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Wavelet Video Coders
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Abstract—Based on our statistical investigation of a typical
three-dimensional (3-D) wavelet codec, we present a unified math-
ematical model to describe its operational rate-distortion (RD)
behavior. The quantization distortion of the reconstructed video
frames is assessed by tracking the quantization noise along the 3-D
wavelet decomposition trees. The coding bit-rate is estimated for
a class of embedded video coders. Experimental results show that
the model captures sequence characteristics accurately and reveals
the relationship between wavelet decomposition levels and the
overall RD performance. After being trained with offline RD data,
the model enables accurate prediction of real RD performance of
video codecs and therefore can enable optimal RD adaptation of
the encoding parameters according to various network conditions.

Index Terms—Context coding, discrete wavelet transform
(DWT), entropy, rate-distortion function.

I. INTRODUCTION

I N recent years, the demand for media-rich applications over
wired and wireless IP networks has grown significantly. This

requires video coders to support a large range of scalability such
as the spatial, temporal and signal-to-noise ratio (SNR) scala-
bility. Standard coders such as H.26x and MPEG-x have limited
scalability due to the closed-loop prediction structures. On the
other hand, wavelet video coding gained much research interest
in the past years, since it not only enables a wide range of scal-
abilities but also provides high compression performance, com-
parable to state-of-the-art single layer coders such as MPEG-4
AVC. [23]. Therefore, it is useful to find concrete analytical
rate-distortion (RD) models for wavelet-based coders to guide
the real-time adaptation of video bitstreams to instantly varying
network conditions.

A. Review of Existing RD Modeling Work

Generally, there are two types of methodologies for RD anal-
ysis. The first is the empirical approach [9], [10], [20], where
experimental RD data are fitted to derive functional expressions.
This approach is advantageous because the RD models can be
easily computed, but it has the drawback that it does not explic-
itly consider the input sequence characteristics or the encoding
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structure and parameters, and hence, the obtained RD perfor-
mance cannot be generalized. We will resort to the second ap-
proach, which is the analytical approach based on traditional RD
theory [2], [3], [13].

Finding accurate mathematical RD models for a given
random process is generally difficult, and exact derivations are
only available for several very simple sources under appropriate
fidelity critera. For example, Sakrison [2], [3] calculated a para-
metrical RD function for a Gaussian process using a weighted
square error criterion; Gerrish [1] showed that the Shannon
lower bound is attainable if and only if a process can be de-
composed into two statistically independent processes with one
of them being a white Gaussian process; Berger [4] derived an
explicit RD formula for both time-discrete and time-continuous
Wiener processes. For most general cases, only upper and
lower bounds can be derived for the RD functions of a random
process. Note that such bounds are useful for the purpose of
RD estimation only when they are tight enough.

Based on these results, a theoretical RD model for simple
transform-based video coders has been derived by Hang et al.
[11], [12]. In this research, the bit rate was estimated under the
assumption of a simple Gaussian source model and small quan-
tization steps. Therefore, the estimation is not accurate in the
region of low bit rate and cannot be generalized to more so-
phisticated transform-based coders. In Girod’s work [5], [8], the
propagation of power spectral density of prediction error was
derived for the closed-loop motion-compensated (MC) predic-
tion structure of a coder. While this approach presents a model
for analyzing the quantization distortion for a close-loop codec,
it is limited by the simplified assumptions of the prediction fil-
tering process and hence cannot describe the RD behavior of
open-loop wavelet video codecs accurately. Mallat et al. [17]
provided a thorough analysis of RD performance of wavelet
transform coding in the low bit-rate region and presented an
accurate model for still-image coding. These results revealed
that the RD function takes very different forms for low and
high bit rates. He’s model [26], [28] revealed a linear relation-
ship between the coding bit rates and the percentage of zero-
quantized coefficients (also called -domain analysis). In He’s
model, the rate curves are first decomposed into pseudocoding
bit rates for the zero and nonzero coefficients, and then each
part is adapted empirically by the training data. This model cap-
tures the input source characteristics successfully and leads to an
easy approach for estimating the bit rates for video coding [28].
Dai et al. [34] combined the distortion calculation in Mallat’s
work [17] with the bit-rate estimation in He’s work [26], [28]
and arrived at a closed-form operational RD model. While these
models [17], [26], [28], [34] describe the operational RD be-
havior for a wide range of transform-based coders successfully,
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they are expressed either in terms of quantization step sizes
or value of percentage of zero coefficients after quantization,
i.e., the value of . Since there exists a one-to-one mapping be-
tween the quantization step size and , the rate control algorithm
based on these models is restricted to the adjustment of quanti-
zation step sizes in order to meet certain bit-rate requirements.
However, other coding parameters besides the quantization step
sizes, such as the number of wavelet decomposition levels, the
choice of wavelet filters, etc., have a significant impact on the
RD behavior of the source coder.

