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Generalized Phase Shifting for -Band Discrete Wavelet
Packet Transforms

Yiannis Andreopoulos and Mihaela van der Schaar

Abstract—This correspondence presents a novel method for the construc-
tion of translation-invariant discrete wavelet packet (TIDWP) transforms
for any decomposition level , starting from any phase of a critically sam-
pled discrete wavelet-packet representation of level . The process is per-
formed by phase shifting, i.e., the direct recovering of the wavelet coef-
ficients omitted by the downsampling operations of each decomposition
level without reconstructing the input signal. The proposed method enables
tradeoffs between memory utilization and computational efficiency for the
construction of translation-invariant representations. Hence, it is useful in
resource-constrained TIDWP-based applications of digital signal compres-
sion, image segmentation and detection of transients.

Index Terms—Best-basis selection, complexity and memory aspects,
overcomplete discrete wavelet packet (WP) transforms, translation
invariance.

I. INTRODUCTION

Wavelet packet (WP) transforms represent a generalization of the
method of multiresolution decomposition and comprise the entire
family of subband (tree) decompositions [1]. They offer fast access to
a rich menu of bases from which the “best basis” can be chosen [2],
[3]. The basic framework was extended to include translation-invariant
representations by numerous researchers [4]–[8] in order to treat
signals with transient or nonlinear behavior. The importance of (near)
translation-invariant representations is highlighted also by recent
research advances in the context of Hilbert and tight frame wavelets
[9], [10]. Translation-invariant discrete wavelet packet (TIDWP) trans-
forms have already been used in a variety of contexts like transient
signal detection [6], feature extraction for texture and image segmen-
tation [11], [12], image [4], audio [13] and signal compression [14],
[15] and location establishment of complicated events from discrete
measurements [16]. For the vast majority of these applications, the
TIDWP decomposition is performed up to a certain decomposition
level; then a best-basis selection algorithm is applied using an appro-
priate cost function, such as the entropy or threshold-counting metrics
[2], [4], or textural measures [11]. Best-basis algorithms begin from
the TIDWP decomposition of a certain level k [4], [14] and operate
in a bottom-up manner (coarse-to-fine resolution) to identify the
subbands that contain the most significant features for the application
of interest, with respect to the given cost function. In this way, the
complexity of the decomposition and best-basis selection is guaranteed
to be O(N log

M
N) for an N -sample signal analyzed by an M -band

system [2], [14].
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The good performance of TIDWP transforms stems from the fact that
good frequency localization is provided and, unlike the conventional
WP transforms, the temporal resolution is not sacrificed since the ef-
fect of downsampling is alleviated by periodic translation of the input
[4]. Fig. 1 presents a pictorial explanation for a two-band system. For
each decomposition level k, all the low-pass and bandpass subbands1

(Ak�1m (z) and Dk�1

m (z) respectively, with 0 � m � 2k�1 � 1 indi-
cating the wavelet-packet number), or the input signalX(z) for k = 1,
are decomposed by the critically-sampled discrete wavelet transform.
For any level k = 1, 2, 3 in Fig. 1, if we define a discrete wavelet
packet as w

k

m(z)
0
= [ Akm(z)

0
D
k

m(z)
0
]T , the critically sam-

pled (complete) WP transform consists of packets w
1

0(z)
0

for k = 1,
w
2

0(z)
0

and w
2

1(z)
0

for k = 2, and finally w
3

0(z)
0
, w3

1(z)
0
,

w
3

2(z)
0

and w
3

3(z)
0

for k = 3 [6]. However, in order to provide
translation invariance, one must also obtain the alternate polyphase
components for each decomposition of each level k [17]–[20]. This
leads to the all-phase [18], [19] discrete wavelet packet decomposi-
tion, i.e., the TIDWP transform [4]–[6], which is overcomplete with a
redundancy of Mk for anM -band decomposition at level k.

