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Distributed Power Allocation in Multi-User
Multi-Channel Cellular Relay Networks
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Abstract—In this paper, we consider the amplify-and-forward
relaying transmission in the downlink of a multi-channel cellular
network with one base station and multiple relay-destination
pairs. Spatial reuse of the relaying slot by allowing simultaneous
transmissions from the relays is adopted to avoid the spectral loss
incurred by the half-duplex relays. The relays are modeled as
rational agents engaging in a non-cooperative game. In order to
maximize its individual rate, each relay node iteratively allocates
its power across different subchannels based on local information,
while treating the signals from the other users as additive
noise. First, we propose a distributed algorithm based on best
response that is applicable in any signal to interference plus
noise ratio (SINR) regions. Then, by focusing on the low SINR
region, we propose a modified iterative water-filling algorithm.
The existence of Nash equilibrium (NE) is guaranteed and the
sufficient condition to reach a NE iteratively is determined.
Next, we consider medium to high SINR regions and propose a
distributed algorithm based on the sub-optimal response, which
can be shown to reduce to the classic Gaussian interference
channel model, for which analytical sufficient conditions for the
convergence to the unique NE can be readily obtained. Finally,
we extend the analysis to a general network topology wherein
the users having different channel conditions coexist. The results
show that, in low SINR regions, the proposed modified iterative
water-filling algorithm yields a higher average sum rate than two
simplified algorithms, i.e., the equal power allocation scheme and
the conventional time-division based protocol, while in medium
to high SINR regions, the sub-optimal-response based algorithm
outperforms these two simplified algorithms in terms of the
average sum rate.

Index Terms—Distributed power allocation, interference chan-
nel, relay networks, game theory, Nash equilibrium.

I. INTRODUCTION

IN many wireless networks, the transmitters may not be able
to support multiple physical antennas due to limitations

in size, complexity, cost or other constraints. Cooperative
communication [1] is an alternative approach that is becoming
increasingly popular thanks to its ability to provide spatial
diversity without packing multiple antennas physically into
small-size mobile nodes. Depending on whether the source’s
signals are forwarded by the relay after regeneration or not,
user cooperation can be further classified as non-regenerative
cooperation, e.g., amplify-and-forward (AF), and regenerative
cooperation, e.g., decode-and-forward (DF) [1].
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It has been shown that power allocation is an efficient
approach to enhance the spectral efficiency. Several power
allocation algorithms were proposed, by utilizing the channel
state information (CSI) at the transmitter, to improve the
performance of cooperative networks. In particular, the authors
in [2] proposed opportunistic cooperation which can achieve
the minimum outage probability for cooperative DF networks
by dynamically adjusting the transmission time and corre-
sponding power of each network node based on the global CSI.
In [12], the authors investigated the rate optimization problem
in multiple access AF relay networks based on a centralized
power control scheme. Unfortunately, these centralized algo-
rithms are, in general, difficult to implement in practice despite
their appealing performance gain, due to the high signaling
overhead incurred in coordination, information exchange, etc.
[16]. Another drawback of the conventional relay transmission
is the spectral loss due to the pre-log factor of 1/2 [1].
Consequently, spectrally-efficient transmission protocols have
been proposed to avoid the loss [3][4]. For instance, the
authors in [3] proposed a two-way relaying protocol that
allows the source nodes to transmit simultaneously to enhance
the utilized spectral efficiency. A sophisticated protocol was
proposed in [4], wherein the source node first transmits in
non-overlapping time slots to different relays that will transmit
simultaneously in the remaining time slot. By doing so, the
relaying time slot is spatially reused and thus, the spectral
loss factor is avoided. As in [2], however, the proposed
power allocation algorithms require the global CSI in most
existing works on spectrally-efficient relay networks, e.g., [3].
Furthermore, in these papers, the users need to explicitly
cooperate with each other, which may not always be realistic
when the participating users are self-interested.

To address the aforementioned concerns, some distributed
power allocation algorithms were recently proposed (see
[5][8]-[10] and references therein). In [8], the authors con-
sidered an interference-free wireless AF network and pro-
posed two power allocation strategies to maximize either the
minimum signal-to-noise ratio (SNR) among all the users
or the weighted sum of SNRs using both centralized and
distributed algorithms. One fundamental assumption in [8] is
that all the users are willing to cooperatively maximize the
network utility, which implicitly requires coordination among
the users. In a network with self-interested users that care
only about their own utilities, it is of particular interest to
model the problem of distributed power allocation from the
game-theoretic perspective [16]. For example, the problem
of allocating the relay’s power to different sources based on
auctions was examined in [9] for a wireless AF relay network.
However, as in conventional relay networks, the spectral loss
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issue was not addressed in [9]. In [10], an iterative power
allocation algorithm was proposed to optimize each individual
user’s rate for a simple DF network with only two selfish
users. Considering a spectrally-efficient network with spatial
reuse of the relaying slot, the authors focused on the energy
efficiency of the network and investigated the distributed
power allocation problem using game theory [5]. Nonetheless,
neither the rate-maximization problem nor the convergence of
the proposed algorithm was discussed in [5].

In this paper, we consider a spectrally-efficient cellular
relay network wherein concurrent transmissions from different
relays are allowed, and derive distributed power allocation al-
gorithms for self-interested relay nodes using the framework of
non-cooperative game theory [30]. Each relay node iteratively
maximizes its individual rate based on the local information
by allocating its power across different subchannels, while
treating the signals from the other users as additive noise.
First, we propose a distributed algorithm based on the best
response, which is applicable in any signal to interference plus
noise ratio (SINR) regions but lacks mathematical tractability.
To analyze the convergence of the algorithm, we then consider
low SINR regions and propose a simultaneous modified iter-
ative water-filling algorithm. Specifically, each user updates
its power allocation by multiplying the water level by a
certain factor on a per-subchannel basis. The existence of Nash
equilibrium (NE) is guaranteed and the sufficient condition
to reach a NE is also determined. Next, by focusing on
medium to high SINR regions, we propose a distributed
algorithm based on the sub-optimal response. With a negligible
performance loss in terms of the average sum rate of all
the users compared to the best-response based algorithm, the
algorithm based on the sub-optimal response is mathemat-
ically tractable and easier to compute. Furthermore, it can
be equivalently viewed as the classic Gaussian interference
channel model, for which analytical sufficient conditions for
the convergence to the unique NE can be readily obtained.
Finally, we extend the analysis to a general network topology,
wherein the users having different channel conditions coexist,
and conduct extensive simulations to validate the analysis.

The rest of this paper is organized as follows. Section II
describes the system model and problem formulation. In Sec-
tion III, distributed power allocation algorithms are proposed
for the multi-user relay network. To analyze the convergence
of the proposed algorithms, we first separately consider low
SINR and medium to high SINR regions, and then extend the
analysis to general network topologies. Simulation results are
shown in Section IV. Finally, concluding remarks are offered
in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a cellular relay network consisting of one base
station and 𝑄 relay-destination pairs1, as illustrated in Fig. 1
[4]-[7].

A. System Model

The 𝑖-th relay and destination nodes are indexed by ℛ𝑖

and 𝒟𝑖, respectively, for 𝑖 = 1, 2 ⋅ ⋅ ⋅𝑄, and the base station

1Throughout this paper, we interchangeably use the term “user 𝑖” to
represent the 𝑖-th relay-destination pair ℛ𝑖 −𝒟𝑖.
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Fig. 1. Network model.

is represented by 𝒮. Assuming that the system has 𝑁 unit-
bandwidth subchannels (or frequency bins), we denote the
channel coefficients for the 𝑘-th 𝒮−ℛ𝑗 and the 𝑘-th ℛ𝑖−𝒟𝑗

subchannels by 𝑔𝑘𝒮,𝑗 and ℎ𝑘
𝑖,𝑗 , respectively, for 𝑘 = 1, 2 ⋅ ⋅ ⋅𝑁

and 𝑖, 𝑗 = 1, 2 ⋅ ⋅ ⋅𝑄. The transmit powers of 𝒮 and ℛ𝑖 over the
𝑘-th subchannel are 𝑃𝒮,𝑘 and 𝑃𝑖,𝑘, respectively. Like in [8],
we assume that the power of the base station, 𝑃𝒮,𝑘, is prede-
termined, and concentrate only on the adaptation of the relays’
power in this paper. The transmission between different nodes
suffers from frequency nonselective independent ergodic block
(or quasi-static) fading. Local CSI, i.e., 𝑔𝑘𝒮,𝑖 and ℎ𝑘

𝑖,𝑖, is only
available at user 𝑖 through training sequences and channel
feedback [2]. Hence, due to the distributed nature of the
considered communication problem, neither 𝑔𝑘𝒮,𝑗 , ℎ

𝑘
𝑖,𝑗 nor ℎ𝑘

𝑗,𝑙

is known to ℛ𝑖 or 𝒟𝑖 if 𝑗 ∕= 𝑖, for 𝑙 = 1, 2 ⋅ ⋅ ⋅𝑁 . Furthermore,
we assume the zero-mean complex additive white Gaussian
noise (AWGN) at each node over each subchannel to have
a variance2 of 𝑁0. Due to the half-duplex constraint, we
consider orthogonal relaying transmissions, e.g., the source
node and the relay node transmit in two non-overlapping time
slots. For the convenience of analysis, the direct link between
𝑆 and 𝐷𝑖 is neglected due to, for instance, the shadowing
effects [3]. To forward the data from the base station to the
destination, we adopt the classical AF strategy [1] as the
relaying operation, which has been shown to be an appealing
technique due to its low cost and easy implementation as
opposed to DF [11].