B. The Statistical Properties of Wavelet Coefficients and Our
RD Model

We will derive an analytical model for the RD behavior of a
typical 2D wavelet video coding system [35]. The distortion
is calculated by tracking the propagation of quantization noise
along the three-dimensional (3-D) wavelet decomposition
trees. The estimation of the coding bit rate requires an accu-
rate and simple joint statistical model of the wavelet-domain
coefficients. There have been various investigations on the
statistical distributions of the transform-domain coefficients
of natural images and the generalized Gaussian distribution is
demonstrated to describe the marginal distribution of the coef-
ficients very accurately [7], [19]. Even though the correlation
of transform-domain coefficients is nearly zero, which demon-
strates the decorrelation property of orthogonal transforms such
as discrete cosine transform and discrete wavelet transform
(DWT), dependencies remain among these coefficients both
across and within different subbands [31]. Of particular interest
is the joint statistical model of DWT coefficients, which can be
assorted into two classes: intrasubband [14], [18], [25], [33],
and intersubband dependencies [16], [22], [24]. The intrasub-
band dependencies are characterized by doubly stochastic pro-
cesses, where the state variables are closely correlated among
neighboring coefficients. The dependencies across scales (also
called persistency) are modeled by a hidden Markov process.
Conditioned on the state variables in both cases, the wavelet
coefficients are independent identically distributed Gaussian
random variables. Given appropriate statistical distribution of
the underlying state variables, the marginal distribution of the
wavelet coefficients can be shown to be generalized Gaussian,
which explains the statistical models in [7] and [19].

Inviewof the inter-andintrascaledependency, theencodingbit
rate can be greatly reduced by context-based entropy coding [31].
In coding of wavelet coefficients such as the embedded zerotree
and the set partitioning in hierarchical trees (SPIHT) [27], depen-
dencies are exploited from the quadtree which relates the parent
and child coefficients from subbands of successive scales in the
same orientation. One drawback of zerotree-based algorithms is
that they do not facilitate resolution scalability due to the fact that
a quadtree typically spans different scales. Therefore, subbands
belonging to different scales have to be encoded independently
to facilitate resolution scalability. Moreover, it was found that the
coding penalty resulting from not exploiting the interscaledepen-
dencies is minimal [25]. This was verified by recently developed
codecs such as EBCOT [21], which demonstrated compression
performance comparable to that of SPIHT. Hence, we will re-
strict our analysis to independent subband context coding.

C. Objective and Organization of this Paper

Our objective is to quantify the relationship between the spa-
tiotemporal wavelet decomposition structure, bit rate, and dis-
tortion. An RD model is developed that is shown to be applicable
to various wavelet video coders with different motion-compen-
sated temporal filtering (MCTF) structures. Section II summa-
rizes previous results on the modeling of wavelet coefficients
and presents bit-rate estimation for the coding of a single frame
with a context-based entropy coder. In Section III, we focus on
the temporal wavelet decomposition tree of a video sequence
and derive a recursive expression for the average quantization
distortion within each temporal level. Section IV summarizes
the RD modeling procedure. Section V demonstrates the ac-
curacy of the model by adapting it to some experimental data.
Section VI concludes this paper.

II. THE RD MODEL OF A SINGLE FRAME

MCTF decorrelates the video sequences in the temporal axis
and can be employed either before or after two-dimensional
(2-D) spatial wavelet decomposition. These two schemes are
called 2D and 2D wavelet decomposition, respectively
[35]. In our case, we will focus on the 2D scheme, where
the 2-D spatial decomposition is performed within all the tem-
poral high-frequency and low-frequency frames of the
MCTF decomposition, resulting in multiple 3-D subbands.

We first summarize the statistical properties of wavelet coef-
ficients for both and frames, then derive the bit-rate esti-
mation and quantization distortion for a subband in a 2D
wavelet decomposition tree. Finally, we analyze the problem of
optimum bit-rate allocation and the corresponding operational
rate-distortion function.