In Section II, based on prior work [17]–[20], we present a method for
the construction of any phase component nd of theM -band TIDWP of
level k, starting from a complete WP decomposition of level k that may
be of arbitrary phase ns, with 0 � ns, nd � Mk � 1 and ns 6= nd.
The benefits of the proposed approach are in the flexibility offered
for trading off memory for computational resources in TIDWP trans-
form applications (e.g., best-basis selection algorithms), as explained
in Section III. Experimental results are presented in order to instantiate
the benefit of such tradeoffs in a real system. Our conclusions are pre-
sented in Section IV.

II. PHASE SHIFTING IN TIDWP TRANSFORMS

A. General

Starting from the basic multirate identities [21], in the general case
of subsampling by M , the polyphase separation of a signal X(z) is
given by DX(z) = [[X(z)]0 . . . [X(z)]M�1]

T , with the com-
mutative operation given by D�1DX(z) = M�1

m=0
z
m[X(zM)]m =

X(z). The Type-I analysis polyphase matrix that produces the zeroth
polyphase component of theM -band discrete wavelet transform is de-
noted by E0(z); its definition is

E0(z) =

[H0(z)]0 . . . [H0(z)]M�1
...

. . .
...

[HM�1(z)]0 . . . [HM�1(z)]M�1

(1)

with Hm(z) the mth analysis filter (0 � m � M � 1). Correspond-
ingly, for the mth polyphase component of the transform decomposi-
tion, 1 � m � M � 1, we have

Em(z) = E0(z)Pm(z) (2)

with

Pm(z) = z
0 Im

z
�1
IM�m 0

1All signals and filters are considered in the Z-domain as Laurent polyno-
mials, and the letter z is reserved for this purpose. All the used indexes are
integers. For all matrices, vectors, signals and filters, the superscripts denote the
decomposition level, except for superscript T that denotes transposition. Sub-
scripts are used to enumerate signals or filters in matrices and vectors. In addi-
tion, notation [Q(z)] indicates the Type-I ith polyphase component of signal or
filterQ(z) [20], (x) denotes the base-M representation of scalarx (M > 1),
and bxc denotes the largest integer not greater than x.
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Fig. 1. Two-band translation invariant discrete wavelet packet decomposition of signal X(z) for decomposition levels k = f1; 2; 3g.

denoting the pseudocirculant matrix2 [21]. For example, based
on (1), for the case of M = 2 corresponding to Fig. 1, we
have A1

0(z) m
= [D(zmH0(z))]

T DX(z) and D1
0(z) m

=

[D(zmH1(z))]
T DX(z). The corresponding Type-II synthesis

polyphase matrices are Rm(z) = [Em(z)]�1, i.e.,

R0(z) = (E0(z))
�1 (3)

for m = 0, and for any 1 � m � M � 1, we have

Rm(z) = z�1PM�m(z)R0(z) (4)

based on the properties of the pseudocirculant matrix [21]. In order to
simplify the expressions, we always assume (without loss of generality)
that det E0(z) = a, a 6= 0.

B. Generalized Phase Shifting for M � 2

For the generic case of an M -band TIDWP transform, for any
decomposition level k, we shall study the construction of any WP m
of phase nd (destination phase component) from the WPs of phase
ns (starting phase component), where 0 � ns, nd � Mk � 1 and
0 � m �Mk�1�1. Moreover, sinceM bandpass filters are applied at
every decomposition level, M subbands are contained in each WP m,
denoted by w

k
m(z)

n
= [ Sk0;m(z)

n
. . . SkM�1;m(z)

n
]T

(for phase ns of level k). For the example of Fig. 1, we have
Sk0;m(z)

n
= Ak

m(z)
n

and Sk1;m(z)
n

= Dk
m(z)

n
. The

following two propositions present the case of decomposition levels
one and two, respectively, and facilitate the understanding of the
general proposition for an arbitrary level E = k.