Considering the downlink transmission in a time-division-
multiple-access (TDMA) cellular relay network, we aim at
improving the spectral efficiency by spatially reusing the
relaying slot. To this end, we divide each frame equally into
𝑄+1 orthogonal time slots. During the 𝑖-th slot of the frame,
the base station transmits to ℛ𝑖, for 𝑖 = 1, 2 ⋅ ⋅ ⋅𝑄. Then,
simultaneous transmissions from all the relays are activated
during the (𝑄 + 1)-th slot of the frame. Hence, a spectral
efficiency factor of 1/(𝑄 + 1) can be effectively achieved
[5], unlike in the conventional TDMA-based relay network
wherein the relays do not transmit simultaneously and the
achievable rate is scaled by 1/2𝑄 due to the spectral loss.
Moreover, the signaling overhead in coordinating the relays’
transmission in the conventional TDMA protocol is no longer

2The analysis throughout this paper can also be easily generalized to the
case that the AWGN power at the 𝑘-th subchannel is 𝑁𝑘

0 , whereas 𝑁 𝑖
0 ∕= 𝑁𝑗

0

if 𝑖 ∕= 𝑗. For the convenience of notation, we assume that 𝑁 𝑖
0 = 𝑁𝑗

0 = 𝑁0

for 𝑖, 𝑗 = 1, 2 ⋅ ⋅ ⋅𝑁 , as in [17].
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required. A similar transmission scheme for a multiple-antenna
system was considered in [5], wherein the authors focused on
the energy efficiency of individual relays. For the network
considered here, the signals received at ℛ𝑖 and 𝒟𝑖 over the
𝑘-th subchannel can then be written, respectively, as

𝑦𝑘ℛ𝑖
= 𝑔𝑘𝒮,𝑖

√
𝑃𝒮,𝑘𝑥𝑖,𝑘+𝑛𝑘

ℛ𝑖
and 𝑦𝑘𝒟𝑖

=

𝑄∑
𝑗=1

ℎ𝑘
𝑗,𝑖𝛼

𝑘
ℛ𝑗

𝑦𝑘ℛ𝑗
+𝑛𝑘

𝒟𝑖
,

(1)
where 𝑥𝑖,𝑘 is the unit-variance transmit signal from 𝑆 to 𝐷𝑖,
𝛼𝑘
ℛ𝑖

is the amplification factor of ℛ𝑖, 𝑛𝑘
ℛ𝑖

and 𝑛𝑘
𝒟𝑖

are the
statistically-independent AWGN terms at ℛ𝑖 and 𝒟𝑖 over the
𝑘-th subchannel, respectively. The amplification factor 𝛼𝑘

ℛ𝑖
,

which is part of the local information known by user 𝑖, is
chosen to satisfy the power constraint at the relay, i.e., 𝛼𝑘

ℛ𝑖
=√

𝑃𝑖,𝑘

∣𝑔𝑘
𝒮,𝑖∣2𝑃𝒮,𝑘+𝑁0

. By plugging 𝑦𝑘ℛ𝑖
= 𝑔𝑘𝒮,𝑖

√
𝑃𝒮,𝑘𝑥𝑖,𝑘 + 𝑛𝑘

ℛ𝑖

into (1), we can rewrite the received signal over the 𝑘-th
subchannel at 𝒟𝑖 as

𝑦𝑘𝒟𝑖
= ℎ𝑘

𝑖,𝑖𝛼
𝑘
ℛ𝑖

𝑔𝑘𝒮,𝑖

√
𝑃𝒮,𝑘𝑥𝑖,𝑘 +

𝑄∑
𝑗 ∕=𝑖

ℎ𝑘
𝑗,𝑖𝛼

𝑘
ℛ𝑗

𝑔𝑘𝒮,𝑗

√
𝑃𝒮,𝑘𝑥𝑗,𝑘

+

𝑄∑
𝑗=1

ℎ𝑘
𝑗,𝑖𝛼

𝑘
ℛ𝑗

𝑛𝑘
ℛ𝑗

+ 𝑛𝑘
𝒟𝑖

.

(2)

Since we focus on developing distributed algorithms, we
assume that 𝒟𝑖 is only interested in the signal forwarded by
ℛ𝑖 and consider transmission techniques with no interference
cancelation. Treating ℎ𝑘

𝑖,𝑖𝛼
𝑘
ℛ𝑖

𝑔𝑘𝒮,𝑖

√
𝑃𝒮,𝑘𝑥𝑖,𝑘 as the desired

signal component and the multiuser interference as noise at
𝒟𝑖 and after some mathematical manipulations, we can then
express the receive SINR at 𝒟𝑖 over the 𝑘-th subchannel as

𝛾𝒟𝑖,𝑘 =
∣𝑔𝑘𝒮,𝑖∣2∣ℎ𝑘

𝑖,𝑖∣2𝑃𝒮,𝑘𝑃𝑖,𝑘

∣ℎ𝑘
𝑖,𝑖∣2𝑁0𝑃𝑖,𝑘 +

(
∣𝑔𝑘𝒮,𝑖∣2𝑃𝒮,𝑘 +𝑁0

)
⋅Δ𝑖,𝑘

, (3)

where Δ𝑖,𝑘 =
∑𝑄

𝑗=1,𝑗 ∕=𝑖 ∣ℎ𝑘
𝑗,𝑖∣2𝑃𝑗,𝑘 + 𝑁0. Assuming that

the base station transmits information streams across all the
subchannels, the achievable rate of user 𝑖, for 𝑖 = 1, 2 ⋅ ⋅ ⋅𝑄,
can be mathematically expressed as3

𝑅𝑖(p𝑖;p−𝑖) =
1

𝑄+ 1

𝑁∑
𝑘=1

log (1 + 𝛾𝒟𝑖,𝑘) (4)

where the scaling factor 1/(𝑄+ 1) is due to the fact that 𝒮
transmits 𝑥𝑖,𝑘 only for a fraction of 1/(𝑄+ 1) of the frame,
𝛾𝒟𝑖,𝑘 is defined in (3), p𝑖 = [𝑃𝑖,1, 𝑃𝑖,2 ⋅ ⋅ ⋅𝑃𝑖,𝑁 ]

T, and p−𝑖 =
(p1 ⋅ ⋅ ⋅p𝑖−1,p𝑖+1 ⋅ ⋅ ⋅p𝑄).

Before proceeding to the problem formulation, we comment
on how this paper significantly differs from the existing works
on Gaussian interference channels, despite the absence of
direct channels. The key difference is that the signal forwarded
by the relay node is not “clean”, whereas the source transmits
noiseless signals to the destination in single-hop Gaussian
interference channels, i.e., the relay amplifies the Gaussian

3All logarithms have a base of two throughout this paper, unless otherwise
stated.

noise, in addition to the desired signal, which can be seen
from the signal model in (2). Due to the noise propagation
by the relay, the term 𝑃𝑖,𝑘, i.e., the 𝑖-th relay’s power over
the 𝑘-th sub-channel, appears both in the numerator and de-
nominator of the receive SINR. Nonetheless, the denominator
in the receive SINR in Gaussian interference channels only
contains the multi-user interference and Gaussian noise, which
significantly simplifies the expression of the receive SINR and
analysis of distributed power allocation algorithms. Hence, the
analysis in this paper can be regarded as a generalization of
the existing results on Gaussian interference channels. As a
special case, if the signal forwarded by the relay is noiseless
or “clean” (i.e., the base station to relay channel is almost
“perfect” or equivalently ∣𝑔𝑖,𝑘∣2 → ∞), the dual-hop relay
channel reduces to the conventional Gaussian interference
channel and the receive SINR becomes

∣ℎ𝑘
𝑖,𝑖∣2𝑃𝑖,𝑘

∑𝑄
𝑗=1,𝑗 ∕=𝑖 ∣ℎ𝑘

𝑗,𝑖∣2𝑃𝑗,𝑘+𝑁0
,

which can also be obtained by taking the limit of (3) with
respect to ∣𝑔𝑖,𝑘∣2 → ∞.

B. Problem Formulation

The traditional view of interference channels focuses on
interference cancelation by allowing the transmitters to co-
operatively transmit their signals to the destination. Unfortu-
nately, to achieve this, a central controller having the global
CSI knowledge is required, thereby incurring a heavy spectral
loss due to the signalling overhead required for the information
exchange and coordination messages. If such global cooper-
ation, except for time synchronization, cannot be assumed,
each user may try to compete for the scarce resource and
optimize its own performance based on its local information,
regardless of all the other users. In this communication setting,
a natural solution is to formulate the interference channel
into the framework of non-cooperative game theory [16].
In particular, we consider a non-cooperative game in which
each relay node optimally allocates its power across all the
subchannels to maximize its own payoff, i.e., achievable rate in
(4). The power-allocation game can be mathematically stated
in the following structure

𝒢 = {Ω, {𝒫𝑖}𝑖∈Ω, {𝑅𝑖(p𝑖;p−𝑖)}𝑖∈Ω} , (5)

where Ω ≜ {1, 2 ⋅ ⋅ ⋅𝑄} is the set of active users (i.e., ℛ𝑖−𝒟𝑖

pair), 𝒫𝑖 is the set of admissible power allocation strategies
of user 𝑖 defined as

𝒫𝑖 =

{
p𝑖 ∈ ℝ

𝑁 :

𝑁∑
𝑘=1

𝑃𝑖,𝑘 = 𝑃max
𝑖 ,

0 ≤ 𝑃𝑖,𝑘 ≤ 𝑃max
𝑖,𝑘 , ∀𝑘 ∈ {1, 2 ⋅ ⋅ ⋅𝑁}

}
,

(6)

and 𝑅𝑖(p𝑖;p−𝑖) is the payoff function of user 𝑖, given its
own power allocation p𝑖 and that of all the other users p−𝑖.
Note that

∑𝑁
𝑘=1 𝑃

max
𝑖,𝑘 ≥ 𝑃max

𝑖 is assumed for all 𝑖 ∈ Ω to
ensure that 𝒫𝑖 is always nonempty. Moreover, the equality∑𝑁

