0. In (2.20), we haveσ3

1 =

σD0
1 . The following proposition specifies the optimal recommended strategy given the

parameters.

Proposition 4. Suppose that0 < (1− α)ε < 1/2. Then

σ∗
1 =





σ1
1 if 0 < c

b
6 β(1−α)2(1−2ε)ε

1+β(1−α)2(1−2ε)ε

σ2
1 if β(1−α)2(1−2ε)ε

1+β(1−α)2(1−2ε)ε
< c

b
6 β(1−α)(1−2ε)[1−(1−α)ε]

1−β(1−α)2(1−2ε)ε

σ3
1 if β(1−α)(1−2ε)[1−(1−α)ε]

1−β(1−α)2(1−2ε)ε
< c

b
6 β(1− α)(1− 2ε)

σ4
1 if β(1− α)(1− 2ε) < c

b
< 1

. (2.21)

Proof: Let κi = (1, σi
1), for i = 1, 2, 3, 4. We obtain that

Uκ1 = (1− η1(0)
2)(b− c), Uκ2 = (1− η1(0)η1(1))(b− c)

Uκ3 = (1− η1(0))(b− c), Uκ4 = 0
. (2.22)

Since0 < (1−α)ε < 1/2, we haveη1(0) < η1(1). Thus, we haveUκ1 > Uκ2 > Uκ3 >
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Uκ4 . Also, we obtain that

v∞κ1(1)− v∞κ1(0) = η1(0)(b− c), v∞κ2(1)− v∞κ2(0) = b− η1(0)(b− c)

v∞κ3(1)− v∞κ3(0) = b, v∞κ4(1)− v∞κ4(0) = 0
.

(2.23)

Thus, we havev∞κ3(1)− v∞κ3(0) > v∞κ2(1)− v∞κ2(0) > v∞κ1(1)− v∞κ1(0) > v∞κ4(1)− v∞κ4(0).

By choosing the recommended strategy that yields the highest social welfare among

sustainable ones, we obtain the result.�

Proposition 4 shows that the optimal recommended strategy is determined by the

service cost-to-benefit ratioc/b. Whenc/b is sufficiently small, the recommended strat-

egyσ1
1 can be sustained, yielding the highest social welfare amongthe four candidate

recommended strategies. Asc/b increases, the optimal recommended strategy changes

from σ1
1 to σ2

1 to σ3
1 and eventually toσ4

1 . Figure 2.3 shows the optimal recommended

strategies withL = 1 asc varies. The parameters we use to obtain the results in the

figures of this chapter are set as follows unless otherwise stated: β = 0.8, α = 0.1,

ε = 0.2, andb = 10. Figure 2.3(a) plots the incentive for cooperation of the four rec-

ommended strategies. We can find the region ofc in which each strategy is sustained

by comparing the incentive for cooperation with the servicecostc for σ1
1 , σ2

1, andσ3
1,

and with−c for σ4
1. The solid portion of the lines indicates that the strategy is sustained

while the dashed portion indicates that the strategy is not sustained. Figure 2.3(b) plots

the social welfare of the four candidate strategies, with solid and dashed portions hav-

ing the same meanings. The triangle-marked line representsthe optimal value, which

takes the maximum of the social welfare of all sustained strategies.

Next, we analyze the case of three ratings, i.e.,L = 2. In order to provide a

partial characterization of the optimal recommended strategyσ∗
2, we introduce the fol-

lowing notation. Letσ#
2 be the recommended strategy withL = 2 that maximizes

min{v∞κ (1) − v∞κ (0), v∞κ (2) − v∞κ (0)} among all the recommended strategies with

L = 2. Let γ , δ(1 − ε) as defined in Appendix A, and define a recommended s-

trategyσB
L by σB

L (L− 1, 0) = D andσB
L (θ, θ̃) = F for all (θ, θ̃) 6= (L− 1, 0). We have
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(a) Incentive for cooperation

(b) Social welfare and the optimal recommended strategy

Figure 2.3: Performance of the four candidate recommended strategies whenL = 1.

the following conclusion aboutσ∗
2 andσ#

2 .

Proposition 5. Suppose thatε > 0, α < 1, and

c

b
<

η2(2)

η2(1)

1− γ

γ
<

b

c
, (2.24)

(i) σ#
2 = σD0

2 ; (ii) if η2(0) < η2(2), thenσ∗
2 = σB

2 .

Proof: (i) Let κ = (2, σD0
2 ). Then v∞κ (1) − v∞κ (0) = v∞κ (2) − v∞κ (0) = b.

We can show that, under the given conditions, any change fromσD0
2 results in a de-

crease in the value ofv∞κ (1)− v∞κ (0), which proves thatσD0
2 maximizesmin{v∞κ (1)−

v∞κ (0), v∞κ (2)− v∞κ (0)}.

(ii) Sinceε > 0 andα < 1, we haveη2(θ) > 0 for all θ = 0, 1, 2, and thus replac-

ing D with F in an element of a recommended strategy always improves social wel-

fare. Hence, we first consider the recommended strategyσF
L defined byσF

L (θ, θ̃) = F

for all (θ, θ̃). σF
2 maximizes social welfareUκ among all the recommended strate-
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gies withL = 2, but v∞κ (1) − v∞κ (0) = v∞κ (2) − v∞κ (0) = 0. Thus, we cannot find

parameters such thatσF
2 satisfies the incentive constraints, and thusσF

2 6= σ∗
2 . Now

consider recommended strategies in which there is exactly oneD element. We can

show that, under the given conditions, havingσ2(θ, θ̃) = D at (θ, θ̃) such that̃θ > 0

yields v∞κ (1) − v∞κ (0) < 0, whereas havingσ2(θ, θ̃) = D at (θ, θ̃) such thatθ̃ = 0

yields bothv∞κ (1) − v∞κ (0) > 0 andv∞κ (2) − v∞κ (0) > 0. Thus, for any recommend-

ed strategy having the onlyD element at(θ, θ̃) such thatθ̃ > 0, there do not exist

parameters in the considered parameter space with which theincentive constraint for

0-agents,δ(1 − 2ε) [v∞κ (1)− v∞κ (0)] > c, is satisfied. On the other hand, for any

recommended strategy having the onlyD element at(θ, θ̃) such thatθ̃ = 0, we can

satisfy both incentive constraints by choosingβ > 0, α < 1, ε < 1/2, andc suffi-

ciently close to 0. This shows that, among the recommended strategies having exactly

oneD element, only those havingD in the first column are possibly sustainable. S-

ince η2(1) < η2(0) < η2(2), σB
2 achieves the highest social welfare among the three

candidate recommended strategies.�

Let us try to better understand now what Proposition 5 means.Proposition 5(i)

implies that the maximum incentive for cooperation that canbe achieved with three

ratings isβ(1 − α)(1 − 2ε)b. Hence, cooperation can be sustained withL = 2 if and

only if β(1 − α)(1 − 2ε)b > c. That is, if c/b > β(1 − α)(1 − 2ε), thenσD
2 is the

only sustainable recommended strategy and thusU∗
2 = 0. Therefore, when we increase

c while holding other parameters fixed, we can expect thatσ∗
2 changes fromσD0

2 to σD
2

aroundc = β(1−α)(1−2ε)b. Note that the same is observed withL = 1 in Proposition

4. We can see that[ητ (2)/ητ(1)][(1− γ)/γ] converges to 1 asα goes to 0 andβ goes to

1. Hence, for given values ofb, c, andε, the condition (2.24) is satisfied and thus some

cooperation can be sustained ifα andβ are sufficiently close to0 and1, respectively.

Consider a rating protocolκ = (2, σB
2 ). We obtain that

min{v∞κ (1)− v∞κ (0), v∞κ (2)− v∞κ (0)} = v∞κ (2)− v∞κ (0) = (1− α)2(1− ε)ε(b− βc)

(2.25)
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andUκ = (1 − (1− α)3(1 − ε)ε2)(b − c). Proposition 5(ii) is stating thatσ∗
2 = σB

2

when the community conditions are “favorable”. More precisely, we haveσ∗
2 = σB

2 if

(1− α)2(1− ε)ε(b− βc) > c, or

c

b
6

β(1− α)3(1− 2ε)(1− ε)ε

1 + β2(1− α)3(1− 2ε)(1− ε)ε
. (2.26)

Also, Proposition 5(ii) implies thatU∗
2 6 (1− (1− α)3(1− ε)ε2)(b− c) always holds.

In Figure 2.4, we show the optimal value and the optimal recommended strategy

of DP2 as we varyc. The optimal recommended strategyσ∗
2 changes in the following

order before becomingσD
2 asc increases:

σ1
2 =




F F F

D F F

F F F


 , σ2

2 =




D F F

F F F

F F F


 , σ3

2 =




D F F

D F F

F F F


 ,

σ4
2 =




F F F

F F F

D F F


 , σ5

2 =




F F F

D F F

D F F


 , σ6

2 =




D F F

F F F

D F F


 , σ7

2 =




D F F

D F F

D F F


 .

.

(2.27)

Note thatσ1
2 = σB

2 for small c andσ7
2 = σD0

2 for largec (but not too large to sustain

cooperation), which are consistent with the discussion about Proposition 5. For the in-

termediate values ofc, only the elements in the first column change in order to increase

the incentive for cooperation. We find that the order of the optimal recommended s-

trategies betweenσ1
2 = σB

2 andσ7
2 = σD0

2 depends on the community’s parameters

(b, c, β, α, ε).

2.5 Extensions

2.5.1 Rating Schemes with Shorter Punishment Length

So far we have focused on MPRS under which any deviation in reported actions results

in a rating score of0. Although this class of rating schemes is simple in that a rating
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Figure 2.4: Optimal social welfare and the optimal recommended strategy ofDP2.

scheme can be identified with the number of rating scores, it may not yield the highest

social welfare among all possible rating schemes when thereare report errors. When

there is no report error, i.e.,ε = 0, an agent maintains rating scoreL as long as it

follows the prescribed recommended strategy. Thus, in thiscase, punishment exists

only as a threat and it does not result in an efficiency loss. Onthe contrary, whenε > 0

andα < 1, there exist a positive proportion of agents with any ratingfrom 0 toL−1 in

the stationary distribution even if all the agents follow the recommended strategy. Thus,

there is a tension between efficiency and incentive. In orderto sustain a rating protocol,

we need to provide a strong punishment so that agents do not gain by deviation. At the

same time, too severe a punishment reduces social welfare. This observation suggests

that, in the presence of report errors, it is optimal to provide incentives just enough to

prevent deviations. If we can provide a weaker punishment while sustaining the same

recommended strategy, it will improve social welfare. One way to provide a weaker

punishment is to use a random punishment. For example, we canconsider a rating

scheme under which the rating score of aθ-agent becomes0 in the next period with

probabilityqθ ∈ (0, 1] and remains the same with probability1− qθ when it reportedly

deviates from the recommended strategy. By varying the punishment probabilityqθ for

θ-agents, we can adjust the severity of the punishment applied to θ-agents. This class

of rating schemes can be identified by(L, {qθ}). MPRS can be considered as a special
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case whereqθ = 1 for all θ.

Another way to provide a weaker punishment is to use a smallerpunishment length,

denotedM . Under the rating scheme with(L+1) rating scores and punishment length

M , rating scores are updated by

τ(θ, θ̃, aR) =





min{θ + 1, L} if aR = σ(θ, θ̃)

max{θ −M, 0} if aR 6= σ(θ, θ̃)
. (2.28)

When aθ-agent reportedly deviates from the recommended strategy,its rating score

is reduced byM in the next period ifθ > M and becomes 0 otherwise. Note that

this rating scheme is analogous to real-world rating schemes for credit rating and auto

insurance risk rating. This class of rating schemes can be identified by(L,M) with

1 6 M 6 L 6. MPRS can be considered as a special case whereM = L.

In this chapter, we focus on the second approach to investigate the impacts of the

punishment length on the social welfareUκ and the incentive for cooperationmin
θ
{δ(1−

2ε)[v∞κ (min{θ + 1, L})− v∞κ (max{θ −M, 0})]} of a rating protocolκ, which is now

defined as(L,M, σ). The punishment length M affects the evolution of the ratingdis-

tribution, and the stationary distribution of rating scores with the rating scheme(L,M),

{η(L,M)(θ)}
L
θ=0, satisfies the following equations:

η(L,M)(0) = (1− α)ε
M∑
θ=0

η(L,M)(θ)

η(L,M)(θ ∈ {1, L−M}) = (1− α)(1− ε)η(L,M)(θ − 1) + (1− α)εη(L,M)(θ +M)

η(L,M)(θ ∈ {L−M + 1, L− 1}) = (1− α)(1− ε)η(L,M)(θ − 1)

η(L,M)(L) = (1− α)(1− ε){η(L,M)(L) + η(L,M)(L− 1)}+ α

.

(2.29)

Let µ(L,M)(θ) =
θ∑

k=0

η(L,M)(k) for θ = 0, . . . , L. Figure 2.5 plots the stationary

distribution{η(L,M)(θ)}
L
θ=1 and its cumulative distribution{µ(L,M)(θ)}

L
θ=1 for L = 5

andM = 1, . . . , 5. We can see that the cumulative distribution monotonicallydecreas-

es withM , i.e., µ(L,M1)(θ) 6 µ(L,M2)(θ) for all θ if M1 > M2. This shows that, as

6We can further generalize this class by having the punishment length depend on the rating. That is,
when aθ-agent reportedly deviates from the recommended strategy,its rating is reduced toθ − Mθ in
the next period for someMθ 6 θ.
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(a)

(b)

Figure 2.5: (a) Stationary distribution of rating scores and (b) the cumulative distribu-

tion whenL = 5.

the punishment length increases, there are more agents holding a lower rating score.

As a result, when the community adopts a recommended strategy that treats an agent

with a higher rating score better, increasing the punishment length reduces social wel-

fare while it increases the incentive for cooperation. Thistrade-off is illustrated in

Figure 2.6, which plots social welfare and the incentive forcooperation under a rating

protocol(3,M, σC
3 ) for M = 1, 2, 3, where the recommended strategyσC

L is defined by

σC
L (θ, θ̃) = F if and only if θ̃ > θ, for all θ.

In general, the recommended strategy adopted in the community is determined to-

gether with the rating scheme in order to maximize social welfare while satisfying

the incentive constraints. The design problem with variable punishment lengths can

be formulated as follows. First, note that the expected period payoff of aθ-agent,

vκ(θ), can be computed by (2.6), with the modification of the stationary distribution to

{η(L,M)(θ)}
L
θ=1. Agents’ long-term payoffs can be obtained by solving (2.8), with the
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transition probabilities now given by

pκ(θ
′|θ) =






1− ε if θ′ = min{θ + 1, L}

ε if θ′ = max{θ −M, 0}

0 otherwise

. (2.30)

Finally, the design problem can be written as

max
(L,M,σ)

Uκ =
∑
θ

η(L,M)(θ)vκ(θ)

subject to δ(1− 2ε)[v∞κ (min{θ + 1, L})− v∞κ (max{θ −M, 0})] > c

∀θ such that ∃θ̃ such that σ(θ, θ̃) = F,

δ(1− 2ε)[v∞κ (min{θ + 1, L})− v∞κ (max{θ −M, 0})] > −c,

∀θ such that σ(θ, θ̃) = D ∀θ̃

.

(2.31)

We find the optimal recommended strategy given a rating scheme(L,M) for L = 3

andM = 1, 2, 3, and plot the social welfare and the incentive for cooperation of the

optimal recommended strategies in Figure 2.7. Since different values ofM induce

different optimal recommended strategies given the value of L, there are no monotonic

relationships between the punishment length and social welfare as well as the incentive

for cooperation, unlike in Figure 2.6. The optimal punishment length givenL can be

obtained by taking the punishment length that yields the highest social welfare, which

is plotted in Figure 2.8. We can see that, as the service costc increases, the optimal

punishment length increases from 1 to 2 to 3 before cooperation becomes no longer

sustainable. This result is intuitive in that largerc requires a stronger incentive for

cooperation, which can be achieved by having a larger punishment length.

2.5.2 White-washing-Proof Rating Protocols

So far we have restricted our attention to rating schemes where newly joining agents are

endowed with the highest rating score, i.e.,K = L, without worrying about the possi-

bility of whitewashing. We now make the initial rating scoreK as a choice variable of
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(a) (b)

Figure 2.6: (a) Social welfare and (b) the incentive for cooperation under recommended

strategyσC
L whenL = 3.

(a) (b)

Figure 2.7: (a) Social welfare and (b) the incentive for cooperation under the optimal

recommended strategy whenL = 3.

Figure 2.8: Optimal punishment length whenL = 3.

the design problem while assuming that agents can whitewashtheir rating scores in or-

der to obtain rating scoreK [17]. At the end of each period, agents can decide whether
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to whitewash their rating scores or not after observing their rating scores for the next

period. If an agent chooses to whitewash its rating score, then it leaves and re-joins the

community withα fraction of agents and receives initial rating scoreK. The cost of

whitewashing is denoted bycw > 0.

The incentive constraints in the design problem (2.18) are aimed at preventing a-

gents from deviating from the prescribed recommended strategy. In the presence of

potential whitewashing attempts, we need additional incentive constraints to prevent

agents from whitewashing their rating scores. A rating protocolκ is whitewash-proof if

and only ifv∞κ (K)−v∞κ (θ) 6 cw for all θ = 0, . . . , L 7. Note thatv∞κ (K)−v∞κ (θ) is the

gain from whitewashing for an agent whose rating score is updated asθ. If v∞κ (K) −

v∞κ (θ) 6 cw, there is no net gain from whitewashing for aθ-agent. We measure the

incentive for whitewashing under a rating protocolκ bymaxθ∈Θ{v
∞
κ (K)− v∞κ (θ)}. A

rating protocol is more effective in preventing whitewashing as the incentive for white-

washing is smaller.

To simplify our analysis, we fix the punishment length atM = L so that a rating

scheme is represented by(L,K) with 0 6 K 6 L. Let{η(L,K)(θ)}
L
θ=1 be the stationary

distribution of rating scores under rating scheme(L,K). Then the design problem is

modified as follows (it should be noted here that similar to Section 5.A, both{vκ(θ)}

and{v∞κ (θ)} in this section are computed using a stationary distribution different than

7This condition assumes that an agent can whitewash its rating only once in its lifespan in the com-
munity. More generally, we can consider the case where an agent can whitewash its rating multiple
times. For example, an agent can use a deterministic stationary decision rule for whitewashing, which
can be represented by a functionw : Θ → {0, 1}, wherew(θ) = 1 (resp.w(θ) = 0) means that the
agent whitewashes (resp. does not whitewash) its rating if it holds ratingθ in the next period. This will
yield a different expression for the gain from whitewashing.
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(2.4), which depends on the value ofK)

max
(L,K,σ)

Uκ =
∑
θ

η(L,K)(θ)vκ(θ)

subject to δ(1− 2ε)[v∞κ (min{θ + 1, L})− v∞κ (0)] > c, ∃θ̃ with σ(θ, θ̃) = F

δ(1− 2ε)[v∞κ (min{θ + 1, L})− v∞κ (0)] > −c, σ(θ, θ̃) = D, for all θ̃

v∞κ (K)− v∞κ (θ) 6 cw, ∀θ

.

(2.32)

Now an optimal rating protocol is the one that maximizes social welfare among sustain-

able and whitewash-proof rating protocols. Note that the design problem (2.32) always

has a feasible solution for anycw > 0 since(L,K, σD
L ) is sustainable and whitewash-

proof for all (L,K). Nevertheless,(L,K, σD
L ) is trivial since no service takes place in

the community as a consequence. Next, we show that given the existence of sustainable

rating protocols which deliver a positive level of cooperation, i.e., whenU∗ solved by

(2.18) is positive, whitewash-proof rating protocols alsoexist.

Lemma 3. If a rating protocol(L,K, σ) is sustainable, then the rating protocol

(L, 0, σ) is also sustainable.�

Lemma 3 shows that it never reduces agents’ incentive of cooperation by assigning

the newly joined agents the lowest ratings. With this result, we prove the existence of

whitewash-proof rating protocols.

Proposition 6. If U∗ > 0, then whitewash-proof rating protocols always exist.

Proof: If U∗ > 0, then sustainable rating protocols that stimulate positive levels of

cooperation always exist. According to Lemma 3, if a protocol κ with K = θ > 0 is

sustainable, then a protocolκ′ with the same rating scheme and recommended strategy

andK = 0 is also sustainable. Meanwhile, it can be verified thatκ′ is whitewash-proof

since an agent cannot get any benefit by leaving and rejoiningthe community while

also suffering the whitewashing cost. Hence, Proposition 6follows. �

Now we investigate the impacts of the initial rating scoreK on social welfare and

the incentive for whitewashing. We first consider the case where the recommended
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(a) (b)

Figure 2.9: (a) Social welfare and (b) the incentive for whitewashing under recom-

mended strategyσC
L whenL = 3 andcw = 1.

strategy is fixed. Figure 2.9 plots social welfare and the incentive for whitewashing un-

der a rating protocol(3, K, σC
3 ) for K = 0, . . . , 3, whereσC

L is defined byσC
L (θ, θ̃) = F

if and only if θ̃ > θ, for all θ, as in the above section. We can see that larger K yields

higher social welfare and at the same time a larger incentivefor whitewashing since new

agents are treated better. Hence, there is a trade-off between efficiency and whitewash-

proofness as we increaseK while fixing the recommended strategy. Next we consider

the optimal recommended strategy given a rating scheme(L,K). Figure 2.10 plots

social welfare and the incentive for whitewashing under theoptimal recommended s-

trategy forL = 3 andK = 0, . . . , 3. We can see that giving the highest rating score to

new agents (K = 3) yields the highest social welfare but it can prevent whitewashing

only for small values ofc. With our parameter specification, choosingK = 3 is opti-

mal only for smallc, and optimalK drops to 0 for other values ofc with which some

cooperation can be sustained. Figure 2.11 plots the optimalinitial ratingK∗ as we vary

the whitewashing costcw, for c = 1, 2, 3. As cw increases, the incentive constraints for

whitewashing becomes less binding, and thusK∗is non-decreasing incw. On the other

hand, asc increases, it becomes more difficult to sustain cooperationwhile the differ-

ence betweenv∞κ (0) andv∞κ (min{θ + 1, L}) increases for allθ such thatσ(θ, θ̃) = F

for someθ̃. As a result,K∗ is non-increasing inc.
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(a) (b)

Figure 2.10: (a) Social welfare and (b) the incentive for whitewashing under the optimal

recommended strategy whenL = 3 andcw = 1.

Figure 2.11: Optimal initial rating score whenL = 3.

2.5.3 One-sided Rating Protocols

The above discussion focuses on the design of optimal ratingprotocols where the rec-

ommended strategy utilizes both the rating scores of the client and the server in order

to determine the server’s action. We refer to such recommended strategies astwo-sided

recommended strategiessince they involve the rating scores of both players involved in

the stage game.