Proposition 1—Generalization of Proposition 1 in [19] and of the
Basic solution in [18] and of Prediction Rule 1 of [17]: For anM -band
perfect reconstruction filter bank with E = 1 decomposition level,
the construction of the WP of phase nd by the WP of phase ns, with
0 � ns, nd � M � 1, and ns 6= nd is performed as

w
1
0(z) n

= F
1(z) w1

0(z) n
(5)

2The pseudocirculant matrix is multiplied by z since, similar to our prior work
[18], [19], we are shifting the analysis filters instead of the input signal. Both
approaches are equivalent, but shifting the analysis filters facilitates the actual
implementation.

with the phase-shifting matrix of level one given by

F
1(z) =

F 1
0;0(z) . . . F 1

0;M�1(z)
...

. . .
...

F 1
M�1;0(z) . . . F 1

M�1;M�1(z)

= z�1+br=Mc
ErmodM (z)R0(z) (6)

where r = M+nd�ns, a mod b = a�bba=bc the modulo operation
(a; b 2 +), and F 1

i;j(z) are the phase-shifting filters of level one,
0 � i, j � M � 1.

Proof: We can reach (5) by performing an inverse transform to
subbands w

1
0(z) n

followed by a forward wavelet transform that re-
tains the nd polyphase components of the nondecimated decomposi-
tion [18], [19], i.e.,

w
1
0(z) n

= En (z)DD�1
Rn (z) w1

0(z) n
: (7)

An example can be seen in Fig. 1 for M = 2. In order to obtain the
final result, we replace the analysis and synthesis polyphase matrices
based on (2) and (4), and the following property is used for the product
of two pseudocirculant matrices [21], for any 0 � ns, nd � M � 1,
as follows:

if ns + nd 6=M : Pn (z)Pn (z) = zb(n +n )=Mc

�P(n +n ) mod M (z) (8)

if ns + nd =M : Pn (z)Pn (z) = z � I: (9)

Numerical examples of the derived filters from Proposition 1 for pop-
ular filter banks with M = 2, ns = 0, nd = 1 can be found in our
recent work [20].

Proposition 2: For an M -band perfect reconstruction filter bank
with E = 2, the construction of WPs w

2
m(z)

n
, 0 � m � M � 1,

by the M WPs w
2
0(z) n

; . . . ; w2
M�1(z) n

, with 0 � ns, nd �
M2 � 1 and ns 6= nd is performed as

w
2
m(z)

n
=

M �1

i=0

F
l+1
m;i(z) w

2
M bm=M c+i

n
(10)

where l = [logM((nd)M � (ns)M)] with (a)M � (b)M the base-
M XOR operation3 between scalars a and b (a; b 2 ), and we set

3For M > 2, i.e., for a ternary, quaternary base, etc., the XOR function is
considered as carry-free addition, i.e., the addition operation per digit of base
M , modulo M .
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TABLE I
PHASE-SHIFTING FILTERS FOR THE 9/7 FILTER BANK (M = 2, detE (z) = �1) FOR THE CASE OF k = 2, l = 1, m = 0, n = 1, AND n = 2. THE FILTER

TAPS ARE REPORTED STARTING FROM THE MAXIMUM ORDER IN z (WHICH IS z IN THIS CASE)

8 m; i : F1m;i(z) � F
1(z). Moreover, the phase-shifting matrices of

level two, F2m;i(z), are defined as

F
2
m;i(z) =En modM (z)

� F
1
m;i(z) 0

I+

M�1

q=1

z
�1

F
1
m;i(z) q

Pq(z)

�Rn modM (z) (11)

where the filters F1(m)(i)(z) are defined by (6) with:

r = M +
nd

M
�

ns

M
: (12)

Proof: See Appendix I.
The derived phase-shifting filters for the case of k = 2, M = 2,

m = 0, l = 0, and nd > ns correspond to the filters for k = 1,
M = 2, ns = 0, nd = 1 [20]. For the case of k = 2, M = 2, m = 0,
l = 1, if we select nd > ns, an example of the derived phase-shifting
filters can be found in Table I. These filters suffice for the construction
of the zero-numbered WPs of the TIDWP of k = 2 if successive phase
shifting is used from phase nd � 1 to nd, 1 � nd � 7.