A. Review of Statistical Properties for Wavelet Image Coding

Natural images can be viewed as 2-D random fields that are
characterized by singularities such as edges and ridges. The
DWT decomposes an image into a multiresolution representa-
tion (or a set of transform coefficients in several scales) [6].
The smooth regions in the original image are represented by
large coefficients in the coarsest resolution, while edges and
ridges are represented by few clustered large coefficients (de-
tail signals) in different resolutions. This property of the DWT
leads to a high-peaked heavy-tailed non-Gaussian wavelet-co-
efficient distribution within each subband. Despite the fact that
wavelet coefficients are approximately decorrelated, there re-
mains a certain degree of dependency between them. To cap-
ture the non-Gaussianity and the remaining intrascale depen-
dency, we model the wavelet coefficients as a doubly stochastic
process [14], [18] parameterized by , which is itself following
a Laplacian distribution

(1)

The marginal distribution of the wavelet coefficients is

(2)
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Fig. 1. TheH frame before and after spatial wavelet decomposition. (a) The originalH frame and (b) theH frame after a four-level 2-D spatial decomposition.que

Fig. 2. The statistical properties of the H frame. (a) The normalized histogram of the horizontal subband at scale j = 3; the symbols represent the experimental
histogram and the solid line is the fitted Laplacian curve. (b) The log-histogram of the local state variable � for the three subbands (horizontal, vertical, and
diagonal) at scale j = 3. The total number of spatial decomposition is four.

The last equation indicates that the wavelet coefficient within
each subband obeys the Laplacian distribution, which is con-
sistent with the results in [7] and [19]. Moreover, this doubly
stochastic model is found to describe accurately the frames
generated by temporal filtering in a wavelet video codec. For
a -scale 2-D spatial-domain DWT, there are 3 1 subbands.
Let denote the scale number and
represent the horizontal, diagonal, and vertical orientations,
respectively.

Fig. 1(a) gives an example of a frame from the Mother and
Daughter sequence, and Fig. 1(b) is the frame after a four-
level 2-D spatial decomposition by Daubechies 5/3 filters. The
normalized histogram of the horizontal subband at scale is
demonstrated by the disjoined points in Fig. 2(a). It is seen that
the histogram fits closely with the function of (2) plotted by the
solid line. By following a similar method developed in [25], we
plot in Fig. 2(b) the log-histogram of the local variance for
the three subbands (horizontal, vertical and diagonal) at scale

. The local variance of a pixel is estimated from the eight
adjacent wavelet coefficients, and all the log-histograms appear
to be linear functions of the local variance , which verifies our
assumption given in (1).

The doubly stochastic model of (1) also leads to the Markov
property of wavelet coefficients. Denote the neighbor of the
current wavelet coefficient by . Then, according to the
Markov property of the hidden state, is conditionally inde-

pendent of when its state variable is given, i.e., the fol-
lowing sequence forms a Markov chain [25]:

(3)

The interscale dependencies are best described by the mixture
Gaussian process of [22]. Let be the signal variance in scale

. From the Markov-state model [22, (7)], can
be expressed by

(4)

where is the signal variance of the coarsest resolution,
is a constant, and is the variance of the white

Gaussian noise which drives the autoregressive state equation.
When , (4) implies an approximately exponential
decay of the signal variance from the coarsest to the finest
scales, which is indeed verified by the results of Fig. 3. We
applied the Daubechies 9/7 filter pair to a frame from the
“Mother and Daughter” sequence and plotted the logarithm of
the signal variance of each subband as a function of the
scale . Fig. 3 demonstrates that is approximately linearly
dependent on the scale number , i.e.,

(5)
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Fig. 3. The logarithm ln � as a function of j . The symbols indicate the exper-
imental data and the dotted lines are curves fitted by (5).

It is also seen that the slope in the last equation is approxi-
mately the same for all three orientations. In this case, we found
the three slopes to be 1.6358, 1.8002, 1.8969 for the horizontal,
diagonal, and vertical orientations by fitting (5) to experimental
data. Although the signal variance decays exponentially across
successive scales for a natural image or frame, it should be
noted that such a rule does not hold for an frame. Therefore,
the signal variances in different subbands of an frame should
be calculated separately.