In this section, we discuss the design of optimal rating protocols with a simple class

of recommended strategies that only utilize one-sided rating scores, which we refer to

as one-sided recommended strategies. Particularly, a one-sided recommended strategy

determines an agent’s serving action solely based on eitherthe agent’s own rating score
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or the rating score of its client. To differentiate it with the previously discussed two-

sided recommended strategies, we denote a one-sided recommended strategy byϕ,

which can be represented by a mappingϕ : Θ → A, and the corresponding rating

protocol, which is called as a one-sided rating protocol, byπ. It should be noted that

for a one-sided recommended strategyϕ that utilizes the clients’ rating scores, it is

equivalent to a two-sided recommended strategyσ if σ(θ, θ̃) = ϕ(θ̃), ∀θ ∈ Θ and∀θ̃ ∈

Θ. Similarly, for a one-sided recommended strategyϕ′ that utilizes the servers’ rating

scores, it is equivalent to a two-sided recommended strategy σ′ if σ′(θ, θ̃) = ϕ′(θ),

∀θ ∈ Θ and∀θ̃ ∈ Θ. Therefore, the one-sided recommended strategies represent a

subset of the class of two-sided recommended strategies. Inthis section, we investigate

the emerging protocol designs which can be found using such simpler strategies and the

corresponding efficiency loss compared to the optimal performance obtained in Section

4.

We first analyze one-side recommended strategies utilizingthe clients’ rating s-

cores. Given a one-sided recommended strategyϕ, the expected period payoff of a

θ-agent before it is matched, which is still denoted asvκ(θ) with slight abuse of nota-

tion, is given as follows

vπ(θ) = bI(ϕ(θ) = F )−
∑

θ̃∈Θ

ηL(θ̃)cI(ϕ(θ̃) = F ), (2.33)

whereI(x) is an indicator function which takes value of 1 whenx = 1. The corre-

sponding social welfare, which is denoted asWπ, can be computed by

Wπ =
∑

θ∈Θ

ηL(θ)vπ(θ) =
∑

θ∈Θ

ηL(θ)(b− c)I(ϕ(θ) = F ). (2.34)

The following proposition characterizes the general designing rule of the optimal

rating protocol, which is denoted asπ∗ = (L∗, ϕ∗), with the corresponding optimal

social welfare denoted asW ∗.

Proposition 7. With one-sided recommended strategies utilizing the clients’ rating

scores, the optimal rating protocolπ∗ that maximizes (34) satisfies the following con-
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ditions: whenc/b 6 δ(1 − 2ε), W ∗ = (1 − ε + εα)(b− c) with L∗ = 1, ϕ∗(0) = D,

andϕ∗(1) = F ; whenc/b > δ(1− 2ε), W ∗ = 0 with ϕ∗(θ) = D, ∀θ ∈ Θ.

Proof: See Appendix D.�

The optimal rating protocol from Proposition 7 is surprisingly simple and intuitive.

When the cost-to-benefit ratio is sufficiently small such that a positive level of cooper-

ation can be sustained in the community, the optimal rating protocol contains only two

different rating values. Modulo the effects of noise, agents who comply with the recom-

mended strategy in the previous period have rating score 1, while agents who deviate

from the recommended strategy have rating score 0. The recommended strategy then

says that agents should play a tit-for-tat-like strategy, providing services to agents with

rating score 1 and punishing those with rating score 0. On theother hand, when the

cost-to-benefit ratio is sufficiently large, no cooperationcan be sustained andW ∗ = 0.

Hence, when the recommended strategy is one-sided and solely utilizes the clients’ rat-

ing scores, there is no need to construct complicated ratingprotocols that are difficult

for agents to understand, or to heavily optimize parametersof the rating protocol based

on the properties of the community. Regarding the fact that the optimal social welfare

U∗ achieved by two-sided recommended strategies is upper-bounded byb− c, we have

the following corollary.

Corollary 2. Whenc/b 6 δ(1− 2ε), U∗ −W ∗ < ε(1− α)(b− c). �

Therefore, the efficiency loss introduced by one-sided recommended strategies mono-

tonically decreases and approaches 0 whenε → 0 or α → 1.

We then study one-sided recommended strategies utilizing only the servers’ rating

scores. It is shown in the following proposition that no cooperation can be sustained

in this case, which always yields an optimal social welfareW ∗ = 0. Hence, one-sided

recommended strategies utilizing only the servers’ ratingscores can never correctly

incentivize service provisions and prevent agents from free-riding.

Proposition 8. With one-sided recommended strategies utilizing the servers’ rating
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scores, the optimal rating protocolπ∗ always delivers an optimal social welfareW ∗ = 0

with ϕ∗(θ) = D, ∀θ ∈ Θ.

Proof: See Appendix D.�

2.6 Illustrative Examples

In this section, we present numerical results to illustratein detail the performance of

optimal rating protocols. Unless stated otherwise, the setting of the community is as

follows: the benefit per service (b = 10), the cost per service (c = 1), the discount

factor (β = 0.8), the turnover rate (α = 0.1), the report error (ε = 0.2), the punishment

step (M = L), and the initial rating score (K = L). Since the number of all possible

recommended strategies given a punishment lengthL increases exponentially withL,

it takes a long time to compute the optimal recommended strategy even for a moderate

value ofL. Hence, we consider rating protocolsκ = (L, σ∗
L) for L = 1, 2, 3.

We first compare the performances of the optimal rating protocol and the fixed

rating protocol forL = 1, 2, 3. For eachL, we use(L, σC
L ) as the fixed rating protocol.

Figure 2.12 illustrates the results, with the black bar representing the pareto-optimal

valueb − c, i.e., the highest social welfare that can be possibly sustained by a rating

protocol, the gray bar representing the social welfare of the optimal rating protocol,

and the white bar representing the social welfare of(L, σC
L ). As it shows, the optimal

rating protocol(L, σ∗
L) outperforms(L, σC

L ). Whenc is small,(L, σ∗
L) delivers higher

social welfare than(L, σC
L ). Whenc is sufficiently large such that no cooperation can

be sustained under(L, σC
L ) (the height of the white bar becomes 0), a positive level of

cooperation can still be sustained under(L, σ∗
L).

Next, we analyze the impacts of the community’s parameters on the performance

of optimal rating protocols.

Impact of the Discount Factor: We discuss the impact of the discount factorβ

on the performance of optimal rating protocols. Asβ increases, an agent puts a higher
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(a) L = 1

(b) L = 2

(c) L = 3

Figure 2.12: Performances of the optimal rating protocol(L, σ∗
L) and the fixed rating

protocol(L, σC
L ).

weight on its future payoff relative to its instant payoff. Hence, with largerβ, it is easier

to sustain cooperation using future reward and punishment through a rating protocol.

This is illustrated in Figure 2.13(a), which shows that social welfare is non-decreasing

in β.

Impact of the Turnover Rate: Increasingα has two opposite effects on social wel-
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(a) (b)

(c)

Figure 2.13: Optimal social welfare givenL as (a)β, (b)α, and (c)ε vary.

fare. Asα increases, the weight on the future payoffs,δ = β(1 − α), decreases, and

thus it becomes more difficult to sustain cooperation. On theother hand, asα increases,

there are more agents holding the highest rating score giventhe restrictionK = L. In

general, agents with the highest rating score are treated well under optimal recommend-

ed strategies, which implies a positive effect of increasing α on social welfare. From

Figure 2.13(b), we can see that, whenα is large, the first effect is dominant, making

cooperation not sustainable. We can also see that the second0effect is dominant for the

values ofα with which cooperation can be sustained, yielding an increasing tendency

of social welfare with respect toα.

Impact of the Report Errors: As ε increases, it becomes more difficult to sustain

cooperation because reward and punishment provided by a rating protocol becomes

more random. At the same time, largerε increases the fraction of0-agents in the

stationary distribution, which usually receive the lowestlong-term payoff among all

rating scores. Therefore, we can expect that optimal socialwelfare has a non-increasing
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tendency with respect toε, as illustrated in Figure 2.13(c). Whenε is sufficiently close

to 1/2,σD
L is the only sustainable recommended strategy and social welfare falls to . On

the other direction, asε approaches 0, social welfare converges to its upper boundb−c,

regardless of the punishment length, as can be seen from Proposition 1(iii). We can

also observe from Figure 13 that the regions ofα andε where some cooperation can be

sustained (i.e.,U∗
L > 0) become wider asL increases, whereas that ofβ is independent

of L.

2.7 Comparison with Existing Works on Repeated Games with Im-

perfect Monitoring

In this section, we compare our work with the existing literature on repeated games

with imperfect monitoring, including the works on reputation systems [23]-[25] and the

seminal work of Fudenberg, Levine and Maskin [35]. Importantly, our work exhibits

significant technical differences from the existing literature. We would like to point out

that although the results derived in this work exhibit some structural similarity to [23]-

[25], they are derived under completely different settingsand using different analytical

methods. Also, the methodology in [35] cannot be applied in our work.

We first compare our work with [23]-[25]. The models in [23]-[25] assume that

agents have fixed roles in the community (i.e. sellers and buyers), which is common

in applications where the groups of sellers and buyers are separated and usually do not

overlap. However, in our work, agents are symmetric in the sense that each of them can

play both roles of server and of client. Our model is more appropriate to characterize

resource/knowledge sharing online communities.

More importantly, the objective in the protocol design of our work is also different

from [23]-[25]. The design objective in [23]-[25] is to maximize the expected discount-

ed long-term payoff of the seller starting from the best reputation and a clean history

(e.g. Propositions 2 and 3 in [23]). Translating this into the mathematical representation
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adopted in this chapter, the objective function in [23]-[25] is

max
(L,σ)

Uκ = v∞κ (L). (2.35)

Such objective function is reasonable in the setting of [23]-[25] because they as-

sume that there is a unique long-lived player (seller) in thegame who is foresighted.

In each period, the seller selects one buyer to interact with. Therefore, it makes sense

to focus on the life-time discounted utility of this seller starting from the moment it

joins the community. Also, it should be pointed out that the selection of this objective

function (2.35) is the main reason why the optimal design canbe achieved in [23]-[25]

using a two-level reputation set withL = 1. Since the future utility is discounted, the

optimum of (2.35) can be achieved using a simple grim-trigger strategy, i.e. the seller

cooperates as long as its reputation remains at “good” and does not cooperate when its

reputation falls to “bad”.

In contrast, our work assumes multiple long-lived players coexisting in the commu-

nity (i.e. each agent is long-lived and foresighted). Meanwhile, in each period, there

are multiple interactions between different players. Hence, it is more reasonable to

maximize the average social welfare of all agents in the long-run as defined in (2.17),

which can be proved to be equivalent to the following objective function:

maximize
(L,σ)

Uκ =
∑

θ

ηL(θ)v
∞
κ (θ). (2.36)

It is easy to observe that given the grim-trigger strategy designed in [23], the long-run

timing-average payoff of the seller is actually 0, even though its expected discounted

long-term payoff is maximized. Therefore, the design in [23]-[25] is never optimal

from a social welfare perspective, givenε > 0.

Finally, the works in [23] and [24] focus on deriving the rating schemes that can

achieve the upper bound of (2.35) under the condition when the seller is sufficiently

patient with its discount factorδ (i.e. β in this chapter) close to 1 or when the payment-

to-cost ratioρ (i.e. b/c in this chapter) is sufficiently large. They did not provide much
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insight on how to derive the optimal rating scheme and what isthe optimal expected

long-term utility that can be achieved whenδ andρ are small (They simply state that the

optimal expected long-term utility is below the upper boundof (2.35) in this case). In

contrast, our work tries to characterize the optimal ratingscheme design for the entire

region of the parameters(β, b, c, ε), but not only the scenario when these parameters

are ideal. Next, we compare our work with [35]. The model in [35] does not consider

the anonymity and random matching among agents. Also, it assumes that the entire

history of public signals (i.e. the outcome of each stage game) is revealed during the

repeated game. It should be noted that the proof of Proposition 1 in [23] also relies

on this assumption on the information structure in order to obtain the upper bound

on the efficiency. Nevertheless, under the rating protocol proposed in our work, each

agent only observes a limited set of pastL signals from the past periods and hence, the

assumption that all past signals are revealed no longer holds here.

Another difference between our work and [35] is that the objective in [35] is also to

maximize the expected long-term utility of players starting from the beginning of the

game (as described in (2.35)), which is different from our objective function (2.17).

Regarding all the above reasons, we would like to point out that the methodology

in [35] cannot be applied to our work.

2.8 Conclusions

In this chapter, we used the idea of rating protocols to establish a rigorous framework

for the design and analysis of a class of incentive schemes tosustain cooperation in on-

line communities. We derived conditions for sustainable rating protocols, under which

no agent gains by deviating from the prescribed recommendedstrategy. We formulated

the problem of designing an optimal rating protocol and characterized optimal social

welfare and optimal recommended strategies given parameters. As special cases, we

analyzed the one-sided rating protocol which only utilizesthe rating score of one party
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in the stage-game. It was shown that when only the clients’ rating scores are utilized,

the optimal one-sided rating protocol preserves a simple structure with two-level rat-

ing scores, whereas when only the servers’ rating scores areutilized, no sustainable

one-sided rating protocol can be designed. We also discussed the impacts of punish-

ment lengths and whitewashing possibility on the design andperformance of optimal

rating protocols, identifying a trade-off between efficiency and incentives. Lastly, we

presented numerical results to illustrate the impacts of the discount factor, the turnover

rate, and the probability of report errors on the performance of optimal rating proto-

cols. Our framework provides a foundation for designing incentive schemes which

can be deployed in real-world communities populated by anonymous, self-interested

individuals.

2.9 Appendices

2.9.1 Appendix A: Proof of Proposition 1

(i) U∗ > 0 follows by noting that(L, σD
L ) is sustainable. It is shown in [35] that in a

repeated game with public signal, the maximum long-run player sequential equilibrium

payoff when the signal has full support is the solution of thefollowing linear program-

ming problem:

max
a

u∞

subject to u∞ = u− c+ δ(1− ε)v∞(+) + δεv∞(−), for a = F

u∞ > u− c+ δ(1− ε)v∞(+) + δεv∞(−), for a = D

u∞ > u+ δεv∞(+) + δ(1− ε)v∞(−), for a = F

u∞ = u+ δεv∞(+) + δ(1− ε)v∞(−), for a = D

. (2.37)

Here,u is the benefit that the player can receive as a client in a stagegame, andv∞(+)

is the expected long-term utility of this player if his rating score is increased andv∞(−)

is the expected long-term utility when his rating score is decreased. With simple com-

putation, the maximum solution of (2.37) can be written as1
1−δ

(b − 1−ε
1−2ε

c). Since no
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player can achieve a long-run payoff higher than this, it canbe concluded that the social

welfare is also upper-bounded byb− 1−ε
1−2ε

c.

(ii) By (2.8), we can expressv∞κ (1)− v∞κ (0) as

v∞κ (1)− v∞κ (0)

= vκ(1) + δ[(1− ε)v∞κ (2) + εv∞κ (0)]− vκ(0)− δ[(1− ε)v∞κ (1) + εv∞κ (0)]

= vκ(1)− vκ(0) + δ(1− ε)[v∞κ (2)− v∞κ (1)]

.

(2.38)

Similarly, we have

v∞κ (2)− v∞κ (1) = vκ(2)− vκ(1) + δ(1− ε)[v∞κ (3)− v∞κ (2)]
...

v∞κ (L)− v∞κ (L− 1) = vκ(L)− vκ(L− 1)

. (2.39)

In general, forθ = 1, . . . , L,

v∞κ (θ)− v∞κ (θ − 1) =

L−θ∑

l=0

γl[vκ(θ + l)− vκ(θ + l − 1)], (2.40)

where we defineγ = δ(1− ε). Thus, we obtain

v∞κ (θ)− v∞κ (0)

= vκ(θ)− vκ(0) + γ[vκ(θ + 1)− vκ(1)] + · · ·+ γL−θ[vκ(L)− vκ(L− θ)]

+γL−θ+1[vκ(L)− vκ(L− θ + 1)] + · · ·+ γL−1[vκ(L)− vκ(L− 1)]

=
L−1∑
l=0

γl[vκ(min{θ + l, L})− vκ(l)]

(2.41)

for θ = 1, . . . , L.

Since−c 6 vκ(θ) 6 b for all θ, we havevκ(θ)−vκ(θ̃) 6 b+ c for all (θ, θ̃). Hence,

by (2.41),

v∞κ (θ)− v∞κ (0) 6
1− γL

1− γ
(b+ c) 6

b+ c

1− γ
(2.42)

for all θ = 1, . . . , L, for all κ = (L, σ). Therefore, ifδ(1 − 2ε)[(b + c)/(1 − γ)] < c,

or equivalently,c/b > [β(1 − α)(1 − 2ε)]/[1 − β(1 − α)(2 − 3ε)], then the incentive

constraint (2.15) cannot be satisfied for anyθ, for any rating protocol(L, σ). This
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implies that any recommended strategyσ such thatσ(θ, θ̃) = F for some(θ, θ̃) is not

sustainable, and thusU∗ = 0.

(iii) For any L, define a recommended strategyσD0
L by σD0

L (θ, θ̃) = D for θ̃ = 0

andσD0
L (θ, θ̃) = F for all θ̃ > 0, for all θ. In other words, withσD0

L each agent declines

the service request of 0-agents while providing a service toother agents. Consider a

rating protocolκ = (1, σD0
1 ). Thenvκ(0) = −η1(1)c andvκ(1) = b − η1(1)c. Hence,

Uκ = [1− (1 − α)ε](b− c) andv∞κ (1)− v∞κ (0) = b, and thus the incentive constraint

δ(1− 2ε)(v∞κ (1)− v∞κ (0)) > c is satisfied by the hypothesisc/b 6 β(1− α)(1− 2ε).

Since there exists a feasible solution that achievesUκ = [1− (1−α)ε](b− c), we have

U∗ > [1− (1− α)ε](b− c).

(iv) The result can be obtained by combining (i) and (iii).

(v) Suppose thatU∗ = b − c, and let(L, σ) be an optimal rating protocol that

achievesU∗ = b − c. It is easy to obtain thatε = 0. Then by (2.4),ηL(θ) = 0 for

all 0 6 θ 6 L − 1 andηL(L) = 1. Hence,σ should haveσ(L, L) = F in order to

attainU∗ = b − c. Sincevκ(L) = b − c andvκ(θ) > −c for all 0 6 θ 6 L − 1, we

havev∞κ (L) − v∞κ (0) 6 b/(1 − γ) by (2.41). If δb/(1 − δ) < c, then the incentive

constraint forL-agents,δ[v∞κ (L) − v∞κ (0)] > c, cannot be satisfied. Therefore, we

obtainc/b 6 δ/(1− δ). �

2.9.2 Appendix B: Proof of Proposition 2

Choose an arbitraryL. To prove the result, we will construct a recommended strategy

σL+1 using punishment lengthL + 1 that is sustainable and achievesU∗
L. DefineσL+1

by

σL+1(θ, θ̃) =





σ∗
L(θ, θ̃ for θ 6 L andθ̃ 6 L

σ∗
L(L, θ̃) for θ = L+ 1 andθ̃ 6 L

σ∗
L(θ, L) for θ 6 L andθ̃ = L+ 1

σ∗
L(L, L) for θ = L+ 1 andθ̃ = L+ 1

. (2.43)
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Let κ = (L, σ∗
L) andκ′ = (L + 1, σL+1). From (2.4), we haveηL+1(θ) = ηL(θ)

for θ = 0, . . . , L − 1 andηL+1(L) + ηL+1(L + 1) = ηL(L). Using this and (2.6), it is

straightforward to see thatvκ′(θ) = vκ(θ) for all θ = 0, . . . , L andvκ′(L+ 1) = vκ(L).

Hence, we have that

Uκ′ =
L+1∑
θ=0

ηL+1(θ)vκ′(θ) =
L−1∑
θ=0

ηL+1(θ)vκ′(θ) +
L+1∑
θ=L

ηL+1(θ)vκ′(θ)

=
L−1∑
θ=0

ηL(θ)vκ(θ) +
L+1∑
θ=L

ηL+1(θ)vκ(L)

=
L−1∑
θ=0

ηL(θ)vκ(θ) + ηL(L)vκ(L) = Uκ = U∗
L

. (2.44)

Using (2.44), we can show thatv∞κ′ (θ) − v∞κ′ (0) = v∞κ (θ) − v∞κ (0) for all θ =

1, . . . , Landv∞κ′ (L + 1) − v∞κ′ (0) = v∞κ (L) − v∞κ (0). By the definition ofσL+1, the

right-hand side of the relevant incentive constraint (i.e., c or−c) for eachθ = 0, . . . , L

is the same both underσ∗
L and underσL+1. Also, underσL+1, the right-hand side of the

relevant incentive constraint forθ = L + 1 is the same as that forθ = L. Therefore,

σL+1 satisfies the relevant incentive constraints for allθ = 0, . . . , L+ 1. �

2.9.3 Appendix C: Proof of Proposition 3

To facilitate the proof, we defineu∞
κ (θ) by

u∞
κ (θ) =

∞∑

l=0

γlvκ(min{θ + l, L}) (2.45)

for θ = 0, . . . , L. Then, by (2.41), we havev∞κ (θ) − v∞κ (0) = u∞
κ (θ) − u∞

κ (0) for

all θ = 1, . . . , L. Thus, we can useu∞
κ (θ) − u∞

κ (0) instead ofv∞κ (θ) − v∞κ (0) in the

incentive constraints ofDPL.

Suppose thatσ∗
L(0, θ̂) = F for someθ̂. Then the relevant incentive constraint for

a 0-agent isδ(1 − 2ε)[u∞
κ (1) − u∞

κ (0)] > c. Suppose thatσ∗
L(0, θ̄) = D for some

θ̄ ∈ {1, . . . , L − 1} such thatθ̄ > ln c
b
/ lnβ. Consider a recommended strategyσ′

L

defined by

σ′
L(θ, θ̃) =





σ∗
L(θ, θ̃) for (θ, θ̃) 6= (0, θ̄)

F for (θ, θ̃) = (0, θ̄)
. (2.46)
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That is,σ′
L is the recommended strategy that differs fromσ∗

L only at (0, θ̄). Let κ =

(L, σ∗
L) andκ′ = (L, σ′

L). Note thatvκ′(0)−vκ(0) = −ητ (θ̄)c < 0 andvκ′(θ̄)−vκ(θ̄) =

ητ (0)b > 0 sinceε > 0 andα < 1. Thus,Uκ′ − Uκ = ηL(0)ηL(θ̄)(b− c) > 0. Also,

u∞
κ′ (θ)− u∞

κ (θ) =





(1− α)θ̄+1(1− ε)θ̄ε[β θ̄b− c] for θ = 0,

γ θ̄−θ[vκ′(θ̄)− vκ(θ̄)] for θ = 1, . . . , θ̄,

0 for θ = θ̄ + 1, . . . , L

. (2.47)

Since θ̄ > ln c
b
/ lnβ, we haveu∞

κ′ (0) − u∞
κ (0) 6 0. Thus,u∞

κ′ (θ) − u∞
κ′ (0) >

u∞
κ (θ) − u∞

κ (0) for all θ = 1, . . . , L. Sinceσ∗
L(0, θ̂) = F for someθ̂, the relevant

incentive constraint for aθ-agent is the same both underσ∗
L and underσ′

L, for all θ.