Proposition 2 indicates that, for decomposition levels beyond one,
there is a number of phase-shifting matrices, each with their own filters.
For notational simplicity, we can organize the phase shifting matrices
of any level k into a global phase-shifting matrix based on the following
definition.

Definition 1: For every decomposition level k, the global phase-
shifting matrix is defined as

G
k(z) =

Gk
0;0(z) . . . Gk

0;M �1(z)

...
. . .

...
Gk
M �1;0(z) . . . Gk

M �1�M �1(z)

=

F
k
0;0(z) . . . F

k
0;M �1(z)

...
. . .

...
F
k
M �1;0(z) . . . F

k
M �1;M �1(z)

: (13)

Definition 1 demonstrates that filter Gk
i;j(z) in the global phase-

shifting matrix of level k (with 0 � i, j < Mk) is the phase-shifting
filter at row (i mod M) and column (j mod M) of phase-shifting ma-
trix Fkbi=Mc;bj=Mc(z).

We now have enough insight to attempt a generalization of the WP
phase construction for an arbitrary decomposition level k. Our result is
given by the following proposition.

Proposition 3—Generalization of Proposition 2 for Any Level E =
k: For an M -band perfect reconstruction filter bank with E = k, the

construction of any WP w
k
m(z)

n
, 0 � m �Mk�1�1, by the WPs

w
k
0(z) n

; . . . ; wk
M �1(z) n

, with 0 � ns, nd �Mk� 1, and
ns 6= nd, is given by

w
k
m(z)

n
=

M �1

i=0

F
l+1
m;i(z) w

k
M bm=M c+i

n
(14)

where l = blogM((nd)M � (ns)M)c, and, we set 8m; i : F1m;i(z) �
F
1(z) for l = 0. For l > 0, the phase-shifting matrices Fl+1m;i(z), are

defined as

F
l+1
m;i(z) =En modM (z)

� G
l
m;i(z)

0
I+

M�1

q=1

z
�1

G
l
m;i(z)

q
Pq(z)

�Rn (z) (15)

where filters Gl
m;i(z) correspond to matrix Fl(z) and hence are de-

fined by (6) with

r = M +
nd

M l
�

ns

M l
(16)

and filters Gh
m;i(z), 2 � h � l are defined recursively by (15) with the

following replacements:

l h� 1; nd  
nd

M l+1�h
; ns  

ns

M l+1�h
:

Proof: See Appendix II.
The last proposition demonstrates that the construction of an arbi-

trary WP of level k can be performed based on a subset, or the full set,
of WPs of level k at a given phase. Alternative, albeit equivalent, for-
mulations can be derived for the phase-shifting matrices of (15) if ma-
tricesEn modM(z) andRn modM (z) are respectively replaced based
on (2) and (4)

F
l+1
m;i(z)=E0(z) z

�1
Pn modM(z)PM�n modM(z)

� Gl
m;i(z)

0
+

M�1

q=1

z
�2

G
l
m;i(z)

q

�Pn modM (z)Pq(z)PM�n modM (z) R0(z):

(17)

Several formulations may be obtained from (17) by replacing
the products of the pseudocirculant matrices based on (8) or (9), as
appropriate.
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TABLE II
COMPARISON BETWEEN THE PROPOSED DIRECT PHASE SHIFTING AND THE CONVENTIONAL MULTIRATE APPROACH (WHICH OPERATES AS SHOWN

IN FIG. 1 AND PERFORMSM SHIFTS AT EACH NODE FOR THE CONSTRUCTION OF ALL THE PHASES OF THE TIDWP DECOMPOSITION). “FILTERS”
IS THE NUMBER OF FILTER KERNELS (LOW-PASS AND HIGH-PASS) APPLIED TO THE INPUT FOR THE PRODUCTION OF THE RESULTS, WHILE