B. Bit-Rate Estimation for Embedded Context-Based Entropy
Coding of Detail Subbands

Two broad classes of embedded block-coding techniques
have been investigated. One is the context-based entropy
coding and the other is the embedded extension to the quad-tree
coding schemes [27]. Due to the various scalability features
of context-based entropy coding, it is adopted by JPEG2000
and most of the latest video coding standard. In embedded
quantization followed by intrasubband context-based adaptive
entropy coding, each subband is coded independently and rep-
resented by an efficient embedded bitstream, where prefixes of
the bitstream correspond to successively finer quantization [27].
It is known that uniform scalar quantization is asymptotically
optimal for a Laplacian-distributed random variable [17], and
that double-deadzone successive-approximation quantization
(SAQ) has been the dominant choice for most wavelet video
coders. Let be the quantization step size of the bin of a
deadzone scalar quantizer with SAQ. The quantization of a
sample is performed as

otherwise
(6)

The last equation demonstrates that all the values in the range
are quantized to zero, and hence, the size of the zero

bin (deadzone) is twice that of the nonzero bin, i.e., ,
where is the threshold of zero bin. This is also proved to
be a nearly optimum value for wavelet video
coders in the sense of minimizing quantization distortion [17].
The ratio of nonzero quantized coefficients is

(7)

These nonzero quantized coefficients are called the significant
coefficients, which are subject to sign and magnitude refinement
coding. The distribution of significant coefficients can be de-
rived from conditioned on nonzero quantization

(8)

where is the indicator function. When using context-adap-
tive arithmetic coding, the resulting coding bit rate from the sign
and magnitude refinement primitives approaches the conditional
entropy of the source , which can be
estimated by using (3), (8), and the following proposition.

Proposition 1: The entropy of a quantized significant coeffi-
cient conditioned on its neighbors can be estimated as

bits/coefficient (9)

where and

bits/coefficient (10)

is the entropy of a significant coefficient unconditioned on its
neighbors.

Proof: See Appendix I.
The proof is based on the fact that the mutual information

reflects the reduction of bit rate in coding
a significant coefficient when knowledge of its neighbors is
available.

The mutual information is a convex
monotonically decreasing function of , which indicates that,
as the deadzone threshold increases, the information about a
significant wavelet coefficient from its state variable de-
creases. This is reasonable, since knowing the state variable
barely gives more information when a coefficient is already
known to lie beyond a very large deadzone threshold.

When a wavelet coefficient lies within the quantization dead-
zone, i.e., , it will be classified as an insignificant co-
efficient, and its position with respect to the significant coeffi-
cients is recorded in a significance map. This is done by the zero
coding (ZC) primitive [21], [23]. Notice that, in the majority of
cases, the significance map is first run-length coded and then
arithmetically coded. Due to the near-entropy performance of
arithmetic coding, the coding bit rate from the ZC primitive is
very close to the conditional entropy of a binary source, which
is 1 when and 0 when . This conditional
entropy can be estimated as follows.

Proposition 2: The bit rate from the ZC coding primitive can
be estimated by the formula

(11)
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Fig. 4. (a) The logarithm ln(R) � � , showing a linear relationship. (b) The bit rateR and its empirical approximation.

Fig. 5. (a) The function g(�). (b) The differentiation of g(�) and its empirical approximation.

where

bits/coefficient
(12)

and

bits/coefficient (13)

is the bit-rate saving due to the availability of context informa-
tion.

Proof: See Appendix II.
The total bit rate in coding a subband is therefore

ZC (14)

The above equation shows that the total bit rate is only a func-
tion of . Thus, we can attempt to derive an empirical approx-
imation to it, similar to the process performed in Appendixes I
and II. Fig. 4(a) demonstrates the logarithm of as a function
of . It is seen from this plot that there exists a linear dependence
between and . This suggests we may use a function of the
form to approximate , as shown in Fig. 4(b). Fitting the
empirical formula to the theoretical expression, we determined
the parameters to be and , which leads
directly to the following proposition:

Proposition 3: The context-based coding bit rate of a wavelet
detail subband is approximately

bits/coefficient (15)

C. Quantization Distortion in the Detail Subbands

When the centroid value is chosen for each quantization bin
, the expected distortion caused by a uniform quantizer with

deadzone can be derived as

(16)

where

is the quantization distortion normalized to the signal variance
and is only a function of . When the ratio is fixed,
the distortion is proportional to the signal variance . The nor-
malized distortion is plotted as a function of in Fig. 5(a).
It is seen that approaches one as , which means
that as the quantization step size becomes larger, the distortion
approaches the signal variance. The derivative of is shown
in Fig. 5(b), which suggests it may be approximated by the em-
pirical formula . To simplify the calculation in the next
section, we fixed to be 1.3102 and fit the other two parameters

and . The fitting results show that
and the empirical formula is plotted in Fig. 5(b), which indicates
a very good approximation. By summarizing the above results,
we have the following proposition.
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Proposition 4: The distortion of a Laplacian random vari-
able by a uniform quantizer with deadzone is

, where the derivative of is approximated by the fol-
lowing empirical formula:

(17)

Proposition 4 will be used in the calculation of the optimum
bit-rate allocation in the next section.