Hence,σ′
L satisfies the incentive constraints ofDPL, which contradicts the optimality

of σ∗
L. This proves thatσ∗

L(0, θ̃) = F for all θ̃ > ln c
b
/ lnβ. Similar approaches can be

used to proveσ∗
L(0, L) = F , (i), and (iii). �

2.9.4 Appendix D: Proof of Proposition 7

To prove this proposition, we first show that the recommendedstrategy in the opti-

mal rating protocol is always threshold based. That is, there is an integerh such that

ϕ∗(θ) = D for all θ < h andϕ∗(θ) = F for all θ > h. We use a contradiction

to verify this. Supposeϕ∗(θ̃) = F andϕ∗(θ̃ + 1) = D for someθ. Consider a s-

trategyϕ′ satisfyingϕ′(θ) = ϕ∗(θ) for all θ 6= θ̃ + 1 andϕ′(θ̃) = ϕ∗(θ̃). Sinceϕ∗

is sustainable, then according to (2.8), it is easy to verifythatϕ′ is also sustainable.

Meanwhile,ϕ′ delivers a higher social welfare thanϕ∗. Hence, the fact thatϕ∗ is op-

timal is contradicted and we can conclude that the optimal recommended strategy is

always threshold-based. According to (2.34), it is obviousthat the social welfare upon

agents’ compliance monotonically decreases with the threshold h. Next, we analyse

howh affects the sustainability of the recommended strategy.

Under a threshold-based recommended strategy with threshold h, the expected
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long-term utility can be recursively represented as

v∞κ (θ > h) = b−
∑
θ>h

ηL(θ)c

+δ(1− ε)v∞κ (min{θ + 1, L}) + δεv∞κ (max{θ − 1, 0})

v∞κ (θ < h) = −
∑
θ>h

ηL(θ)c

+δ(1− ε)v∞κ (min{θ + 1, L}) + δεv∞κ (max{θ − 1, 0})

. (2.48)

Hence, it can be shown thatv∞κ (1)− v∞κ (0) = min
θ
{v∞κ (θ)− v∞κ (0)}. Meanwhile,

v∞κ (1) − v∞κ (0) monotonically decreases againsth. Therefore, if a recommended s-

trategy with thresholdh is sustainable, then the recommended strategy with threshold

h − 1 is also sustainable. However, according to Proposition 3, it should be noted that

the recommended strategy withh = 0 can never be sustainable. Therefore, to sum up,

for a given punishment lengthL, when sustainable one-sided rating protocols exist, the

threshold of the optimal recommended strategyϕ∗ is alwaysh = 1. It is easy to com-

pute that any threshold-based recommended strategyϕ with h = 1 is sustainable if and

only if c/b 6 δ(1−2ε) with the resulting social welfare to beW = (1−ε+εα)(b− c).

Hence, Proposition 7 follows.�

2.9.5 Appendix E: Proof of Proposition 8

The proof of this proposition is similar to that of Proposition 7. First, it can be proved

that in the optimal rating protocol that uses servers’ rating scores, the recommended

strategy is always threshold-based. That is, there is an integerh such thatϕ∗(θ) = F

for all θ < h andϕ∗(θ) = D for all θ > h. However, under such threshold-based

recommended strategy,v∞κ (θ) − v∞κ (0) 6 c hold for all θ ∈ Θ and hence, (2.12) is

never satisfied and Proposition 8 follows.�
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CHAPTER 3

Strategic Learning in Online Communities

3.1 Introduction

Online communities play an increasingly central role in enabling individual users to

remotely share resources or crowdsource their service needs. However, they are vul-

nerable to intrinsic incentive problems which lead to prevalent free-riding behaviors

among users that sacrifice the collective social welfare of the community [39][40].

Various incentive mechanisms have been proposed to encourage cooperation in

online communities [40][41], with a large body of them relying on the idea of reci-

procity, in which users monitor the behavior of each other and provide differential

services based on their observations. Such reciprocity-based mechanisms can be clas-

sified into direct reciprocity and indirect reciprocity. Indirect reciprocity mechanisms

[40][41][43], users can identify each other, and determinewhether they should supply

services to a specific user based on their personal history ofinteractions with that spe-

cific user. Such mechanisms rely on the players’ ability to maintain private histories

of other users’ play which involve frequent interactions among identifiable users and

hence are not effective in online communities with large populations of anonymous

users, who are randomly matched and interact infrequently [39].

Indirect reciprocity mechanisms [23]-[25][45], in contrast, deploy reputation proto-

cols that allow the users in a community to share informationand observations to form

collective opinions about other users (e.g. assign reputations). In a reputation protocol,

a reputation score is assigned to each user upon entering thecommunity and is updated

59



based on the reports (which may be erroneous) provided by other users who he interacts

with. Hence, an individual user can be rewarded or punished (based on his reputation

score) by other users who have not had past interactions withhim. To encourage users

to contribute their services to the community, differential services are provided to the

users based on their reputations, i.e. users with higher reputations will receive bet-

ter services from other users in return. Since indirect reciprocity mechanisms require

neither observable identities (i.e. only a user’s reputation but not his identity needs to

be revealed in order to determine the differential servicestowards him), nor frequent

interactions, they form a suitable basis for designing incentive mechanisms for online

communities with large populations.

The reputation protocols designed in [23]-[25][45] are able to sustain the selected

(“best”) equilibrium for various online communities. Theyassume that the community

starts to operate “directly” at the selected equilibrium, i.e. users start by directly adopt-

ing a desirable equilibrium strategy when joining the community, and design reputation

protocols that ensure users will not deviate from this equilibrium strategy. Nevertheless

in practice, there are often multiple equilibria in a community and users can adopt ar-

bitrary (non-equilibrium) strategies when they join the community. In this case, all the

above works fail to determine 1) how the community evolves ifit starts from an arbi-

trary (non-equilibrium) state and 2) whether in the long-run it can converge to the best

equilibrium given the deployed reputation protocol. Moreover, none of the prior works

investigated the robustness of equilibria, i.e. to determine if the community deviates

from an equilibrium due to stochastic perturbations, e.g. noises, errors, whether it can

converge to this equilibrium again in the long run.

In summary, this chapter generalizes [23]-[25][45] and focuses on the design of

reputation protocols that do not only sustain the best equilibrium, but also ensure the

convergence of the community towards this equilibrium in the long-run. To design such

a protocol, it is of critical importance to consider the following design aspects, which

were neglected in [23]-[25][45]:
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(1) how users learn, i.e. how they update their knowledge about the community,

during their interactions and how they adapt their strategies based their limited (imper-

fect) knowledge;

(2) how the community evolves if users learn and adapt their strategies over time;

(3) how the designed reputation protocol impacts the evolution of the community

and its convergence.

Some of the above three questions have been investigated in the literature on pre-

scriptive multi-agent learning [47]-[49], which studies how protocol designers should

construct protocols that induct users to learn certain strategies to achieve certain goals.

However, this strand of research mainly focuses on cooperative games where the inter-

ests of the protocol designers and the interests of the learning users are aligned [48][49],

or users are compliant (obedient) and have no freedom to deviate from the prescribed

learning rules [47].

Our work brings a different perspective. Unlike [47]-[49],the interests of the pro-

tocol designer (e.g. the designer of the community) and thatof the self-interested users

in our work are in conflict with each other. Therefore, the protocol designer has to

carefully trade-off his goal to maximize the social welfareagainst the need for provid-

ing sufficient incentives for users to comply with the protocol. Instead of assuming

that users are obedient and restricting the users’ learningand adaptation behavior, we

assume that users form their own beliefs about the communitybased on their past in-

teractions and, using this knowledge, adapt their service strategies to maximize their

individual long-term utilities. By considering the users’best response dynamics, we

focus on the design of effective reputation protocols whichteach users to learn and co-

operate with each other in the long-run, by contributing their services to the community.

The remainder of this chapter is organized as follows. In Section 2.2, we formal-

ize the user interaction in an online community as a repeatedrandom matching game

and introduce our proposed indirect reciprocity frameworkfor the design of reputation
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protocols. Section 2.3 formulates the decision problem of individual users and then dis-

cusses the resulting evolution of the community: whether itwill converge to a stationary

state in the long run when time goes to infinity and to which state it will converge. To

characterize the long run evolution, we introduce the concept of stochastically stable e-

quilibrium (SSE) (Definition 3), which is used to describe the states that the community

will converge to in the long run. Generally speaking, an SSE characterizes a stationary

state of the community in which users are playing stationarystrategies that are best re-

sponses against each other. Meanwhile, different from the concept of evolutionary sta-

ble equilibrium used in evolutionary game theory, an SSE is also stochastically stable,

indicating that if the community deviates from an SSE due to stochastic perturbations,

it can converge to this SSE again with probability 1 in the long-run. Understanding how

a community evolves over time enables us to define the design problem of the optimal

reputation protocol (Definition 4). To solve this optimal design problem, Section 3.4

studies the structures of user’s best response dynamics (Proposition 1 and 2), i.e. their

optimal service strategies. By utilizing these structures, Section 3.5 then solves the

optimal design problem (Theorem 2). Section 3.6 presents the numerical results and

Section 3.7 concludes the chapter and discusses future research directions.

3.2 System Model

3.2.1 Repeated Matching Game

We consider an online community consisting ofN users, each of whom indexed by

an integeri ∈ {1, . . . , N} and each possessing some resources or services which are

valuable to others. The community is modeled as a discrete-time system with time

divided into periods. In each period, each user generates one service request and is

randomly matched with another user who can provide the requested services [40]. We

model the request generation and user selection process using uniform random match-

ing: each user receives exactly one request in every period and each user is equally
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Table 3.1: Utility matrix of a gift-giving game
Server

z = 1 z = 0

Client b,−c 0, 0

likely to receive the request of a user, and the matching is independent across periods

1. Such model well approximates the matching process betweenusers in large-scale

online communities where agents interact in an ad-hoc fashion and the interactions a-

mong users are constructed randomly over time, e.g. peer-to-peer networks [39] and

online crowdsourcing platforms [42]. The matched users play a two-player stage game

in which the user requesting service is called the client andthe user who is being re-

quested is called the server. Given the uniform random matching, each individual user

in the community is involved in two stage games during a period, one as a server and

one as a client. Also, the opponents in these two stage games are in general different.

That is, a user does not request services from and supply services to the same opponent

in the same period.

The stage game played by a pair of matched users is formalizedas an asymmetric

gift-giving game [32] where the server is the only strategicpart who chooses his action

z from a binary setZ = {0, 1}. The utility matrix of a gift-giving game is presented in

Table 3.1. If the server supplies the service (choosesz = 1), it incurs a costc > 0 to

him and the client receives a benefitb > 0. On the other hand, if the server refuses to

supply the service (choosesz = 0), both users receive a utility of 0. Here we assume

that b > c such that the service exchange is socially valuable and the values ofb and

c are the same for all users. Hence, suppose a useri is matched with userj1 in the

stage game where useri is the server and is matched with userj2 where useri is the

requester, then the utility received by useri in a periodt can be represented as

u
(t)
i = z

(t)
j2
b− z

(t)
i c, (3.1)

1The impact of matching schemes on the incentive of users and the performance of online communi-
ties falls out of this chapter, but serves as an important next step in this line of research.
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wherez(t)i andz(t)j2
are the actions adopted by useri and userj2 in periodt, respectively.

The social welfare of the community is thus defined as

Ū = lim
T→∞

1

TN

T∑

t=1

N∑

i=1

u
(t)
i . (3.2)

It is obvious that̄U is maximized at the valueb− c, which is called the social optimum,

when each user supplies services in each period. Nevertheless,z = 0 is the dominant

action for the server in the gift-giving game, which constitutes a Nash equilibrium.

When every server choosesz = 0 to myopically maximize his utility in a period, an

inefficient social welfare arises where every user receivesa utility of 0 in each period.

In the rest of this chapter, we focus on designing a reputation protocol by exploiting the

repeated nature of the gift-giving game, in order to incentivize users to supply services

within their self-interest and achieve the optimal social welfareb− c.

3.2.2 Reputation Protocols

In the repeated matching game, we consider each user to be self-interested and far-

sighted. Hence, he chooses his service strategy to maximizehis individual long-term

utility, which is the discounted sum of his utility in the current period and that from the

future periods. The decision problem of an individual user will be formally presented

in Section 3.3.1. In this section, we first discuss the designof the reputation protocol

in the repeated matching game. A reputation protocol regulates the behavior of a self-

interested user by affecting his social status and thus, theservice he receives from other

users.

A useri’s social status in the repeated game is represented with a reputation score

θi ∈ Θ, which records the history of the user’s past plays and takesvalues from a non-

empty and finite setΘ. Since any finite history can be represented by a finite set of

reputation scores and the elements in any finite set can be indexed using a finite group

of integer numbers, we denoteΘ = {0, 1, 2, · · · , L} without loss of generality, where

L represents the highest reputation score and0 represents the lowest reputation score.
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The service strategy adopted by a useri describes his choice of actions in each stage

game he involves as the server and can be represented by a mapping σi : Θ×Θ → Z.

That is, in each stage game where useri’s reputation isθ and his client’s reputation is

θ̃, useri chooses the actionσi(θ, θ̃). SinceΘ andZ are finite sets, the space of service

strategies that a user can choose is also finite and is denotedasΓ = {σ|σ : Θ×Θ → Z}

with |Γ| = 2L
2
.

Formally, a reputation protocolκ, which is designed by the protocol/community

designer, consists of a reputation setΘ, a social ruleφ and a reputation schemeτ .

The social ruleφ ∈ Γ is a service strategy that specifies the recommended behavior

for users within the community.φ is broadcasted by the community operator (e.g. the

website portal, or the tracker in P2P networks) to all users.However, it is a user’s own

strategic decision whether or not to comply with the recommendedφ. In this chapter,

we restrict the protocol design to threshold-based social rules, because they are simple

to deploy and have been shown in [46] to be nearly optimal. A threshold-based social

rule can be formalized as follows:

φ(θ, θ̃) =






1 if θ > H andθ̃ > H

1 if θ < H

0 otherwise

. (3.3)

Each social rule has a social thresholdH ∈ {0, 1, ..., L+ 1}. It instructs a user whose

reputation is no less thanH, i.e. a “good user”, to play discriminatively and supply

services only to clients whose reputations are at leastH. On the contrary, if a user

has a reputation less thanH, i.e. a “bad user”, he has to supply services to all clients

regardless of their reputations. According to the social rule, a good user also can always

receive services from others upon his requests, while a bad user gets served only when

he requests services from other bad users. Differential services are thus provided to

users based on their reputations.

A reputation schemeτ updates a user’s reputation based on his past behavior of

providing services. It works in the following manner: aftera server takes an action
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(i.e. whether or not to supply services), his client reportshis action to the community

operator. The operator then uses this report to update the server’s reputation according

to τ . Since each user is involved as the server in one stage game during each period, his

reputation is also updated once per period. Formally, a reputation scheme is represented

as a mappingτ : Θ × Θ × Θ × Z → [0, 1], whereτ(θ, θ̃, θ′, z) is the probability that

a server of reputationθ is assigned with a new reputationθ′ in the next period, when

the reputation of his client is̃θ and the reported action isz. To keep the protocol design

simple, we consider the following reputation scheme in thischapter:

τ(θ, θ̃, θ′, z) =





1 if z > φ(θ, θ̃) andθ′ = min(θ + 1, L)

β z < φ(θ, θ̃) andθ′ = 0

1− β z < φ(θ, θ̃) andθ′ = θ

0 otherwise

. (3.4)

Given this scheme, when a server is reported to deviate from the social ruleφ by supply-

ing less service than what is required byφ in a stage game, his reputation is decreased

to 0 with a probabilityβ and remains unchanged with a probability1 − β. Otherwise,

his reputation is increased by 1 while not exceeding the maximum reputationL. The

protocol designer can thus adjust the strength of punishment imposed upon user devi-

ations by designing the value ofβ, where a higherβ indicates a stronger punishment.

We assume that the reputation schemeτ (includingβ) is also broadcasted or posted

by the community operator and known by all users. A schematicrepresentation of the

reputation protocol is presented in Figure 3.1.

During its operation, we assume that the community experiences stochastic shocks,

which we model as small stochastic perturbations [44]. In practice, such perturbations

arise due to various types of operation errors. For example,a client is unsatisfied with

the received service (due to some network errors) even if theserver playsz = 1. To

model such errors we denoteProb(zrpt|z) as the conditional probability that the client

reportszrpt while the server playsz and we assume that a server’s reported action is

inconsistent with his actual action with a probabilityε, i.e. Prob(zrpt = 0|z = 1) = ε
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Figure 3.1: The schematic representation of the social ruleand the reputation scheme

andProb(zrpt = 1|z = 0) = ε 2. Hence, a server is reported to comply with the

social rule with probabilityε when he deviates, and vice versa. Since the stochastic

perturbations take place rarely in the repeated game and thus the value ofε is small

and difficult to be accurately measured, we focus on the extreme case ofε → 0 in the

design of reputation protocols, which will be formalized inSection 3.3.2.

To summarize, the repeated matching game in each period can be characterized

by a strategy profileσ = (σi)
N
i=1 representing the service strategies adopted by all

users and a reputation profileθ = (θi)
N
i=1 representing the reputations of all users in

each period. The reputation protocol considered in this chapter can be parameterized as

κ = (L,H, β), whereL represents the length of history recording a server’s past behav-

ior,H indicates how to differentiate users, andβ determines the strength of punishment

imposed upon the user deviations. In the rest of this chapter, we first discuss the evo-

lution of σ andθ in the repeated matching game and formulate the design problem of

the optimal reputation protocol in Section 3.3, which induces all users to cooperate,

i.e. find it in their self-interest to supply services in eachperiod. In Section 3.4, we

characterize the structure of users’ best response (i.e. the optimal service strategies

adopted in each period). Then in Section 3.5, we solve the optimal protocol design, i.e.

2It should be noted that our analysis straightforwardly applies to the scenario where error probabilities
are asymmetric, i.e.Prob(zrpt = 0|z = 1) 6= Prob(zrpt = 1|z = 0). We assume symmetric error
probabilities only for the simple illustrations.
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to determine the optimal reputation protocolκ that induces the full cooperation among

users in the long run.

3.3 Community Evolution and Stochastic Stable Equilibrium

In this section, we formalize the decision problem of individual self-interested users,

and then analyze the evolution of the community in the long-run. Finally, we formalize

the considered protocol design problem.

3.3.1 User’s Decision Problem

We begin by investigating a typical useri’s decision problem in the repeated matching

game under the reputation protocolκ. Users are assumed to be far-sighted. Each of

them adapts his strategy in order to maximize his expected long-term utility, i.e. his

expected sum utilities from the current period to the infinite future. By analyzing the

expected one-period and long-term utilities in each period, we are able to formalize an

individual users decision problem.

A useri’s expected one-period utility is the sum of his expected utilities received

in the stage games in which he is involved during one period3. Due to the uniform

random matching, the expected one-period utility depends on the user’s own reputation

and strategy as well as the distribution of other users’ reputations and strategies. In the

rest of this subsection, we first discuss each user’s knowledge and belief about other

users’ reputations and strategies, and then construct the user’s utility function and his

decision problem.

The reputation distribution of the community in each periodis referred to as the

community state of this period and denoted by a vectorµ = (µ(θ))Lθ=0, whereµ(θ)

represents the number of users of reputationθ. Given the reputation profileθ = (θi)
N
i=1,

3It should be noted that a user’s expected one-period utilityis the utility he expects to receive at the
beginning of a period and thus is different from his realizedone-period utility (3.1).
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the corresponding community state is derived asµ(θ) =
N∑
i=0

I(θi = θ), ∀θ. For better

illustration, we useµθ to denote the community state that is derived from the reputation

profileθ. It should be noted that there are multiple reputation profiles that can lead to

the same community state. Hence, we also defineΛµ = {θ|µθ = µ} as the set of repu-

tation profiles that lead to the community stateµ. We assume that the community state

is broadcasted by the community operator at the beginning ofeach period and hence is

known by all users. Given the community state, a useri then calculates the reputation

distribution of all users other than himself, which is referred to as his opponent state

and denoted as a vectorηi = {ηi(θ
′)}Lθ′=0, which can be derived asηi(θ′) = µ(θ′) for

all θ′ 6= θi andηi(θi) = µ(θi) − 1 4. We also useηθ
i to denote the useri’s opponent

state under the reputation profileθ.

Different from the reputation, the strategy adopted by an individual user is private

information and cannot be perfectly observed by either the community operator or other

users. Hence, each useri has to maintain a belief on other users’ strategies. In this

chapter, useri forms a simple belief represented by a valueρi(θi), which denotes the

probability that he expects to receive services in one period. Given his opponent state,

the belief is calculated as:

ρi(θi) =






H−1∑
θ′=1

ηi(θ
′)/(N − 1) if θi < H

1− ηi(0)/(N − 1) if θi > H

. (3.5)

Equivalently, we are assuming that useri believes that any user of reputation 0 will not

supply services while any user of reputationθ > 0 complies with the social rule.

Remark: This belief model is based on the assumption that each user implicitly

conjectures that all other users are playing stationary strategies which do not change

over time. This assumption is commonly adopted in the related literature (e.g. the

4It should be noted that there is a deterministic mapping fromthe community state and the opponent
state and they can be derived from each other. The reason why we introduce the opponent state is for
the better illustration, since a user can never be matched with himself and hence it is easier to express a
user’s expected one period utility with his opponent state.
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frequency-based belief update model in fictitious play [51]as well as in stochastic evo-

lutionary games [44][50]). Hence, the current strategy that is observed as being played

by a user is believed to be played by him in the future. Starting from this presumption,

each user believes that a user of reputation0, which indicates his deviation in the previ-

ous period, will deviate again in the current period. For a user of reputationθ > 0, it is

unknown whether this user deviated in the previous period ornot (due to the existence

of random punishment in (3.4)). Therefore, other users simply believe that this user

complied with the social rule in the previous period and willcontinue his compliance

in the current period.

Based on this belief, the expected utility of a useri in one period can be expressed as

a function of his current strategyσi, his current reputationθi, and his current opponent

stateηi:

vi(θi|σi,ηi) = ρi(θi)b−

L∑

θ̃=0

ηi(θ̃)

N − 1
c(θi, θ̃, σ(θi, θ̃)). (3.6)

Herec(θi, θ̃, z) is the one-period cost incurred by useri when he plays actionz and his

matched client has a reputationθ̃.

A user’s expected long-term utility at any period is evaluated as the discounted

sum of his expected one-period utilities starting from thisperiod over the infinite time

horizon. When computing his expected long-term utility, each useri assumes that his

opponent stateηi in the current period does not change in the future. In other words,

each user does not try to learn the evolution of his opponent state while making his

decision in each period. This assumption is reasonable given the fact that users in the

online community normally have bounded rationality5.

Given all the knowledge and beliefs, a useri’s expected long-term utility is given

5If a useri has the capability to infer the evolution of his opponent state ηi according to his be-
lief ρi(θi) and incorporates such inference into his expected long-term utility, it can be proven that the
computation complexity of his optimal strategy in each period is at the order ofO(NL), which quickly
becomes intractable even for a moderate value ofN .
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by

Vi(θi|σi,ηi, κ) = vi(θi|σi,ηi) + δ
∑

θ′

pi(θ
′|θi, σi,ηi, κ)Vi(θ

′|σi,ηi, κ), (3.7)

whereδ ∈ [0, 1) is the discount factor and{pi(θ′|θ, σi,ηi, κ)} is the probability that

useri expects his reputation changes fromθ to θ′ if he plays the strategyσi, while the

reputation protocol isκ and the opponent state isηi
6.

