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Abstract—Many existing medium access control (MAC) proto-
cols utilize past information (e.g., the results of transmission at-
tempts) to adjust the transmission parameters of users. This paper
provides a general framework to express and evaluate distributed
MAC protocols utilizing a finite length of memory for a given form
of feedback information. We define protocols with memory in the
context of a slotted random access network with saturated arrivals.
We introduce two performance metrics, throughput and average
delay, and formulate the problem of finding an optimal protocol.
We first show that a time-division multiple access (TDMA) out-
come, which is the best outcome in the considered scenario, can be
obtained after a transient period by using a protocol with (N —
1)-slot memory, where IN is the total number of users. Next, we
analyze the performance of protocols with one-slot memory using
a Markov chain and numerical methods. Protocols with one-slot
memory can achieve throughput arbitrarily close to 1 (i.e., 100%
channel utilization) at the expense of large average delay by cor-
relating successful users in two consecutive slots. Finally, we apply
our framework to wireless local area networks (WLANs).

Index Terms—Access control, access protocols, communication
systems, distributed decision-making, multiaccess communication.

I. INTRODUCTION

N MULTIACCESS communication systems, multiple users
I share a communication channel and contend for access.
Medium access control (MAC) protocols are used to coordinate
access and resolve contention among users. We can categorize
MAC protocols! into two classes, centralized and distributed
protocols, depending on the existence of a central entity that
coordinates the transmissions of users. An example of central-
ized protocols is time-division multiple access (TDMA), where
a scheduler assigns time slots to users. Centralized control
can achieve a high level of channel utilization by avoiding
collisions, but it requires large overhead for the communication
of control messages. Examples of distributed protocols include
slotted Aloha and distributed coordination function (DCF). In
the slotted Aloha protocol [1], users transmit new packets in
the next time slot while retransmitting backlogged packets with
a fixed probability. In the IEEE 802.11 DCF [2], carrier-sense
multiple access with collision avoidance (CSMA/CA) and
binary slotted exponential backoff (EB) are used for users to
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1Since we deal with MAC protocols exclusively in this paper, we use the term
“protocol” to represent “MAC protocol” hereafter.

determine their transmission times. These distributed protocols
can be implemented without explicit control messages, but
coordination is limited in that collisions may occur or the
channel may be unused when some users have packets to send.

In this paper, we aim to improve the degree of coordination at-
tainable with distributed protocols by introducing memory into
the MAC layer. Under a protocol with memory, a node dynam-
ically adjusts its transmission parameters based on the history
of its local information. The idea of utilizing histories at the
MAC layer can be found in various existing protocols. For ex-
ample, the slotted Aloha protocol in [1] and its generalized ver-
sion in [3] adjust the transmission probabilities of nodes de-
pending on whether the current packet is new or backlogged.
The pseudo-Bayesian algorithm in [4] utilizes channel feedback
to update the estimated number of backlogged packets in the
system, based on which the transmission probability is deter-
mined. The EB protocols in [5] use the results of transmission
attempts to adjust the contention window and current window
sizes of nodes or their transmission probabilities.

The above protocols, however, utilize available past informa-
tion in a limited way. We can consider the operation of the above
protocols as the current state of a node determining its transmis-
sion parameters and the state transition occurring based on its
local observations. Although this structure makes implementa-
tion simple in that nodes can simply keep track of their states in
order to make transmission decisions, there may be many pos-
sible paths that lead to the same state, and important information
may be lost by aggregating different histories into a single state.
For example, in the slotted Aloha protocol in [1], a node with a
backlogged packet uses the same transmission probability fol-
lowing a slot in which it waited and following a slot in which it
transmitted and collided. However, it can distinguish these two
outcomes, and a significant performance improvement may be
achieved by using different transmission probabilities following
the two outcomes. Another limitation of the above protocols is
that they are designed assuming a particular form of feedback
information. In case that more informative feedback is available,
utilizing the additional information may result in performance
gains. For example, the EB protocols in [5] prescribe that a node
should not update its parameters following a waiting slot. If a
node can sense the channel while waiting, utilizing the infor-
mation obtained from sensing may improve the performance of
the EB protocols.

In order to overcome the limitations of the existing proto-
cols utilizing memory, we provide a systematic framework to
express and evaluate protocols with memory in the context of a
slotted multiaccess system with saturated arrivals where nodes
make transmission decisions based on their transmission prob-
abilities. The assumption of saturation with a fixed number of
users allows us to analyze the utilization of past information in
a setting where all nodes in the system collect information con-
stantly. Our framework allows us to formally express a protocol
utilizing memory of any finite length and operating under any
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form of feedback information. Also, we introduce two perfor-
mance metrics, throughput and average delay, based on which
we can evaluate protocols with memory. The two main results
of this paper can be summarized as follows.

1) In the considered scenario with saturated arrivals, TDMA
is the best protocol in the sense that there is no other pro-
tocol that achieves a higher throughput or a smaller average
delay than TDMA. A TDMA outcome can be obtained
after a transient period by a protocol with (N — 1)-slot or
N -slot memory, where IV is the total number of nodes in
the system.

2) A protocol with one-slot memory can achieve throughput
arbitrarily close to 1 (i.e., 100% channel utilization) at the
expense of large average delay, by correlating successful
nodes in two consecutive slots (i.e., a node that has a suc-
cessful transmission in a slot has a high probability of suc-
cess in the next slot).

The proposed protocols with memory can be related to split-
ting algorithms [6] and reservation Aloha [7]. In splitting algo-
rithms such as tree algorithms [8], backlogged nodes are divided
into groups, one of which transmits in the next slot. Protocols
with memory use histories to split nodes into groups. As nodes
randomly access the channel using transmission probabilities,
histories will evolve differently across nodes as time passes. The
probability of a successful transmission can be made high by
choosing transmission probabilities in a way that the expected
size of the transmitting group is approximately one most of the
time. In reservation Aloha, nodes maintain frames with a cer-
tain number of slots, and a successful transmission serves as
a reservation for the same slot in the next frame. Reservation
Aloha can thus be expressed as a protocol with memory whose
length is equal to the number of slots in a frame, provided that
all nodes can learn successful transmissions in the system. Pro-
tocols with memory are more flexible than reservation Aloha
in that protocols with memory can specify different transmis-
sion probabilities in nonreserved slots, can make reservations in
a probabilistic way, and can be implemented with an arbitrary
form of feedback information.

The rest of this paper is organized as follows. In Section II,
we describe the considered slotted multiaccess model and de-
fine protocols with memory. In Section III, we introduce per-
formance metrics and formulate the problem of finding an op-
timal protocol. In Section IV, we show that a protocol with
(N — 1)-slot or N-slot memory can achieve the performance
of TDMA. In Section V, we analyze the properties of protocols
with one-slot memory using numerical methods. In Section VI,
we show that protocols with memory can be applied to a wire-
less local area network (WLAN) environment and can achieve
a performance improvement over DCF. We conclude the paper
in Section VII.

II. SYSTEM MODEL

A. Setup

We consider a slotted multiaccess system as in [3]. The
system has total /V contending users, or transmitter nodes, and

the set of users is denoted by A 2 {1,...,N}. We assume
that the number of users is fixed over time and known to users.
Users share a communication channel through which they
transmit packets. Time is slotted, and users are synchronized in
their slot transmission times. We label slots by ¢ = 1,2,.... A
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TABLE 1
MAJOR NOTATION

N ={1,...,N} | setof users

A={T, W} set of actions (7' transmit, W: wait)

a; € A action of user %

A= AN set of action profiles

acA action profile (or outcome)

a’ outcome such that a; =T and a; = W V j # i
p feedback technology

Zp set of feedback information under p

2 € Zp feedback information of user 4

Ti throughput of user %

T total throughput

D; average delay of user ¢

D average delay of a user under a symmetric protocol
D; average interpacket time

user always has packets to transmit and can attempt to transmit
one packet in each slot. The set of actions available to a user

. . A
in a slot is denoted by A = {T,W?}, where T stands for
“transmit” and W for “wait.” We denote the action of user ¢
by a; € A and an action profile, or a transmission outcome,
A - .
by a = (a1,...,an). The set of (transmission) outcomes is
A Lo e
denoted by A = AN. A transmission is successful if it is the
only transmission in the slot, and two or more transmissions in
the same slot result in a collision. The major notation used in

this paper is summarized in Table 1.