D. Optimum Bit-Rate Allocation and Rate-Distortion Function

Let the subband of the th ( ) orientation in scale
be denoted as and the coarsest resolution low-frequency
subband be . Due to the orthogonality of the DWT, the average
distortion in the original image caused by quantization of its
subband coefficients is [27], [36]

(18)

where is the synthesis gain associated with subband
and and are the quantization distortions normalized to the
average signal variance of the original frame. Commonly
used biorthogonal wavelet filter pairs, such as the 9/7, approx-
imate orthonormality fairly well. Therefore, the synthesis gain
is almost unity, i.e., . On the other hand, (18) is valid
under the assumption that quantization noise is independently
manifested within each subband, which is approximate true in
most cases. Similarly, the average bit rate is

(19)

The objective of real video codec design is to minimize the dis-
tortion given a total bit-rate constraint . This is done
based on Lagrangian RD optimization, which yields

(20)

The convexity of RD function ensures that the minimum exists
and the optimum bit rate for every subband is the point where
the RD function of all the subbands have equal slope [21], [23].
Substituting (15) and (17)–(19) into (20) yields

(21)

where is the signal variance of the corresponding subband
, normalized to . The last equation gives the optimum

value of the quantization step-size signal variance ratio for
detail subband under the approximations mentioned be-
fore. This is also valid for low-frequency subbands of the

frames, since the model of (1) holds for them as well, as shown
in Section II-A.

To estimate the optimum value of in an frame, we assume
the quantizer works in low distortion region. Shannon’s upper
bound can be used to approximate the RD function of this sub-
band [27]

The optimum value of is therefore

(22)

where is the variance of temporal low-frequency subband
normalized to .

The Lagrange parameter is strictly positive and controls
both the bit rate and distortion of each subband. It is seen that as
the subband variance increases, the quantization step size must
decrease in order to reduce the distortion, which is consistent
with the standard codec design. Finally, the quantization distor-
tion of a coded frame and its coding bit rate are related by the
parameter , i.e., for each , the distortion and the total
bit rate are related by the value through (18) and (19).
Thus, the pair provides an approximate descrip-
tion of the operational RD curve of a wavelet codec in coding a
single frame.

III. PROPAGATION OF QUANTIZATION NOISE IN THE TEMPORAL

DECOMPOSITION TREE

In this section, we analyze the average frame distortion at dif-
ferent temporal levels for a 2D coding scheme. The RD be-
havior of a 2D structure can be derived by a similar analysis
as the one outlined below.

Current wavelet video coders typically use the Haar and 5/3
filter pairs for MCTF. Other filters, such as the longer 9/7 filter
pair, can also be used to exploit the dependency between suc-
cessive video frames and hence improve the RD performance.
We will analyze the simplest Haar filter first and then generalize
the results to more complicated temporal filters.

A. Distortion Distribution for Haar Temporal Filtering

In a temporal filtering structure with levels, there are 2
frames in one group of frames (GOF). Assume that, within a
GOF, the signal variance is approximately constant and let
and stand for the even and odd frames in the motion-compen-
sated lifting structure [15]. The temporal high-frequency frame

coincides with frame , and the temporal low-frequency
frame coincides with frame (refer to Fig. 6).

During motion compensation, the pixels can be classified into
three types: connected, unconnected, and multiple connected.
For most video sequences, frame has only a small fraction
of pixels that do not have a correspondence in the reference
frame and are declared as intracoded pixels [30]. The intra-
coded pixels must be treated differently due to their nondif-
ferential signal statistics. This is problematic in 3-D wavelet
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Fig. 6. Motion estimation for Haar filters. The pixels can be classified into three
types: multiple connected, connected, and unconnected.