“MEMORY” IS THE MAXIMUM NUMBER OF REQUIRED WAVELET COEFFICIENTS FOR THE PRODUCTION OF THE TIDWP DECOMPOSITION. THE

LAST COLUMN SHOWS THE REDUCTION IN EXECUTION TIME OFFERED BY THE PROPOSED SUCCESSIVE PHASE-SHIFTING APPROACH VERSUS

THE LIFTING-BASED IMPLEMENTATION OF THE CONVENTIONAL MULTIRATE APPROACH

Finally, the multidimensional extension of the generalized case of
Proposition 3 is straightforward, by using independent one-dimen-
sional constructions along each direction. For example, for the case
of a TIDWP transform of level k for a C � R image, first, all the
row phases (nrow; 0) are constructed, followed by the column phases
(nrow; ncol), for each 0 � nrow, ncol � Mk � 1.

III. IMPLEMENTATION TRADEOFFS OFFERED BY THE

PROPOSED APPROACH

In general, the conventional multirate construction of the TIDWP
transform starting from the input signal consists of the algorithm with
the minimum computational complexity. However, there are two dis-
advantages for this approach.

1) Increasing memory resources are required for higher decomposi-
tion levels. For example, for any level k,N �(Mk+1�M), wavelet
coefficients are produced in order to construct the TIDWP trans-
form of an N -sample signal. This is disadvantageous since arith-
metic operations are, by far, less energy and time consuming than
on-chip and (especially) off-chip memory accesses in custom-
hardware or programmable-processor realizations.

2) The calculation order does not match the bottom-up approach fol-
lowed in best-basis algorithms [4], [8], since the fine-scale reso-
lutions are required for the production of the coarse-scale ones.
In addition, although many best-basis algorithms in the TIDWP
domain may only utilize certain phase components depending on
a priori knowledge in order to limit complexity (e.g., a priori
knowledge of signal statistics), selective or localized phase con-
struction is not facilitated by the conventional approach.

Previous research has shown that increasing the memory locality in
the execution of such data-intensive algorithms is of paramount im-
portance [22]. This indicates that, although the conventional multirate
method for the TIDWP decomposition is computationally efficient, it
can be overall impractical due to the large memory-access bottleneck.
To this end, the proposed approach can provide viable alternatives.

For example, since most TIDWP-based applications can operate in-
dependently on each phase component of the decomposition (e.g., ap-
plications based on best-basis algorithms), the direct phase shifting re-
quires a fixed amount of memory for the calculation and storage of each
phase component of the TIDWP of every level k, equal to 2N coeffi-
cients. An example of the number of applied filter-kernels, the required
memory resources and the execution times obtained by both methods
for the popular case ofM = 2 andK = 1; . . . ; 4 is found in Table II.
All compared algorithms were implemented in “C” and executed in an
Intel Pentium IV processor with 32 Kb L1 (internal) data cache and 2
Mb L2 (external) cache. A 4096-sample signal was used and the 9/7
filter-pair was chosen for our experiments, implemented with floating-
point accuracy (4 bytes per coefficient). The proposed approach per-
formed successive phase shifting from phase nd � 1 to nd (1 � nd �

2k � 1). The zero-phase wavelet coefficients of each level k were gen-
erated with the lifting-based critically sampled discrete wavelet packet
decomposition, whose execution time (and required computational and
memory overhead) was included in the comparison.

Profiling of the execution of the proposed method verified that, al-
though it generally requires more instruction-related operations in the
case of lifting-based implementations, a significantly better utilization
of the cache memory is achieved in comparison to the conventional
multirate approach. As a result, the stall cycles in the CPU due to L1
(internal) data cache-related penalties are insignificant in the proposed
approach in comparison to the conventional multirate method. We have
obtained similar results for a variety of wavelet filter pairs, and it ap-
pears that the execution time reduction depends mostly on the number
of decomposition levels.