Useri’s best-response play in each period is to select an optimal strategy that max-

imizes his expected long-term utilityVi(θi|σi,ηi, κ). Due to the recursive structure of

the expected long-term utility (3.7), the optimal strategyin each period can be obtained

by solving the following optimization problem

max
σi∈Γ

Vi(θ|σi,ηi, κ), ∀θ ∈ Θ (3.8)

by using well-known dynamic programming algorithms such asvalue iteration7. It

should be noted that useri has to optimize his expected long-term utilities starting from

any reputationθ, even if his current reputationθi 6= θ. This is because of the recursive

structure of the expected long-term utilities and the resulting fact thatVi(θi|σi,ηi, κ)

will be influenced by{Vi(θ|σi,ηi, κ)}θ 6=θi
and thus{σi(θ, ·)}θ 6=θi. To show the depen-

dency of the solution of (3.8) on the reputation protocol andthe opponent state, it is

denoted asσκ,ηi
i , with the corresponding optimal long-term utilities beingrepresented

as{V κ,ηi
i (θ)}Lθ=0. Importantly, it should be noted that because users having the same

reputation observe the same opponent state, they have the same optimal strategy and

optimal long-term utilities, i.e.σκ,ηi
i = σ

κ,ηj

j andV κ,ηi
i (θ) = V

κ,ηj

j (θ), ∀θ if θi = θj .

In Section 3.4, we will unravel the structural properties ofσ
κ,ηi
i .

6Here we assume that users are not aware the existence of stochastic perturbations and do not incor-
porate it into the calculation ofpi(θ′|θ, σi,ηi, κ). One explanation to this assumption is that the error
probability is negligible to users whenε → 0 since stochastic perturbations take place infrequently in
the community.

7To break the tie when the expected long-term utilities by playing z = 0 andz = 1 are the same, we
assume that the user always choosesz = 1 in this case.
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3.3.2 Long-run Evolution and Stochastic Stable Equilibrium

In this section, we examine how the community stateµ evolves over time, under the

users’ best response dynamics introduced by (3.8), and thenformalize the design prob-

lem of the optimal reputation protocol.

The evolution ofµ can be characterized by the following nonlinear stochasticdif-

ference equation:

µ(t+1)(θ) =






x
(t)
+ (θ − 1) + x

(t)
un(θ) + x

(t)
+ (θ) if θ = L

x
(t)
+ (θ − 1) + x

(t)
un(θ) if θ ∈ {1, ...L− 1}

x
(t)
un(θ) +

L∑
θ′=0

x
(t)
− (θ′) if θ = 0

. (3.9)

Here t is the time index. x(t)
+ (θ) andx

(t)
− (θ) are random variables representing the

numbers of users whose reputations change, in periodt, from θ to θ + 1 andθ − 1,

respectively; whilex(t)
un(θ) representing the number of users whose reputations remains

unchanged. All of these variables follow binomial distributions:

x
(t)
+ (θ) − Bin(µ(t)(θ), q

(t)
reward(θ))

x
(t)
− (θ) − Bin(µ(t)(θ), βq

(t)
punish(θ))

x
(t)
un(θ) − Bin(µ(t)(θ), (1− β)q

(t)
punish(θ))

. (3.10)

whereq(t)reward(θ) andq(t)punish(θ) are the probabilities that a user of reputationθ is re-

ported to be complying with and deviating from the social rule respectively, when he

adopts his optimal strategy in periodt. According to (3.8), a user’s optimal strategy in

each period is implicitly determined by the community stateµ and his reputationθ and

hence, bothq(t)reward(θ) andq(t)punish(θ) are also determined byµ andθ. Also, q(t)reward(θ)

andq(t)punish(θ) are implicitly influenced by the error probabilityε.

The dynamic system (3.9) defines a Markov chain on the finite space

U =

{
µ = (µ(θ))Lθ=0

∣∣∣∣∣µ(θ) ∈ N for 0 6 θ 6 L,

L∑

θ=0

µ(θ) = N

}
, (3.11)

with the transition probability matrix being denoted asPε,κ = [pε,κ(µ
′|µ)]µ,µ′∈U . Note

that withε > 0, this Markov chain is communicating. Hence, it is well-known from

72



[54] that this Markov chain is also irreducible and aperiodic, which introduces a unique

stationary distribution overU . Let

∆|U| ,

{
ω = (ω(µ))µ∈U ∈ R|U||ω(µ) > 0 for ∀µ ∈ U and

∑

µ∈U

ω(µ) = 1

}

(3.12)

be the|U|-dimensional simplex, a stationary distribution is a row vectorωε,κ satisfying

ωε,κ = ωε,κPε,κ. When this Markov chain in communicating, irreducible and aperiodic,

ωε,κ satisfies the following properties.

Lemma 1.ωε,κ preserves the following properties:

(1) Stability: For anyω ∈ ∆|U|, we have thatlim
t→∞

ωP t
ε,κ → ωε,κ.

(2) Ergodicity: Starting from an arbitrary community stateµ(0), the fraction of time

that the community stays at a particular community stateµ in the long run isωε,κ(µ),

i.e. lim
T→∞

1
T

T∑
t=1

I(µ(t) = µ) = ωε,κ(µ), ∀µ ∈ U , whereI(·) is the indicator function

that takes the value 1 whenµ(t) = µ.

Proof: This lemma is proved in [44] and is omitted here.�

The stability shows that independent of the initial community state, the asymptotic

distribution of the community state in the long run is alwaysgiven byωε,κ. The ergod-

icity indicates that the proportion of time that the community spends in each state is

equivalent to the corresponding term of this state in the stationary distributionωε,κ.

Whenε → 0, the resulting stationary distribution is referred to as the limit distribu-

tion and is defined as follows.

Definition 1 (Limit Distribution). The limit distribution is defined by

ω̄κ = lim
ε→0

ωε,κ. (3.13)

Due to the fact that each element inPε,κ is a polynomial ofε and is thus contin-

uous onε, it could be concluded that the limit distribution also satisfies the following

condition

ω̄κP0,κ = ω̄κ. (3.14)
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Therefore, the limit distribution is also a stationary distribution overU whenε = 0

8.

The limiting distribution characterizes the asymptotic stationary distribution of the

community state over the spaceU when the error probability is sufficiently small. The

existence and the uniqueness ofω̄κ has been proven in [44]. A community state that

receives a positive probability in̄ωκ are called a stochastically stable state under the

reputation protocolκ, which is defined as follows.

Definition 2 (Stochastically Stable State).A community stateµ is a stochastically

stable state under a reputation protocolκ if and only if ω̄κ(µ) > 0.

According to Definition 2, given a reputation protocolκ, the community stays at

a stochastically stable state with a positive fraction of time in the long run. On the

contrary, if a community state is not stochastically stable, the fraction of time that the

community stays at this state approaches to 0 whenε → 0. Let C(ω) be the carrier

of a probability distributionω ∈ ∆|U|, i.e. C(ω) = {µ ∈ U|ω(µ) > 0}, the set of

stochastically stable states under the reputation protocol κ can be denoted asC(ω̄κ).

Therefore, starting from an arbitrary initial state, the community converges with

probability 1 to states that belong toC(ω̄κ) in the long run.

We then define the equilibrium concept in this chapter, whichis referred to as s-

tochastically stable equilibrium (SSE) [44].

Definition 3 (Stochastically Stable Equilibrium).A strategy profileσ# = (σ#
i )

N
i=1

and a reputation profileθ# = (θ#i )
N
i=1 form an SSE under a reputation protocolκ if and

only if

(1) The community state underθ# belongs toC(ω̄κ), i.e.µθ#
∈ C(ω̄κ).

(2) For each useri, σ#
i is his best response, i.e.σ#

i = σ
κ,ηθ#

i
i .

According to this definition, each SSE introduces a community state which is s-

8It is worth to be noted that there might be multiple stationary distributions under the same reputation
protocol whenε = 0, while the limit distribution is always unique.
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tochastically stable, and conversely, for each stochastically stable stateµ ∈ C(ω̄κ),

there is at least one SSE that introduces it. LetE = {(σ#, θ#)|(σ#, θ#) is an SSE}

denote the set of stochastically stable equilibria, we havethe following lemma.

Lemma 2. (1) For each(σ#, θ#) ∈ E,µθ#
∈ C(ω̄κ); (2)C(ω̄κ) = {µθ#

|(σ#, θ#) ∈

E, ∃σ#}.

Proof: This lemma is straightforward according to Definition 3.�

The protocol designer’s problem is to design a reputation protocol that induces users

to cooperate in all SSE, which can be formally defined as follows:

Definition 4 (Protocol Design Problem).The protocol designer’s goal is to select a

protocolκ such that for any SSE(σ#, θ#) ∈ E, the following is satisfied

σ#
i (θ

#
i , θ

#
j ) = 1, ∀i, j ∈ {1, ..., N} and i 6= j. (3.15)

Since the community stays at stochastically stable states with probability 1 in the

long run, full cooperation among users is induced in the community and hence the

community operates at its highest efficiency with the optimal social welfareŪ = b− c.

3.4 Optimal User Strategy

In this section, we investigate the structure of a typical user i’s optimal strategy, i.e.

σ
κ,ηi
i . Since users are homogeneous with respect to the stage game benefitb and costc

as well as the discount factorδ. The results derived for useri in this section is applicable

to the optimal strategy of any user in the community. The proofs in this section heavily

rely on the one-shot deviation principle of discounted dynamic programming, which

is proven in [50]. Below we briefly explain the basic idea of the one-shot deviation

principle9.

9There is a little abuse of notations here since the terms “state” and “action” are used to describe the
Markov decision process. It should be noted that the state and action here are generic and are different
from the community state and user action in this chapter.
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Given a discrete-time Markov decision process with the state spaceS, the action

spaceA, the state transition probabilityp(s′|s, a), the policyπ(s, a), the one-period

reward functionr(s, a) and the value functionV π(s), suppose a useris optimal policy

is π∗ with the corresponding optimal value functionV π∗
. Starting from any periodt

when useri is at states(t), then useri cannot increase his long-term utility by deviating

fromπ∗ in this period and continues to comply withπ∗ in the future, i.e.

V π∗

(s(t)) > r(s(t), a) +
∑

s′∈S

p(s′|s, a)V π∗

(s′), ∀t and ∀a 6= π∗(s). (3.16)

Mapping the general MDP formulation above into our problem,we haves = θ, a =

σ(θ, ·) andπ = σ for each individual user. Hence, the optimization (3.8) is equivalent

to the derivation of the optimal policy of an MDP problem for each individual user.

Using this idea, we have the following lemma.

Lemma 3. For anyθ, θ̃ ∈ Θ, σκ,ηi
i (θ, θ̃) = 0 if φ(θ, θ̃) = 0.

Proof: First, it is easy to observe that given the social rule (3.3) and the user belief

(3.5), we haveVi(θ|σi,ηi, κ) 6 Vi(θ + 1|σi,ηi, κ), ∀θ ∈ {0, ..., L − 1}. Suppose that

for a useri, we haveσκ,ηi
i (θ′, θ̃′) = 1 for some(θ′, θ̃′) with φ(θ′, θ̃′) = 0. If user i

chooses to playz = 0 at reputationθ′ when he meets a client of reputationθ̃′ (i.e.

adopting a one-shot deviation fromσκ,ηi
i ), he receives a higher utility for the current

stage game because he saves the cost of supplying services inthis stage game, while

his future utility remaining unchanged becauseφ(θ′, θ̃′) = 0 and he will not be punished

in this period regardless of his choice onz. Therefore,Vi(θ
′|σi,ηi, κ) increases if useri

choosesσi(θ
′, θ̃′) = 0. According to the one-shot deviation principle,σ

κ,ηi
i thus cannot

be optimal. Hence, we should haveσκ,ηi
i (θ′, θ̃′) = 0. �

The basic idea of Lemma 3 is that by supplying more services than required by the

social rule, useri’s expected cost in the current period increases while his expected fu-

ture utility does not change. Hence, his expected long-termutility is always maximized

by choosingσκ,ηi
i (θ, θ̃) = 0.

Using Lemma 3, we first prove thatσκ,ηi
i is always threshold-based for anyκ and
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ηi.

Proposition 1. Givenκ, ηi, there exists a set of service thresholds(hκ,ηi
(θ))Lθ=0 ∈

N
L+1 such thatσκ,ηi

i preserves the following property for anyθ ∈ Θ:

σ
κ,ηi
i (θ, θ̃) =





1 if θ̃ > hκ,ηi
(θ)

0 θ̃ < hκ,ηi
(θ)

. (3.17)

Proof: See Appendix A.�

Remark:Proposition 1 proves that the optimal strategy always instructs useri, at

any reputationθ, to supply services only to clients of reputations higher than or equal to

a thresholdhκ,ηi
(θ). This is because if useri supplies services to a client of reputationθ̃

in his optimal strategy, i.e.σκ,ηi
i (θ, θ̃) = 1, we should also haveσκ,ηi

i (θ, θ̃′) = 1 for any

θ̃′ > θ̃, since serving a client with a higher reputation incurs the same cost as serving a

client with a lower reputation but always brings a user higher future benefit.

In the following proposition, we further analyse the property of the service thresh-

olds{hκ,ηi
(θ)}Lθ=0 that are derived in Proposition 1.

Proposition 2. For anyκ andηi, (1)hκ,ηi
(θ) ∈ {H,L+1}, if θ > H; (2)hκ,ηi

(θ) ∈

{0, L+ 1}, if θ < H.

Proof: See Appendix B.�

Remark:Proposition 2 proves that the optimal choice of each user at any reputation

θ is binary: he either does not provide any service withσ
κ,ηi
i (θ, θ̃) = 0, ∀θ̃ ∈ Θ, or fully

complies with the social rule, i.e.σκ,ηi
i (θ, θ̃) = φ(θ, θ̃), ∀θ̃ ∈ Θ. Hence, Proposition

1 and 2 significantly simplify the set of strategies that can possibly serve as a user’s

optimal strategy, thereby facilitating the design of the optimal reputation protocol in

the next section.
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3.5 Optimal Reputation Protocol

This section employs the structural results obtained in Section 3.4 to solve the problem

of optimal reputation protocol design. According to Lemma 2, the design problem

(3.15) could be decomposed into two steps: (1) determine theset of stochastically stable

statesC(ω̄κ); (2) determine whether full cooperation is induced under eachµ ∈ C(ω̄κ),

i.e. whether{σ
κ,ηθ

i
i }Ni=1 satisfies (3.15) for allθ ∈ Λµ.

We first prove that each stochastically stable state is an invariant state, which is

defined as follows.

Definition 5 (Invariant State).A community stateµ is a invariant state under a

reputation protocolκ if and only if p0,κ(µ|µ) = 1.

Hence, an invariant state is an absorbing state in the Markovchain induced by users’

best response dynamics when the error probabilityε = 0. Whenε → 0, the community

will stay at an invariant state once it enters this state until stochastic perturbations occur.

It is important to note that in general, a stochastically stable state does not necessarily

to be invariant according to (3.14). A simple example would be a cycle consisting of

two statesµ andµ′ such thatp0,κ(µ′|µ) = 1 andp0,κ(µ|µ′) = 1. These two states are

not invariant but could be stochastically stable. Such cycle is defined as an absorbing

class as follows.

Definition 6 (Absorbing Class).A absorbing classG is a set of community states

such thatp0,κ(µ′|µ) > 0, ∀µ,µ′ ∈ G andp0,κ(µ′|µ) = 0, ∀µ ∈ G and∀µ′ /∈ G.

Nevertheless, the following theorem proves that in the repeated random matching

game discussed in this chapter, each stochastically stablestate is also invariant. Hence,

there will be no cycle of states existing in the limit distribution carrierC(ω̄κ). The main

idea to prove this is to show that for any stationary distributionω such thatωP0,κ = ω,

each stateµ ∈ C(ω) is invariant. Since we havēωκP0,κ = ω̄κ, each stochastically

stable state is thus also invariant.
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Theorem 1.Eachµ ∈ C(ω̄κ) is an invariant state.

Proof: See the online appendix [56].�

As a by-product of Theorem 1, we have the following corollary.

Corollary 1. A community stateµ = {µ(0), · · · ,µ(L)} that is stochastically

stable preserves the following property

µ(θ) = 0, ∀θ ∈ {1, ..., L− 1}. (3.18)

Proof: Any stateµ′ that does not satisfy (3.18) cannot be invariant. Hence, it is also

not stochastically stable according to Theorem 1.�

Corollary 1 shows that there are onlyN + 1 states that could possibly be stochasti-

cally stable. For better illustration, we define a setUB = {µ|µ satisfies (3.18)} and

index theseN +1 states inUB according to the valueµ(L). A stateµk
B hasµk

B(L) = k

andµk
B(0) = N − k with k ∈ {0, ..., N} . In the next corollary, we prove that full

cooperation cannot be induced in any stateµk
B with k < N .

Corollary 2. For eachµ ∈ C(ω̄κ) and for each reputation profileθ ∈ Λµ, the

following properties hold for{σ
κ,ηθ

i
i }Ni=1:

hκ,ηθ
i
(θi) = L+ 1, if θi = 0, (3.19)

hκ,ηθ
i
(θi) = H, if θi = L. (3.20)

Proof: If (3.19) is not satisfied for some useri. Then there is always a positive

probability thatθi changes from 0 to 1 after one period and hence,µ is not invariant.

Similarly, if (3.20) is not satisfied for some userj, µ is not invariant.�

Using Corollary 2, the design problem (3.15) can be “translated” into the design

of κ with which C(ω̄κ) contains a unique stateµN
B with µN

B (θ) = 0, ∀θ < L and

µN
B (L) = N . This is solved in the next theorem.

Theorem 2. (1) If δ > c
b
, the optimal reputation protocol that solves the design

problem (3.15) isL = H = 1, andβ ∈ [ c
bδ
, βcritical), whereβcritical is the solution of
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the following equation:

(1− δ)c

δ(b− βcriticalc)
+

(1− δβcritical)c

δβcritical(b− c)
= 1. (3.21)

(2) If δ < c
b
, there is no reputation protocol that can induce full cooperation among

users in the long run.

Proof: See the online appendix [56].�

Remark: Theorem 2 provides various insights into the optimal protocol design.

First, a two-level reputation protocol withL = H = 1 is sufficient to achieve the

optimality and solve the design problem (3.15)10. When bothL andH are larger than

1, we would always haveµ0
N being a stochastically stable state, since it takes only one

stochastic perturbation for a good user to become bad and be punished, whereas it takes

multiple stochastic perturbations (proportional toH) for a bad user to become a good

user again. Another important insight is that the punishment strengthβ cannot be too

small or too large. Whenβ < c/bδ, a good user does not have sufficient incentives to

comply with the social rule because the enforced punishment(i.e. the probability that

his reputation is degraded to0 upon his deviation from the social rule) is small. In this

case, the stateµN
B is not invariant and stochastically stable. Whenβ > βcritical, the

enforced punishment is too severe and makes the stateµ0
N stochastically stable and full

cooperation among users cannot be sustained in the long run.

Remark:It should also be noted that the optimal design ofβ is a continuous region

instead of a particular value. This is because we focus on designing the reputation

protocol under whichµN
B is the unique stochastically stable state and as a result, there

can be a range ofβ which could satisfy this requirement.

10However it should be noted that the reputation protocol withL = H = 1 is not the only optimal
protocol. In fact according to the proof of Theorem 2, ifκ = {1, 1, β} is optimal, any protocolκ′ =
{L, 1, β} is also optimal.
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3.6 Numerical Examples

In our experiments, we illustrate the long run performance of the reputation protocol

designed in Theorem 2. We deploy a number ofN = 1000 users in the community and

use a reputation setΘ = {0, 1}.

3.6.1 Performance Comparison

In the first experiment, we compare the performance of the reputation protocol designed

in Theorem 2 with those of other incentive protocols from theexisting literature.

Particularly, three protocols are considered. Protocol 1 is the reputation protocol

from the optimal design in Theorem 2. Protocol 2 is the reputation protocol designed in

our prior work [45]. Protocol 3 is the BitTorrent protocol which implements the tit-for-

tat direct reciprocation mechanism [41]. In tit-for-tat, each user records his personal

interactions with other users, and determines his reciprocation behavior with others

based on this personal record. Particularly, each useri supplies services to another user

j if and only if userj has provided services to him in their last stage game. We run

an experiment in which the users in the community interact for 108 periods under each

protocol. In the experiment, we assume that each user has a discount factorδ = 0.8.

Table 3.2 presents the average social welfare received in these108 periods which is

normalized by the social optimumb − c, i.e.

T∑

t=1

N∑

i=1
u
(t)
i

TN(b−c)
with T = 108 andN = 1000,

whereu(t)
i is defined in (1). The result shows that the protocol designedin this chapter

(Protocol 1) delivers significantly better performance than other protocols. The main

reason for these gains is that Protocols 2 and 3 do not explicitly consider the long-

run evolution of the community in their designs. For example, Protocol 2 optimizes

the social welfare when the community is sustained at the equilibrium under which all

users comply with the social rule and are cooperative with each other. Nevertheless,

when the community deviates from this equilibrium (i.e. some users no longer comply

with the social rule) due to stochastic perturbations, Protocol 2 cannot ensure that the
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Table 3.2: Average social welfare under different protocols
c = 1, b = 3,

ε = 0.01

c = 1, b = 5,

ε = 0.01

c = 1, b = 3,

ε = 0.05

c = 1, b = 5,

ε = 0.05

Protocol 1 0.9328 0.9428 0.8536 0.8810

Protocol 2 0.6628 0.8234 0.2426 0.3072

Protocol 3 0.4372 0.6782 0.1728 0.2876

community converges back to this particular equilibrium and hence, the community

stays at non-equilibrium states in the long run which results to a low average social

welfare over time.

3.6.2 Convergence Speed

Theorem 2 prescribes “how to design the reputation protocolsuch that the communi-

ty converges to a fully cooperative equilibrium in the long run”. In this section, we

analyze how fast the community will converge to this equilibrium, i.e. starting from

an arbitrary community state, what is the expected waiting time for the community to

enter a stochastically stable equilibrium. In the experiment, we setδ = 0.8, b = 5 and

c = 1. According to Theorem 2, it can be calculated thatµN
B is the unique stochas-

tically stable state whenβ > 0.25. We run the experiment with different selections

of (ε, β) and different initial community states that are randomly sampled from the set

{µ0
B, . . . ,µ

N−1
B }. Table 3.3 presents the number of periods (i.e. the waiting time) for

the community to converge to the stateµN
B . A first observation is that the waiting time

is smaller with largerε, which is intuitive since it is easier for the community to leave

a state that is invariant but not stochastically stable whenmore stochastic perturbations

take place in each period. Another interesting observationfrom Table 3.3 is that the

waiting time monotonically increases with the punishment strengthβ. This is due to

the fact that whenβ decreases, it is more likely for a user not to be punished uponhis

deviation. Hence, it becomes more difficult for the community to enter invariant states

that contain a large portion of bad users, e.g.µ0
B, and easier to enter invariant states
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Table 3.3: The convergence time to the stochastically stable equilibrium
ε β t (103 periods)

0.05 0.4 36

0.05 0.6 105

0.05 0.8 890

0.05 1.0 1049

0.1 0.4 23

0.1 0.6 98

0.1 0.8 650

0.1 1.0 820

that contain a large portion of good users, e.g.µN
B .