B. Feedback Information

After a user transmits a packet, it learns whether the packet
is successfully transmitted or not using an acknowledgement
(ACK) response. If the user receives an ACK from the receiver
node, it learns that its transmission was successful. Otherwise,
it concludes that its packet has collided. We assume that there is
no error in the transmission and the reception of ACK responses
so that a user always learns the correct results of its transmission
attempts. Formally, we represent ACK feedback to user ¢ by
ACK;(a), which takes the value yes if a = a’, where a’ is
the outcome in which only user ¢ transmits, and no otherwise.

At the end of each slot, users obtain channel feedback about
the number of transmissions in that slot. Let K 2 {0,1,...,N}
be the set of all possible numbers of transmissions in a slot. We
represent a channel feedback model by an information partition
H of K. An information partition H assigns h(k) € H to each
k € K in such a way that & € h(k) for all k [9]. The set h(k)
consists of the numbers of transmissions that users regard as
possible when the actual number of transmissions is k. When
outcome a occurs, users receive channel feedback h(k(a)),
where k(a) is the number of transmissions in a.

Consider a partition of K, {{0},{1},e}, where e 2
{2,...,N}. Each element of the partition represents a type
of channel feedback, and users can potentially learn whether
there has been no packet (idle), one packet (success), or more
than one packet (collision) transmitted in the slot. With an
abuse of notation, we will use 0 and 1 to represent channel
feedback that corresponds to {0} and {1}, respectively [6]. We
say that the channel possesses ternary feedback, or (0,1, ¢)
feedback, if all the three types of feedback are available. Binary
feedback is also possible, and given the three possible types
of channel feedback, we can consider three kinds of binary
feedback: success/failure (S/F) feedback, which informs users
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whether there was a successful transmission (1) or not (0 U e);
collision/no collision (C/NC) feedback, which informs users
whether there was a collision (e) or not (0 U 1); and empty/not
empty (E/NE) feedback, which informs users whether the
current slot was empty (0) or not (1 U e) [10]. We can also
consider no channel feedback, which does not give any channel
information to users and corresponds to information partition
{K}, and (N + 1)-ary feedback, which informs users of the
exact number of transmissions and corresponds to information
partition {{0},{1},...,{NN}}, the finest partition of K. (See
[11] for a similar list of channel feedback models in a mul-
tiple-reception scenario.)

The feedback information of user ¢ consists of ACK feed-
back and channel feedback, ie., (ACK;(a),h(k(a))). We
define a feedback technology as a rule that generates feed-
back information for each user depending on transmission
outcomes. We can represent a feedback technology by a
mapping p : S — 2, where S 2 Uaca{(a;, k(a))}, and
write the feedback information of user ¢ more compactly
as p(a;,k(a)). Since ACK;(a) = no if a; = W, we set
p(W,k(a)) = h(k(a)). Since user 4 can distinguish the out-
comes in 1 from those in e using ACK feedback whenever
it transmits, we set p(T, k(a)) = 1 if ACK,(a) = yes and
h(k(a)) Neif ACK;(a) = no. Let Z, 2 Unc.a{p(a:, k(a))},
which is independent of ¢ since users receive the same channel
feedback. Z, represents the set of feedback information that
a user can obtain with feedback technology p. The feedback
information of user 4 is denoted by z; € Z,. We use R to
denote the set of all feedback technologies, which is equivalent
to the set of all partitions of K.

Remark: Using an information partition to represent a
channel feedback model in fact leads to several simplifications.
For analytic convenience, we use the simplified channel feed-
back structures to obtain the results in this paper. However, it
is possible to carry out a similar analysis with more general
channel feedback structures. First, we can allow asymmetry
in channel feedback across users by specifying user-depen-
dent information partitions and having user ¢ receive channel
feedback h;(a) € H; when outcome a is chosen, where H;
is an information partition for user ¢. Second, we can admit
errors in channel feedback by allowing the possibility that
k(a) ¢ h;(a). This possibility can model situations such as
the hidden terminal problem (also called ‘“erasures” in [10]),
where users may interpret a success or a collision slot as an idle
slot, and noise errors [10], where users may interpret an idle or
a success slot as a collision slot. Lastly, we can consider sto-
chastic channel feedback, in which case the channel feedback
of user 7 is determined according to a probability distribution
on H;, A(H;)(a).

C. Protocols With Memory

A user decides whether to transmit or not in each slot using a
transmission probability, which lies in [0,1]. A protocol is a rule
based on which users determine their transmission probabilities.
We assume that control or coordination messages cannot be used
in the system. Then, the transmission action and the feedback
information of user ¢ are all the information that it obtains in a
slot. The M -slot history for user ¢ in slot ¢ is given by

L= (a?_A'I. 27M ettt z?_l)

) et [ )
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for M = 1,2,...and t = 1,2,...2 We set (al,zl') =
(W, p(W,0)) for t' < 0 as initialization. Let £, be the set of
all possible action—feedback pairs under feedback technology
prien £, 2 Uneaf{(ai, plai, k(a)))} C A x Z,. Then, the set
of all M-slot histories is given by Ef)”. A stationary decision
rule based on M -slot histories is defined by a mapping

feLyt—10,1]

where f(L) represents the transmission probability for a user
whose M -slot history is L € Ef)”.

Since the set of M-slot histories £)! is affected by feed-
back technology p, the set of stationary decision rules based
on M -slot histories depends on the feedback technology of the
system. In particular, as the feedback technology is more in-
formative in the sense that the corresponding information par-
tition is finer, users can distinguish more outcomes, and thus
more decision rules can be deployed. We use Fr,, to denote
the set of all stationary decision rules based on M -slot histo-
ries under feedback technology p. We define a protocol with
M-slot memory as a profile of stationary decision rules based

on M -slot histories given a feedback technology p, i.e., f £
(f1,---, fn) € Fpy . We say that a protocol f is symmetric
if it prescribes the same decision rule to every user, i.e., fi =
.-+ = fn. We will sometimes use f to represent a symmetric
protocol f with a common decision rule f when there is no
confusion.

D. Automaton Representations of Protocols With Memory

A protocol with memory can be described by a finite au-
tomaton, which consists of a finite set of states, an initial state,
an action rule, and a state transition rule [12]. We can represent a
symmetric protocol f € Fys,, as a finite automaton by defining
states as possible M -slot histories, the initial state as the M -slot
history obtained from M idle slots, the action rule as the deci-
sion rule f, and the state transition rule as to specify the new
state as the M -slot history updated based on the transmission
action and the feedback information in the current slot.

Fig. 1(a) shows the automaton representation of a protocol
with memory in the simplest case of one-slot memory and no
channel feedback (i.e., ACK feedback only). With ACK feed-
back only, there are three possible action—feedback pairs, or
one-slot histories: (W, ), (T,1), and (T,e), where ) corre-
sponds to channel feedback K. Hence, there are three states in
the automaton, corresponding to the three possible action—feed-
back pairs, with the initial state specified as (W, (}). The trans-
mission probability in each state (a, 2) is given by f(a, z). The
state in the next slot is determined by the action—feedback pair
in the current slot.

[3] proposes generalized slotted Aloha protocols, which
we call two-state protocols. Under a two-state protocol, users
choose their transmission probabilities depending on whether
their current packets are new (a free state) or have collided
before (a backlogged state). Thus, having ACK feedback
suffices to implement a two-state protocol. The automaton
representation of a two-state protocol is shown in Fig. 1(b). In

2In addition to actions and feedback, a user knows the transmission probabil-
ities it has used. We do not include past transmission probabilities in histories
because we focus on protocols that do not depend on past transmission proba-
bilities directly.
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Fig. 1. Automaton representations of protocols: (a) a protocol with one-slot
memory, and (b) a two-state protocol.

general, a two-state protocol cannot be expressed as a protocol
with finite memory. Since the state remains the same following
a waiting slot, the transmission probability for the current slot
is determined by the result of the most recent transmission
attempt, which may have occurred arbitrarily many slots ago.
However, [3] shows that under saturated arrivals, two-state
protocols achieve the maximum throughput when pr = 1 and
pg — 0, where pr and pg are transmission probabilities in
the free and backlogged states, respectively. When a two-state
protocol specifies pr = 1, which is also the case in the slotted
Aloha protocol in [1], the action—feedback pair (W, (}) cannot
occur in the free state, and thus we can find an equivalent
protocol with one-slot memory such that f(7,1) = 1 and
FW.0) = f(T,e) = pg. In effect, a two-state protocol with
pr = 1 aggregates the two different action—feedback pairs,
(W,0) and (T,e), into one state, the backlogged state, and
assigns the same transmission probability following these two
action—feedback pairs. On the contrary, a protocol with one-slot
memory can fully utilize all the available information from the
previous slot in that three different transmission probabilities
can be assigned following the three action—feedback pairs.