𝑘=1 𝑃𝑖,𝑘 = 𝑃max
𝑖 in the admissible strategies can also be

replaced by
∑𝑁

𝑘=1 𝑃𝑖,𝑘 ≤ 𝑃max
𝑖 without affecting the optimal

solution, since the equality must be activated at the optimum
point, which can be easily proved using standard optimization



REN and VAN DER SCHAAR: DISTRIBUTED POWER ALLOCATION IN MULTI-USER MULTI-CHANNEL CELLULAR RELAY NETWORKS 1955

techniques [25]. Given the power level of all the other users,
the optimal power allocation strategy of user 𝑖 is referred to
as the best response function denoted by p∗

𝑖 , for all 𝑖 ∈ Ω.
In the non-cooperative game, the NE is achieved when user 𝑖,
given the strategy of all the other users p−𝑖, cannot increase
its payoff 𝑅𝑖(p𝑖;p−𝑖) by unilaterally changing its own power
allocation strategy p𝑖, for all 𝑖 ∈ Ω. Mathematically, the NE,
denoted by p∗, of the game 𝒢 in (5) is formally defined as
follows [30]:

𝑅𝑖(p
∗
𝑖 ;p

∗
−𝑖) ≥ 𝑅𝑖(p𝑖;p

∗
−𝑖), ∀ p𝑖 ∈ 𝒫𝑖, ∀ 𝑖 ∈ Ω . (7)

III. DISTRIBUTED POWER ALLOCATION ALGORITHMS

In this section, we first develop a best response based itera-
tive power allocation algorithm wherein each user myopically
maximizes its achievable rate. Then, due to the mathematical
intractability of the best response based algorithm, we resort
to commonly used approximation techniques and propose two
sub-optimal distributed algorithms which are applicable in low
SINR and medium to high SINR regions, respectively. We also
show that these two sub-optimal algorithms can be combined
to address the general network conditions.

A. Best Response Based Algorithm

Focusing on distributed power allocation algorithms, we
first formulate the rate-maximization problem, for each user
𝑖 ∈ Ω, within the framework of non-cooperative game theory
as

max
p𝑖

𝑅𝑖(p𝑖;p−𝑖) = max
p𝑖

𝑁∑
𝑘=1

1

𝑄+ 1
log (1 + 𝛾𝒟𝑖,𝑘)

s.t. p𝑖 ∈ 𝒫𝑖,

(8)

where 𝛾𝒟𝑖,𝑘 given in (3) is the receive SINR over the 𝑘-th
subchannel at 𝒟𝑖. Based on the fact that the problem in (8)
is concave in p𝑖 given any feasible value of p−𝑖, we can
easily obtain the unique and optimal power allocation of user
𝑖, which is summarized in Theorem 1 as follows.

Theorem 1: For any fixed and feasible value of p−𝑖, the
optimal power allocation of user 𝑖, p∗

𝑖 = [𝑃 ∗
𝑖,1, 𝑃

∗
𝑖,2 ⋅ ⋅ ⋅𝑃 ∗

𝑖,𝑁 ]
𝑇 ,

in any SINR regions is unique and given by

𝑃 ∗
𝑖,𝑘 =

[
− (∣𝑔𝑘𝒮,𝑖∣2𝑃𝒮,𝑘 + 2𝑁0

)
Δ𝑖,𝑘

2∣ℎ𝑘
𝑖,𝑖∣2𝑁0

+

√
∣𝑔𝑘𝒮,𝑖∣4𝑃 2

𝒮,𝑘Δ
2
𝑖,𝑘 + 4𝜆𝑖∣𝑔𝑘𝒮,𝑖∣2∣ℎ𝑘

𝑖,𝑖∣2𝑃𝒮,𝑘𝑁0Δ𝑖,𝑘

2∣ℎ𝑘
𝑖,𝑖∣2𝑁0

]𝑃max
𝑖,𝑘

0
(9)

where [𝑥 ]𝑏𝑎 = max{𝑎, min{𝑥, 𝑏}}, Δ𝑖,𝑘 =∑𝑄
𝑗=1,𝑗 ∕=𝑖 ∣ℎ𝑘

𝑗,𝑖∣2𝑃𝑗,𝑘 + 𝑁0, for 𝑘 = 1, 2 ⋅ ⋅ ⋅𝑁 , and 𝜆𝑖

is a constant chosen to satisfy the power constraint∑𝑁
𝑘=1 𝑃𝑖,𝑘 = 𝑃max

𝑖 .
Proof: Using standard optimization techniques, the so-

lution can be obtained from the KKT conditions [29]. The
details are omitted due to the limited space.

For the convenience of notation, we express the power
allocation strategy of each user 𝑖 as follows

p∗
𝑖 = PowerAlloc(p−𝑖). (10)

Then, based on Theorem 1, all the Nash equilibria, if they
exist, must satisfy the following set of nonlinear equations:

𝑃 ∗
𝑖,𝑘 =

[
PowerAlloc(p∗

−𝑖)
]
𝑘
, ∀ 𝑘 = 1, 2 ⋅ ⋅ ⋅𝑁, ∀ 𝑖 ∈ Ω, .

(11)

With regard to the existence of NE in the game 𝒢, we have
the following proposition which guarantees that the solution
set of the fixed-point equations in (11) is always nonempty.

Proposition 1: The game 𝒢 admits at least one NE regard-
less of the channel gains.

Proof: It can be easily shown that the set 𝒫𝑖 of all
feasible power allocation strategies of user 𝑖, as defined in
(6), is convex and compact, for all 𝑖 ∈ Ω. Furthermore, the
payoff function of each user 𝑖, i.e., 𝑅𝑖(p𝑖;p−𝑖), is continuous
in p = (p𝑖;p−𝑖) and strictly concave in p𝑖 ∈ 𝒫𝑖 given
any strategy p−𝑖. Hence, the payoff function is also quasi-
concave [29]. Then, based on the fundamental game theory
result summarized in Proposition 20.3 in [30], we conclude
that the game 𝒢 in (5) admits at least one NE.

We observe that, in order to compute (9) and respond opti-
mally to the strategy of the other users, the local information
needed at user 𝑖 includes {𝑔𝑘𝒮,𝑖, ℎ

𝑘
𝑖,𝑖,
∑𝑄

𝑗=1,𝑗 ∕=𝑖 ∣ℎ𝑘
𝑗,𝑖∣2𝑃𝑗,𝑘 +

𝑁0, for 𝑘 = 1, 2 ⋅ ⋅ ⋅𝑁}, where
∑𝑄

𝑗=1,𝑗 ∕=𝑖 ∣ℎ𝑘
𝑗,𝑖∣2𝑃𝑗,𝑘 +𝑁0 is

the sum interference plus noise, which can be measured at
𝒟𝑖. Besides its local information, some global information,
i.e., 𝑃𝒮,𝑘 for 𝑘 = 1, 2 ⋅ ⋅ ⋅𝑁 , also needs to be known by
each user. The values of 𝑃𝒮,𝑘, for 𝑘 = 1, 2 ⋅ ⋅ ⋅𝑁 , can be
obtained by either broadcasting them to all the users by the
base station or calculating 𝑃𝒮,𝑘 = [

𝑃𝑖,𝑘

(𝛼𝑘
ℛ𝑖

)2
−𝑁0]/∣𝑔𝒮,𝑖∣2. The

details of how to acquire such knowledge is beyond the scope
of this paper and interested readers may refer to [15] and
references therein. With only local information at each user,
the distributed power allocation algorithm based on the best
response can be described in Algorithm I as follows.

Algorithm I: Distributed Power Allocation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Step 1: 𝑛 = 0; Choose a feasible p
(𝑛)
𝑖 , for 𝑖 = 1, 2 ⋅ ⋅ ⋅𝑄

Step 2: p
(𝑛+1)
𝑖 = PowerAlloc(p

(𝑛)
−𝑖 ), for 𝑖 = 1, 2 ⋅ ⋅ ⋅𝑄;

𝑛 = 𝑛+ 1;
Repeat Step 2 until convergence or 𝑛 = 𝑁it

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is known that efficient numerical methods are available to
compute the water-filling solution [16][26]. As a result of the
square-root operator, however, it incurs a high computational
complexity to compute the optimal power allocation given in
(9). Furthermore, it is challenging to establish the sufficient
conditions for the convergence of Algorithm I, though the
convergence is observed in many simulations. In order to
solve the power allocation problem efficiently and characterize
analytically the convergence condition, we shall consider low
SINR and medium to high SINR regions separately and pro-
pose another two algorithms in which each user sub-optimally
allocates its power across all the subchannels depending on
the channel conditions. The convergence of the algorithms is
mathematically tractable and, despite the sub-optimal choice
of power allocation strategy in each iteration, the performance



1956 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 6, JUNE 2010

loss in terms of the sum rate of all users is negligible, as will
be shown from the extensive simulations.

B. Low SINR Regions

In this subsection, we consider the scenario in which
the destination node can only receive a low SINR. This is
not unusual in wireless networks when harsh transmission
environments occur, e.g., randomly faded channels, severe
interferences and low power constraints. In sufficiently low
SINR regions, an important property of the transmission rate
in (4) is that it can be appropriately approximated as a linear
function of the receive SINR [28], which can be well justified
by the fact that log(1 + 𝑥) ≈ 𝑥 ⋅ log(𝑒), where 𝑥 > 0 is
a sufficiently small number4. Hence, for each user 𝑖 ∈ Ω,
we can reformulate the power control problem in low SINR
regions as follows

max
p𝑖

𝑅𝑖(p𝑖;p−𝑖) ⇔ max
p𝑖

𝑁∑
𝑘=1

𝛾𝒟𝑖,𝑘(p𝑖;p−𝑖)

s.t. p𝑖 ∈ 𝒫𝑖 ,

(12)

where 𝛾𝒟𝑖,𝑘(p𝑖;p−𝑖), as a function of the power allocation
strategies of both user 𝑖 and the other users, is the receive
SINR of user 𝑖 over the 𝑘-th subchannel given in (3) and
𝒫𝑖 is the admissible power strategy of user 𝑖 defined in
(6). In general, the optimization problem of maximizing∑𝑁

𝑘=1 𝛾𝒟𝑖,𝑘(p𝑖;p−𝑖) over the p𝑖 and p−𝑖 is a nonconvex
problem and the global optimal solution is difficult to obtain.
However, for each user 𝑖 ∈ Ω in the non-cooperative game
𝒢, it solves the optimization problem in (12) by allocating
its power across all the subchannels while treating the power
allocation strategy of all the other users as fixed. We can easily
prove that, for a fixed p−𝑖, maximizing

∑𝑁
𝑘=1 𝛾𝒟𝑖,𝑘(p𝑖;p−𝑖)

over the p𝑖 is a convex optimization problem and, fortunately,
the closed-form solution can also be readily obtained. The
following theorem summarizes the power allocation strategy
of user 𝑖, given the strategy of the other users.