coding since the 2-D DWT used for the spatial decomposition
is a global transform. Several solutions exist for intraprediction
of nondifferential areas in the error frames based on the causal
(i.e., already processed) neighborhood around them. However,
the adoption of such a strategy would specialize our results
to a certain realization. As a result, we opted to omit such an
analysis in our current derivations and assume that all pixels
in the frame are residues from motion-compensated predic-
tion. Correspondingly, all the pixels in frame fall into two
categories: connected and multiple connected. For connected
pixels, there exists a motion vector that maps motion
trajectory from frame to with the inverse motion vector

mapping motion trajectory back from
frame to frame . The connections corresponding to the mul-
tiple connected pixels in frame are only applied for temporal
prediction and are not considered during low-pass filtering. For
this reason, the multiple connected pixels in frame compose
only predicted areas. The multiple connected pixels in frame
have one unique connection to frame employing only one esti-
mated motion trajectory, and therefore are treated like connected
pixels [30], [35]. Let be the ratio of connected pixels,
be the multiple connected pixels, and be the ratio of uncon-
nected pixels. Due to the above analysis, we have
and , as shown in Fig. 6.

The propagation of quantization noises along the wavelet de-
composition tree has been intensively studied by Rusert et al.
[30], [36]. For completeness, we review their results prior to
deriving the average distortion in different temporal levels. In
the following, superscript denotes the th temporal decom-
position level. Following the method of [30] and based on our
previous assumptions for connected and unconnected pixels, the
average distortion of the reconstructed pair of frames and
can be expressed as

(23)

where and denote the quantization distortion in the
reconstructed frame and , i.e., the temporal low- and
high-frequency frames in the th temporal level, and the values
of and are given by (18). The derivation of (23) is given
in Appendix III. By averaging both sides of (23), we obtain the

relationship between the average frame distortion at temporal
levels 0 and 1

(24)

where the bar indicates the average value. Generally, the average
distortion of frames in the th temporal level is given by

(25)

which leads to

(26)

where and are calculated by (18).
The average bit rate for one GOF is calculated by averaging

the frame bit rates

(27)

where and represent the coding bit rate for the and
frames in temporal level and are evaluated by (19);

is the bit rate for motion vectors. It is important to notice that
can significantly affect the RD performance, as well as

the resulting complexity [29]. In the case that no motion vector
scalability is used, is a fixed value. Equations (26) and
(27) approximately describe the operational RD behavior for the
Haar filter pair case.

B. Generalization to Longer Temporal Filters

The derivation given in the previous section is only valid
under the assumption of accurate invertibility of the motion tra-
jectories. However, this assumption does not hold for cases such
as subpixel interpolation [23], [35], [36]. On the other hand, mo-
tion-compensated lifting structures for longer filters such as the
5/3 and 9/7 filter pairs are much more complicated than that for
the Haar filter pair, which makes it difficult to track the quanti-
zation noise along the MCTF tree. Nevertheless, (25) suggests
that we can always find a linear relationship between the average
frame distortions within adjacent temporal levels

(28)

This tells us that the average distortion for the original video
sequences can be expressed as

(29)
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where , , ,
are the linear coefficients, which depend on the motion estima-
tion algorithm, the wavelet filter pair used for MCTF, and the
video sequence characteristics. Notice that (26) is a special form
of (29), with , , since
the Haar filter pair is the simplest instantiation of MCTF.

For long temporal filters, the number of and frames re-
mains the same within one GOF as in the Haar case; hence, the
average bit rate in this case is given by (27).

IV. MODELING PROCEDURE

The average distortion in the reconstructed video sequence is
a linear combination of the distortion in the and frames, as
shown in (29). Consequently, it is also a linear combination of
the distortion in all different subbands. On the other hand, the
distortion is closely related to the subband variances, which can
be calculated very efficiently because of their regular distribu-
tion within and frames. Given the Lagrange parameter ,
both the average coding bit rate and the distortion can be esti-
mated by (27) and (29). Therefore, the modeling procedure can
be summarized as follows.

• Calculate each subband variance for and frames.
1) The subband signal variance decays approximately

exponentially across scales in an frame. Using this
property, we first choose two detail subbands for each
of the three orientations, calculate the corresponding
signal variance, and then estimate the signal variance
in other detail subbands by (5). The signal variance in
the coarsest representation subband is calculated sep-
arately for each frame. After calculating all these
values , normalize them to the signal variance
in the original frame to get .

2) To calculate the normalized signal variance distribu-
tion of frames in temporal level , we choose
several frames in this temporal level, calculate the
normalized signal variance for each subband of the
selected frames, and then average the distribution of
these frames for .

• Calculate the bit rate of and frames.
1) Use the signal variance distribution to calculate

the optimum value of by (21) and (22).
2) Calculate the coding bit rate of a frame for using

(15) and (19).
3) Calculate the average frame bit rate using (27).