As will be shown later in Section V-D, the limited utilization
of past information by two-state protocols results in perfor-
mance limitations. In particular, throughput, or the fraction
of success slots, is bounded from above by N/(2N — 1)
under two-state protocols [3, Theorem 2], while protocols with
one-slot memory can achieve throughput arbitrarily close to
1. When memory longer than one slot or channel feedback
is available, there are more distinguishable histories for each
user. Two-state protocols aggregate different histories into just
two states, whereas protocols with memory can assign as many
transmission probabilities as the number of possible histories
given the length of memory and the feedback technology. Thus,
the performance gap between the two classes of protocols will
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be larger when longer memory or more informative feedback
is available.

III. PROBLEM FORMULATION

A. Performance Metrics

1) Throughput: We define the throughput of a user as the
fraction of slots in which it has a successful transmission, and
total throughput as the fraction of slots in which there is a suc-
cessful transmission in the system, which is equal to the sum of
the individual throughput of users. When users follow a protocol
with memory f, throughput can be computed using a Markov
chain. Let M be the length of memory used by protocol f, and
p be the associated feedback technology. Then, we can consider
a Markov chain whose state space is given by A . We write an
element of AM asa = (ay,...,ay). Let L;(a) be the M-slot
history for user ¢ when the outcomes in the recent M slots are
a, ie.,

Li(a) = (a;,1,p(ai1,k(a1)) ;... sainr, p (@i, k(anr)))

where a; , is the ith element of a,,. Given L;(a) as its M -slot
history, user ¢ transmits with probability f;(L;(a)). The trans-
mission probabilities of users yield a probability distribution on
the outcome in the current slot. The probability that the current
outcome is a’ under f when the outcomes in the recent M slots
are a is given by

P(a'|a;f) = H [Ltaa,=ry (@) fi (Li(8))

i=1

+ Laa,=w (@) (1= fi (Li(a)))]

where 1z : A — {0,1} is an indicator function such that
1z(a) = lifa € B, and 0 otherwise. The transition probability

ey

froma € AM a2 (af,...,a,,) € AM under protocol f is
given by

Q(a'[asf) = P (aly Jas )

ifal, = anq1,forallm =1,..., M — 1, and 0 otherwise.

Let v¢(f) be the probability distribution on the state space
AM in slot ¢ induced by protocol f. By the initialization in
the definition of protocols with memory, the initial distribu-
tion v(f) has element 1 for a = (a°...,a%), and O else-
where, where a denotes the idle outcome, (W, ..., W). Let
Q(f) be the transition matrix of the Markov chain under pro-
tocol f. Then, the probability distribution on A in slot ¢ can
be computed by

fort = 1,2,.... Let S’ be the subset of AM with user 4’s
success as the most recent outcome, i.e., Si & {a e AM .
ays = a'}. Then, the probability of user ¢’s success in slot ¢ is
given by 7; 4+(f) 2 > acs: v¢(a;f). The fraction of slots with
user ¢’s success, or the throughput of user ¢, is given by
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assuming that the limit exists. If f is chosen so that the induced
Markov chain has only one closed communicating class, then
there exists a unique stationary distribution v(f), independent
of the initial distribution v((f), which satisfies
v(f) =v(f)Q(f) and v(fle=1 2)
where e is the column vector of length |.4% | whose elements are
all 1 [13]. Then, the expression for the throughput of user ¢ is
reduced to 7;(f) = » ;s v(a; f). Finally, the total throughput
of the system under protocol f is given by 7(f) = Zf\;l 7;(f).
2) Average Delay: The average delay of a user is defined
as the average waiting time, measured in the unit of slots, until
the beginning of its next successful transmission starting from
an arbitrarily chosen time. Average delay under a protocol with
memory f can be computed using a Markov chain. Consider a
slot to which an arbitrarily chosen time belongs, and leta € A
be the outcomes in the recent M slots. Given a, f yields a prob-
ability distribution on the outcome in the next slot, P(a’|a; f),
given by Equation (1). Using P(a’|a;f), we can compute the
probability that user ¢ succeeds for the first time after r slots
when the outcomes in the recent M slots are given by a and
users follow f
wi(r;a, f) 2 Pr{a,;, =a' and a,., #a’,
forall ' =1,...,r—1|a, =a;f} (3)
forr = 1,2,.... For example
wi(l;a,f) = P(agyr = a'la, = a; f)
and
ni(2;a,f) = Z P (ag42 = a'lag = (ag,a);f)

acA\(a')
x P(a;y1 = ala, = a;f)

where (a;,a) € AM is obtained by deleting the first outcome in
a, and adding a as the most recent outcome. Using (3), we can
compute the average number of slots until user i’s next success
starting from a slot with the recent M outcomes a

Since the distribution on the recent M outcomes in slot ¢ is given
by v(f), the average delay of user ¢ under protocol f can be
computed as

2

1 J
Jim 2>

where 0.5 is subtracted to take into account that the average
time staying in the initial slot is 0.5 starting from an arbitrarily
chosen time. When the Markov chain has a unique stationary
distribution v(f), the expression for the average delay of user 4
is reduced to

Dy(f) > w(asf)di(af) — 0.5

Di(f)= Y w(aif)di(a;f) - 0.5.

acAM
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3) Discussion on Throughput and Average Delay:
The throughput of the system can be considered as an
efficiency measure of a protocol as it gives the channel
utilization over time. However, as its definition
suggests, throughput reflects the performance averaged
over a long period of time and does not contain much
information about the short-term and medium-term
performance. As an illustration, consider two sequences of
outcomes generated by repeating (al,a? N) and

al,a? ... a
J
(al,al,al,al,al,a% a? a% a% a?,...,av,a", aV,aV al).

,av,av,a
In both sequences, each user succeeds in one out of IV slots
over a long period of time, as measured by throughput 1/N.
However, users may prefer the first sequence to the second one
as the first exhibits the steadier performance over a short
period of time. For example, suppose that a user counts its
successes in N consecutive slots from an arbitrary slot. The
first sequence guarantees one success in /N consecutive slots
regardless of the initial slot. On the contrary, in the second
sequence, N consecutive slots contain no success with a high
probability and many successes with a low probability.
The variation in the performance over a short period of
time is captured by average delay.

A widely used measure of delay in queueing theory is the in-
terpacket interval. In our model, we can compute the average
interpacket time of user 4, i.e., the average number of slots be-

tween two successes of user ¢, using
v(a;f) _

=—+——d;(a;f). 4

Zaesi v(a; f)

aes?

We can interpret d;(a; f) as the average time to enter one of the
states in S starting from the state a under protocol f. Then,
D;(f) can be interpreted as the average time to enter S starting
from an arbitrary state, where the starting state is chosen fol-
lowing the stationary distribution. Similarly, D;(f) can be in-
terpreted as the average time to return S° starting from a state
in S.
Note that d;(a; f) satisfies

di(af) =1+ Y Q@a,f)d;(@’;f) ©)

aes’

for all a € AM, where S is the complement of S, i.e.,
Si 2 AM \ &' Using (2) and (5), we can show that
Y acsi v(&f)di(a;f) = 1 for any protocol with memory f,
and thus (4) can be rewritten as

Di(f) = — (6)

which can be regarded as a version of Little’s Theorem [6].
Therefore, the average interpacket time is completely de-
termined by throughput, and thus it provides no additional
information beyond that provided by throughput.