3.7 Conclusions and Future Research

We have studied the problem of designing reputation protocols for online communities

in which users adapt their behaviors and learn over time. In such communities, protocol

designers can determine the long-run evolution of the community of users and use this

knowledge to induce cooperation among users in the long run.Our framework can

be extended in several directions, among which we mention three. First, users in the

community do not necessarily need to be homogeneous with respect to their stage-

game benefits and costs. Different users can have different benefits and costs for the

service received/provided. Also, they can choose different discount factorsδ when

evaluating the long-term utility. Second, instead of always reporting truthfully, clients

can use more complicated decision rules while reporting theservers’ actions to the

community operator in order to maximize their own long-termutility. Third, users

adopt a simple belief model in this chapter. However, more sophisticated belief models

can be introduced into our framework. For example, the formation of user beliefs and

opinions in social networks are extensively studied in [52]and [53]. Understanding

how the evolutions of users’ beliefs and users’ strategies will impact each other will

also form an important future research direction.
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3.8 Appendices

3.8.1 Appendix A: Proof of Proposition 1

To prove this proposition, it is equivalent to showing the correctness of the following

statement for anỹθ > 0: if σκ,ηi
i (θ, θ̃) = 0, thenσκ,ηi

i (θ, θ̃ − 1) = 0 always holds.

We use contradictions to prove the above statement. Supposethat there areθ ∈ Θ

and θ̃ > 0 such thatσκ,ηi
i (θ, θ̃) = 0 andσκ,ηi

i (θ, θ̃ − 1) = 1. According to Lemma

3, we haveφ(θ, θ̃ − 1) = 1 andφ(θ, θ̃) = 1. Now consider an alternative strategyσ′

such thatσκ,ηi
i (θ′, θ′′) = σ′(θ′, θ′′), ∀(θ′, θ′′) 6= (θ, θ̃) andσ′(θ, θ̃) = 1. That is,σ′ and

σ
κ,ηi
i differ only at the reputation pair(θ, θ̃). Then according to the one-shot deviation

principle, the expected long-term utility of useri by adoptingσκ,ηi
i at reputationθ,

i.e. V
κ,ηi
i (θ), should be larger than the expected long-term utility when he adoptsσ′

in the current period and continues to comply withσ
κ,ηi
i in the future, which gives the

following inequality:

vi(θ|σ
κ,ηi
i ,ηi) + δ

∑
θ′
pi(θ

′|θ, σ
κ,ηi
i ,ηi, κ)Vi(θ

′|σ
κ,ηi
i ,ηi, κ)

> vi(θ|σ
κ,ηi
i ,ηi)−

ηi(θ̃)
N−1

c+ δ
∑
θ′
pi(θ

′|θ, σ′,ηi, κ)Vi(θ
′|σ

κ,ηi
i ,ηi, κ).

(3.22)

By manipulating (3.22) , we have

ηi(θ̃)

N − 1
c > δ

∑

θ′



 pi(θ
′|θ, σ′,ηi, κ)

−pi(θ
′|θ, σ

κ,ηi
i ,ηi, κ)



Vi(θ
′|σ

κ,ηi
i ,ηi, κ). (3.23)

By solving its RHS, (3.23) can be transformed as follows

ηi(θ̃)

N − 1
c >

ηi(θ̃)

N − 1
δ



V (θ + 1|σ
κ,ηi
i ,ηi, κ)− βV (0|σ

κ,ηi
i ,ηi, κ)

−(1− β)V (θ|σ
κ,ηi
i ,ηi, κ)



 . (3.24)

The LHS of (3.24) is the extra immediate cost that is incurredto useri when it is at

reputationθ and provides services to a client of reputationθ̃, and the RHS of (3.24) is

the extra future utility that is brought by doing so. Since the immediate cost is higher
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than the extra future utility, useri choosesσκ,ηi
i (θ, θ̃) = 0 in his optimal strategy. Using

the same idea, the following condition should be met whenσ
κ,ηi
i (θ, θ̃ − 1) = 1:

ηi(θ̃ − 1)

N − 1
c 6 δ

ηi(θ̃ − 1)

N − 1



V (θ + 1|σ
κ,ηi
i , κ, ηi)− βV (0|σ

κ,ηi
i , κ,ηi)

−(1 − β)V (θ|σ
κ,ηi
i , κ,ηi)



 . (3.25)

It is easy to observe that (3.24) and (3.25) cannot hold at thesame time and hence,

we have a contradiction. Therefore, the statement at the beginning of this proposition

always holds forσκ,ηi
i and Proposition 1 follows.�

3.8.2 Appendix B: Proof of Proposition 2

According to Lemma 3,hκ,ηi
(θ) ∈ [H,L + 1] if θ > H. Similarly, we also have

hκ,ηi
(θ) ∈ [0, L+ 1] if 0 6 θ < H.

The rest of this proof follows the same argument as in Proposition 1. Suppose

hκ,ηi
(θ) ∈ (0, L+1) for someθ < H, i.e.σκ,ηi

i (θ, hκ,ηi
(θ)) = 1 andσκ,ηi

i (θ, hκ,ηi
(θ)−

1) = 0, then according to the one-shot deviation principle, we have that

ηi(hκ,ηi (θ))

N−1
c > δ

ηi(hκ,ηi (θ))

N−1



V
κ,ηi
i (θ + 1)− βV

κ,ηi
i (0)

−(1− β)V
κ,ηi
i (θ)





ηi(hκ,ηi
(θ)−1)

N−1
c 6 δ

ηi(hκ,ηi
(θ)−1)

N−1



V
κ,ηi
i (θ + 1)− βV

κ,ηi
i (0)

−(1− β)V
κ,ηi
i (θ)




, (3.26)

which introduces a contradiction. Hence,hκ,ηi
(θ) /∈ (0, L+ 1) and we havehκ,ηi

(θ) ∈

{0, L+ 1} for anyθ < H. Similar arguments apply to good users and thushκ,ηi
(θ) ∈

{H,L+ 1} for anyθ > H. �
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CHAPTER 4

Information Production and Link Formation in Social

Computing Systems

4.1 Introduction

Social computing is booming nowadays [5][42][57] and has recently led to a new trend:

the integration of social computing techniques with communication networks to enable

individuals with similar interests to connect to each otherover a mobile or low-cost net-

work infrastructure to share and disseminate user-generated resources, such as multi-

modal content, geographical information, event-related information, personal sensory

information, etc. For instance, [58] and [59] propose mobile content distribution ar-

chitectures relying on social relationship and providing economic incentives to offload

the bandwidth-intensive task of content dissemination from service providers to the

mobile subscribers in mobile and wireless networks. Distributed spectrum sensing in

peer-to-peer cognitive networks is proposed in [60] to efficiently map the spectrum op-

portunities based on contributions from individual cognitive terminals. The work of

[61] formulates the location-aware information sharing and link formation in vehicular

networks as a coalition game to improve the efficiency of roadinformation dissemina-

tion among vehicles.

In all the aforementioned social computing applications, the decentralized strate-

gic interactions of agents have decisive impact on the emerging network topologies as

well as the stability and the efficiency of emerging networksand distributed systems.

In this chapter, we are focusing on two key features that characterize the strategic be-

86



havior of agents: resource production and link formation. Resource production refers

to the agents’ decisions to personally generating resources. Here we use the abstrac-

t concept of “resources” to represent any knowledge, multi-modal content, and other

kinds of data and service that can be exchanged and shared in social computing sys-

tems. Several examples on resources production would be theupload and creation

of blogs, videos and photos on online platforms with user-generated content [5], the

download and purchase of content from service provider in peer-to-peer networks [57]

and content distribution networks [58], and the creation oflocal spectrum information

sensed by individual cognitive terminals in peer-to-peer cognitive networks [60]. Link

formation refers to all kinds of agents’ decisions regarding exchanging the produced

resources with other agents, i.e. how agents create and dissolve links with each other to

acquire resources. For example, a peer node in P2P networks makes active decisions on

which peers it should connect to and download content from; in peer-to-peer spectrum

sensing, a cognitive terminal can request and exchange information about spectrum op-

portunities which have already been discovered by other terminals [60][62]. Most of

the existing works assume that agents decisions on these actions are exogenously de-

termined by a system designer aiming to maximize the overallnetwork utility. Hence,

agents do not proactively make decisions but rather obediently follow the actions pre-

scribed by the designer. While this assumption is realisticfor traditional communica-

tion networks composed of obedient agents (e.g. sensor nodes), it does no longer hold

in social computing systems, where networks are usually formed in an ad-hoc fashion

by self-interested agents determining their own strategies in order to maximize their

own utilities. Hence, a novel framework on studying the incentive of agents in the joint

decision on resources production and link formation according to their own self-interest

is necessary. Such a framework does not only help to understand the agents’ behavior

in social computing systems but also facilitates the designof incentive protocols which

encourage the agents to cooperate with each other in a way to optimize the system ef-

ficiency. In the rest of this chapter, we use “social computing system” and “network”
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interchangeably.

Self-interested link formation in social computing systems has been studied by mi-

croeconomics and network science researchers (see e.g. [63]), who analyze how the

agents’ self-interests lead to strategic link creation in anetwork and determine what

network topologies arise. A simple model is proposed in [64], where the problem of

link formation is formulated as a non-cooperative game among strategic agents. The

agents can select which links to create with other agents in order to individually max-

imize their own utilities by trading off the potential rewards obtained from forming a

link (e.g. resources acquisition) against the incurred link creation cost (e.g. payment

and maintenance costs for links). Analysis of this model canlead to useful predictions

of what “equilibrium” topologies emerge. This basic model has subsequently been ex-

tended in various directions. For example, [65] studies thebilateral network formation

in which the link creation requires mutual consent and the cost is two-sided. The net-

work formation problem for the scenario where agents are heterogeneous is analyzed in

[66], which shows that a strict equilibrium network is minimal and, conversely, every

minimal network is a strict equilibrium for suitable costs and benefits12.

Importantly, there are two key drawbacks that prevent theseexisting models from

being successfully applied to social computing systems. First, most of these works as-

sume that agents are endowed with exogenous amounts of resources and focus solely on

the strategic aspect of link formation. The fact that agentsusually have the capability to

self-produce resources is neglected. Second, these works treat resources collected from

different agents as homogeneous, i.e. being equally valuedand perfectly substitutable,

while in social computing systems, resources from different agents is heterogeneous

with respect to location, devices used for gathering this resources, content contained,

etc., and thus it cannot be perfectly substitutable with each other. Meanwhile, given the

information heterogeneity, an agent’s benefit from information consumption no longer

1A strict equilibrium is a strategy profile in which each agent’s utility is strictly larger than the result-
ing utility by choosing any other strategy.

2A minimal network is a topology where there is a unique path between any two agents in the network.
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only depends on the total amount of information it consumes,but also on how many

types of information and what amount of each type it acquires. Therefore, an agent nor-

mally has certain appreciation for information variety by valuing information produced

by numerous sources higher than information produced by a single source [67].

Based on these characteristics of the agents, our work proposes a novel Information

Production and Link Formation game (IPLF game) for social computing systems to

jointly study agents’ strategic behavior on information production and link formation.

To deal with the agents’ appreciation for information variety, we deploy the well-known

Dixit-Stiglitz utility function [70] to capture the impactof information heterogeneity

on the agents utilities. Using this formalism, we study whatasymptotic equilibria e-

merge in networks of large sizes. Different from the idealized works in economics, e.g.

[69], which assume perfectly substitutable information (i.e. agents have no apprecia-

tion for variety) and predict the occurrence of “the law of the few” [69] 3, our analysis

shows that when the size (population) of a network is sufficiently large, every (strict)

non-cooperative equilibrium of the IPLF game consists of a hierarchical core-periphery

structure with all agents belonging to one of the two types: hub agents producing large

amounts of information have a large number of connections and serve as the major

source of information sharing; and spoke agents produce andshare limited amounts of

information and mainly consume information acquired from hub agents. Importantly,

as the network size grows, the population of hub agents as well as the total amount of

information produced in the network grows proportionally to the network size. This

shows that in social computing systems where agents appreciate information variety,

the “law of the few” does not exist with the production and sharing no longer being

dominated by a small group of powerful agents but rather being more distributed, and

the network structure remaining flat but not scale-free4.

3“The law of the few” [69] states that under perfect information substitutability, only a small amount
of agents in a network will produce information with the fraction of information producers in the total
population goes to 0. Meanwhile, the total amount of information produced in the network is upper-
bounded.

4A scale-free network is a network whose degree distributionfollows a power law asymptotically. If
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Following the characterization on the equilibria in the IPLF game, we then analyze

the efficiency of such equilibrium topologies and compare itwith the social optimum

by providing bounds on the Price of Stability and the Price ofAnarchy. Stemming from

this basic model, we further propose and investigate the IPLF game which incorporates

indirect information sharing, which is a common feature in social computing systems

that an agent cannot only consume and access information produced by its neighbors

but also that produced by the neighbors of its neighbors.

The remainder of this chapter is organized as follows. In Section 4.2, we describe

our basic model of the IPLF game. In Section 4.3, we characterize the emerging non-

cooperative equilibria. In Section 4.4, the model of the IPLF game with indirect infor-

mation sharing is presented and discussed. We conclude in Section 4.5 and also outline

future research topics.

4.2 Basic Model

We consider information sharing in a social computing system where agents have the

capability to produce information personally as well as form links with others in order

to acquire information that they produce. The definition of “agent” in this chapter is

very general. It can represent individual nodes, devices, peers, and also autonomous

sub-networks or groups of nodes cooperating with each otherto form an integrated

entity participating in the IPLF game. Examples of information being shared are multi-

modal content, environmental sensory data in sensor networks, road information in

vehicular networks, geographical information in location-based services, etc.

In all these different applications, the precise formulation of actions and utilities of

the participating agents will depend on details of the application. For example, pre-

cisely how agents can form links with others, whether there is any budget or practical

a network is scale-free, the fraction of agents with large numbers of connections in the entire population
decays fast to 0 as the network size grows [71].
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constraints on connections such as physical locations and bandwidth limits, how does

an agent benefit/cost from the presence of a link, etc. In thiswork, we use a stylized

model to formulate the IPLF game without delving into the idiosyncrasies of any par-

ticular application, in order to capture the basic trade-offs and draw qualitative insights

about the effects of self-interested behavior on the network structure of social comput-

ing systems. However, it should be noted that various alternative models are ready to be

extended from this basic model for the analyses of particular applications, as discussed

in Section 4.5.

Let N = {1, 2, . . . , n} denote the set of agents in the system, wherei andj repre-

sent typical members. Each agenti determines the amount of information it produces,

which is called as its production level and is denoted byxi ∈ R
+. We assume a linear

cost on information production as in [66] and hence, a cost ofc ∈ R
+ incurs to an a-

gent for each unit of information it produces. Examples of the cost could be the energy

consumption on spectrum sensing in P2P cognitive networks,subscription fees paid to

service providers for content download in content distribution networks, etc. Besides

the self-production, each agent also determines whether tocreate links with other peer

agents in order to acquire information from them. Here we consider unilateral link for-

mation as in [73], where links are created by the unilateral actions of agents and link

costs are one-sided. An agenti’s link formation action to another agentj is represented

by a binary variablegij = {0, 1}. We setgij = 1 if agenti forms a link to agentj 6= i

andgij = 0 otherwise. For convenience, we setgii = 0 for all i ∈ N . For illustration

purposes, we refer to the agent who forms a link and the agent with whom the link is

formed as the creator and recipient of the link, respectively. Forming a link incurs a

costk, which abstracts all the costs and payments for creating andmaintaining the link,

as well as costs incurred in information exchange and transmission (e.g. uploading

and downloading cost, energy consumption in transmission,etc.). Here we assume the

value ofk to be constant for each link. Meanwhile, since a link is formed unilaterally

without the consent of the recipient, we assume that the creator undertakes the entire
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costk (i.e. if there is some cost incurred for the recipient in receiving a link, the creator

will also compensate the receiver by paying for it). The linkformation decision by

agenti is then represented by a row vectorgi = (gij)j∈N,j 6=i ∈ {0, 1}n−1. We assume

that the information exchange across a link is undirected and thus, the connection sta-

tus between agentsi andj can be represented by a variableḡij = max{gij , gji} which

takes the value of1 when they are connected and called as “neighbors” of each other.

We also assume thatḡii = 1. Since the link is undirected and we assume that each link

has sufficient capacity to support the information transmission, neighboring agents can

mutually access all information produced by each other.

We consider a simultaneous move game where agents make decisions on informa-

tion production and link formation at the same time. The set of strategies of agenti is

thus denoted bySi = R
+ × {0, 1}n−1. A strategy profile in the IPLF game is written

ass = (x, g), wherex = (xi)
n
i=1 andg = (gi)

n
i=1 denote the information production

and link formation decisions of all agents, respectively. Let ḡ , [ḡij]i,j∈N denote the

connectivity graph of the network, we also defineNi(g) , {j|gij = 1} as the set of

agents to whom agenti forms a link andNi(ḡ) , {j|ḡij = 1} as the set of agents to

whom agenti is connected, i.e. the neighbors of agenti.

Agents in the IPLF game benefit from consuming information available to them. In

the basic model, we assume pure local externalities [69]: each agent only consumes

information personally produced by itself and its neighbors 5, and cannot consume in-

formation produced by another agent who is more than one hop away from it on the

connectivity graph̄g. As mention previously, existing works on strategic link forma-

tion assume that information produced by different agents is perfectly substitutable

[64][69], i.e. the total amount of information that an agentconsumes fully determines

its benefit. Therefore, an agent’s benefit from information consumption is not affected

by where the information comes from as long as the total amount of information con-

sumed remains constant. This assumption, however, fails tocapture agents’ interests

5An analysis about indirect information sharing can be foundin Section 4.4
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and benefit from consuming diverse information in social computing systems. For ex-

ample, the spectrum information collected by different cognitive terminals at different

locations should have different values in consumption and cannot be fully replaced.

Hence, instead of assuming the perfect substitutability, we use the Dixit-Stiglitz pref-

erence model from [70] to capture agents’ appreciation for information variety, under

which an agenti’s benefit from information consumption is given by

fi(x, g) = v((xρ
i +

∑

j∈Ni(ḡ)

xρ
j )

1/ρ) (4.1)

for some functionv : R+ → R
+ and someρ ∈ (0, 1). ρ measures an agent’s appre-

ciation for information variety. Whenρ < 1, an agent obtains a higher benefit when

it consumes information from a more diverse bundle of agents. It should be noted that

whenρ → 1, the agent’s appreciation for information variety disappears and hence,

the function (4.1) could also be used to model an agent’s benefit when information is

perfectly substitutable as in [64] and [69] by settingρ = 1.

For the illustration purpose, we defineXi , (xρ
i +

∑
j∈Ni(ḡ)

xρ
j )

1/ρ as the amount of

agenti’s effective information. This could be interpreted as the amount of information

that agenti really consumes after aggregating and processing all the information it

acquires. The following two assumptions are imposed on the benefit functionv:

Assumption 1: v(·) is a twice continuously differentiable, increasing, and strictly

concave function.

Assumption 2: v(·) satisfiesv(0) = 0, v′(0) , limx→0+ v(x) < ∞, v′(0) > α

whereα > 0 is a constant, andlimx→∞v′(x) = 0.

These two assumptions capture the diminishing marginal benefit in an agent’s in-

formation consumption with respect to the amount of its effective information. That

is, an agent’s benefit increases with the amount of its effective information, while the

rate of this increase decreases and approaches to 0. Hence, there always exists an upper

bound on the amount of information that an individual agent is willing to acquire given

the cost of information production and link formation.

93



Next, we analyze the effect ofρ on an agent’s information consumption.

Lemma 1. Given a strategy profiles = (x, g), (xρ
i +

∑
j∈Ni(ḡ)

xρ
j )

1/ρ > (xρ′

i +
∑

j∈Ni(ḡ)
xρ′

j )
1/ρ′ always holds for anyi ∈ N and any0 < ρ < ρ′ ≤ 1. �

Remark: For the proofs that are omitted in this chapter, the completeproofs and

computations can always be found in the online appendix [75].

This lemma can be proven by first showing that(yρ+zρ)1/ρ > (yρ
′
+zρ

′
)1/ρ

′
always

holds for anyy, z > 0 and0 < ρ < ρ′ ≤ 1 through the first-order partial derivatives

of (yρ + zρ)1/ρ overρ, which is always negative when0 < ρ ≤ 1. Then this lemma

follows as a straightforward extension.

Lemma 1 shows that given a strategy profile, an agent’s level of appreciation for

information variety increases asρ becomes smaller, which is reflected in the increase

on the amount of its effective information and the resultingbenefit from information

consumption.

With the above two assumptions,fi(x, g) is also provably twice continuously dif-

ferentiable, increasing and strictly concave inxi, as shown in the following lemma.

Lemma 2. fi(x, g) = v((xρ
i+

∑
j∈Ni(ḡ)

xρ
j )

1/ρ) is twice continuously differentiable,

increasing, and strictly concave inxi onR
+. �

Sincefi(x, g) is twice continuously differentiable, we further assume itto be sub-

modular with the following assumption.

Assumption 3: ∂2fi
∂xi∂xj

|xi,xj∈R+ < 0, ∀i, j ∈ Ni(ḡ).

Assumption 3 formalizes the substitutability among agents’ information. Agenti’s

marginal benefit of production decreases against the amountof information produced

by its neighbors. That is, the more informationi acquires, the less incentivei has to

produce information by itself.

To sum up, the utility of agenti is given by its benefit minus all incurred costs:

ui(x, g) = v((xρ
i +

∑

j∈Ni(ḡ)

xρ
j )

1/ρ)− cxi − k|Ni(g)|. (4.2)
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We analyze the case of homogeneous agents in thatv, c, k, andρ are the same for all

agents. We assume thatα > c to ensure the network is socially valuable.

4.3 Equilibrium in the IPLF Game

4.3.1 Equilibrium analysis for the basic model

We analyze the IPLF game as a non-cooperative one-shot game and consider pure s-

trategies. Each agent maximizes its own utility given the strategies of others. A Nash

equilibrium of the IPLF game is a strategy profiles∗ = (x∗, g∗) such that

ui(s
∗
i , s

∗
−i) ≥ ui(si, s

∗
−i), ∀si ∈ {0, 1}n−1, ∀i ∈ N. (4.3)

Here, we use the convention thatsi and s−i represents the strategies of agenti and

all agents other thani, respectively. This section analyzes the equilibrium production

and link formation behavior of agents. Given the definition of equilibrium (4.3), an

equilibrium production profilex∗ satisfies the following equality for each agent:

v′(X∗
i )(X

∗
i /x

∗
i )

1−ρ = c, ∀i, (4.4)

whereX∗
i = ((x∗

i )
ρ +

∑
j∈Ni(ḡ)

(x∗
j )

ρ)1/ρ. That is, the marginal benefit of production

should equal to the marginal cost and thus, an agenti has no incentive to produce more

thanx∗
i when the amount of its effective information isX∗

i .

We first derive the basic properties of agents’ equilibrium behavior on information

production and link formation. This is summarized in the following lemma. Although

simple, these properties are important in characterizing the emerging equilibrium later.