Theorem 2: For any fixed and feasible value of p−𝑖, the
optimal power allocation of user 𝑖, p∗

𝑖 = [𝑃 ∗
𝑖,1, 𝑃

∗
𝑖,2 ⋅ ⋅ ⋅𝑃 ∗

𝑖,𝑁 ]
𝑇 ,

in low SINR regions is unique and given by

𝑃 ∗
𝑖,𝑘 =

[
1

𝜆𝑖

√
∣𝑔𝑘𝒮,𝑖∣2𝑃𝒮,𝑘

𝑁0
⋅
∑𝑄

𝑗=1,𝑗 ∕=𝑖 ∣ℎ𝑘
𝑗,𝑖∣2𝑃𝑗,𝑘 +𝑁0

𝛽𝑖,𝑘

−
∑𝑄

𝑗=1,𝑗 ∕=𝑖 ∣ℎ𝑘
𝑗,𝑖∣2𝑃𝑗,𝑘 +𝑁0

𝛽𝑖,𝑘

]𝑃max
𝑖,𝑘

0

,

(13)

where 𝜆𝑖 is the Lagrangian multiplier chosen to satisfy the
power constraint

∑𝑁
𝑘=1 𝑃𝑖,𝑘 = 𝑃max

𝑖 and

𝛽𝑖,𝑘 =
∣ℎ𝑘

𝑖,𝑖∣2𝑁0

∣𝑔𝑘𝒮,𝑖∣2𝑃𝒮,𝑘 +𝑁0
. (14)

Proof: The solution can be obtained by simple manipu-
lations using the Karush-Kuhn-Tucker (KKT) conditions [29].
The details are omitted here due to space limitations.

4Without approximation, the solution becomes mathematically involved
(see Eqn.9). Moreover, the proposed algorithm converges in just a small
number of iterations using the approximation, which can be seen from the
numerical results.

Denote 𝑃 ∗
𝑖,𝑘 =

[𝒲ℱ 𝑖(p−𝑖)
]
𝑘
. Then, in low SINR regions,

it is clear that the NE of the game 𝒢 satisfies

𝑃 ∗
𝑖,𝑘 =

[𝒲ℱ 𝑖(p
∗
−𝑖)

]
𝑘
, ∀ 𝑘 = 1, 2 ⋅ ⋅ ⋅𝑁, ∀ 𝑖 ∈ Ω . (15)

Furthermore, in low SINR regions wherein user 𝑖 chooses (13)
as its power allocation strategy, there exists at least one NE
in the game 𝒢, as stated in Proposition 2.

Proposition 2: In low SINR regions, the game 𝒢 admits at
least one NE regardless of the channel gains.

Proof: The proof follows the same steps as those involved
in proving Proposition 1.

Now, we develop a distributed power allocation algorithm,
which can achieve the NE based on only local information,
and find the sufficient conditions under which the proposed
distributed algorithm will converge to the NE regardless of the
initial points. It can be seen from (13) that the optimal power
allocation of user 𝑖, given the strategy of all other users, is
a modified water-filling solution [17]. Specifically, the water
level is modified on a per-subchannel basis by multiplying
a certain factor that is a function of the power allocation
strategy of the other users. Hence, we can rewrite the optimal
power allocation of user 𝑖 in (13) as 𝑃 ∗

𝑖,𝑘 =
[𝒲ℱ 𝑖(p−𝑖)

]
𝑘
=[

1
𝜆𝑖𝑡𝑖,𝑘

−
∑𝑄

𝑗=1,𝑗 ∕=𝑖 ∣ℎ𝑘
𝑗,𝑖∣2𝑃𝑗,𝑘+𝑁0

𝛽𝑖,𝑘

]𝑃max
𝑖,𝑘

0

, for 𝑘 = 1, 2 ⋅ ⋅ ⋅𝑁 and

𝑖 ∈ Ω, where

𝑡𝑖,𝑘 =

⎛
⎝
√

∣𝑔𝑘𝒮,𝑖∣2𝑃𝒮,𝑘

𝑁0
⋅
∑𝑄

𝑗=1,𝑗 ∕=𝑖 ∣ℎ𝑘
𝑗,𝑖∣2𝑃𝑗,𝑘 +𝑁0

𝛽𝑖,𝑘

⎞
⎠

−1

.

(16)

Motivated by the idea of the modified water-filling algo-
rithm with additional “taxation terms” [17][22], we first fix
𝑡𝑖,𝑘 and solve the power allocation strategy of user 𝑖 using (13)
while treating the interference term caused by the other users
as a constant. Then, we update 𝑃𝑖,𝑘 , according to (13), repeat-
edly until convergence or the maximum number of iteration is
reached, for 𝑖 ∈ Ω and 𝑘 = 1, 2 ⋅ ⋅ ⋅𝑁 . After updating p, we
shall update 𝑡𝑖,𝑘 based on (16), for 𝑖 ∈ Ω and 𝑘 = 1, 2 ⋅ ⋅ ⋅𝑁 .
Specifically, the modified iterative water-filling consists of two
loops. The outer loop is essentially updating 𝑡𝑖,𝑘, while the
inner loop is that, assuming that the multiplication factor
𝑡𝑖,𝑘 is fixed, we iterate the power allocation process over
all the users. Note that the water level 𝜆𝑖 can be efficiently
determined using numerical methods [17][26], e.g., bisection,
and thus the optimal power allocation of user 𝑖 can be obtained
for all 𝑖 ∈ Ω. Let t𝑖 = [𝑡𝑖,1, 𝑡𝑖,2 ⋅ ⋅ ⋅ 𝑡𝑖,𝑁 ]𝑇 , for 𝑖 ∈ Ω,
t = (t1, t2 ⋅ ⋅ ⋅ t𝑄), and 𝑁it and 𝑁̂it be the maximum numbers
of iterations in the inner loop and outer loop, respectively.
In general, both 𝑁it and 𝑁̂it are chosen to be sufficiently
large numbers. The proposed modified iterative water-filling
algorithm is then formally summarized in the following.

In general, a sufficient condition for the global convergence
of Algorithm II is difficult to establish due to the two coupled
update processes in Step 2 and Step 3. To be more specific,
given a fixed value of t, we can establish the convergence
condition for the inner-loop iterative process based on the
contraction mapping theory [25][31]. Nevertheless, the value
of t changes over time and thus, significantly complicates
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Algorithm II: Distributed Power Allocation in Low SINR
Regions

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Step 1: 𝑚 = 𝑛 = 0; Choose a feasible p
(𝑛)
𝑖 and t

(𝑛)
𝑖 ,

for 𝑖 = 1, 2 ⋅ ⋅ ⋅𝑄
Step 2: p

(𝑛+1)
𝑖 =

[
𝒲ℱ 𝑖(p

(𝑛)
−𝑖 )

]
(Eqn. 13),

for 𝑖 = 1, 2 ⋅ ⋅ ⋅𝑄;
𝑛 = 𝑛+ 1; Repeat Step 2 for 𝑁it times

Step 3: 𝑚 = 𝑚+ 1; Update t(𝑚) until convergence
or 𝑚 = 𝑁̂it; go back to Step 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the derivation of conditions on the uniqueness of NE and the
convergence of Algorithm II5. Hence, following the existing
literature (e.g., [20]), we first analyze the convergence property
of the inner loop in Algorithm II and then discuss the
uniqueness and convergence of the whole algorithm.

Before deriving the convergence condition for the inner loop
in Algorithm II that is applicable in low SINR regions, we
define the matrix

[Smax]𝑖,𝑗 ≜
{
max𝑘=1,2⋅⋅⋅𝑁

∣ℎ𝑘
𝑗,𝑖∣2
𝛽𝑖,𝑘

√
𝜌𝑘𝑗,𝑖, if 𝑖 ∕= 𝑗,

0, otherwise,
(17)

where 𝛽𝑖,𝑘 is defined in (14) and

𝜌𝑘𝑗,𝑖 =

√√√⎷ ∣𝑔𝑘𝒮,𝑗∣2
∣𝑔𝑘𝒮,𝑖∣2

⋅ 𝛽𝑖,𝑘

𝛽𝑗,𝑘
⋅
∑𝑄

𝑙=1,𝑙 ∕=𝑗 ∣ℎ𝑘
𝑙,𝑗 ∣2𝑃max

𝑙,𝑘 +𝑁0

𝑁0
. (18)

Now, introducing the matrix norm ∥ ⋅ ∥∞,mat induced by the
vector maximum norm ∥ ⋅ ∥∞ defined as

∥A∥∞,mat ≜ max
𝑖={1,2⋅⋅⋅𝑄}

𝑄∑
𝑗=1

[A]𝑖,𝑗 , A ∈ ℝ
𝑄×𝑄, (19)

we establish the following theorem that gives the sufficient
conditions for the inner loop in Algorithm II to converge from
any initial points.