The waiting time paradox [14] suggests that not only the
mean of the interpacket time but also its variance matters for the
average waiting time measured from an arbitrarily chosen time.
Let X; be the random variable that represents the interpacket
time of user ¢ with support N E {1,2,...}. By definition, we
have F(X;) = D;. The Pollaczek—Khinchine (P-K) formula



1926

[15] gives the average residual time until the next success, or
average delay, by
E(X}) 1

. _ ! 2 ,
Di=gmix) ~ 3 LHe) D

)

where r; represents the coefficient of variation of X, i.e., k; =
v/ Var(X;)/E(X;). The P-K formula shows that average delay
is increasing in the variance of the interpacket time for a given
level of throughput (or equivalently, for a given mean of the
interpacket time).

Consider the following three examples with a fixed level of
the average interpacket time D; and different levels of the coef-
ficient of variation k;. 1) Suppose that user ¢ has periodic suc-
cessful transmissions. Then, it transmits a packet successfully
once in D; slots, and its average delay is D; /2 since k; = 0.
Note that D;/2 is the smallest average delay achievable with
protocols that yield the average interpacket time D;. 2) Sup-
pose that successes for user ¢ are completely random in the
sense that X; follows a geometric distribution. Such a random
variable can be generated by a memoryless protocol that pre-
scribes a fixed transmission probability for each user. In this
case, n? =1-—1/D;, and thus D; = D; — 0.5. 3) Suppose that
the successes of user ¢ are highly correlated over time. Then,
k; > 1, and thus D; > D;. In this case, user 7 has frequent
successes for a short period of time, but sometimes has to wait
for a long period of time until its next success.

It is reasonable to assume that users prefer to have a steady
stream of transmissions as well as a high transmission rate. As
the above examples illustrate, the coefficient of variation of the
interpacket time measures the volatility in successful transmis-
sions over time. Since average delay reflects the coefficient of
variation of the interpacket time, we use it as a second perfor-
mance metric to complement the long-term performance metric,
throughput.

B. Protocol Design Problem

We formulate the problem faced by the protocol designer as
a two-stage procedure. First, the protocol designer chooses the
length of memory, M slots, and the feedback technology, p.
Next, the protocol designer chooses a protocol from the class
of available protocols given the stage-one choice (M, p). For
simplicity, we assume that the protocol designer considers only
symmetric protocols. For a symmetric protocol f, we have
Tl(f) = .- = TN(f) and Dl(f> = --- = D]\r(f). Total
throughput is given by 7(f) = N7;(f) for any i € N/, and we
use D(f) to denote the average delay of each user.

The protocol design problem can be written formally as

s A (mex U6.00) -conn). ®

U represents the utility function of the protocol designer, de-
fined on total throughput and average delay. We assume that
U is increasing in total throughput and decreasing in average
delay so that the protocol designer prefers a protocol that yields
high total throughput and small average delay. C represents the
cost function of the protocol designer, defined on the length of
memory and the feedback technology. We assume that C' is in-
creasing as memory is longer and as the feedback technology
is more informative. Note that from a practical point of view,
the cost of expanding memory is vanishingly small compared to
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the cost associated with the feedback technology, which implies
that the system is more likely to be constrained by the available
feedback technology rather than by the size of memory.3 Hence,
it is more natural to interpret the cost associated with memory
as the cost of implementing protocols with a certain length of
memory. For instance, the protocol designer may prefer pro-
tocols with short memory to protocols with long memory be-
cause the former is easier to program and validate than the latter.
We say that a protocol f is optimal given (M, p) if it attains
maxser, , U(T(f), D(f)). We say that f is an optimal pro-
tocol for the protocol designer if f solves (8).

In order to analyze the performance of protocols with
memory, we approach the protocol design problem from two
different directions. In Section IV, we first find the feasible
throughput-delay pair most preferred by the protocol designer.
Then, we show that the most preferred throughput-delay pair
can be achieved by a protocol with memory. In Section V, we
focus on the simplest class of protocols with memory, namely
protocols with one-slot memory, and investigate their properties
using numerical methods.

IV. MOST PREFERRED PROTOCOLS

Suppose that the protocol designer can choose any protocol
at no cost. Then, the protocol design problem becomes
max U ((f), D(f) ©)
where F denotes the set of all symmetric protocols including
those that cannot be expressed as protocols with memory. We
say that f is a most preferred protocol if f solves (9). Con-
sider a fixed level of total throughput 7, which implies indi-
vidual throughput 7/N by the symmetry assumption on proto-
cols. Note that the P-K formula (7) was obtained without im-
posing any structure on protocols, and it shows that for a given
level of throughput, average delay is minimized when there is
no variation in the interpacket time of a user, i.e., when x; = 0.
Hence, combining (6) and (7), we can express the minimum av-
erage delay given total throughput 7 as
D; N

Dmin (T) =

2 27

Since Dy, (7) is decreasing in 7, setting total throughput at the
maximum level 1 yields the minimum feasible average delay
D,nin = Dpin(1) = N/2. In other words, there is no protocol
f € F that attains D(f) less than N/2. Hence, if there exists
a protocol f that achieves the maximum total throughput 1 and
the minimum average delay N/2 at the same time, then f is a
most preferred protocol.

In order to obtain the most preferred throughput-delay pair
(1, N/2), aprotocol needs to provide each user with a successful
transmission in every IV slots. TDMA is a protocol that achieves
such a sequence of outcomes. Since the indices for users are
arbitrary, we can describe the TDMA protocol as having user ¢
transmit in slot ¢ if (¢ mod N) = (¢ mod N) and wait in all
other slots. Then, each user has one successful transmission in
every NN slots, and thus the TDMA protocol is a most preferred
protocol. However, the TDMA protocol requires coordination

30ur formulation includes the case where there is only one available feedback
technology, say g, in the system. In this case, we have C(M, p) = +oo for all

p#EDP.
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messages to be sent to users in order to assign time slots, and
thus it does not belong to the class of protocols with memory
defined in Section II-C. The following theorem establishes the
existence of a most preferred protocol in the class of protocols
with memory.

Theorem 1: Assume (N —1)-slot memory and success/failure
(S/F) binary feedback psp. Denote an (N — 1)-slot history by

L= (a',2z%...;aV 71, 2NV ~1), and let n(L) be the number of
successes in L, i.e, n(L) = |{m : 2" =1,m=1,...,N —
1}|. Define a protocol with memory f € F(n_1),p5, DY
F(I) = { 0, if L contains (7',1)
"1 1/(N —=n(L)), otherwise.
Then, 7(f) = 1 and D(f) = N/2.

Proof:  Given (z',...,2N71), define a state
(z4,...,2N~1) by setting 2™ = Sif 2™ = land 2™ = F
otherwise, form = 1,..., N — 1. Let n be the count of S in
(z1,...,2V~1). Note that 7 takes an integer value between 0

and N — 1. Under the protocol f in the theorem, N — 7 users
transmit with probability 1/(N — 7), while remaining 7 users
wait following a history that yields (!,...,2V¥~1). Hence,
the state in the next slot is given by (22,...,2V=1, S) with
probability (1 — 1/(N —7))N=""Land by (2%,..., 2N F)
with probability 1 — (1 — 1/(N — 7))N="~1. This defines
a Markov chain with state space {S, F}"~1. Note that S
occurs with probability 1 when n = N — 1 while both .S and
F' occur with positive probability when 0 < n < N — 2.
Hence, state (S, . ..,.S) is an absorbing state while all the other
states are transient. By [13, Theorem 11.3], the absorbing state
(S,...,S) is reached with probability 1. Once the absorbing
state is reached, a TDMA outcome is obtained, and thus f is a
most preferred protocol. ]

Theorem 1 shows that with (N — 1)-slot memory and S/F
feedback, IV users can determine their transmission slots in a
distributed way without need of explicit coordination messages,
thereby achieving the same outcome as TDMA after a transient
period. By trial and error, users find their transmission slots in
a self-organizing manner and stabilize to transmit once in every
N slots. Note that (N — 1) is the minimum length of memory
required to emulate TDMA using a protocol with memory. A
cycle of successes by IV users cannot be generated with memory
shorter than (N — 1) slots. Also, S/F feedback is necessary to
guarantee a success after (N — 1) consecutive successes.