Lemma 3. In any equilibriums∗ = (x∗, g∗) of the IPLF game, (i)g∗ijg
∗
ji = 0 for all

i, j ∈ N ; (ii) x∗
i > 0 for all i ∈ N ; (iii) x∗

i ≤ x̄ for all i ∈ N wherex̄ is the unique

solution of the equationv′(x̄) = c. �

We briefly explain Lemma 3.
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(i) Since the information exchange across a link is undirected, if an agenti forms

a link to another agentj it has already connected with, it incurs an additional cost of

link formation but does not receive any extra information from j and hence, its utility

strictly decreases by doing so. Hence in an equilibrium, there should be no redundant

investment on link formation.

(ii) If an agent has no neighbors (i.e. no connections), it has a positive production

level asα > c. On the contrary, if an agent has neighbors, it also has a positive

production level according to (4.4). Hence, an agent alwayshas a positive production

level and the information it acquires from neighbors can never fully replace its self-

produced information.

(iii) According to Assumption 3, an agent has the largest marginal utility from pro-

duction when it has no neighbors (i.e. it acquires no information from others). Hence,

the highest production level could also be achieved in this case and is upper bounded

due to the concavity of the benefit function (4.1).

The dependence of the value ofx̄ on c and v is neglected in the notation when

no confusion is brought in. In the rest of this chapter,x̄ is referred as the maximum

equilibrium production level.

The maximum equilibrium production level is critical in characterizing the rela-

tionship between the link formation cost and emerging equilibria of the IPLF game, as

shown in the following theorem on the existence of the Nash equilibrium.

Theorem 1 (The Existence of Equilibrium).Pure strategy Nash equilibria always

exist in the IPLF game and each equilibrium belongs to one of the following two types:

(i) each agent personally produces an amountx̄ of information and no one forms

any link;

(ii) each agent personally produces an amount strictly smaller thanx̄ and is con-

nected with at least one other agent.

Proof Sketch: We first prove the existence of Nash equilibrium. In general, it is
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difficult to show the existence of pure Nash equilibrium in network formation games

directly. Hence, in this proof, we first consider the IPLF game where agents play mixed

strategy, which is called as IPLFM. Particularly, in IPLFM,the link formation choice

between two agents is not binary, but continuous. That is, the link formation strategy

of an agenti now becomes a vectorpi = {pi1, . . . , pin}, wherepij ∈ [0, 1] andpii = 0.

We define the strength of a link to beḡij = ḡji = max{pij , pji}. Since each agent plays

a mixed strategy on both information production and link formation, it is always true

that the IPLFM game has at least one equilibrium. We then showthat each equilibrium

of the IPLFM game haspij ∈ {0, 1} for any i, j ∈ N , and thus is also an equilibrium

of the IPLF game where the link formation choice is binary.

To prove the second part of the theorem, we classify all strategy profiles into two

classes. The first classSA contains strategy profiles with which there is no link in the

network. The second classSB = S/SA contains all other strategy profiles. HereS is

the set of all strategy profiles. It can be shown that an equilibrium in SA belongs to

type (i) and an equilibrium inSB should contain no isolated agent and belongs to type

(ii). Otherwise, if a strategy profile inSB contains isolated agents, then due to the fact

that an isolated agent always has the largest production level, non-isolated agents will

be attracted to connect with it, and which contradicts the definition of an equilibrium.

�

Theorem 1 shows that in an equilibrium of the IPLF game, the network either is

empty with all agents being isolated, or has no agent being isolated. In the rest of this

section, we analyze the non-trivial case of strict equilibria with which the inequality

(4.3) is strict, and we use equilibrium to mean strict pure strategy equilibrium when no

confusion occurs. Without loss of generality, agents are ordered by their production

levels in a strategy profiles = (x, g), i.e. x1 ≥ x2 ≥ · · · ≥ xn. Given such ordering,

there is always a positive integernh(s) ≤ n, such thatxi = xnh(s) for all i ≤ nh(s) and

xj < xnh(s) for all j > nh(s). We call an agenti ≤ nh(s) to be a high producer and an

agentj > nh(s) to be a low producer. According to Lemma 3(iii), the production level
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of each high producer will never exceedx̄ and is denoted as̃x(x). To avoid the trivial

case that the set of low producers is empty and all agents havethe same production

level, we assume thatnh(s) < n in this chapter. A detailed analysis for strategy profiles

where all agents produce the same amount of information can be found in the technical

report [76].

By separating agents into two types, we are able to characterize in the following

lemma the interactions between high and low producers at equilibrium.

Lemma 4. In an equilibriums∗ = (x∗, g∗), the following properties hold forg∗: (i)

For eachi ≤ nh(s
∗), g∗ij = 0, ∀j > nh(s

∗); (ii) For eachi ≤ nh(s
∗), ḡ∗i,i′ = 0 for some

i′ ≤ nh(s
∗) andi 6= i′; (iii) For eachj > nh(s

∗), g∗ji = 1, for somei ≤ nh(s
∗).

Proof: The proof in Lemma 4 heavily relies on the use of contradictions. Here we

only provide the proof of statement (i) due to the space limitation. The proofs for the

other two statements follow similar ideas and can be found inthe online appendix [75].

Suppose that there is an agentj > nh(s
∗) such thatg∗ij = 1. It is always true that

i is connected with all other high producers, i.e.ḡii′ = 1, ∀i′ ≤ nh(s
∗) and i′ 6= i.

Otherwise,i could always strictly increase its payoff by switching its link with j to

some other high producer that it does not connect with. Ifi is also connected with all

low producers, then according to Assumption 3,x∗
i is the smallest among all agents in

the network, which contradicts the fact thati is a high producer. Hence, there is an

agentj′ > nh(s
∗) such that̄g∗ij′. Clearly,g∗j′j′′ = 0 for all j′′ > nh(s

∗). Otherwise,j′

can strictly increase its utility by switching the link fromj′′ to i.

Now we prove that each neighbor of agentj′ is also a neighbor of agenti. Suppose

there is an agentj′′ > nh(s
∗) such thatg∗j′′j′ = 1. It can be concluded that̄g∗j′′i = 1

also holds. Otherwise,j′′ can strictly increase its utility by switching the link fromj′ to

i . Regarding the fact thati is connected with all high producers, it implies that every

agent who is a neighbor of agentj′ is also a neighbor of agenti. Therefore, the amount

of information that agentj′ receives from its neighbors is no more than what is received
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by agenti. According to Assumption 3, we have thatx∗
j′ ≥ x∗

i , which contradicts the

fact thatx∗
j′ < x∗

i . Statement (i) follows.�

Lemma 4 provides important insights on how agents will interact with each other

at equilibrium. Statement (i) and (ii) jointly characterize the redundancy on produced

information at equilibrium. With a non-zero cost of link formation, the total amount

of information produced by high producers will always be more than what each agent

needs. Hence, each high producer neither has a full connection with all other high

producers nor forms links with any low producer. Statement (iii) proves that a low

producer always forms links with some high producers.

Given the agents’ link formation behavior at equilibrium and the information re-

dundancy, we can further determine, in the next lemma, that if a low producer forms

links to other low producers in an equilibrium, it should have formed links to all high

producers.

Lemma 5. In an equilibriums∗ = (x∗, g∗), g∗jj′ = 1, for somej, j′ > nh(s
∗) only

if g∗ji = 1, ∀i ≤ nh(s
∗). �

With Lemma 5, low producers can be further classified into twotypes in order to

facilitate our analysis: (i) a low producer forming links toall high producers and to

some of the low producers; (ii) a low producer forming links with some (or all) high

producers and no low producer.

4.3.2 Asymptotic equilibria in the IPLF game

By analyzing the equilibrium properties of agents, we are then able to characterize the

asymptotic equilibria when the network size grows. We provein the following theorem

that when the network size is sufficiently large, low producers of type (i) will disappear

in any equilibriums∗ = (x∗, g∗), and there are only high producers and low producers

of type (ii) left in the network. Given this, we can further characterize the equilibria

topologies. Particularly, we show that each high producer produces an amount̃x(x∗)
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and each low producer (type (ii)) produces a smaller amount of information, denoted

asx
˜
(x∗). Meanwhile, each low producer forms links withq(g∗) high producers and

does not form any link to low producers. Therefore, in a network at equilibrium, all

links are formed towards high producers, which play the roleof hubs for information

sharing in the network. The network then exhibits a “core-periphery” structure with

high producers form the core and low producers stay at the periphery.

Theorem 2 (Asymptotic Equilibria). Givenc, k, ρ, andv, and when the network

sizen goes to infinity: (i) only two types of agents exist in any equilibrium s∗ =

(x∗, g∗): a hub agent is a high producer who produces an amountx̃(x∗) and form links

only with other hub agents; a spoke agent is a low producer whoproduces an amount

x
˜
(x∗) and forms links withq(g∗) hub agents and no link to other spoke agent;

(ii) limn→∞ infs∗∈S∗
n
{nh(s

∗)} = ∞ and limn→∞ infs∗∈S∗
n
{nl(s

∗)} = ∞ where

nl(s
∗) , n − nh(s

∗) andS∗
n denotes the set of equilibrium strategy profiles when

the network size isn. �

A key observation in proving Theorem 2 is that because of the cost of link for-

mation, an agent has to produce a sufficiently large amount ofinformation, which is

lower-bounded away from0, in order to attract others to form links to it. Meanwhile,

an agent has an upper bound on the amount of information that it would like to consume

due to the concavity of the benefit function (4.1). As a result, there is an upper bound

on the number of links that an agent would like to maintain with others. Therefore,

whenn → ∞, the number of hub agents (i.e. high producers) goes to infinity as well

to provide sufficient information for the consumption of allagents in the network, and

low producers will become spoke agents by not mutually connecting with each other

but only connecting with hub agents.

Theorem 2 proves that the core-periphery structure is a necessary condition for an

equilibrium whenn is sufficiently large, which is shown in Figure 4.1 with two exam-

ples of equilibrium topologies. Throughout this chapter, we usev(x) = ln(1 + xρ)1/ρ

as an exemplary utility function in the experiments. Both topologies exhibit the core-

100



spoke agent

hub agent

(a) k = 2

spoke agent

hub agent

(b) k = 5

Figure 4.1: Exemplary equilibria in a network withn = 100 agents (c = 2, ρ = 0.8)

periphery structure composed of two rings. The inner ring (core) represents hub agents

and the outer ring (periphery) represents spoke agents. Hence, our results are consistent

with the empirical observations that a majority of users in social sharing services get

most of their information from a relatively small group of hub agents [72]. By com-

paring Figure 4.1(a) and Figure 4.1(b), which portray equilibrium topologies withk

changing from2 to 5, we can see that the network becomes sparse as the link formation

cost increases, when, instead of forming links with multiple hub agents, spoke agents

get information only from hub agents in their vicinity and the network is virtually divid-

ed into many small sub-networks where each hub agent takes charge of the information

provision to its local agents.
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The core-periphery structure exhibits some similarity to the small-world networks

[68], which is also predicted in [69] as the “law of the few”. Nevertheless, different

from the scale-free property where the fraction of hub agents diminishes to0 as the

network size grows to infinity, we show that under agents’ appreciation for information

variety, the population of hub nodes will grow proportionally to the network size, and

their fraction in the total population is lower-bounded away from 0. Similar results

have also been illustrated in [72], which reveals, through empirical measurement, that

the probability of users who are followed by very large numbers of users on Twitter is

above what a scale-free distribution would predict. This indicates that as more agents

join the network, information production which is dominated by a small number of

powerful producers can no longer satisfy the agents’ desirefor diverse information. As

a result, new hub agents with different varieties of information will emerge to provide

the information and stabilize the network.

Theorem 3. The number of hub agents at equilibrium grows at the same order as

the entire population, i.e.infs∗∈S∗
n
{nh(s

∗)} is Θ(n). More specifically, there exists a

constantη > 0 such that

lim
n→∞

inf
s∗∈S∗

n

{nh(s
∗)}/n > η. (4.5)

Proof: It has been proved in Theorem 2 that we can always find a sufficiently

large valueT such that spoke agents will not mutually form links to each other in any

equilibrium when the network sizen > T . It is obvious that we can find a constant

valueµ ∈ (0, 1) such thatinfs∗∈S∗
n
{nh(s

∗)}/n > µ, ∀n < T . Now look at the case

whenn > T . Due to the concavity of the benefit functionv(·) and the fixed cost of link

formationk, a spoke agent cannot connect to more thanLh hub agents, which upper-

bounds the amount of information it receives from others atLhx̄. Hence, there exists a

constantx such that the production level of a low producerx
˜
(x∗) is no less thanx in any

equilibriums∗ whenn > T . The total number of links that each high producer receives

from low producers is thus also upper-bounded by a constant,denoted asHl. Given the

population of high producers, i.e.nh(s
∗), the population of low producers should be no
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Figure 4.2: (a) The fraction of hub agents changing againstn; (b) The normalized

production levels of agents changing againstn (c = 2, ρ = 0.8)

more thanHlnh(s
∗), which further delivers a lower bound oninfs∗∈S∗

n
{nh(s

∗)}/n as

1/(1 +Hl), ∀n < T . We takeη = min(µ, 1/(1 +Hl)) and hence Theorem 3 follows.

�

Figure 4.2 plots how the fraction of high productions as wellasx̃(x∗) andx
˜
(x∗) at

equilibrium change asn increases6. Figure4.2(a) illustrates Theorem 3. The number

6It should be noted that for a given set of the network parameters k, c, ρ, andv, there are multiple
equilibria. In the experiment, we run the experiment multiple rounds. At the beginning of each round,
we assign a randomly chosen initial strategy profiles

(0) to all agents in the network. Then in each step
t, agents sequentially update their individual strategies using best response dynamics with some inertia
probability γ and the resulting strategy profile beings(t) (i.e. an agent adapts its strategy to its best
response with probability1 − γ and remains to use its strategy adopted at stept − 1 with probability
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of hub agents grows at a slower speed thann at the beginning and hence,nh(s
∗)/n

monotonically decreases. However, whenn is sufficiently large, the number of spoke

agents that a hub agent can support reaches its upper bound. Hence, to support an equi-

librium, more hub agents will emerge andnh(s
∗)/n stops decreasing, which indicates

thatnh(s
∗) starts to grow proportionally ton. Figure 4.2(b) shows how the production

levels of agents change againstn. For a better illustration, we plot the normalized pro-

duction levels which are compared with their values atn = 100 on each curve. As it

shows, the normalized production level of spoke agents drops more drastically than that

of hub agents asn grows, since a spoke agent mainly relies on information acquired

from others rather than self-production and will be more significantly influenced by the

change on the network size.

As a direct result of Theorem 3, we quantify in the following corollary the amount

of information generated in the network.

Corollary 1. The total amount of information produced in the network at equi-

librium, i.e.
∑

i∈N x∗
i , grows at the same order as the population sizen. That is,

infs∗∈S∗
n
{
∑

i∈N x∗
i } andsups∗∈S∗

n
{
∑

i∈N x∗
i } areΘ(n). �

Therefore, as the network grows, it will become informationally richer with more

agent-generated information available.

4.3.3 Equilibrium efficiency

In this section, we analyze the social welfare of the IPLF game to quantitatively study

the efficiency of equilibria. The social welfare of the IPLF game is defined to be the

sum of agents’ individual utilities. For a strategy profiles = (x, g), the social welfare

is given byW (x, g) ,
∑

i∈N ui(x, g). A strategy profiles# = (x#, g#) achieves the

social optimum, denoted asW #, if and only if

W # , W (x#, g#) ≥ W (x, g), ∀(x, g). (4.6)

γ). Each round terminates when the strategy profile convergesto some fixed points. The result plot in
Figure 4.2 is averaged over all rounds of experiments.
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In the following proposition, an upper bound onW # is given.

Proposition 1. There is a valuēk such that the social optimumW # ∈ (n[v(x̄) −

cx̄], n[v(n1/ρx̂n) − cx̂n] − nk/2) whenk < k̄ andW # = n[v(x̄) − cx̄] whenk > k̄.

Herex̄ is defined in Lemma 3(iii) and̂xn is the solution of the equationv′(n1/ρx̂n) =

c/n(1−ρ)/ρ. �

When the social optimum is achieved in an empty network, there is no cost for link

formation and thus, we haveW # = n[v(x̄) − cx̄]. On the other hand, if the social

optimum is achieved in a non-empty network, it is proven thateach agent has at least

one connection and hence, the minimum total link cost in the network isnk/2 while the

maximum total utility from information consumption and production isn[v(n1/ρx̂n)−

cx̂n], which gives the corresponding upper bound of the social optimum.

In order to prove the existence of the thresholdk̄, it is sufficient to show that if

the social optimum is achieved in a non-empty network whenk = k1, then it is also

achieved in a non-empty network whenk < k1. Similarly, if the social optimum is

achieved in an empty network whenk = k2, then it is also achieved in an empty

network whenk > k2.

Next, we characterize the efficiency of the equilibrium strategy profile. The follow-

ing proposition provides a lower bound on the social welfarethat can be achieved by

an equilibrium.

Proposition 2. The social welfare of any equilibrium strategys∗ is lower bounded

by n[v(x̄)− cx̄].

Proof: Since each agent can ensure a utility ofv(x̄) − cx̄ by choosing not to form

any link and produce an amount ofx̄, the utility it receives in an equilibrium is always

no less than this.�

By combining Proposition 1 and 2, the following theorem provides an upper bound

for the Price of Stability (PoS) in the IPLF game. It should benoted that since the lower

bound in Proposition 2 applies to all equilibria in the IPLF game, this result also applies
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Figure 4.3: (a) The PoS against the network sizen; (b) The PoS and its lower bound

against the link formation cost k (c = 2, ρ = 0.8, n = 500)

to the Price of Anarchy (PoA).

Theorem 4 (Upper Bound for PoS).The Price of Stability satisfies thatPoS ∈

(1, ([v(n1/ρx̂n)− cx̂n]− k/2)/[v(x̄)− cx̄]) whenk < k̄ andPoS = 1 whenk > k̄. �

Figure 4.3 plots the PoS againstn andk. As Figure 4.3(a) shows, the PoS mono-

tonically increases withn when it is sufficiently large. This is due to the fact that the

set of available strategy profiles in the IPLF game is enlarged along withn, whereas the

set of equilibrium strategy profiles remains limited as eachhub agent in an equilibrium

can only support a limited number of spoke agents. However, the rate for such increase
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Figure 4.4: The Price of Stability with indirect information sharing (c = 1, ρ = 0.7)

slows down asn becomes larger. In other words, the PoS saturates whenn is sufficient-

ly large. Figure 4.3(b) compares the PoS and our derived upper bound in Theorem 4.

The upper bound is not tight whenk is small and it is optimal to form as many links

as possible in order to increase the information sharing efficiency. Whenk increases,

the upper bound becomes tight, as the topologies produced byboth the socially optimal

profile and the equilibrium profile become sparse with their social welfare approaching

n[v(x̄)− cx̄].

4.4 Indirect Information Sharing

In the basic model, an agent can only consume information produced by itself and its

neighbors (i.e. agents it connects via links). In many practical scenarios, the infor-

mation sharing in social computing applications could be multi-hop. That is, an agent

can also consume information which its neighbors acquired from other agents. In this

section, we consider such indirect information sharing.

Several concepts are defined below before we formalize the IPLF game with indirect

information sharing. Given a connectivity graphḡ, we say that there is a path in g

between two agentsi andj if either ḡij = 1 or there exist agentsj1, . . . , jm distinct

from i andj such that{ḡij1 = ḡj1j2 = · · · = ḡjmj = 1}.
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Definition 1 (Connected Network).A network is connected if there is a path between

every pair of agents in its connectivity graph. A connected network is also called as a

component.

Definition 2 (Minimally Connected Network).A network is minimally connected if

there is a unique path between every pair of agents on its connectivity graph.

Given any two agentsi and j, the distance between them, denoted asdij(ḡ) is

defined as the number of hops (links) on the shortest path (thepath contains the smallest

number of links) betweeni andj in ḡ. If there is no path betweeni andj, thendij(ḡ) =

∞.

In the IPLF game with indirect information sharing, we assume that each agent

can acquire the effective information from its neighbors, which already included the

information that the neighbors acquire from other agents. Therefore, it is equivalent

that each agent can acquire information produced by all agents who are connected with

him via a path. However, if an agent receives certain information produced by another

agent from multiple paths, it will automatically remove theredundancy and only keep

one copy of the information in consumption. LetN l
i (ḡ) denote the set of agents whose

distance to agenti is l, the utility of agenti then can be formulated as follows:

wi(x, g) = v((xρ
i +

n−1∑

l=1

∑

j∈N l
i (ḡ)

xρ
j )

1/ρ)− cxi − k|Ni(g)|. (4.7)

In this section, we will use all the terminologies (e.g. equilibrium, social optimum,

etc.) that we defined for the IPLF game with direct information sharing in Section 4.3

wherever they apply. With indirect information sharing, itcan be proved that the IPLF

game always has at least one equilibrium. The resulting equilibria are characterized in

the following theorem.

Theorem 5. In the presence of indirect information sharing and when an agent’s

utility is given by (4.7), there are two valueskmax andkmin for any givenn, c, ρ, andv,

such that
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(i) Whenk < kmax, there exists a unique equilibrium where each agent has a pro-

duction level̄x and no agent forms links;

(ii) When k < kmin, then each equilibrium preserves the following properties: (a)

each agent produces an amountxn which is the solution ofv(n1/ρxn) = c; (b) the

network is minimally connected; (c) each agent has at least one connection to other

agents;

(iii) When kmin < k < kmax, there are multiple equilibria each of which contains a

minimally connected component with the rest of agents beingisolated.

Proof Sketch: First, it is easy to show that for a component of sizeb in an equilib-

rium strategy profiles∗, it is always minimally connected with each agent in it having

the same production level. Then, we show that at any equilibrium, an agent’s utility

from information consumption and production monotonically increases with the size

of component it is in. With this result, we prove that at any equilibrium, there is at

most one component whose size is larger than1. Suppose in an equilibrium strategy

profile s∗ where there are two componentsC1 andC2 of sizeb1 andb2. Without loss

of generality, we assume that1 < b1 ≤ b2. Then for an agenti in C1 who forms a

link, it is always beneficial to switching this link to any agents inC2, which leads to

a contradiction to the fact thats∗ is an equilibrium. Now consider another equilibrium

where there is an isolated agentj and a componentC whose size isb > 1. With a little

abuse of notation, this equilibrium is also denoted ass∗. It can be shown that agent

j has the incentive to connect with the componentC if and only if the link formation

costk is smaller than a valueγb which is determined by the sizeb, which is proved to

monotonically increases withb.

Summarizing all the above, it can be concluded that ifk < γ1, there is a unique

equilibrium which contains a unique component and there is apath between any two

agents; ifγ1 < k < γn−1, there are two equilibria where all agents are either isolated

with each other or fully connected in a unique component; ifk > γn−1, the network

has a unique equilibrium where all agents are isolated with each other. Hence, we have
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kmax = γn−1 andkmin = γ1. �

Corollary 2. Givenc, ρ, andv(·), kmax monotonically increases withn, whilekmin

is constant.�

It should be noted that different from the core-periphery structure in the case of

direct information sharing, where high producers are also the main source of informa-

tion sharing and plays the role of hubs in the network, here the agents with the most

connections form the hubs of the network and take the responsibility to share informa-

tion. Next, we analyze the social optimum of the IPLF game with indirect information

sharing. The proof is omitted due to its similarity to Theorem 5.