Theorem 3: If the following condition is satisfied:

∥Smax∥∞,mat < 1, (20)

where Smax and the matrix norm ∥ ⋅ ∥∞,mat are defined
respectively in (17) and (19), then, as 𝑁it → ∞, the proposed
simultaneous iterative modified water-filling power allocation
algorithm in the inner loop (Step 2) in Algorithm II converges
linearly to a unique point regardless of the initial feasible
points.

Proof: See the appendix.
Given that t is fixed, Theorem 3 states the sufficient

condition for convergence of the inner loop in Algorithm II
and can be interpreted as follows. The inner loop is guaranteed
to converge under weak interference conditions, i.e., for all the

5To the best of our knowledge, the same problem was often encountered
in other works as well (e.g., [17]–[22]). For instance, the authors in [18]
proposed a modified iterative water-filling algorithm based on two alternate
update processes (i.e., outer and inner loops in this paper) and remarked
that the proposed algorithm was observed to converge to a fixed point in all
the simulations, without providing rigorous analysis on the convergence and
uniqueness conditions.

users, the equivalent sum interference channel gain divided
by the desired channel gain is less than one. This coincides
with the sufficient conditions for convergence derived for
conventional Gaussian interference channels with one-hop
transmission [16][25]. It is also interesting to note that the
condition in (20) is independent of the values of t and that
the inner loop may also converge even though (20) is not
satisfied. As in [17]–[22], due to the time-varying nature of
t, it is mathematically intractable to derive the convergence
condition for the outer loop. Fortunately, the convergence of
the outer loop in Algorithm II can be guaranteed in most cases
by incorporating a memory factor [17]. Specifically, according
to [17], we can update t based on the following recursive
relation

t𝑚+1 = 𝜃t𝑚 + (1− 𝜃)t̂𝑚+1 (21)

where 𝜃 ∈ [0, 1) is a constant referred to as memory factor and
𝑡𝑚+1
𝑖,𝑘 is calculated directly from (16). It is shown in [17] that,

by appropriately choosing a memory factor, the convergence of
updating t is guaranteed at the expense of potentially slowing
down the convergence speed of Algorithm II. However, we
observe through extensive simulations that the convergence
probability of updating t based on (21) is insensitive to the
choice of 𝜃. In other words, given any valid value of 𝜃 ∈ [0, 1),
the convergence of the outer loop can be (almost) always
observed. This can be explained by the fact that, when the
inner loop converges under mild interference conditions, one
user’s power allocation strategy does not heavily rely on the
others’ and hence, rate maximization at each user can be
viewed as “independent” [19]. Therefore, updating t𝑖 by user
𝑖 is more or less self-contained and the outer loop converges,
given different values of 𝜃 [18]. In particular, a good choice
of 𝜃 is heuristically found to be between 0 and 0.5. We
further note that, if the process of updating t and p converges,
Algorithm II will then converge to the NE of the game 𝒢,
since it adopts the optimal solution to the convex optimization
problem (12) for each user 𝑖 ∈ Ω [17].

In addition to convergence, the uniqueness of NE is another
critical property in game-theoretic studies. Regarding the
power allocation problem in this paper, however, it should be
noted that the two-loop structure in Algorithm II is essentially
a complicated iterative process in the sense that the parameters
updated in the outer loop are time varying and highly coupled
with the inner loop. As a consequence, it is quite involved to
derive the condition on the uniqueness of NE of the game.
The same limitation exists in [17]–[22] wherein only partial
uniqueness and convergence conditions were derived by fixing
the outer-loop parameters. Nevertheless, as long as the level
of interferences is not high and the inner loop converges,
we observe in (almost) all the cases through simulations the
uniqueness and convergence of the two-loop Algorithm II6.
Therefore, we believe that the derived partial convergence con-
dition in (20) is still useful, since it guarantees the convergence
of the inner loop and, with a large probability close to one,
the convergence of the outer loop and the uniqueness of NE
as well.

6Similar observations were reported in other works as well, e.g., [18].
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C. Medium to High SINR Regions

In the previous subsection, we have developed the dis-
tributed power allocation algorithms in low SINR regions. If
the channel is in a good condition, e.g., the relay node is
close to the destination, or the nodes are transmitting at a
high power, the assumption of low SINR will become invalid
and Algorithm II is no longer suitable. Accordingly, we shall
consider in this subsection the scenario in which medium to
high SINR can be observed at the destination nodes.

Before developing our distributed power allocation algo-
rithm, it is worth noting that, by exploiting the logarithm
structure of the achievable rate, several approximation tech-
niques were proposed to facilitate the analysis (see [19]
and references therein). In particular, given a single-user
amplify-and-forward relay network, one of the widely-used
approximation techniques is neglecting the noise term that
appears in the denominator of the SNR expression, i.e.,
∣𝑔∣2∣ℎ∣2𝑃𝑠𝑃𝑟

∣𝑔∣2𝑃𝑠+∣ℎ∣2𝑃𝑟
≈ ∣𝑔∣2∣ℎ∣2𝑃𝑠𝑃𝑟

∣𝑔∣2𝑃𝑠+∣ℎ∣2𝑃𝑟+𝑁0
[23]. The approximation

has been shown to be sufficiently tight, especially in high
SNR regions [23]. In this paper, if the 𝒮 − ℛ𝑖 channel is
in a good condition, the Gaussian noise forwarded by ℛ𝑖

is negligible, compared to the desired signal component, and
thus we can readily approximate the signal received by 𝒟𝑖 by
removing part of the propagated noise, i.e., ℎ𝑘

𝑖,𝑖𝛼
𝑘
ℛ𝑖

𝑛𝑘
ℛ𝑖

. After
some mathematical manipulations, the term ∣ℎ𝑘

𝑖,𝑖∣2𝑁0𝑃𝑖,𝑘 is
eliminated, without affecting too much the value of the receive
SINR7, from the denominator in (3) and thus, we obtain the
approximated receive SINR at 𝒟𝑖 over the 𝑘-th subchannel as

𝛾𝒟𝑖,𝑘 =
∣𝑔𝑘𝒮,𝑖∣2∣ℎ𝑘

𝑖,𝑖∣2𝑃𝒮,𝑘𝑃𝑖,𝑘(
∣𝑔𝑘𝒮,𝑖∣2𝑃𝒮,𝑘 +𝑁0

)
⋅Δ𝑖,𝑘

, (22)

where Δ𝑖,𝑘 =
∑𝑄

𝑗=1,𝑗 ∕=𝑖 ∣ℎ𝑘
𝑗,𝑖∣2𝑃𝑗,𝑘 + 𝑁0. As a result, the

power allocation problem, for each user 𝑖, can be formulated
in the same form as (8), except that the receive SINR in (8)
is replaced by (22). Note that the approximated receive SINR
in (22), which is also a upper bound on (3), can be viewed as
the SINR in a classic interference channel without the relaying
node [16]. Specifically, by denoting, for 𝑘 = 1, 2 ⋅ ⋅ ⋅𝑁 ,

∣𝑓𝑘
𝑖,𝑗 ∣2 =

{ ∣𝑔𝑘
𝒮,𝑖∣2𝑃𝒮,𝑘

∣𝑔𝑘
𝒮,𝑖∣2𝑃𝒮,𝑘+𝑁0

⋅ ∣ℎ𝑘
𝑖,𝑖∣2, if 𝑖 = 𝑗 ∈ Ω,

∣ℎ𝑘
𝑖,𝑗 ∣2, otherwise,

(23)

we can rewrite the approximated SINR in (22) as

𝛾𝑖,𝑘 =
∣𝑓𝑘

𝑖,𝑖∣2𝑃𝑖,𝑘∑𝑄
𝑗=1,𝑗 ∕=𝑖 ∣𝑓𝑘

𝑗,𝑖∣2𝑃𝑗,𝑘 +𝑁0

. (24)

By removing the base station from the system illustrated in
Fig. 1, we may view the cellular relay network equivalently
as a virtual ad hoc network which is the same as the classic
model that have been considered in a rich body of literature,
e.g., [16][24]. In the virtual network, the information bits are
originally generated from the relay nodes. Then, assuming that
the channel gain between ℛ𝑖 and 𝒟𝑗 over the 𝑘-th subchannel
is given by ∣𝑓𝑘

𝑖,𝑗 ∣2 in (23), the power allocation problem
reduces to the distributed spectral management in a Gaussian
interference channel [16] which has been increasingly popular

7Simulation results are provided in Fig. 8 to validate the approximation.

recently. It is well known that the optimal power allocation of
user 𝑖, which treats the the interfering power from the other
users as additive noise, is the water-filling solution [16] given
by

𝑃 ∗
𝑖,𝑘 = [𝒲ℱ 𝑖(p−𝑖)]𝑘

=

[
1

𝜆𝑖
−
∑𝑄

𝑗=1,𝑗 ∕=𝑖 ∣𝑓𝑘
𝑗,𝑖∣2𝑃𝑗,𝑘 +𝑁0

∣𝑓𝑘
𝑖,𝑖∣2

]𝑃max
𝑖,𝑘

0

(25)

where ∣𝑓𝑘
𝑖,𝑗 ∣2 is given in (23) and 𝜆𝑖 is chosen to satisfy the

total power constraint of user 𝑖, for 𝑖 = Ω and 𝑘 = 1, 2 ⋅ ⋅ ⋅𝑁 .
Based on the approximated SINR in (22), there also exists
at least one NE in the game 𝒢 which can be easily proved
following the proof of Proposition 1. Moreover, the NE can
be reached by using the distributed algorithm, referred to as
Algorithm III, which is similar to Algorithm I and omitted here
for brevity. The only difference between Algorithm III and Al-
gorithm I is that, in Algorithm III, the power update equation
is given by (25). Clearly, the power allocation strategy based
on (25) is sub-optimal for each user, given the strategy of the
other users. Nevertheless, (25) is easier to compute compared
with (9) and thus, is more applicable in real-time applications,
e.g., video delivery.