The expected duration of a transient period can be computed
using the fundamental matrix for the Markov chain constructed
in the proof of Theorem 1 with the initial state specified as
(F,...,F) (see [13, Theorem 11.5]). We can shorten the ex-
pected duration of a transient period by using N -slot memory as
follows. Consider a protocol with NV-slot memory, f € Fy
defined by

sPSF?

1, if (at, 2%) = (T,1)
0, if (a',2') = (W, 1)
sy )0, if 2! # 1and (a™, 2™) = (T, 1)
F(L) = forsomem =2,...,N
1/(N - (L)), ifz!# 1land (a™,2™) # (T,1)

forallm=2,...,N

’

(10)
where (L) is the number of successes in recent (N — 1) slots.
The first and the third lines of (10) state that once a user suc-
ceeds, it waits for (N — 1) slots before the next transmission.
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The second and the fourth lines state that a user with no success
inrecent N slots waits if the current slot is already “reserved” by
some user that succeeded NV slots ago and contends with other
such users if no user succeeded [V slots ago. Hence, under f in
(10), once a user succeeds in slot ¢, it is guaranteed to succeed in
slotst+ N, t+ 2N, and so on, whereas under f in Theorem 1, a
user that succeeded N slots ago has to compete with other users
with no success in recent (N — 1) slots during a transient pe-
riod. This additional feature of f results in a reduced expected
duration of a transient period. Using a similar approach as in the
proof of Theorem 1, we can construct a Markov chain with state
space {S, F'} to show that f is a most preferred protocol and
to compute the expected duration of a transient period under f.
We obtain that, by using f instead of f, the expected number
of slots until obtaining (N — 1) consecutive successes for the
first time is reduced from 6.38 to 4.92 when N = 3, from 16.12
to 8.52 when N = 4, and from 38.39 to 12.67 when N = 5.
Again, S/F feedback is necessary to let users know whether the
current slot is reserved or not. f can be considered as a gener-
alization of reservation Aloha with a frame of /N slots, where
users can adjust their transmission probabilities depending on
the number of contending users for nonreserved slots.

In practice, the number of users may vary over time as users
join and leave the system. When ternary feedback is available,
users can find the exact number of users in the system using
the protocol f as long as the number of users does not change
too frequently. The initial estimate on the number of users is set
to be the maximum number of users that the system can allow.
When users follow f based on their initial estimate, there will
be empty slots in a cycle obtained after a transient period. Once
a cycle is repeated, users can construct a new cycle by deleting
the empty slots, adjusting the number of slots in a frame equal
to the actual number of users. If some users leave the network,
empty slots will appear in a frame, and the remaining users can
reduce the length of a frame by deleting the empty slots. If some
users join the network, we require them to transmit immediately.
Then, a collision will occur, and it serves as a signal to notify the
existing users that a new user arrived in the system. Once a col-
lision occurs after a transient period, users reset their estimates
to the maximum number of users and repeat the procedure from
the beginning in order to increase the length of a frame by the
number of arriving users.

V. PROTOCOLS WITH ONE-SLOT MEMORY

A. Structure of Delay-Efficient Protocols

We now examine protocols with one-slot memory, which are
the simplest among protocols with memory. Under protocols
with one-slot memory, users determine their transmission prob-
abilities using their action—feedback pairs in the previous slot.
In Appendix A, we explain in detail how to compute throughput
and average delay under symmetric protocols with one-slot
memory using a Markov chain. Since the protocol designer
prefers a protocol with small average delay for a given level of
throughput, we consider the following reduced protocol design
problem:

D*(r) £ min D(f)

subject to T =7
;min ) (f)

Y

for 7 € [0,1] and some feedback technology p. We say that a
protocol f is delay-efficient if it solves (11) for 7 = 7(f), i.e., if
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Fig. 2. Delay-efficient protocols with one-slot memory: (a) total throughput
and average delay under delay-efficient protocols and randomly chosen proto-
cols, and (b) transmission probabilities of delay-efficient protocols.

D(f) = D*(7(f)). Also, we call the set of points {(7, D*(7)) :
T € [0,1]} the delay-efficiency boundary of protocols with
one-slot memory. Since computing 7(f) and D(f) for a given
protocol f € Fp , involves solving matrix equations, it is in
general difficult to solve (11) analytically, and thus we rely on
numerical methods.

To obtain numerical results, we consider ternary feedback,
denoted by p3, and five users, i.e., N = 5. In order to guarantee
the existence of a stationary distribution for transition matrix
Q(f), we restrict the range of f (i.e., the set of possible trans-
mission probabilities) to be [107%,1 — 10~%], instead of [0,1].
We use the function fimincon of MATLAB to solve the restricted
version of (11).4 Fig. 2(a) depicts the delay-efficient boundary
of protocols with one-slot memory, shown as a U-shaped curve.
Since the optimization problem to find delay-efficient protocols
is not necessarily convex, it is possible that the numerical re-
sults locate local minima instead of global minima. To validate
the delay-efficiency of the protocols obtained by the finincon
function, we generate 5000 symmetric protocols with one-slot
memory where transmission probabilities are randomly chosen

“We vary 7 from 099 to 001 with a step size
of 0.01. We choose the initial protocol for fmincon as
(fF(W,0), F(W, 1), f(W,e), f(T,1), f(T.e)) =(1/N.0,1/(N — 2),1,0)
for 7 = 0.99 and use the solution for 7 = n X 0.01 as the initial protocol
forr =(n—1)x 0.0l fromn =99 ton = 2.
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on [0,1] and plot total throughput and average delay under those
protocols as dotted points in Fig. 2(a) (in the figure, only 3631
points with average delay less than 100 are shown). The results
in Fig. 2(a) suggest that the numerically computed protocols are
indeed (at least approximately) delay-efficient.5 Fig. 2(b) plots
the transmission probabilities under the delay-efficient proto-
cols, denoted by f*, as 7 varies. It shows that the structure of
f* changes around 7 = 0.41, which is also the turning point
of the delay-efficiency boundary. There is numerical instability
for 7 between 0.41 and 0.48 in that the solution depends highly
on the initial protocol. In fact, for 7 in that region we can find
protocols that yield average delay slightly smaller than those in
Fig. 2(a) by specifying different initial protocols.

In the following, we provide an explanation for the shape of
the delay-efficiency boundary by investigating the structure of
the delay-efficient protocols. In the low throughput region (7 <
0.21), the structure of f* is given by

fr(W,0) €0,0.2], f*(W.1)=1,
f(T,1) =0, f*(T,e) € [0.65,1].

f*(Wee) =0

Since f*(T,1) = 0 and f*(W, 1) = 1, a success lasts for only
one slot and is followed by a collision. Since f*(T', e) is high, a
collision is likely to be followed by another collision. Similarly,
an idle slot is likely to be followed by another idle slot since
f*(W,0) is low. This means that total throughput is kept low
by inducing many idle or collision slots between two successes.
Hence, as total throughput increases in the low throughput re-
gion, the expected number of idle or collision slots between two
successes is reduced, and as a result users transmit their packets
more frequently. According to the P-K formula (7), average
delay is determined by the mean and the coefficient of variation
of the interpacket time. On the left-hand side of the delay-effi-
ciency boundary (7 < 0.4), the average interpacket time is re-
duced while the coefficient of variation of the interpacket time
remains about the same as 7 increases, resulting in an inverse
relationship between throughput and average delay.

In the high total throughput region (7 > 0.82), the structure
of f* is given by

N 1
f (er)fvm

(12)

" 1
f (W,O) ""’Na

f*(T71> =1,

ST, 1) =0,
f*(T,e) =0.