Theorem 6. In the presence of indirect information sharing and when an agent’s

utility is given by (4.7),

(i) There is a valuekopt
max > kmax for any givenn, c, ρ, andv, such that the social

optimum is achieved in an empty network whenk > kopt
max;

(ii) There is a valuekopt
min > kmin for any givenn, c, ρ, andv, such that the social

optimum is achieved in a minimally connected network whenk < kopt
min;

(iii) When kopt
min < k < kopt

max,the social optimum is achieved in a network which

contains a minimally connected component with the rest of agents being isolated.�

Hence, the Price of Stability in the IPLF game with indirect information sharing,

which is plotted in Figure 4.4, achieves1 whenk > kopt
max and is strictly larger than

1 whenk < kopt
max. With indirect information sharing, the topologies of the network

are similar under both the socially optimal strategy profileand an equilibrium profile.

Hence, the difference on the social welfare is highly influenced by how much informa-

tion the agents produce in total. Whenk is small, the discrepancy between the total

information productions of the socially optimal strategy profile and an equilibrium pro-

file is higher than that whenk is large, which gives a PoS monotonically decreasing

againstk.

110



4.5 Conclusion

In this chapter, we investigate the problem of information production and network for-

mation in social computing systems. Different from the existing literature, the agents’

incentives for producing information themselves and for forming links to consume the

information of others are jointly considered. Moreover, wedetermine rigorously how

the agents’ appreciation for information variety impacts their interactions and the e-

merging connectivity between them. We then analyze the efficiency of the emerging

equilibrium topologies and compare their performances with that of the social opti-

mum. We also study the IPLF game which incorporates indirectinformation sharing.

Our analysis can be extended in several directions, among which we mention three.

First, we assume in this model that agents are homogeneous interms of their benefit

functions and costs. The analysis on heterogeneous agents would represent an impor-

tant future research direction which can hopefully providenew insights into the IPLF

game, e.g. agents’ heterogeneity could lead to the selection of equilibria and reduce the

set of possible equilibrium topology as predicted in [66]. Second, alternative formula-

tions on information transmission and link formation can beextended from our current

model to encompass the features of various applications. Several examples include the

bilateral link formation which requires the mutual consentof agents, the unilateral in-

formation transmission with which the information flow overa link is one-sided, and

non-constant link formation cost with which the cost of establishing a link depends on

the characteristics of the creator and the recipient as wellas the amount of informa-

tion (i.e. traffic) across this link. Finally, the design of effective incentive protocols

(e.g. pricing schemes to subsidize or tax link formation) tostimulate the information

production and sharing in order to reduce the Price of Stability and achieve the social

optimum also forms an important future research direction.
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CHAPTER 5

Information Dissemination in Socio-technical Networks

5.1 Introduction

The traditional analysis of communication networks assumes that the topology of the

network is fixed exogenously or determined by the central designer and that the actions

of users are obedient to the wishes of the designer. (It is typically assumed that the

objective of the designer is to maximize social welfare [77][78], but other objectives

might be considered as well.) However, these assumptions donot apply at all to social

networks such as Facebook [79] and Twitter [72], expert networks such as Amazon

Mechanical Turk [42], vehicular networks [61], social mobile networks [59], peer-to-

peer overlay routing systems [80], etc. To the contrary, thetopologies of such networks

are determined endogenously by the actions of self-interested and strategic users (which

leads us to use the term “strategic networks”). Aspects of strategic networks that are

of particular interests include the topology that emerges,the efficiency/inefficiency of

behavior and especially the protocols that the designer might implement to promote

social welfare even in the face of self-interested behaviorby users.

A central aspect of the strategic networks we study here is that links in the network

can be created and maintained by individual users. Creatingand maintaining links are

costly, so will only be carried out if they provide sufficientbenefits for these individual

users. In some earlier work, especially in the economics literature, the benefits of

links are that they permit the acquisition of information (files in P2P networks, news

on social networks, traffic/road conditions in vehicular networks, etc.); our point of
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departure in this chapter is that we emphasize that links also permit the dissemination

of information (advertising/marketing in social networks[81][82][88], routing traffic

in overlay routing systems [83], etc.). The central messageof this chapter is that the

emphasis on the dissemination of information leads to very different conclusions about

the structure of networks and the behavior of users in those networks.

To be precise, we consider the behavior of a group of self-interested and strategic

agents/users who may create and maintain links to other users, and produce and dis-

seminate information. We formalize the strategic interactions among agents as a non-

cooperative game, the Information Dissemination Game (IDG). Because we emphasize

information dissemination, we assume that link formation is unilateral: the decision to

create a link from one agent to another is made unilaterally by the first agent and the

cost of creating that link is borne entirely by the agent who creates it; this is a reason-

able description of behavior and cost when the benefit of creating a link is disseminat-

ing information (advertising) rather than gathering information (see e.g. [63][64][86]).

We consider a setting in which agents and information are both heterogeneous: agents

differ in terms of their locations, access to devices, information and link production

capabilities and costs. Agents are self-interested: each intends to maximize its own

benefit from information dissemination net of the cost of thelinks it forms. Our notion

of solution in the Information Dissemination Game is a non-cooperative equilibrium.

We prove first that the typical network that emerges from the self-interested behav-

ior of agents displays a core-periphery structure, with a smaller number of agents at

the core (center) of the network and a larger number of agentsat the periphery (edges)

of the network. Agents in the core create many links and communicate with many

other agents; agents in the periphery create few (or no) links and communicate mostly

(or entirely) with agents in the core. We go on to show that thetypical networks that

emerge are minimally connected and have short network diameters, which are indepen-

dent of the size of the network. When agents’ strategic behavior incorporates both link

formation and information production (with the objective of maximizing information
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dissemination), we show that the number of agents who produce information and the

total amount of information produced grow with the size of the network; this is in sharp

contrast with the “law of the few” which has been demonstrated in [64] with settings

where the purpose of forming links is the acquisition of information.

Our analysis is important for a number of reasons. At the theoretical level: small

diameters tend to make information dissemination efficientand minimal connectivi-

ty tends to minimize the total cost of constructing the network. At the empirical level:

they are consistent with the findings of numerous empirical investigations. More gener-

ally, our analysis provides guidance and tools for network designers to create protocols

providing incentives for agents to take actions that are consistent with self-interest and

still promote social welfare.

The remainder of this chapter is organized as follows. Section 5.2 describes our

basic model of the IDG. Section 5.3 characterizes the non-cooperative equilibria that

emerge in the basic model. Section 5.4 analyzes the IDG with strategic information

production. Section 5.5 discusses the related literature and Section 5.6 concludes.

5.2 System Model

5.2.1 Settings

In this section, we propose a basic model to formulate the IDG, in order to capture

the fundamental trade-offs between agents’ benefit and costfrom strategic information

dissemination. Although simple, our formulation already provides qualitative insights

on how the incentives of self-interested agents impact the network structure, and can be

applied to numerous network applications (with slight modifications).

Let N = {1, 2, . . . , n} be the set of agents in the system withn > 3 and leti

andj denote typical agents. Each agenti possesses some information in the amount

xi ∈ R
+, which it finds in its own benefit to disseminate to other agents. We consider
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a non-cooperative game where each agent strategically determines whether to create

links with other agents in order to disseminate its information. As in e.g. [64][73],

links are created by the unilateral actions of an agent who bears the entire cost1.

Thus, the mutual consent of two agents is not required in order to create a link be-

tween them. The link formation strategy adopted by an agenti is denoted by a tuple

gi = (gij)j∈{1,...,n}/{i} ∈ {0, 1}n−1; gij = 1 if agent i forms a link with agentj and

gij = 0 otherwise. The creation of a link incurs a cost to the creatorand hence, the

decision to form a link involves trading-off the benefit received from disseminating in-

formation using this link and the incurred cost. A strategy profile in the information

dissemination game is defined asg , (gi)
n
i=1 ∈ G, whereG is a finite space.

The information flow across a link is assumed to be undirected. That is, given a

link between any two agents, the information can be transmitted in both directions (i.e.

from the creator to the recipient and vice versa) across thislink. We thus define the

topologyof the network asEg = {(i, j) ∈ N × N |i 6= j and max{gij, gji} = 1}.

In the rest of this chapter, we will use the terms “topology” and “network” inter-

changeably. Given a topologyEg, a path between two agentsi andj is a sequence

pathij = {(i, j1), (j1, j2), . . . , (jm, j)} for somem > 0 such thatpathij ⊆ Eg. Agent

i canreachan agentj in a topologyEg, denotedi → j, if and only if there is at least

one path from agenti to j in Eg, otherwisei cannot reach agentj, denotedi 9 j. We

assume that an agenti can disseminate its information to every agentj whom it can

reach. Given this, the utility of an agenti in the IDG can be expressed as:

ui(g) = f (xi|Ni(Eg)|)−
∑

j∈Ni(g)
kij. (5.1)

HereNi(Eg) , {j|i → j} is the set of agents whom agenti can reach, andNi(g) ,

{j|gij = 1} is the set of agents with whom agenti forms links. f (xi|Ni(Eg)|) thus

1The precise formulations of link formation and informationflow among participating agents in an
IDG depend on details of the considered application. Due to the infeasibility of enumerating all possible
models, we use a stylized model in this work as an example to formulate the IDG. Our current formula-
tion has the great merit of being simple to work with and can beapplied to most existing applications to
date with slight modifications, e.g. the telephone networks[101] and the Voice over IP applications such
as Skype [102].
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represents the total benefit that agenti receives from information dissemination, which

depends on the amount of information it disseminates, i.e.xi, as well as the total num-

ber of agents it can reach, i.e.|Ni(Eg)|. We assume thatf(·) is twice continuously dif-

ferentiable, increasing and concave withf(0) = 0. Hence, an agent’s benefit increases,

while the marginal benefit decreases, withxi and|Ni(Eg)|.
∑

j∈Ni(g)
kij represents the

total link formation cost of agenti, wherekij ∈ R
+ denotes the cost for agenti to form

a link with agentj.

We assume that an agent cannot benefit from disseminating duplicated copies of its

information to any other agent. That is, when there are multiple paths from agenti to

agentj and multiple copies of agenti’s information arrive at agentj, agenti receives a

fixed benefit regardless of the number of copies that agentj receives. We assume that

each agent benefits only from disseminating its own information, and forwarding the

information that is received from other agents does not bring it any benefit.

5.2.2 Equilibrium and social welfare

We consider pure (not mixed) link formation strategies. Each agent maximizes its own

utility given the strategies of others. A Nash equilibrium (NE) is defined as a strategy

profile g∗ such that the strategy of each agenti is a best response to the strategies of

others:

ui(g
∗
i , g

∗
−i) > ui(gi, g

∗
−i), ∀gi ∈ {0, 1}n−1, ∀i ∈ N. (5.2)

Hereg−i represents the strategies of all agents other than agenti. The set of NE is

defined asG∗ = {g∗|g∗ satisfies (2)}. A strict NE is an NE such that the strategy of

each agenti is a strict best response to the strategies of others (with the inequality in (2)

being strict wheneverg∗
i 6= gi). It is shown in the online appendix [23] that a network

will always converge to a strict NE in a dynamic link formation process. Therefore, a

strict NE characterizes a steady state in the dynamic link formation process. Note that

strict NE are NE and thus, the results below on NE also apply tostrict NE.
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The social welfare of the IDG is defined to be the sum of agents’individual utilities.

For a strategy profileg, the social welfare is given byU(g) ,
∑

i∈N ui(g). A strategy

profileg# is called socially optimal if it achieves the social optimum, denoted byU#,

i.e.

U# , U(g#) > U(g), ∀g ∈ G. (5.3)

5.3 Equilibrium and Efficiency Analysis of the IDG

This section studies the IDG described in Section 5.2. First, we analyze the equilib-

rium link formation strategies of individual self-interested agents. Next, we explicitly

compare the equilibrium social welfare of the IDG to the social optimum. The result-

s provide important insights on the efficiency loss occurreddue to the self-interested

behavior of the agents in the IDG as compared to the case when the agents obediently

follow the link formation actions dictated by some central designer.

5.3.1 Equilibrium analysis

Given a strategy profileg, acomponentC is a set of agents such thati → j, ∀i, j ∈ C

and i 9 j′, ∀i ∈ C and ∀j′ /∈ C. Hence, each component defines a connected

sub-network in a networkEg: any two agents in this component can mutually reach

each other, whereas no agent in the component can reach any other agent outside the

component. An agent who is not connected with any other agents in the network (i.e. an

isolated agent) forms a component by itself, called asingletoncomponent; a component

that is not singleton is called anon-singletoncomponent. A componentC is called

minimal if and only if there is only one path inEg from any agenti ∈ C to any other

agentj ∈ C. Theshortest pathfrom agenti to j is the path that contains the minimum

number of links. Thedistancedg(i, j) betweeni and j is the number of links on a

shortest path between them. By convention,dg(i, j) , ∞ wheni 9 j. Thediameter

of a componentC is defined as the largest distance between any two agents in it, which
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is denoted asDC , max
i,j∈C

dg(i, j). The diameter of a singleton component is defined to

be 0. The diameter of the network is defined to be the largest diameter of all components

it contains.

It should be noted that the strategy space for each agent in the IDG is compact and

convex. Meanwhile, an agent’s utility is quasi-concave over its link formation strategy.

Hence, it has been shown in [90] that pure NE always exists in the IDG. We first derive

some basic properties of the equilibria in the IDG. Althoughsimple, these properties

are important for characterizing the emerging equilibria later.

Proposition 1. Under an NEg∗ of the IDG, each component is minimal.

Proof: Suppose that there is a componentC such that there are two agentsi andj

who are connected by two pathspathij , path′
ij ⊆ Eg∗ with pathij/path

′
ij 6= φ. Here

pathij/path
′
ij represents the relative complement ofpath′

ij in pathij and contains all

elements that belong topathij but do not belong topath′
ij . Then there are always two

agenti′ andj′ in C who satisfy: (1)g∗i′j′ = 1; and (2) there is apathi′j′ ⊆ Eg∗ such that

pathi′j′ 6= ((i′, j′)). Therefore, by settinggi′j′ = 0, agenti′ always receives a strictly

higher utility compared to what it can receive ing∗, which contradicts the fact thatg∗

is an NE. Hence, this proposition follows.�

Proposition 1 shows that in an equilibrium of the IDG, each connected sub-network

(component) is minimal with no cycles in it. As we will show inSection 5.3.2, the social

optimum in the IDG is always achieved by networks consistingof minimal components

and hence, the equilibria in the IDG can frequently achieve the social optimum (i.e.

being efficient).

Proposition 1 characterizes individual components in the equilibrium network, but

it does not characterize the connectedness of the network, i.e. whether the network will

be composed of a unique component where all agents are connecting with (and can

disseminate information to) each other or several components that are isolated from

each other. The following proposition provides a sufficientcondition under which the
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network is connected at equilibrium.

Proposition 2. The network in each NE is always minimally connected if thereis

an agenti such thatf(xi(|N | − 1))− f(xi(|N | − 2)) > max
j∈N

{kij}.

Proof: Suppose there is a NEg∗ which contains more than one component. We

consider two componentsC1 andC2. Suppose agenti is in C1, then it can always

increase its utility by forming a link to any other agent inC2 sincef(xi(|N | − 1)) −

f(xi(|N | − 2)) > max {kij}i,j∈N , which contradicts the fact thatg∗ is an NE. This

proposition thus follows.�

Proposition 2 shows that the network will be connected at equilibrium when the

benefit from information dissemination is sufficiently large (i.e.xi is sufficiently large)

with respect to the link formation cost. The properties of the network topology at equi-

librium (i.e. the shape and diameter of the network) dependson the specific values of

{xi}i∈N and{kij}i,j∈N . In the rest of this section, we analyze two exemplary networks

with particular structures in order to obtain further insights on the equilibrium topology.

5.3.1.1 Networks with recipient-dependent costs

In the first example, we consider the network where the cost offorming a link is exclu-

sively recipient specific. In particular, we havekij = kj, ∀i ∈ N/{j}. This can capture

the practical networks in which the link formation cost onlydepends on the type of

the recipient and there are some agents to which it is easier to connect with than other

agents (i.e. with smaller costs to form links with). For example, in networks where the

link formation cost represents the subscription fee that the creator sends to the recipi-

ent, each agent charges the same price to any agent who wants to form a link with it.

In the following theorem, we show that if the link formation cost in the network is not

arbitrary but only takes values from a finite set{k1, ..., kL}, i.e. there areL different

types of link formation costs andki ∈ {k1, ..., kL}, ∀i ∈ N (e.g. the subscription fee is

quantized to several discrete levels depending on the agents’ types but not takes arbi-
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trary values), then the diameter of the network at each strict equilibrium should be no

more than2L+ 2.

Theorem 1. Suppose that there areL different types of link formation costs, e.g.

{k1, ..., kL}, such thatki ∈ {k1, ..., kL}, ∀i ∈ N , then under any strict NEg∗ of the

IDG, the diameter of the network is at most2L+ 2.

Proof: Consider a strict NEg∗ and a non-singleton component in it, there is at

least one agenti in the component such thatg∗ij = 1 for somej. Consider a path

pathijd = ((i, j), (j, j1), (j1, j2), . . . , (jd−1, jd)). Sinceg∗ij = 1, we should have{kj <

kj1, kj < kj2, ..., kj < kjd}. Now there are two cases:g∗j1j = 1 or g∗jj1 = 1.

In the first case, supposeg∗j2j1 = 1, then we havekj1 < kj, which leads to a

contradiction to the fact thatkj < kj1. Hence, we haveg∗j1j2 = 1, which giveskj2 < kj3.

Using the same arguments, we haveg∗jljl+1
= 1 andkjl+1

< kjl+2
, for all l ∈ {1, ..., d−

2}. Therefore, along the pathpathjjd = ((j, j1), (j1, j2), . . . , (jd−1, jd)), there are at

leastd different link formation costs. We thus haved 6 L and the length of path

pathijd is smaller thanL+ 1.

Now consider the second case whereg∗jj1 = 1. Then we havekj1 < kj2. Similar

to that for the first case, we have that onpathjjd = ((j, j1), . . . , (jd−1, jd)), there are

at leastd different link formation costs and hence the length of pathpathijd is still no

more thanL+ 1.

Consider the longest path in this component, which is denoted as

((b0, b1), (b1, b2), . . . , (bT−1, bT )). (5.4)

SupposeT > 2(L+1) and consider the agentsb⌊T/2⌋ andb⌊T/2⌋+1. If g∗b⌊T/2⌋b⌊T/2⌋+1
= 1,

then the path((b⌊T/2⌋, b⌊T/2⌋+1), . . . , (bT−1, bT )) has a length longer than(L + 1). If

g∗b⌊T/2⌋+1b⌊T/2⌋
= 1, then the path((b⌊T/2⌋+1, b⌊T/2⌋), . . . , (b1, b0)) has a length longer

than(L + 1). Both scenarios contradict our argument above. Therefore,we can con-

clude thatT 6 2(L+ 1) always holds and this theorem follows.�

The link formation cost thus plays an important role in shaping the equilibrium
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network in the IDG. As shown in Theorem 1, if there are only a finite number of differ-

ent link formation costs in the network, then the size of eachcomponent (a connected

sub-network) cannot be arbitrarily large but is upper-bounded by some constant value,

which is independent of the population size but proportional to the number of different

link formation costs. Based on Proposition 1 and Theorem 1, the “minimally con-

nected” and “short diameter” properties of the equilibria in strategic networks are thus

proven.

As a special case of Theorem 1, we prove in the following corollary that when the

link formation cost is the same for all agents, each component in a strict NE forms a

star topology, regardless of the values{xi}i∈N .

Corollary 1. If kij = k, ∀i, j ∈ N , then under a strict NEg∗, each non-singleton

component forms a star topology.

Proof: See Appendix.�

Hence when the link formation cost is the same for all agents,each component at

equilibrium preserves the “core-periphery” property withone single agent staying at

the center of it and playing the role of the “connector” who connects (maintains links)

with all other agents to support their information dissemination.

5.3.1.2 Networks with groups

We discuss a network where agents are divided into groups andagents within the same

group have the same type. The cost of forming links within a group (i.e. between agents

of the same type) is lower than the cost of forming links across groups (i.e. between

agents of different types). Examples of strategic networkswhere such groups exist are

users of close social relationships or close interests in a social network [92], devices or

processing nodes located in the same area [93], etc.

Formally, we consider that all agents are divided intoZ different groupsN1, . . . , NZ

with |Nz| > 2 for all 1 6 z 6 Z, such thatN = ∪{Nz}
Z
z=1 andNz ∩ Nz′ = φ for
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any 1 6 z < z′ 6 Z. For two agents from the same group, the cost of forming a

link between them isk, while for two agents from different groups, the cost of forming

a link between them is̄k > k. Here we assume thatxi = x, ∀i ∈ N to make our

analysis tractable. The following theorem characterizes the strict equilibria with the

presence of groups and proves that each non-empty strict equilibrium preserves the

“core-periphery” property.

Theorem 2. In the presence of groups, the Nash equilibria can be characterized as

follows:

(i) Whenf(x) < k, the unique strict NEg∗ satisfiesg∗ij = 0, ∀i, j;

(ii) When f(x) ∈ (k, k̄), the unique strict NE consists ofZ components, where

each component contains only agents from the same group and the topology of each

component is a star;

(iii) When f(x) > k̄, in each strict NEg∗, there is a groupNz and an agenti ∈ Nz

such thatg∗ij = 1, ∀j ∈ Nz/{i}. Also for each agentj′ /∈ Nz, there is an agentj ∈ Nz

such thatg∗jj′ = 1.

Proof: See Appendix.�

Several examples of the equilibrium topologies discussed in Theorem 2 are illus-

trated in Figure 5.1 in a network ofn = 10 agents who are divided into 2 groups. The

number on each node represents the group to which each agent belongs. Theorem 2

provides several important insights. First, in a strict equilibrium, agents from the same

group always belong to the same component (i.e. are connected with each other). Sec-

ond, each non-singleton component exhibits the “core-periphery” property. The agents

that form the core are from the same group, while agents from other groups access the

network via links maintained by the core. This analytical finding is reflected in numer-

ous real world examples. For instance, in a large-scale overlay routing network [83], it

is usually the case that a group of nodes who can inter-connect at a lower cost form the

backbone of the network, while all other nodes connect to thenetwork via this back-
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Figure 5.1: The exemplary Nash equilibria in the network with groups

bone. Third, in each component, there is always a central agent and all paths within

this component initiate from this agent. Also, the distancefrom the central agent to any

periphery agent is no more than 2. Hence, the diameter of the network is no more than

4, which is also independent of the population size in the network.

5.3.2 Equilibrium efficiency of the IDG

In this section, we analyze the efficiency (social welfare) of the IDG. Because there

are multiple equilibria, we use two metrics to measure the equilibrium efficiency: (i)

the Price of Stability (PoS) is defined as the ratio between the social optimum and the

highest social welfare that is achieved at equilibrium and measures the efficiency of

the “best” equilibrium in the IDG, i.e.PoS = U#/maxg∗∈G∗U(g∗); (ii) the Price

of Anarchy (PoA) is defined as the ratio between the social optimum and the lowest

social welfare that is achieved at equilibrium and measuresthe efficiency of the “worst”

equilibrium in the IDG, i.e.PoA = U#/ming∗∈G∗U(g∗). In the rest of this section,

we quantify the PoS and PoA in the IDG and show with multiple examples that the

equilibria in the IDG frequently achieve the social optimum.