• Evaluate the average distortion.
1) Use the optimum value to evaluate the frame dis-

tortion for using (16) and (18).
2) Adapt the linear coefficients in (29) to fit the RD curve

to the offline training data.

V. EXPERIMENTAL RESULTS

By following the above procedure, we optimized the parame-
ters in the model with respect to our experimental data for three
video sequences at Common Immediate Format (CIF) resolu-
tion: “Coastguard,” “Akiyo,” “Mother and Daughter.” Each se-
quence is compressed at a frame rate of 30 Hz in two scenarios

by Microsoft SVC [32], which is an improved version of the
codec described in [23]. The experimental RD data are obtained
by averaging the frame distortion over 256 frames for different
bit rates.

In the first scenario, the temporal decomposition level is set
to four and the spatial decomposition level is varied from one
to three. The Daubechies 5/3 filters are used for both temporal
and spatial decomposition. The codec is set to 2D MCTF
mode and the frame rate is set to 30 Hz. The bitstream is trun-
cated at the following values: 128, 384, 512, 768, 1024, 1280,
1536 (kbps). The distortion is expressed in terms of peak SNR
(PSNR). The model is first trained to experimental data, and
once this is done, the model can be used to make predictions
of real operation RD performance for various coding parame-
ters. In this experiment, the model is fitted by choosing three
experimental data points at 128, 768, and 1536 (kbps). The the-
oretical curve is drawn with solid lines and experimental data are
shown with symbols. The results in Fig. 7 indicate that the model
successfully captures the characteristics of the video sequences
with the theoretical curves passing through most of the experi-
mental data points. At low bit rates, higher spatial decomposi-
tion level results in considerably lower distortion due to the fact
that the energies of each frame are well compacted in the spa-
tial domain and hence fewer bits are needed to achieve a better
PSNR. But at higher bit rates, a higher spatial decomposition
level is not always a better choice.

In the other scenario shown by Fig. 8, we fixed the spatial de-
composition level to three while changing the temporal filtering
level from two to four. Again the model is adapted using three
training data points, and it successfully predicts the other exper-
imental data points.

VI. CONCLUSION

We developed an analytical RD model for a 2D wavelet
video codec. The subbands are coded independently and the
bit rates of different subbands are optimally truncated to mini-
mize the distortion under a bit-rate constrained scalable coding.
Due to the remaining intrascale dependency of wavelet coeffi-
cients, the subband bit rate can be greatly reduced by using con-
text-based coding. The bit-rate savings can be estimated from
the doubly stochastic model, which accurately captures the de-
pendency of wavelet coefficients both for and frames. Our
model demonstrates that the average distortion that stems from
coding a video sequence is the linear combination of the distor-
tion in coding the subbands. By adapting the coefficients in this
linear model to offline training data, we can predict the opera-
tional RD performance at encoding time very accurately.

APPENDIX I
PROOF OF PROPOSITION 1

We first derive (10). According to (8), the probability of a
significant coefficient’s falling into the th quantization bin is
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Fig. 7. Operational RD curves of three video sequences. The spatial decomposition level varies from one to three with the temporal decomposition levels fixed
to be four. The symbols indicate the experimental data in different scenarios and the curves are fitted by the theoretical model. The video sequences from top to
bottom: “Coastguard,” “Akiyo,” and “Mother and Daughter.”

Fig. 8. Operational RD curves of three video sequences. The temporal decomposition level varies from two to four and the spatial decomposition level is fixed
to be three. The symbols indicate the experimental data in different scenarios and the curves are fitted by the theoretical model. The video sequences from top to
bottom: “Coastguard,” “Akiyo,” and “Mother and Daughter.”

From the definition of entropy, we have

bits/coefficient

which is (10). It should be noted that the last equation is the
entropy of a quantized significant coefficient unconditioned on
its neighbors. Since most video codecs adopt context-based en-
coding, where each bit plane is coded adaptively on the ob-
servation of existing bit planes, (10) is an overestimate of the
coding bit rates from the sign and magnitude coding primitives.
It is known that in the low-distortion region, the bit-rate reduc-
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tion in coding a random variable obtained by the knowl-
edge of another random variable is their mutual information

[25], so we may estimate the coding bit rates from a
context-adaptive encoder by the following equation:

Notice that, based on (3) forms a Markov
chain; therefore

(30)

according to the property of Markov chains. When enough
neighboring coefficients are taken into account, the state of
the current coefficient is known from its maximum a posteriori
(MAP) estimation . The state variables are typically
very closely related within adjacent neighbors [18]. Therefore,
(30) will assume equality under the condition that sufficient
statistics from are available for estimating

(31)

It is known that, under the assumption of doubly stochastic
model (1), the sufficient statistics from for estimating
do exist and take the form [25]

(32)

where is the weight for . On the other hand, in most
video codecs, a large number of neighbor coefficients are used
in context-adaptive coding. For example, 17 contexts are used in
[23] for sign and magnitude refinement primitives, while eight
contexts are used in [21]. Therefore, can be estimated accu-
rately and the above conditions for equality are approximately
met.