In a slot following an idle slot, users transmit with probability
close to 1/N. In a slot following a success, the successful
user transmits with probability 1, while other users wait with
a high probability. The transmission probability of other users
approaches 0 as 7 becomes close to 1. In a slot following a
collision, users that transmitted in the collision wait, while
other users transmit with probability close to 1/(/N — 2). Since
a collision involving two transmissions is most likely among
all kinds of collisions, setting f*(W,e) = 1/(N — 2) maxi-
mizes the probability of success given that colliding users wait.
f*(T,1) = L and f*(W,1) ~ 0 is the key feature of protocols
with one-slot memory that achieve high total throughput. By
correlating successful users in two consecutive slots, protocols

5Another interesting point to notice from Fig. 2(a) is that most of the ran-
domly chosen protocols yield throughput-delay pairs close to those achieved by
memoryless protocols. It suggests that protocols with one-slot memory need to
be designed carefully in order to attain total throughput above the maximum
level achievable with memoryless protocols.
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Fig. 3. TIllustration of an optimal protocol.

with one-slot memory can yield total throughput arbitrarily
close to 1. However, higher throughput is achieved by allowing
a successful user to use the channel for a longer period, which
makes other users wait longer until they transmit next time. On
the right-hand side of the delay-efficiency boundary (7 > 0.4),
the coefficient of variation of the interpacket time increases
without bound as 7 approaches 1, resulting in a positive rela-
tionship between throughput and average delay.

Since the protocol designer prefers a protocol that yields high
total throughput for a given level of average delay, optimal pro-
tocols must lie on the right-hand side of the delay-efficiency
boundary. As an illustrative example, suppose that the utility
function of the protocol designer is given by

U(r,D) = —max {200(1 — 7), D} .

Then, an increase in total throughput by 0.1 has the same utility
consequence as a decrease in average delay by 20 slots. In Fig. 3,
dashed curves depict the indifference curves of the utility func-
tion, each of which represents the throughput-delay pairs that
yield the same level of utility, while the arrow shows the in-
creasing direction of the utility function. The throughput-delay
pair that maximizes the utility of the protocol designer is (0.792,
41.6), marked with an asterisk in Fig. 3. The protocol designer
can determine the optimal protocol f° given (M, p) = (1, p3)
by finding a protocol f € Fi ,, that yields (7(f), D(f)) =
(0.792,41.6), which is

f°(W,0) =0.20,
£o(T,1) =0.99,

Fo(W, 1) = 0.03,
fe(T,e) =0.

fe(W,e) =0.34
(13)

B. Robustness Properties of Delay-Efficient Protocols

1) Unknown Number of Users: We relax the assumption that
users know the exact number of users in the system. Instead, we
assume that each user has an estimate on the number of users
and executes the prescribed protocol based on the estimate.® We
consider a scenario where there are 10 users and ternary feed-
back is available. For simplicity, we assume that the objective of
the protocol designer is to achieve total throughput 0.9 and that

6In other words, the protocol designer specifies not a fixed protocol but a
protocol as a function of the numbers of users.
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Fig. 4. Total throughput and average delay under delay-efficient protocols
based on the estimated numbers of users when the actual number of users is ten.

all users have the same estimate on the number of users, which
will be the case when users use the same estimation method
based on past channel feedback. Fig. 4 shows a portion of
the delay-efficiency boundary with N = 10 and plots the
throughput-delay pairs when the 10 users follow delay-efficient
protocols that are computed to achieve total throughput 0.9
based on the estimated number of users, denoted by N, be-
tween 7 and 13. The results from Fig. 4 suggest the robustness
of delay-efficient protocols with respect to variations in the
number of users in the sense that as the estimated number of
users is close to the actual one, the protocol designer obtains a
performance close to the desired one.

Based on the observations from Fig. 4, we can consider the
following procedure to dynamically adjust the estimates of
users. Users update their estimates periodically by comparing
the actual total throughput since the last update with the de-
sired total throughput.”? Users increase (resp. decrease) their
estimates by one if the actual total throughput is lower (resp.
higher) than the desired total throughput by a certain threshold
level. When designed carefully, this estimation procedure will
make the estimated number of users converge to the actual
number of users because the actual total throughput is lower
than (resp. equal to, higher than) the desired total throughput
if the estimated number of users is smaller than (resp. equal
to, larger than) the actual number. This procedure can be
regarded as an extension of the pseudo-Bayesian algorithm of
[4] in which users adjust their estimates in every slot based
on the channel feedback of the previous slot. In the proposed
estimation procedure, memory is utilized not only to coordinate
transmissions but also to estimate the number of users.

2) Errors in Feedback Information: So far, we have restricted
our attention to deterministic feedback technologies. We relax
this restriction and consider stochastic feedback technologies.
As discussed in Section II-B, stochastic channel feedback for
user 7 can be represented by a mapping h; from A to A(H;).
If the structure of channel feedback, (h1,...,hx), is known to
the protocol designer, it can be modeled in the transition matrix
Q(f) in Section III by extending the state space from AM to
(Ef)\’ ). Then, the protocol designer can find an optimal pro-
tocol taking into account randomness in feedback information.

TNote that users can compute the actual total throughput using ternary feed-
back.
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TABLE II
TOTAL THROUGHPUT AND AVERAGE DELAY WITH A STOCHASTIC FEEDBACK
TECHNOLOGY

| Total throughput [ Average delay |

Analysis 0.7920 41.5935

e=0 0.7910 41.2375

e=0.01 0.7667 37.4377

e =0.02 0.7441 33.4907

Simulation €= 0.03 0.7235 314114
€= 0.05 0.6844 28.0600

e =0.07 0.6467 25.2149

e =0.10 0.6049 22.9282

e=0.20 0.4996 19.0503

Here, we introduce random errors in channel feedback that
are not modeled by the protocol designer, and we examine the
performance of an optimal protocol in the presence of random
errors. We assume that ternary feedback is available but subject
to random errors. In particular, a user obtains the correct feed-
back signal with probability 1 — 2¢ and each of the two incor-
rect signals with probability €, for a small e > 0. For example,
if there is no transmission in the system, then a user receives
feedback O with probability 1 — 2¢ and each of feedback 1 and e
with probability €. We assume that the feedback signals of users
are independent. We continue to assume that ACK feedback is
perfect, and thus transmitting users always learn the correct re-
sults of their transmission attempts, regardless of the realization
of channel feedback.

Table II shows the performance of the optimal protocol f°
in (13) at the various levels of ¢ when N = 5. To obtain the
simulation results, we generate transmission decisions and
feedback information for 100000 slots, for each level of e.
Table II suggests that delay-efficient protocols have a robust-
ness (or continuity) property with respect to random errors in
feedback information, since the obtained performance is close
to the desired one when the error level is small. Note that an
error occurring to a waiting user following a success induces
the user to transmit with a higher probability (i.e., to transmit
with probability f°(W,0) or f°(W,e) instead of f°(W,1)),
making consecutive successes last shorter. Thus, as the error
level increases, both total throughput and average delay de-
crease. The obtained throughput-delay pairs remain close to the
delay-efficiency boundary, suggesting that errors following an
idle or a collision slot cause little performance degradation.

C. Comparison of Channel Feedback

We now analyze the impact of the different forms of channel
feedback on the performance of protocols with one-slot
memory. As mentioned in Section II-C, the set of available
protocols Fjs,, expands as the feedback technology p be-
comes more informative (in other words, a protocol f € Fur )
can always be replicated by another protocol f' € Fay
if p/ is more informative than p). This relationship implies
that a more informative feedback technology yields a lower
delay-efficiency boundary for a given length of memory. We
consider six feedback technologies with ACK feedback and
different channel feedback models: no channel feedback, S/F
binary feedback, C/NC binary feedback, E/NE binary feedback,
ternary feedback, and (N + 1)-ary feedback, as introduced
in Section II-B. Fig. 5 depicts the delay-efficiency boundaries
of protocols with one-slot memory under the six feedback
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technologies. As expected, for a given level of throughput, the
minimum average delay becomes smaller as we move from
no feedback to binary feedback, to ternary feedback, and to
(N + 1)-ary feedback.8

Fig. 5 shows that in the operating region of the protocol
designer (i.e., the right-hand side of the delay-efficiency bound-
aries), protocols with one-slot memory perform worse under
no channel feedback and C/NC binary feedback than under
other considered channel feedback. In order to obtain high
throughput with one-slot memory, we need a high correlation
between successful users in two consecutive slots, which
requires f(W,1) =~ 0 and f(7T,1) =~ 1. However, under no
channel feedback or C/NC binary feedback, a waiting user
cannot distinguish between idle slots and success slots, leading
to f(W,0) = f(W, 1) = 0. This makes idle slots last long once
one occurs, resulting in large average delay. Under S/F binary
feedback, a user is constrained to use f(W,0) = f(W,e). As
can be seen in Fig. 2(b), the values of f(W,0) and f(W, e) are
not much different in delay-efficient protocols under ternary
feedback. Thus, using a single probability f(W,0 U e) instead
of two different probabilities, f (W, 0) and f (W, e), causes only
minor performance degradation. Under E/NE binary feedback,
a delay-efficient protocol with one-slot memory that achieves
high throughput has the following structure:

1
W0~ 5, f(W,1Ue) =0
AT, 1) ~1, f(T,e)=~ % (14)

Following a collision, only colliding users transmit under (14)
whereas only noncolliding users transmit under (12). Fig. 5
shows that the restriction that E/NE binary feedback imposes
compared to ternary feedback has a small impact on perfor-
mance. Fig. 5 also shows that the improvement in performance
from having (N + 1)-ary feedback over ternary feedback is
only marginal. The ability of users to distinguish the exact
numbers of transmissions in collisions does not help much
because collisions involving three or more transmissions rarely
occur under ternary feedback in the high throughput region.