Define the matrix[
Ŝmax

]
𝑖,𝑗

≜
{
max𝑘=1,2⋅⋅⋅𝑁

∣𝑓𝑘
𝑗,𝑖∣2

∣𝑓𝑘
𝑖,𝑖∣2

, if 𝑖 ∕= 𝑗,

0, otherwise,
(26)

where ∣𝑓𝑘
𝑖,𝑗 ∣2 is given in (23). Then, the convergence of

Algorithm III is guaranteed by the following theorem, which
is obtained by substituting the appropriate parameters into
Theorem 1 in [25], where more sufficient conditions for the
convergence can also be found.

Theorem 4: Algorithm III converges linearly to the unique
NE of 𝒢 based on the approximated receive SINR in (22),
regardless of the initial points, if the following condition is
satisfied:

∥Ŝmax∥∞,mat < 1, ∀𝑘 ∈ {1, 2 ⋅ ⋅ ⋅𝑁} (27)

where the norm ∥ ⋅ ∥∞,mat and the matrix Ŝmax are defined in
(19) and (26), respectively.

D. General Network Topology

In the above analysis, the low SINR and medium to high
SINR regions were discussed separately for the convenience
of presentation. In fact, these two scenarios can also be jointly
considered. Specifically, given a general network topology
wherein some users have good channel conditions (i.e., operat-
ing in medium to high SINR regions) while others experience
poor channels (i.e., operating in low SINR regions), we
propose Algorithm IV which also has a two-loop structure and
is quite similar to Algorithm II. The description of Algorithm
IV is omitted in this paper due to space limitations. In the
inner loop of Algorithm IV, the users operating in low SINR
regions still apply (13) to adjust their powers, while the users
with good channel conditions update their powers following
(25). In the outer loop, the same rule in (21) specifying the
update of t applies to the low SINR users. However, the vector
of t𝑖, if user 𝑖 operates in medium or high SINR regions, is
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Fig. 2. Performance comparison in low SINR regions. 𝑑1,2 = 2, 𝜃 = 0.5,
𝑄 = 2, 𝐾 = 2, 𝑃 𝑘

𝑆,𝑖 = 1, 𝑃max
𝑖 = 1 and 𝑃max

𝑖,𝑘 = 0.7, for 𝑖 = 1, 2 and
𝑘 = 1, 2. 𝑅∗ is the global optimal average sum rate and 𝑅 is the average
sum rage achieved by the proposed algorithm.

fixed to be an identity vector, i.e., t𝑖 = I = [1, 1 ⋅ ⋅ ⋅1], since
user 𝑖 use the un-weighted water-filling algorithm in (25) as
its power allocation. Another difference between Algorithm II
and Algorithm IV is the convergence condition of the inner
loop. In particular, if the conditions in Theorem 2 and Theorem
4 are satisfied for users in low SINR regions and users in
medium or high SINR regions, respectively, then the inner
loop of Algorithm IV converges linearly to a unique fixed
point, regardless of the initial points.

IV. NUMERICAL RESULTS

In the simulations, we adopt the path loss fading model with
Rayleigh fading and the path loss factor is set to be four. For
the convenience of illustration and to limit the number of free
parameters, we normalize the 𝒮−ℛ𝑖 and ℛ𝑖−𝒟𝑖 distances to
one, and assume that the inter-user distance between ℛ𝑖 and
𝒟𝑗 , denoted by 𝑑𝑖,𝑗 , is the same for all 𝑖, 𝑗 ∈ Ω and 𝑖 ∕= 𝑗,
as in [25]8. It should be noted that the proposed algorithms
can also be applied to any other network topologies with any
number of subchannels. To reflect the channel conditions, we
denote 𝛾 as an indicator which is defined as the average receive
SINR in one sub-channel at a particular user under the equal
power allocation scheme.

A. Low SINR Regions

We first characterize in Fig. 2 the performance gap in
terms of the average sum rate between Algorithm II and the
global optimum. Since the non-convex sum-rate maximization
problem is “difficult” in the sense that no efficient algorithms
exist to compute the global optimum, we focus on the two-user
two-subchannel case for illustration purposes. In general, NE
is not a Pareto-optimal operating point in the considered non-
cooperative game. However, Algorithm II yields an average
sum rate relatively close to the global optimum under the
condition of mild interferences, as shown in Fig. 2. The

8We choose such a topology only for the convenience of illustration.
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−10 −9 −8 −7 −6 −5 −4 −3 −2 −1
0

1

2

3

4

5

6

A
ve

ra
ge

 S
um

 R
at

e 
(b

its
/s

/H
z)

γ (dB)

 

 

Equal
TDMA
Algorithm II
Algorithm I

Fig. 4. Performance comparison in low SINR regions. 𝑑1,2 = 4, 𝜃=0.5,
𝑄 = 4, 𝑁 = 8, 𝑃 𝑘

𝑆,𝑖 = 1, 𝑃max
𝑖 = 1 and 𝑃max

𝑖,𝑘 = 0.5, for 𝑖 = 1, 2 ⋅ ⋅ ⋅ 4
and 𝑘 = 1, 2 ⋅ ⋅ ⋅ 8.

same observation is also made in the conventional one-hop
interference channels, e.g., [19]. Then, we illustrate in Fig. 3
the convergence of Algorithm II and show the average sum
rate achieved by different schemes under different channel
conditions in Fig. 4. By applying the proposed iterative power
allocation algorithm with a moderate level of interference, the
system-wide performance in terms of the average sum rate can
be improved as opposed to the equal power allocation strategy
and the conventional TDMA protocols, even though the users
behave non-cooperatively to maximize their own rates at each
iteration. Fig. 4 also shows that the performance gap between
the best response based Algorithm I and the approximation
based Algorithm II is negligible (especially when users suffer
from poor channel conditions), which justifies the approxi-
mation technique used in low SINR regions. It can be seen
from Fig. 5 that, although the derived analytical sufficient
condition (20) in Theorem 2 is not satisfied, the convergence
of Algorithm II can be observed numerically in almost all
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(a) 𝑄 = 4, 𝑁 = 8, 𝜃 = 0.5.
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(b) 𝑄 = 4, 𝑁 = 8, 𝜃 = 0.1.
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(c) 𝑄 = 2, 𝑁 = 6, 𝜃 = 0.5.
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(d) 𝑄 = 2, 𝑁 = 6, 𝜃 = 0.1.

Fig. 5. Probability of convergence in low SINR regions. 𝑃 𝑘
𝑆,𝑖 = 1, 𝑃max

𝑖 = 1 and 𝑃max
𝑖,𝑘 = 0.5, for 𝑖 = 1, 2 ⋅ ⋅ ⋅𝑄 and 𝑘 = 1, 2 ⋅ ⋅ ⋅𝑁 .

the channel realizations when the users are not located very
close to each other. Furthermore, the probability that (20) is
satisfied is independent of the value of 𝜃 and the convergence
probability of Algorithm II is almost not affected by the
choice of the memory factor 𝜃. Nonetheless, we note that,
as in the case of single-hop Gaussian interference channels
[16], the proposed iterative algorithm may not converge when
the inter-user distance is sufficiently small, or equivalently
the interference level is strong and the system becomes
interference-limited. Next, we show in Fig. 6 the performance
comparison in terms of the average sum rate versus the number
of users in the system. In the conventional TDMA protocol,
the average sum rate is a constant regardless of the number
of users in the system, since the base station always transmits
for a fraction of 1/2 of each frame, i.e., it transmits for a
fraction of 1/2𝑄 to each user. In contrast, the average sum
rate increases, when there are more users in the system9, by
spatially reusing the relaying slot and effectively combating
the effects of interferences using Algorithm II. The underlying
reason is that, when the number of users increases, the fraction
of each frame devoted to the relaying slot, i.e., 1/(𝑄 + 1),
becomes smaller and hence, a higher spectral efficiency can be
achieved than that in the TDMA protocol. On the other hand,
by applying the proposed iterative power allocation algorithm,
the effect of interferences due to the relays’ simultaneous
transmissions can then be effectively reduced and thus, the
average sum rate is significantly improved compared to the
equal power allocation algorithm. Moreover, as shown in Fig.
6, Algorithm II only incurs an insignificant performance loss
compared with Algorithm I. Now, using the average number of
iterations required to converge as the metric, we characterize
the convergence time of Algorithm II under different values
of 𝜃. It can be observed from Fig. 7 that the memory factor
𝜃 slows down the convergence speed. However, since the
convergence probability is insensitive to the value of 𝜃, a
smaller value of 𝜃 is desired and in some cases, 𝜃 can even
be set as zero [18], i.e., no memory in the update of t.