We first characterize the socially optimal strategy profiles. As with NE, it can be

proven that the minimal property still holds in the network under any socially optimal

strategy profile.

Proposition 3. In the IDG, each component under a socially optimal profile is

always minimally connected.
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Proof: This can be proven using the same idea as Proposition 1.�

With the minimal property, we prove in the next theorem that when the link forma-

tion cost is recipient-dependent, i.e.kij = kj, ∀i ∈ N/{j}, there is always an NE that

can achieve the social optimum when the link formation cost is sufficiently small: the

PoS of the IDG is always 1.

Theorem 3. If kij = kj, ∀i ∈ N/{j} andmin
i∈N

f(xi) > min
i∈N

ki, the PoS of the IDG

is always 1.

Proof: Let ki0 = min
i∈N

ki and consider a periphery-sponsored starg with gji0 =

1, ∀j ∈ N/{i0} and gjj′ = 0, ∀j, j′ ∈ N/{i0}. It is obvious thatg is both social

optimal and an NE. Hence, this theorem is proven.�

However, the PoA of the IDG is not necessarily 1 in this case, i.e. there are some

NE that incur positive efficiency loss. This is quantified in the next proposition.

Proposition 4. If kij = kj, ∀i ∈ N/{j} andmin
i∈N

f(xi) > min
i∈N

ki, the PoA of the

IDG is upper-bounded bymaxi,j∈Nki/kj.

Proof: We consider an arbitrary NEg∗. Let ki0 = min
i∈N

ki and consider a compo-

nentC1 that containsi0. Now consider another componentC2. If C2 is a singleton

component which contains a unique agentj, thenj can always increase its utility by

forming a link with i0. If C2 is a non-singleton component, then there is always an

agentj′ ∈ C2 such thatg∗j′l = 1, ∃l ∈ C2 with max{g∗ll′, g
∗
l′l} = 0, ∀l′ ∈ N/{l}. In

this case,j′ can also increase its utility by switching its link froml to i0. Therefore,

it can be concluded thatg∗ forms a connected network. From Proposition 3, we know

that the network formed byg∗ is also minimal which contains|N | − 1 links and hence,

U#/U(g∗) 6 maxi,j∈Nki/kj . Since this conclusion applies to any NEg∗, Proposition

4 thus follows.�

Proposition 4 shows that the upper bound of PoA depends on howthe link formation

cost varies among agents. In the special case where the link formation cost is the same

for all agents, i.e.kij = k, ∀i, j ∈ N , each NEg∗ achieves the social optimum: PoA is
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1.

Corollary 2. If kij = k, ∀i, j ∈ N andmin
i∈N

f(xi) > k, every NEg∗ achieves the

social optimum and the PoA of the IDG is 1.

Proof: This can be proven straightforwardly using Proposition 4.�

5.4 IDG with Information Production

In the IDG discussed so far, we assumed that the information possessed by the each

agent is exogenously determined and fixed during the game. Nevertheless in practical

networks, it is usually the case that each agenti can proactively determine the amount

of information that it wants to disseminate throughout the network, i.e. the value of

xi. In this section, we consider such IDG with strategic information production from

individual agents.

In the IDG with information production, the strategy of an agent i can be repre-

sented as(xi, gi), and the agent jointly maximizes its decisions on the information

production and link formation in order to maximize its overall utility from information

dissemination. A strategy profile of the IDG with information production is written

ass = (x, g), wherex = (xi)
n
i=1 denotes the information production decisions of all

agents. Given a strategy profile, the utility of agenti is expressed as:

ui(x, g) = f(xi|Ni(Eg)|)− cxi −
∑

j∈Ni(g)
kij. (5.5)

Herecxi represents the cost of producing an amountxi of information, wherec is the

unit production cost.

A Nash equilibrium of the IDG with information production isa strategy profile

s∗ = (x∗, g∗) such that

ui(s
∗
i , s

∗
−i) > ui(si, s

∗
−i), ∀si ∈ R

+ × {0, 1}n−1, ∀i ∈ N. (5.6)

When information production is a strategic choice, centralquestions are how many
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agents will produce information at equilibrium and how the total amount of information

produced in the network changes with the population size. The seminal work in [69]

analyzes the network formation game with information production where agents benefit

from acquiring and consuming the information produced by other agents. It predicts

the occurrence of the “law of the few” at equilibrium. That is, in each equilibrium

there are only a small number of agents in the network who produce a positive amount

of information (i.e. being information producers). As the population size grows to

infinity, the fraction of information producers in the agentpopulation goes to 0. Based

on the “law of the few”, [69] also predicts that the total amount of information that

is produced (by all agents) in the network remains constant at equilibrium, which is

independent of the population size.

The reason for the emergence of the “law of the few” in [69] is that each agent ben-

efits solely from information consumption and hence its utility is not affected by how

many agents it connects with and with whom it is connected so long as the total amount

of its acquired information remains constant. Also, when there is a sufficient amount

of information that has been acquired by an agent, it will stop producing information

personally. Therefore, the information production at equilibrium is always dominated

by a small fraction of information producers who produce allthe information to be

consumed by all agents.

In the rest of this section, we study the asymptotic information production behavior

of agents in the IDG when the population size grows. It shouldbe noted that in the

IDG, the benefit of an individual agent is jointly determinedby the amount of its own

production, i.e.xi, as well as the number of agents it connects with, i.e.|Ni(Eg)|,

whereas the information produced by other agents has no influence on its information

production decision. This makes the resulting asymptotic information production be-

havior at equilibrium exhibits significant differences to that in [69]. Importantly, we

prove in the following theorem that the “law of the few” does not hold in the IDG. To

illustrate this theorem, we define several auxiliary variables: S∗
N represents the set of

126



equilibrium strategy profiles when the population isN , IN (s) = {i|i ∈ N and x∗
i > 0}

represents the set of information producers under the strategy profiles, andx̄ represents

the solution of the equationf ′(x) = c.

Theorem 4. In the IDG with information dissemination, whenmax
i,j∈N

kij < cx̄, (i)

inf
s∗∈S∗

N

{IN(s
∗)}/|N | = 1; (ii) the total amount of information produced in the network

at equilibrium, i.e.
∑
i∈N

x∗
i , grows to infinity when the population size|N | → ∞, i.e.

lim
|N |→∞

inf
s∗∈S∗

N

{
∑
i∈N

x∗
i } → ∞.

Proof: To prove Statement (i), it is sufficient to see that each agenti will connect to

at least one other agent in any NE and thus havex∗
i > 0 whenmaxijkij < cx̄, which is

independent of the population size|N |.

By taking the first order derivative of (4), we have that|Ni(Eg∗)|f ′(|Ni(Eg∗)|x∗
i ) =

c and thus|Ni(Eg∗)|x∗
i > x̄. Also, for any two agentsi, j within the same compo-

nent, we havex∗
i = x∗

j . Therefore for any componentC, the total amount of informa-

tion produced by agents within this component at equilibrium is
∑
i∈C

x∗
i , which satisfies

f ′(
∑
i∈C

x∗
i ) = c/|C| and

∑
i∈C

x∗
i > x̄. Suppose that there is a sufficiently large constant

W such that for anyN we have inf
s∗∈S∗

N

{
∑
i∈N

x∗
i } < W . Selects∗N = arg inf

s∗∈S∗
N

{
∑
i∈N

x∗
i }.

Due to the concavity off(·), we have thatf ′(
∑
i∈C

x∗
i ) = c/|C| > f ′(W ) for any compo-

nentC unders∗N . Hence,|C| 6 c/f ′(W ), and we have
∑
i∈N

x∗
i > |N |f ′(W )x̄/c. This

shows that there is always a sufficiently large|N | such that|N |f ′(W )x̄/c > W which

contradicts the assumption thatinf
s∗∈S∗

N

{
∑
i∈N

x∗
i } < W for anyN . Therefore, we have a

contradiction and Statement (ii) follows.�

Theorem 4 shows that when agents benefit from information dissemination instead

of information consumption, both the number of informationproducers and the total

amount of information produced in the network grow at least at a linear order of the

population size at equilibrium. Therefore, the information production at equilibrium is

no longer dominated by a small number of information producers and the “law of the

few” predicted in [69] no longer holds.
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5.5 Related Works

There is a broad literature studying the information dissemination in social network-

s [94]-[100], which focuses on explaining how the information (e.g. epidemics, job

openings, etc.) is propagated in social networks and how theagents’ actions (e.g. be-

coming “infected” or not, buying products or not, etc.) are influenced by the dissem-

inated information. However, the analysis in these works isbased on the assumption

that the underlying topologies of the social networks are exogenously determined and

none of them explicitly considers the strategic link formation of self-interested agents.

There are also numerous works in network science investigating the evolution of

social and information networks whose topologies are formed endogenously by agents’

self-interested actions [87]-[89]. These works focus on empirical measurements of

existing social networks and they fail to provide theoretical foundations which can ex-

plain and emulate the relationship between agents’ incentives to form links based on

their own self-interest and the emerging network topologies.

Theoretical study of network formation in social and economic networks has been

conducted by micro-economists as well as computer scientists (see e.g. [63][64][69][84]-

[86]), who analyze how the agents’ self-interest in acquiring information from other

agents leads to strategic link formation and particular network topologies. Howev-

er, these works focus on the scenario in which agents benefit solely from consuming

acquired information. In the rest of this section, we discuss the relationship and differ-

ences between our proposed information dissemination gameand the existing models

on network formation games with information acquisition.

5.5.1 Differences in agents’ utilities and incentives

First, note that analysis of the IDG and that of the network formation game with in-

formation acquisition (which is referred to as the Information Acquisition Game (IAG)

below) exhibit significant differences in both the agents’ utilities and the problem for-
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mulation. To illustrate the differences, we write the utility function in the IDG below

as well as an exemplary utility function in the IAG. To make the key differences even

clearer, we assume thatkij = k, ∀i, j ∈ N throughout the analysis:

uIDG
i (g) = f(xi|Ni(Eg)|)− k|Ni(g)|, (5.7)

uIAG
i (g) = f(xi +

∑
j∈Ni(Eg)

xj)− k|Ni(g)|. (5.8)

From these two utility functions, it can be observed that in the IAG, the benefit of an

individual agent is determined by the total amount of information which it acquires,

i.e. xi +
∑

j∈Ni(Eg)
xj , and agents lose the incentive to form links as long as they are

able to acquire sufficient information from the existing links, regardless of with how

many agents they are connected and from which agents was the information acquired

(i.e. the variety of agents). In contrast, in the IDG, the benefit of an individual agent is

jointly determined by the amount of its own information, i.e. xi, as well as the number

of agents with whom it is connected, i.e.|Ni(Eg)|, while the information possessed by

other agents has no influence on its link formation decision.The number and variety

of agents that each agent is connected with thus form the mostimportant factor that

shapes its incentives.

It is important to note that in the IDG and the IAG, the amount of an agent’s own

information have opposite impacts on its incentive to form links with others: in the IAG,

the more information an agent possesses, i.e. the largerxi is, the smaller incentive it

has to form links with other agents; whereas in the IDG, an agent with a largerxi has a

larger incentive to form links with others. As a result, the existing models used for IAG

are not suitable to analyze the trade-off between the benefits and costs of information

dissemination and link formation as well as the mutual impact between agents’ strategic

link formation decisions in an IDG. In fact, the existing IAGmodels can be applied to

analyze the IDG only if agents are homogeneous withxi = x, ∀i, so that the total

amount of an agent’s acquired information is proportional to the number of agents it

connects with.

129



5.5.2 Differences in agents’ equilibrium link formation behavior

A simple example show that these differences lead to highly different link formation

behaviors thereby resulting in significant differences of the equilibrium topologies as

opposed to those in the IAG. This point is further illustrated below using a simple exam-

ple. For a fair comparison, we assume in the example thatf(y) = yλ with λ ∈ (0, 1).

Suppose that there aren agents in the network. There is one agenti possessing an

amountxi of information withxi > ln k/λ while all the other agents possess no infor-

mation. Then in the IAG, it is easy to show that agenti forms no link at equilibrium,

i.e. g∗ij = 0, ∀j 6= i, and each agentj ∈ N/{i} forms exactly one link with agenti,

i.e. g∗ji = 1, ∀j 6= i andg∗jj′ = 0, ∀j 6= i, j′ 6= i. Hence, the unique equilibrium in

the IAG is a periphery-sponsored star. Nevertheless in the IDG, agenti forms at least

one link with some other agent at equilibrium, i.e.g∗ij = 1, ∃j 6= i, and each agent

j ∈ N/{i} forms no link with any other agent, i.e.g∗jj′ = 0, ∀j 6= i, j′ ∈ N . Mean-

while, the largerxi is, the more links that agenti forms in the IDG. We can show that

whenxi >
1
λ
ln k

(N−1)λ−(N−2)λ
, agenti forms links with all other agents in the network,

with the unique equilibrium being a center-sponsored star.

This example provides two important insights: (1) agents’ link formation behaviors

at equilibrium exhibit significant differences when they are playing the IAG or the IDG,

even if they possess the same amount of information and incurthe same link formation

cost; (2) although the resulting equilibrium topologies inthe IAG and IDG may exhibit

some similarity with respect to their shapes (e.g. both IAG and IDG have the star

topology as the unique equilibrium whenxi > 1
λ
ln k

(N−1)λ−(N−2)λ
), they may have

completely different underlying structures which lead to different properties in practice,

e.g. the center-sponsored star formed in the IDG has all its links supported by its center

node and is more vulnerable to single-node failures than theperiphery-sponsored star

formed in the IAG.
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5.5.3 Differences in emerging equilibrium topologies

The differences between the IDG and the IAG become even more distinct in the sce-

nario where agents self-produce information. For instance, the “law of the few”, which

is shown as a robust feature at equilibrium in the IAG [69], nolonger holds in the IDG

as shown by Theorem 4.

5.6 Conclusion

In this chapter, we investigated the problem of informationdissemination and link for-

mation in strategic networks. We rigorously determined howthe agents’ desire to dis-

seminate their own information throughout the network impacts their interactions and

the emerging connectivity/topology among them. Our analysis proved several impor-

tant properties of the strategic networks (arising from theagents’ strategic link forma-

tion) at equilibria, such as “core-periphery”, “minimallyconnected”, “short diameter”.

These properties are important because they characterize the efficiency and robustness

of the resulting equilibrium networks. We also studied the strategic information pro-

duction by individual agents and its impact on the equilibria of the information dis-

semination games. Importantly, we showed that when agents benefit from information

dissemination, the information production at equilibriumis no longer dominated by a

small number of information producers and hence, the “law ofthe few” derived for tra-

ditional network formation games where agents benefit from information consumption

no longer holds.
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5.7 Appendices

5.7.1 Proof of Corollary 1

This can be proved using the same idea as Theorem 1. We first prove the following

claim.

Claim 1. Given a strict NEg∗ and whenkij = k, ∀i, j ∈ N , if g∗ij = 1 for some

i, j ∈ N , thenmax{g∗jj′, g
∗
j′j} = 0 for anyj′ 6= i andj′ 6= j.

Proof of Claim 1:Suppose, in contrast,g∗ij = 1 andmax{g∗jj′, g
∗
j′j} = 1 for some

j′ 6= i andj′ 6= j. By deleting its link withj and forming a new link withj′, i receives

the same utility as what it receives ing∗, which contradicts the fact thatg∗ is an (strict)

equilibrium and hence this claim follows.�

In the next step, we show that for each non-singleton component always has a star

topology in a strict NE.

Without loss of generality, we select two agentsi, j ∈ C whereC is a component

in Eg∗, such thatg∗ij = 1. According to Claim 1, we have thatmax{g∗jj′, g
∗
j′j} = 0 for

anyj′ ∈ C andj′ /∈ {i, j}. According to Proposition 1, we should also haveg∗ji = 0,

since agentj can strictly increase its utility otherwise by removing thelink it forms to

agenti.

Now suppose thatg∗j′i = 1 for somej′ ∈ C and j′ /∈ {i, j}. It is obvious that

agentj′ can switch its link from agenti to agentj without decreasing its utility, which

gives a contradiction. Therefore, we can conclude thatg∗ij = 1, ∀j ∈ C andj 6= i.

Meanwhile,g∗jj′ = 0, ∀j, j′ ∈ C andj, j′ 6= i. In other words,C has a star topology

where agenti stays in the center and forms links with all other agents who stay in the

periphery, while all the other agents do not form links mutually. This corollary thus

follows. �
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5.7.2 Proof of Theorem 2

(i) When f(x) < k, suppose that there is an equilibriumg∗ which contains a non-

singleton componentC. Let i andj be two agents inC such thatg∗ij = 1, it is obvious

that agenti can strictly increase its utility by settinggij = 0. Hence, there is a contra-

diction and this statement follows.

(ii) When f(x) ∈ (k, k̄), consider a componentC and one of its periphery agentsi

such thatmax{g∗ij, g
∗
ji} = 1, ∃j andmax{g∗ij′, g

∗
j′i} = 0, ∀j′ 6= j.

Supposeg∗ij = 1: If kij = k̄ and |C| > 2, agenti can always switch its link

to some other agentj′ ∈ C without decreasing its utility, Ifkij = k̄ and |C| = 2,

agenti can always increase its utility by switching its link to someother agentj′ /∈ C.

Both cases contradict the fact thatg∗ is a strict NE. Hence, we havekij = k and

g∗i′j = 0, ∀i′ ∈ C/{i, j} (otherwisei′ can switch its link fromj to i without decreasing

its utility). Sincei is a periphery agent, we haveg∗ji′ = 1, ∃i′ ∈ C/{i, j}. If |C| = 3,

thenkji′ = k and agenti can switch its link fromj to i′ without decreasing its utility.

Therefore, we have|C| > 3 andḡ∗i′i′′ = 1, ∃i′′ ∈ C/{i, j, i′}. If kji′ = k̄, agentj can

switch its link fromi′ to i′′ without decreasing its utility, whereas ifkji′ = k, agenti

can switch its link fromj to i′ without decreasing its utility. Both cases contradict the

fact thatg∗ is a strict NE. It can be thus concluded thatg∗ij = 1 cannot hold ing∗ and

we haveg∗ji = 1. As a result,j should belong to the same group asi with kij = k.

Now consider another agentj′ ∈ C/{i, j}. If g∗j′j = 1, thenj′ can switch its link

from j to i without decreasing its utility, which leads to a contradiction. Therefore, we

haveg∗jj′ = 1, ∀j′ ∈ C/{j} and the component forms a star topology. Also, if there is

an agentj′′ ∈ C who is not from the same group asj, thenj can always increase its

utility by removing its link withj′′ sincef(x) < k̄. Hence, this statement follows.

(iii) When f(x) > k̄, it is still true that agents from the same group belong to the

same component. Also, the network should be connected with aunique component

existing underg∗. It is always true that we can find two agentsi andi′ from one group
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Nz such thatg∗ii′ = 1. Using the same argument as that in statement (ii), it is easyto

show thatg∗ii′′ = 1, ∀i′′ ∈ Nz/{i}. Now consider an agentj /∈ Nz. We haveg∗ji′ =

0, ∀i′ ∈ Nz (otherwise the condition of a strict NE is violated). Now consider a path

pathi′j = ((i′, j1), (j1, j2), ..., (jm, j)) with j1, ..., jm, j /∈ Nz andi′ ∈ Nz. Obviously,

we haveg∗i′j1 = 1. Hence,i′ can switch its link fromj1 to j without decreasing its

utility, which again violates the fact thatg∗ is a strict NE. It can be thus concluded that

for eachj /∈ Nz, g∗i′j = 1, ∃i′ ∈ Nz andg∗jj′ = 0, ∀j′ /∈ Nz. Therefore, this statement

follows. �
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CHAPTER 6

Conclusion

In this dissertation, I developed a rigorous and formal framework that integrates in-

centive mechanisms design with system resource managementand is applicable to a

wide range of socio-technical networks including online social networking platform-

s, online trading markets, social computing systems, and online user-generated content

platforms. This framework encompasses various features that are common to a wide va-

riety of socio-technical networks, including the anonymity and asymmetric interests of

agents, the agents’ strategic learning and adaptation, theagents’ ability to make proac-

tive link formation decisions, and the imperfect monitoring on the agents’ behavior. A

central point of my analysis, which departs from the existing literature on distributed

optimization for large-scale systems, is the assumption that the agents are selfish and

only interested in maximizing their individual utilities,instead of the collective social

welfare of the network.

As the first part of the proposed framework, I established in Chapter 2 a rigorous

framework for the design and analysis of a class of rating protocols to sustain cooper-

ation in online communities. I rigorously formulated the platform designer’s problem

of designing an optimal rating protocol and derived conditions for sustainable rating

protocols, under which no agent gains by deviating from the prescribed recommend-

ed strategy. Then, I continued to study in Chapter 3 the problem of designing rating

protocols under which agents adapt their behaviors and learn over time. In such com-

munities, the platform designer can determine the long-runevolution of the commu-

nity of agents. With this knowledge, the goal of the platformdesigner is not only to
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design a rating protocol that is sustainable, but also to induces the community’s con-

vergence towards the (desirable) equilibrium in the long run. I explicitly showed that a

simple two-label rating protocol is sufficient to induce full cooperation among agents

and achieve the optimal performance in terms of the collective social welfare. Next,

I turned to another important problem in socio-technical networks: the strategic infor-

mation production and link formation of the self-interested agents. Chapter 4 and 5

provide complementary analyses for both the information acquisition and dissemina-

tion. I rigorously determined how the trade-off of producing information personally

and forming links to acquire/disseminate information impacts the interactions between

agents and thus the network topology that endogenously emerges. The key finding here

is that the network topology that emerges (at equilibrium) necessarily displays a core-

periphery type. Meanwhile, as the population becomes larger, the number of hub agents

and the total amount of information produced grow in proportion to the total popula-

tion. Importantly, this conclusion holds for both networkswith information acquisition

and information dissemination, which indicates that this “core-periphery” structure is

a robust feature of endogenously formed socio-technical networks. I then showed that

the networks that emerge at equilibrium are frequently minimally connected and have

short network diameters. My conclusions had been conjectured for many networks,

such as the “small-world” phenomenon in the World-Wide-Web, but not derived in any

formal framework.

My framework can be extended in several directions, among which I mention three.

First, the effectiveness of the incentive mechanisms proposed in this dissertation relies

on the truthful reporting from agents. For instance, the update of a server’s rating de-

pends on the report of its client. In an extension of my framework, I will consider the

scenario in which clients can use more complicated decisionrules while reporting the

servers’ actions to the community operator in order to maximize their own long-term

utility, instead of always reporting truthfully. Second, agents considered in this disser-

tation adopt simple beliefs about the system and the strategies of other agents. More
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sophisticated belief models can be introduced into my framework. Understanding how

the evolutions of users’ beliefs and users’ strategies willimpact each other form an im-

portant future research direction. Third, alternative formulations on information trans-

mission and link formation can be extended from my current model to encompass the

features of various applications. Several examples include the bilateral link formation

which requires the mutual consent of agents, the unilateralinformation transmission

with which the information flow over a link is one-sided, and non-constant link forma-

tion cost with which the cost of establishing a link depends on the characteristics of the

creator and the recipient as well as the amount of information (i.e. traffic) across this

link.
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