8In Fig. 5, average delay is smallest under C/NC binary feedback for 7 =
0.42 and 0.43, which is a result of numerical instability around the turning point
of the delay-efficiency boundaries, as pointed out in Section V-A.
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D. Comparison of Protocols

We consider N = 5 and compare the performance of four
different kinds of protocols: protocols with one-slot memory,
two-state protocols in [3], memoryless protocols, and TDMA.
In Fig. 6, the delay-efficiency boundary of protocols with
one-slot memory is shown assuming no channel feedback (i.e.,
ACK feedback only) because two-state protocols can be imple-
mented without using channel feedback. [3] proposes two-state
protocols of the form pp = 1 and pg = 1 — V" /1—1/n,
where 7 is called a short-term fairness parameter, which
measures the average duration of consecutive successes. We
vary 1/n from 0.01 to 1 with a step size of 0.01 to generate
the throughput-delay pairs under two-state protocols plotted
in Fig. 6. The result confirms that total throughput achiev-
able with a two-state protocol is bounded from above by
N/(2N — 1) = 5/9, whereas protocols with one-slot memory
can attain any level of total throughput between 0 and 1. More-
over, in the range of total throughput achievable with a two-state
protocol, delay-efficient protocols with one-slot memory yield
smaller average delay than two-state protocols. Since two-state
protocols with pp = 1 can be considered as imposing a restric-
tion of f(W,0) = f(T,e), these results suggest that there is
a significant performance degradation by assigning the same
transmission probability following the two action—feedback
pairs, (W, () and (7', e). Moreover, by combining Fig. 6 with
Fig. 5, we can see that the performance degradation from using
a two-state protocol instead of a protocol with one-slot memory
is severer when channel feedback is available.

A symmetric memoryless protocol can be represented
by a single transmission probability, which is used regard-
less of past histories. The throughput and average delay of
user ¢ under memoryless protocol f € [0,1] are given by
r(f) = f(L— H¥ Tand D(f) = 1/f(1 — )1~ 0.5,
respectively. The optimal memoryless protocol is thus the
transmission probability that maximizes 7;(f) and minimizes
D(f) at the same time, which is given by fo = 1/N [16]. The
throughput-delay pairs under memoryless protocols in Fig. 6
are obtained by varying f from O to 1. The lower-right point of
the throughput-delay curve corresponds to the throughput-delay
pair under the optimal memoryless protocol, (7(fo), D(fo)) =
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(1 = 1/N)N-1 N/(1 — 1/N)N=1-0.5) = (0.41,11.71).
Protocols with one-slot memory also outperform memoryless
protocols in that protocols with one-slot memory support a
wider range of achievable total throughput than memoryless
protocols do. In Section IV, we have seen that TDMA achieves
the most preferred throughput-delay pair, (1, N/2) = (1,2.5).
Protocols with one-slot memory cannot achieve the most pre-
ferred throughput-delay pair because memory of length at least
(N — 1) slots is necessary to obtain it.

VI. APPLICATION TO WIRELESS LOCAL AREA NETWORKS

In the idealized slotted multiaccess system considered so far,
all packets are of equal size, the transmission of a packet takes
the duration of one slot, and users receive immediate feedback
information. We relax these assumptions to apply protocols with
memory to WLANS. In particular, packet sizes may differ across
packets, and we take into consideration propagation and detec-
tion delay as well as overhead such as a packet header and an
ACK signal. We consider a WLAN model where users follow
arandom access scheme using transmission probabilities based
on CSMA/CA. In the WLAN model, the duration of slots de-
pends on the channel state (idle, success, or collision). Let oy,
o1, and o9 be the duration of a slot when the channel state is idle,
success, and collision, respectively. Expressions for o1 and o9
can be found in (14) and (17) of [17], depending on whether the
RTS/CTS mechanism is disabled or not. Total throughput is ex-
pressed as

PE[P]
T =
Pyoog + Proy + Proa

15)

where F[P)] is the average packet transmission duration and Py,
Py, and P, are the fractions of idle, success, and collision slots,
respectively. In the idealized slotted model, we assume that the
size of each packet is equal to the slot duration and ignore over-
head so that 0y = 01 = 02 = E[P), and thus the expression for
total throughput in (15) is reduced to Py, the fraction of success
slots. [17] shows that the IEEE 802.11 DCF protocol can be ap-
proximated by a protocol that prescribes a single transmission
probability, i.e., a memoryless protocol. The transmission prob-
ability corresponding to DCF is determined as a function of the
minimum and maximum contention window sizes by solving
(7) and (9) of [17] simultaneously. In Appendix B, we derive the
expressions for throughput and average delay under symmetric
protocols with one-slot memory and memoryless protocols in
the WLAN model.

Fig. 7 depicts the delay-efficiency boundaries of protocols
with one-slot memory under ternary feedback and E/NE binary
feedback. It also plots the throughput-delay pairs under memo-
ryless protocols as well as the throughput-delay pair achieved
by the memoryless protocol corresponding to DCF. To obtain
numerical results, we consider N = 5 and use parameters
specified by IEEE 802.11a PHY mode-8 [18], which can be
found in Table I of [19]. The values of E[P], g9, o1, and
o9 are 341.33, 9, 419.56, and 400.48, respectively, in us. To
find the transmission probability corresponding to DCF, we
use the minimum and maximum contention window sizes
CWin = 16 and CWp,.x = 1024. An upper bound on total
throughput can be obtained by setting P; = 1, which yields
7 = E[P]/o1 =~ 0.8136. We compute delay-efficient protocols
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Fig. 7. Total throughput and average delay under delay-efficient protocols with
one-slot memory and memoryless protocols in the WLAN model.

with one-slot memory for 7 between 0.01 and 0.81 with a step
size of 0.01 using the same numerical method as in Section V.

Comparing Fig. 7 to Fig. 6, we can see that by utilizing a car-
rier sensing scheme, memoryless protocols resolve contention
more efficiently in the WLAN model than in the slotted mul-
tiaccess model. Since idle slots are much shorter than colli-
sion slots in WLAN, idle slots have much smaller effects on
total throughput and average delay than collision slots have.
Thus, in WLAN, transmission probabilities can be set low to
achieve a success without experiencing many collisions. Car-
rier sensing also induces the turning point of the delay-effi-
ciency boundaries in WLAN to occur around 7 = 0.69, yielding
the narrower and steeper right-hand side of the delay-efficiency
boundaries. The main findings in Section V-D—that protocols
with one-slot memory can achieve smaller average delay for
a given level of total throughput and a wider range of total
throughput compared to memoryless protocols—remain valid
in the WLAN model. On the right-hand side of the delay-effi-
ciency boundaries, i.e., for 7 > 0.7, the delay-efficient protocols
with one-slot memory under ternary feedback have the struc-
ture of f(W,1) = f(W,e) = 0, and thus the performance is
not affected by having E/NE binary feedback instead of ternary
feedback.