B. Medium to High SINR Regions and General Network
Topology

In medium to high SINR regions, similar observations can
be made as those in low SINR regions. However, Algorithm I
and Algorithm III can achieve only a slightly higher rate than

9The number of users in the system cannot be arbitrarily large. Otherwise,
the sum interference becomes intolerable and the average sum rate may even
decrease, as in the case of single-hop interference-limited networks without
interference cancelation.
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Fig. 6. Performance comparison in low SINR regions. 𝛾 = −3.5dB, 𝜃=0.5,
𝐾 = 8, 𝑃 𝑘

𝑆,𝑖 = 1, 𝑃max
𝑖 = 1 and 𝑃max

𝑖,𝑘 = 0.5, for 𝑖 = 1, 2 ⋅ ⋅ ⋅𝑄 and
𝑘 = 1, 2 ⋅ ⋅ ⋅ 8.

the equal power allocation scheme. This is because the water-
filling algorithm works well only in low SINR regions and the
performance gain in medium to high SINR regions vanishes
[13]. This phenomena can also be explained mathematically by
the fact that 𝑥1 = 𝑥2 = ⋅ ⋅ ⋅ = 𝑥𝑀 = 1

𝑀 is a close-to-optimal
solution to the problem maxx

∑𝑀
𝑖=1 log(1 + 𝑎𝑖𝑥𝑖) subject to

x ર 0 and
∑𝑀

𝑖=1 𝑥𝑖 = 𝑥̄, where 𝑥̄ is a sufficiently large
number. Due to space limitations, we only illustrate in this
paper the convergence time of the proposed algorithms and
the performance comparison in terms of the average sum rate
under different channel conditions. Specifically, in Fig. 8, we
show that the proposed Algorithm III based on the sub-optimal
response can achieve almost the same average sum rate as
Algorithm I, which validates the use of the approximated
SINR in (22). In Fig. 7(c), we compare Algorithm I and Algo-
rithm III from the perspective of convergence time. It shows
that, on average, these two algorithms require nearly the same
number of iterations to converge. Therefore, the approximation
in (24) does not result in a significant performance loss or
increase in the convergence time. Finally, Fig. 9 shows that,
given a general network topology wherein users experience
heterogeneous channel conditions, Algorithm IV achieves a
higher average sum rate than equal power allocation algorithm
and the conventional TDMA approach, while incurring only
a slight performance loss compared to Algorithm I.
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(a) 𝑄 = 4, 𝑁 = 8, 𝜃 = 0.5.
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(b) 𝑄 = 4, 𝑁 = 8, 𝜃 = 0.1.
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(c) 𝑄 = 4, 𝑁 = 8.

Fig. 7. Average number of iterations required to converge. 𝑃 𝑘
𝑆,𝑖 = 1, 𝑃max

𝑖 = 1 and 𝑃max
𝑖,𝑘 = 0.5, for 𝑖 = 1, 2 ⋅ ⋅ ⋅ 4 and 𝑘 = 1, 2 ⋅ ⋅ ⋅𝑁 .
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Fig. 8. Performance comparison in medium to high SINR regions. 𝑑1,2 = 4,
𝑄 = 4, 𝑁 = 8, 𝑃 𝑘

𝑆,𝑖 = 1, 𝑃max
𝑖 = 1 and 𝑃max

𝑖,𝑘 = 0.5, for 𝑖 = 1, 2 ⋅ ⋅ ⋅ 4
and 𝑘 = 1, 2 ⋅ ⋅ ⋅ 8.

Before concluding this section, we note that if the inter-user
distance is sufficiently small, the interference will become a
dominant factor in the receive SINR [5][16][19] and thus, it
will limit the performance of the proposed algorithms. In this
case, the conventional TDMA protocol may outperform the
proposed algorithms at the expense of a higher complexity
in coordinating the relays’ transmissions, which is difficult to
implement in some systems, wherein there are no message
exchanges or coordination possible between users.

V. CONCLUSION

In this paper, we considered the downlink transmission in
a wireless multi-user multi-channel cellular relay network,
wherein the users have no access to the global CSI, and derived
distributed power allocation algorithms using the framework
of game theory. In contrast with conventional relay networks,
simultaneous transmissions from different relays are allowed.
The proposed power allocation algorithms can efficiently
combat the interferences caused at the destination and provide
a significant gain in terms of the average sum rate based solely
on the local information. First, we developed a distributed
algorithm based on the best response which is applicable in
any SINR regions but mathematically involved to compute and
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Fig. 9. Performance comparison in general network topologies. 𝑑1,2 = 4,
𝜃=0.5, 𝑄 = 4, 𝑁 = 8, 𝑃 𝑘

𝑆,𝑖 = 1, 𝑃max
𝑖 = 1 and 𝑃max

𝑖,𝑘 = 0.5, for 𝑖 = 1, 2

and 𝑘 = 1, 2 ⋅ ⋅ ⋅ 8 (low SINR). 𝑃 𝑘
𝑆,𝑖 = 1, 𝑃max

𝑖 = 100 and 𝑃max
𝑖,𝑘 = 50,

for 𝑖 = 3, 4 and 𝑘 = 1, 2 ⋅ ⋅ ⋅ 8 (medium to high SINR). 𝛾 is the average
receive SINR in one sub-channel at user 1 under the equal power allocation
scheme.

analyze. Then, we considered low SINR regions and proposed
an iterative modified water-filling algorithm. Specifically, each
relay updates its power allocation by multiplying the water
level by a factor on the per-subchannel basis. The existence
of NE along with the sufficient condition to reach a NE
was also determined. Next, by focusing on medium to high
SINR regions, we proposed distributed algorithms based on
the sub-optimal response. The algorithm can be equivalently
viewed as the classic Gaussian interference channel model for
which analytical sufficient conditions for the convergence to
the unique NE can be readily obtained. Finally, we extended
the analysis to a general network topology, wherein users with
different channel conditions coexist, and conducted extensive
simulations to verify the analysis.

APPENDIX

Before proving Theorem 3, we first introduce the following
lemma the proof of which was given in [25].

Lemma 1: The modified water-filling solution p∗
𝑖 =[𝒲ℱ 𝑖(p−𝑖)

]
in (13) can be expressed as the projection
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of [−insr𝑖(p−𝑖)] onto the simplex 𝒮 defined as 𝒫𝑖 in (6)
with respect to the weighted Euclidean norm10 with weights
t𝑖 = [𝑡𝑖,1, 𝑡𝑖,2 ⋅ ⋅ ⋅ 𝑡𝑖,𝑁 ], i.e.,

p∗
𝑖 =

[𝒲ℱ 𝑖(p−𝑖)
]
= [−insr𝑖(p−𝑖)]

t𝑖
𝒫𝑖

(28)

where [−insr𝑖(p−𝑖)]𝑘 ≜ −
∑𝑄

𝑗=1,𝑗 ∕=𝑖 ∣ℎ𝑘
𝑗,𝑖∣2𝑃𝑗,𝑘+𝑁0

𝛽𝑖,𝑘
, for 𝑘 =

1, 2 ⋅ ⋅ ⋅𝑁 . ■
We now give the main properties of the modified water-

filling projection operator in (28) that will be fundamental
to find the sufficient conditions for the convergence of the
inner loop in Algorithm II. For notational convenience, we
rewrite the projection operator, for each user 𝑖, as p∗

𝑖 =[𝒲ℱ 𝑖(p−𝑖)
]
=
[
−n0,𝑖 −

∑𝑄
𝑗=1,𝑗 ∕=𝑖 H𝑗,𝑖p𝑗

]t𝑖
𝒫𝑖

, where n0,𝑖 ≜
[𝑁0/𝛽𝑖,1, 𝑁0/𝛽𝑖,2 ⋅ ⋅ ⋅𝑁0/𝛽𝑖,𝑁 ]

T, 𝒫𝑖 and t𝑖 are defined in (6)
and (16), respectively, and

H𝑗,𝑖 ≜ diag

(
∣ℎ1

𝑗,𝑖∣2
𝛽𝑖,1

,
∣ℎ2

𝑗,𝑖∣2
𝛽𝑖,2

⋅ ⋅ ⋅ ∣ℎ
𝑁
𝑗,𝑖∣2

𝛽𝑖,𝑁

)
. (29)

Furthermore, denote the admissible set of power allocation
strategies of all the users by 𝒫 = 𝒫1×𝒫2 ⋅ ⋅ ⋅×𝒫𝑄, and define,
for each user 𝑖, the mapping T(p) = (T𝑖(p))𝑖∈Ω : 𝒫 → 𝒫
as

T𝑖 (p) ≜

⎡
⎣−n0,𝑖 −

𝑄∑
𝑗=1,𝑗 ∕=𝑖

H𝑗,𝑖p𝑗

⎤
⎦
t𝑖

𝒫𝑖

. (30)

Following the proof of Proposition 1 that ensures the existence
of NE in the game 𝒢 in low SINR regions, we can easily
show that, given a fix value of t, there exists at least one
equilibrium point in the iteration process of the inner loop
in Algorithm II, which guarantees that the solution set to
the following set of equations is always nonempty: p∗

𝑖 =

T𝑖 (p
∗) =

[
−n0,𝑖 −

∑𝑄
𝑗=1,𝑗 ∕=𝑖 H𝑗,𝑖p

∗
𝑗

]t𝑖
𝒫𝑖

, ∀ 𝑖 ∈ Ω.

In [25], the authors showed that the conventional water-
filling projection operator onto a convex set satisfies the
non-expansive property [31]. Now, we formally extend the
non-expansive property to the case of modified water-filling
projection defined in (28), and summarize it as follows in
Lemma 2, whose proof is omitted here for brevity.

Lemma 2: Given 𝒫𝑖 in (6) and the weighted Eu-

clidean norm defined as ∥x∥2,w ≜
(∑𝑁

𝑖 𝑤𝑖∣𝑥𝑖∣2
)1/2

in which w = [𝑤1, 𝑤2 ⋅ ⋅ ⋅𝑤𝑁 ]
𝑇 is the correspond-

ing weighting vector, we denote [ ⋅ ]∥ ⋅ ∥2,ti

𝒫𝑖
as the pro-

jection operator onto 𝒫𝑖 with respect to the vector
norm ∥ ⋅ ∥2,ti , and [ ⋅ ]∥ ⋅ ∥2,ti

𝒫𝑖
is non-expansive, i.e.,∥∥∥[x]∣∣ ⋅ ∣∣2,ti𝒫𝑖

− [y]
∣∣ ⋅ ∣∣2,ti
𝒫𝑖

∥∥∥
2,ti

≤ ∥x− y∥2,ti , ∀ x,y ∈ ℝ
𝑁
+ . ■

To establish the sufficient conditions under which the
mapping T defined in (30) is block-contraction, we shall
rigourously prove Proposition 3 in the following.