Notice that (31) enables us to estimate the bit-rate reduction
due to the dependency among wavelet coefficients. According
to the definition of mutual information

(33)

Next we will derive the two parts on the right-hand side of (33)
separately. To simplify the derivation, the random variables
and are linearly mapped to and by the following trans-
form:

(34)

The mutual information will be invariant under any invertible
linear transform, and hence

(35)

We first derive the following conditional probabilities that
will appear in the calculation of (31). Using (8), we have the
probability density of conditioned on nonzero quantization

(36)
where . Similarly, the probability density of con-
ditioned on both the state and the nonzero quantization is

(37)

where and
.

Finally, the probability density of conditioned on nonzero
quantization is

(38)
Based on (36), the first part of (35) becomes

(39)

The second part is

(40)
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is only a function of since
is a constant and is a function of

in (40). But the difficulty lies in the fact that there exists no ex-
plicit form for the integration in (40). Results from numerical
integration show that decays at a speed
comparable to , which suggests that
may be approximated by an empirical function taking the form

. By fitting this empirical function to the numer-
ical calculation results, we got the value of the parameters

, , . Therefore

(41)

Fig. 9 shows the mutual information to-
gether with its empirical approximation on the same plot. The
empirical function matches the real entropy very closely, in-
dicating that (41) is a very accurate approximation. Inserting
(39) and (41) into (35) and changing the unit to bits/coefficient
yields (9).

APPENDIX II
PROOF OF PROPOSITION 2

Without considering the redundancy among the wavelet co-
efficients, the output entropy of the ZC primitive will be

(42)

In real video codecs, the redundancy among the wavelet coef-
ficients is used to reduce the bit rate in coding the significance
map, and the reduction is the mutual information obtained from
the neighbor of the current coefficient . Following
the same steps as in Appendix I, we have the following approx-
imation:

(43)

The second term in the above equation can be calculated by
using the conditional probability density function given
by (1)

(44)

Again there is no explicit form for the integration in (44). But
it should be noted that both and (and hence,

Fig. 9. The mutual information I(X; �jjXj T ) and its empirical approx-
imation.

Fig. 10. The entropy of zero-coding primitive with and without taking context
into account.

Fig. 11. The reduction of bit rate due to context zero-coding. The figure shows
both the numerical calculation and its empirical approximation.

) are only functions of , which means we can find an
empirical approximation to . In Fig. 10, the entropy of
ZC primitive is plotted for the cases of both context-based and
non-context-based encoding, and knowledge of context infor-
mation improves the coding efficiency. Fig. 11 plots the differ-
ence between the two curves in Fig. 10, i.e., , indi-
cating the bonus of bit saving from the redundancy of wavelet
coefficients. When viewed in the logarithmic scale, the func-
tion shows a decay rate comparable to that of

, indicating it can be approximated by an empirical
form . Fitting this empirical form yields
and , and hence

bits/coefficient
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APPENDIX III
DERIVATION OF THE AVERAGE DISTORTION FOR

AND FRAMES

Let and be the quantization noises in the recon-
structed and frames in the th temporal level. Then the
quantization noise of the reconstructed connected pixels in the

frame is

while the quantization noise of the unconnected pixels is

In the above expressions, the factor of comes from the anal-
ysis and synthesis functions of the Haar filter pair. The quanti-
zation distortion for these two kinds of pixels is therefore

(45a)

(45b)

From (45), we have the average distortion in frame

(46)

Similarly, the quantization noise of the connected pixels in the
reconstructed frame is

As for the multiple connected pixels, the worst case is when the
reconstructed frame is used to estimate the frame , which
introduces an error of [36]. This compo-
nent together with the original quantization error gives

Therefore, the average distortion in the frame is

(47)

By taking the average of (46) and (47), we get the average dis-
tortion of the pair of and frames

This is exactly (23). Here represents the distortion of
frames in the zeroth temporal level, i.e., at the original sequence
( and frames).
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