VII. CONCLUSION

In this paper, we have investigated how memory can be uti-
lized in MAC protocols to achieve coordination without relying
on explicit control messages. With (N — 1)-slot memory, N
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users can share the channel as in TDMA. With one-slot memory,
high throughput can be obtained by correlating successful users
in two consecutive slots, which results in large average delay.
Generalizing these results, with M -slot memory, where M <
N — 2, we can have the first M successful users use the channel
alternatingly, while a collision created by a nonsuccessful user
with a small probability leads to a potential change of hands for
the collision slot.

Our framework can be extended in several directions. First,
we can consider asymmetric protocols to provide quality-of-ser-
vice differentiation across users. Second, as the literature on re-
peated games suggests, memory can also be used to sustain co-
operation among selfish users. By utilizing memory, users can
monitor the behavior of other users and punish misbehavior.
Third, we can analyze protocols with memory in a multipacket
reception model, which includes channels with capture as a spe-
cial case [20]. Lastly, the basic idea of this paper can be carried
over to a general multiagent scenario where it is desirable to
have one agent behave in a different way than others.

APPENDIX A
DERIVATION OF THROUGHPUT AND AVERAGE DELAY UNDER
SYMMETRIC PROTOCOLS WITH ONE-SLOT MEMORY
IN THE SLOTTED MULTIACCESS SYSTEM

Exploiting the symmetry of protocols, we consider a Markov
chain for a representative user whose state is defined as a pair of
its transmission action and the number of transmissions, instead
of a Markov chain with the state space A as in Section III. Let
user ¢ be the representative user. The state of user 7 in the current
slot when the outcome of the previous slot was a is given by
s = (a;,k(a)). We use S to denote the set of all states, as
defined in Section II-B. There are total 2/V states, which we list
as

(T,l)(T,N),(VV,O),/(WN— 1)

(16)

Suppose that users follow a symmetric protocol f € F .
Then we can express the transition probabilities across states in
terms of f. If user ¢ is in state (7', k), then k users including
user ¢ transmit with probability f(T, p(T,k)), and (N — k)
users with probability f(W, p(W, k)). Hence, a transition from
(T, k) to (T, k") occurs with probability as shown in (17) at the
bottom of the page, for k' = 1,..., N, and to (W, k') as shown
in (18) at the bottom of the next page, for ¥ = 0,...,N —
1, where Ny is the set of nonnegative integers. Similarly, if
user ¢ is in state (W, k), then & users transmit with probability
f(T,p(T,k)), and (N — k) users including user ¢ with proba-
bility f(W, p(W, k)). A transition from (W, k) to (T, k") occurs
with probability as shown in (19) at the bottom of the next page,

Q (T, KT, k); ) = f (T, p(T, k))

>

(")

{w)eNgrry=k'—1,0<h—1,y<N-k}

(1= (T, p(T, k)1 (

N -k

: )f (W, (W, k) (1 — 1 (W, oW ) | a7y
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fork’ =1,..., N,and to (W, k') as shown in (20) at the bottom
of the page, for k¥’ = 0,...,N — 1.

Using (17)—(20), we obtain a (2N x 2N) matrix Q(f). The
(4, 7")-entry of Q(f) is the transition probability from state j to
state j/, where the states are numbered in the order listed in (16).
If f is chosen so that f(a, p(a,k)) € (0,1) for all (a,k) € S,
then the Markov chain is irreducible and there exists a unique
stationary distribution v(f) on S, represented by a row vector
of length 2N, that satisfies

v(f) =v(HQ()

where es v is a column vector of length 2N whose elements are

all 1 [13]. Let s* 2 (T, 1) be the state of a successful transmis-

sion. Then, the throughput of user ¢ is given by the first element
of v(f), i.e.,

and v(f)eay =1

7i(f) = v(s™; f)-

By symmetry, total throughput is given by 7(f) = N7;(f).
Using (5), we obtain the relationship

di(s;f)=1+ Y. Q(s'Is; )di(s: f)
}

s’€S\{s*

21

for all s € S. Let d;(f) be the column vector consisting of
d;(s; f) and Qo(f) be a matrix obtained by replacing all the
elements in the first column of Q(f) by 0. Then, (21) can be
expressed as the following matrix equation:
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Solving (22) for d;(f), we obtain
d;(f) = (Ioy — Qo(f)) " ean

assuming that the inverse exists, where Iy is the (2N x 2N)
identity matrix. Since the long-run frequency of each state is
given by the stationary distribution v(f), the average delay of
user ¢ can be expressed as

D(f) = v(f)di(f) —0.5.

Also, the average interpacket time is given by the first element

of d;(f), ie., Di(f) = di(s*; f).

APPENDIX B
DERIVATION OF THROUGHPUT AND AVERAGE DELAY UNDER
SYMMETRIC PROTOCOLS WITH ONE-SLOT MEMORY AND
MEMORYLESS PROTOCOLS IN THE WLAN MODEL

Let f be a symmetric protocol with one-slot memory. The
long-run fractions of idle, success, and collision slots are given
by

Po(f) =v((W,0); f)
Pi(f) =v((T,1); f) +v (W, 1); f)
Py(f) =1— Po(f) — Po(f)-

Using (15), total throughput under f in the WLAN model can
be written as

(23)
(24)

_ Pi(DELP)
di(1) = Qo(H)di(f) +ean. 2) "= BBt P+ B P
, k—1 ©
QUW.K)|(T.K): ) = (1~ F (T.p(T. k) > (")

{(=z,y)eNZ:a+y=FK 2<k-1,y<N—k}

X (1= f (T, o(T, k))<= (Ny‘ k)f (W, p(Wa k) (1= £ (W, oW k)| (18)

Q (T, K)(W. k); f) = f (W, p(W. k))

>

Ki) f (T, p(T, k)"

{(z,y)eENZ:a+y=k —1,2<k,y<N—k—1}

X (1= f (T, p(T. k)"~ (N B y’“ - 1>f (W (W, k) (1= £ (W, (W, ) 17| (19)

Q (WKW, k); f) = (1= f (W, p(W, k)))

>

[(i) f (T, p(T, k))”

{(=z,y)eN2:z+y=k' 2<k,y<N—k—1}

< (1= F (T, p(T K~ (

N—-k-1

Y

)f (W, p(W, k)" (1= F (W, p(W. k)~ —1=7| (20)
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In the WLAN model, we define the average delay of a user
as the average waiting time (measured in a time unit) until the
beginning of its next successful transmission starting from an ar-
bitrarily chosen time. We define d;(s; f) as the average waiting
time of user ¢ starting from the beginning of a slot whose out-
come yields state s to user 7. Let o(s) be the duration of a slot
yielding state s, i.e., o(W,0) = 0¢,0(a,1) = o1 fora =T, W,
and o(a, k) = og fora = T,W and k > 2. Then, (21) can be
modified as

di(s; f) = o(s) + (26)

>

s’eS\{s*}

Q(ss; [)di(s's f).

Let b be the column vector of the durations of slots, i.e., b 2
(o(T,1)o(T,2) --- o(W,N —1))T. Then, (26) can be written
as a matrix equation

di(f) = Qo(f)di(f) + b.

Solving (27) for d;(f), we obtain

di(f) = (Toy — Qo(f)) ' b.

27

The probability that an arbitrarily chosen time belongs to a slot
yielding state s is given by

v(s; fo(s)
Ywesv(ss flo(s)

Note that a user stays in the initial slot for the half of its duration
on average. Let y(f) be the row vector consisting of y(s; f).
Then, the average delay of user 7 under protocol f can be com-
puted by

y(s; f) =

D(f) = y(f)[di(f) — 0.5b] .

Now, let f be a symmetric memoryless protocol, which
is simply a single transmission probability. Then, (23)
and (24) can be expressed as Po(f) = (1 — f)V and
Pi(f) = Nf(1 — f)N=1, respectively, and we can use (25)
to compute total throughput. When users follow a memoryless
protocol f, the average waiting time starting from the next slot,
di(s; f) — o(s), is independent of s, and thus we write the
value as d;(f). Manipulating (26) yields

5 N [Po(f)oo + Po(f)oe] + (N = DPi(f)os

The average waiting time until the next slot is given by
_1 __Po(f)ad + Pi(f)of + Po(f)o3
"= = 3R Flow + Pr(Des + PolDoal

Hence, average delay under memoryless protocol f can be com-
puted by

D(f) =r(f) + di(f)-
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