Proposition 3: If ∥Smax∥∞,mat < 1, where Smax and
the matrix norm ∥ ⋅ ∥∞,mat are defined in (17) and (19),

10The weighted Euclidean norm with weights w = [𝑤1, 𝑤2 ⋅ ⋅ ⋅𝑤𝑁 ] is

defined as ∣∣x∣∣2,w ≜
(∑𝑁

𝑖 𝑤𝑖∣𝑥𝑖∣2
)1/2

[32].

respectively, then the mapping T defined in (30) is block-
contraction with a modulus 𝛿 = ∥Smax∥∞,mat, with respect to
the block-maximum norm ∥ ⋅ ∥t,block defined as

∥T(p)∥t,block ≜ max
𝑖∈Ω

∥T𝑖(p)∥2,ti , (31)

where ∥T𝑖(p)∥2,ti =
(∑𝑁

𝑘=1 𝑡𝑖,𝑘∣ [T𝑖(p)]𝑘 ∣2
)1/2

.

Proof: We need to show
∥∥T(p(1))−T(p(2))

∥∥
t,block

≤
𝛿 ⋅ ∥∥p(1) − p(2)

∥∥
t,block

, ∀ p(1),p(2) ∈ 𝒫 = 𝒫1 × 𝒫2 ⋅ ⋅ ⋅ ×
𝒫𝑄, to prove the contraction property of the mapping T.
Given any p(1) = (p

(1)
1 ,p

(1)
2 ⋅ ⋅ ⋅p(1)

𝑄 ) ∈ 𝒫 and p(2) =

(p
(2)
1 ,p

(2)
2 ⋅ ⋅ ⋅p(2)

𝑄 ) ∈ 𝒫 , we define respectively, for each
user 𝑖, the weighted Euclidean distances between these two
vectors and their projected vectors using (30) as 𝑒T𝑖 =∥∥T𝑖(p

(1))−T𝑖(p
(2))

∥∥
2,ti

and 𝑒𝑖 =
∥∥∥p(1)

𝑖 − p
(2)
𝑖

∥∥∥
2,ti

.

Then, we have the set of inequalities (32) shown on the top
of the next page, where the first inequality is due to the non-
expansive property of the modified water-filling projection
operator defined in (28) and H𝑗,𝑖 is a diagonal matrix given
in (29). From the definition of 𝑡𝑖,𝑘 in (16), we have

𝑡𝑖,𝑘
𝑡𝑗,𝑘

=

√√√⎷ ∣𝑔𝑘𝒮,𝑗∣2
∣𝑔𝑘𝒮,𝑖∣2

⋅ 𝛽𝑖,𝑘

𝛽𝑗,𝑘
⋅
∑𝑄

𝑙=1,𝑙 ∕=𝑗 ∣ℎ𝑘
𝑙,𝑗 ∣2𝑃𝑙,𝑘 +𝑁0∑𝑄

𝑢=1,𝑢∕=𝑖 ∣ℎ𝑘
𝑢,𝑖∣2𝑃𝑢,𝑘 +𝑁0

≤

√√√⎷ ∣𝑔𝑘𝒮,𝑗∣2
∣𝑔𝑘𝒮,𝑖∣2

⋅ 𝛽𝑖,𝑘

𝛽𝑗,𝑘
⋅
∑𝑄

𝑙=1,𝑙 ∕=𝑗 ∣ℎ𝑘
𝑙,𝑗 ∣2𝑃max

𝑙,𝑘 +𝑁0

𝑁0

= 𝜌𝑘𝑗,𝑖 ,

(33)

which is independent of 𝑃𝑖,𝑘, for any 𝑖 = 1, 2, ⋅ ⋅ ⋅𝑄 and 𝑘 =
1, 2 ⋅ ⋅ ⋅𝑁 . Hence, following the set of inequalities in (32), we
can further derive

𝑒T𝑖 ≤
𝑄∑

𝑗=1,𝑗 ∕=𝑖

max
𝑘={1,2⋅⋅⋅𝑁}

(
[H𝑗,𝑖]𝑘,𝑘

√
𝑡𝑖,𝑘
𝑡𝑗,𝑘

)
𝑒𝑗

≤
𝑄∑

𝑗=1,𝑗 ∕=𝑖

max
𝑘={1,2⋅⋅⋅𝑁}

(
[H𝑗,𝑖]𝑘,𝑘

√
𝜌𝑘𝑗,𝑖

)
𝑒𝑗 .

(34)

Define the vectors eT ≜ [𝑒T1 , 𝑒T2 ⋅ ⋅ ⋅ 𝑒T𝑄 ]
𝑇 and e ≜

[𝑒1, 𝑒2 ⋅ ⋅ ⋅ 𝑒𝑄]𝑇 , and thus the inequality in (34) can be ex-
pressed in the vector form as 0 ≤ eT ≤ Smaxe, where Smax

is defined in (17). Then, by applying the infinity norm ∥ ⋅ ∥∞,
we obtain the following

∥eT∥∞ ≤ ∥Smaxe∥∞ ≤ ∥Smax∥∞,mat ∥e∥∞ , (35)

where ∥ ⋅ ∥∞,mat, defined in (19), is the matrix norm induced
by the vector norm ∥ ⋅ ∥∞. Finally, based on (31) and (35),
the following can be established:∥∥∥T(p(1))−T(p(2))

∥∥∥
t,block

=max
𝑖∈Ω

∥∥∥T𝑖(p
(1))−T(p

(2)
𝑖 )

∥∥∥
2,t𝑖

=∥eT∥∞ ≤ ∥Smax∥∞,mat∥e∥∞
=∥Smax∥∞,mat

∥∥∥p(1) − p(2)
∥∥∥
t,block

,

(36)
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eT𝑖 =

∥∥∥∥∥∥
⎡
⎣−n0,𝑖 −

𝑄∑
𝑗=1,𝑗 ∕=𝑖

H𝑗,𝑖p
(1)
𝑗

⎤
⎦
t𝑖

𝒫𝑖

−
⎡
⎣−n0,𝑖 −

𝑄∑
𝑗=1,𝑗 ∕=𝑖

H𝑗,𝑖p
(2)
𝑗

⎤
⎦
t𝑖

𝒫𝑖

∥∥∥∥∥∥
2,ti

≤
∥∥∥∥∥∥

𝑄∑
𝑗=1,𝑗 ∕=𝑖

H𝑗,𝑖p
(1)
𝑗 −

𝑄∑
𝑗=1,𝑗 ∕=𝑖

H𝑗,𝑖p
(2)
𝑗

∥∥∥∥∥∥
2,ti

=

∥∥∥∥∥∥
𝑄∑

𝑗=1,𝑗 ∕=𝑖

H𝑗,𝑖

(
p
(1)
𝑗 − p

(2)
𝑗

)∥∥∥∥∥∥
2,ti

≤
𝑄∑

𝑗=1,𝑗 ∕=𝑖

∥∥∥H𝑗,𝑖

(
p
(1)
𝑗 − p

(2)
𝑗

)∥∥∥
2,ti

=

𝑄∑
𝑗=1,𝑗 ∕=𝑖

√√√⎷ 𝑁∑
𝑘=1

𝑡𝑖,𝑘

(
[H𝑗,𝑖]𝑘,𝑘

)2 [
𝑃

(1)
𝑗,𝑘 − 𝑃

(2)
𝑗,𝑘

]2

=

𝑄∑
𝑗=1,𝑗 ∕=𝑖

√√√⎷ 𝑁∑
𝑘=1

𝑡𝑗,𝑘

(
[H𝑗,𝑖]𝑘,𝑘

√
𝑡𝑖,𝑘
𝑡𝑗,𝑘

)2 [
𝑃

(1)
𝑗,𝑘 − 𝑃

(2)
𝑗,𝑘

]2
≤

𝑄∑
𝑗=1,𝑗 ∕=𝑖

max
𝑘={1,2⋅⋅⋅𝑁}

(
[H𝑗,𝑖]𝑘,𝑘

√
𝑡𝑖,𝑘
𝑡𝑗,𝑘

)√√√⎷ 𝑁∑
𝑘=1

𝑡𝑗,𝑘

[
𝑃

(1)
𝑗,𝑘 − 𝑃

(2)
𝑗,𝑘

]2

=

𝑄∑
𝑗=1,𝑗 ∕=𝑖

max
𝑘={1,2⋅⋅⋅𝑁}

(
[H𝑗,𝑖]𝑘,𝑘

√
𝑡𝑖,𝑘
𝑡𝑗,𝑘

)∥∥∥p(1)
𝑗 − p

(2)
𝑗

∥∥∥
2,tj

=

𝑄∑
𝑗=1,𝑗 ∕=𝑖

max
𝑘={1,2⋅⋅⋅𝑁}

(
[H𝑗,𝑖]𝑘,𝑘

√
𝑡𝑖,𝑘
𝑡𝑗,𝑘

)
𝑒𝑗

(32)

for any p(1),p(2) ∈ 𝒫 = 𝒫1 × 𝒫2 ⋅ ⋅ ⋅ × 𝒫𝑄. Therefore, if
∥Smax∥∞,mat < 1, the mapping T is block-contraction with
the modulus 𝛿 = ∥Smax∥∞,mat.

Proposition 1.1 in [31] states that, if a mapping M :
𝒳 → 𝒳 is contraction with a modulus 𝜅 ∈ [0, 1) and 𝒳
is a closed subset of ℝ

𝑛, then the mapping M has a unique
fixed point 𝑥∗ ∈ 𝒳 and, furthermore, the update sequence
generated by 𝑥(𝑡+1) = M(𝑥(𝑡)) converges to the fixed point
𝑥∗ given any initial value 𝑥(0). In Proposition 3, we have
shown that, if ∥Smax∥∞,mat < 1 is satisfied, the mapping
T : 𝒫 → 𝒫 defined in (30) is block-contraction with a
modulus 𝛿 = ∥Smax∥∞,mat ∈ [0, 1) with respect to the block-
maximum norm defined in (31). Therefore, Theorem 3 is
proved by applying Proposition 1.1 in [31] and Proposition
3.
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