In general, since each method is beneficial for a certain aspect
(memory or computation), a combination of both approaches, i.e.,
phase-shifting combined with forward or inverse transforms can pro-
vide the optimum operation for a particular application. In addition,
similar to our prior work [19], [20], filter symmetries can be utilized
for the reduction of the arithmetic operations in the proposed approach,
especially if multiple phase components can be kept in memory. These
modifications may provide tradeoffs in computational resources versus
memory requirements.

IV. CONCLUSION

A novel construction of an arbitrary-phase critically sampled dis-
crete wavelet packet representation was presented. At any resolution
level of an M -band discrete wavelet packet transform, the proposed
method derives any desired phase component starting from any other
phase of the critically sampled discrete wavelet packet representation
of the same level. The proposed method is the most direct approach
since it consists of the single-rate filtering of the input wavelet packet
subbands with a set of phase-shifting matrices. This provides inherent
advantages in the minimization of the intermediate memory required
for the calculation, albeit with an increase in the required computa-
tions. Hence, depending on the utilization scenario, a hybrid algorithm
combining direct phase shifting with multirate decomposition or recon-
struction can provide the optimum realization for a particular problem.

APPENDIX I

Proof of Proposition 2: Initially, it is noted that, by the definition
of l and ns, nd, for k = 2, we have 0 � l � 1.

For the case of l = 0, we can follow the same logic as in Propo-
sition 1 and establish that the proposition is true since, for every 0 �
m � M � 1, all packets w

2
m(z)

n
and w

2
m(z)

n
share the same

“parent” subband at level one, which is S1m;0(z) bn =Mc
(since l = 0,

it follows that bns=Mc = bnd=Mc). A pictorial illustration of this de-
pendency is given in Fig. 1 for M = 2. Notice that, for this case, the
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choice of the starting-phase WP index is M lbm=M lc+ i = m, which
ensures that the appropriate WP will be chosen by the phase shifting
process of (10) depending on the value of m. Hence, the proposition is
proven for this case.

For the remaining case of l = 1, where we haveM lbm=M lc+i = i,
we begin by constructing the WP w

1
0(z) n =M

as

w
1
0(z) bn =Mc

=

D�1
Rn modM (z) w2

0(z) n

...
D�1

Rn modM (z) w2
M�1(z) n

: (18)

Subsequently, due to the fact that l = 1, it is guaranteed that
bns=Mc 6= bnd=Mc. Hence, we can apply a part of Proposition 1 to
construct any subband S1m;0(z) bn =Mc

S1m;0(z) bn =Mc
=[F 1

m;0(z) . . . F 1
m;M�1(z) ] w

1
0(z) bn =Mc

:

(19)

In order to reach w2m(z)
n

, for any 0 � m � M � 1, we have

to decompose subband S1m;0(z) bn =Mc
with the analysis polyphase

matrix En modM (z). This dependency is illustrated in the example
of Fig. 1 for M = 2, where all even-numbered WPs of level two
are produced by A10(z) (which is S10;0(z)) and all odd-numbered WPs
are produced by D1

0(z) (which is S11;0(z)). After the decomposition of
S1m;0(z) bn =Mc

of (19) withEn modM (z), the resulting expression
can be expanded based on (18) and the first Noble identity [21]:

w
2
m(z)

n

= En modM(z)

�

M�1

i=0

F 1
m;i(z) 0

I+

M�1

q=1

z�1 F 1
m;i(z) q

Pq(z)

�Rn modM (z) w2
i (z) n

: (20)

It is straightforward to verify that (20) corresponds to (10) for l = 1.

APPENDIX II

Proof of Proposition 3: The proof is inductive. Initially, it is noted
that the proposition holds for E = 1, 2 since it corresponds to Propo-
sition 1 and Proposition 2, respectively. Subsequently, we assume that
the proposition holds for level E = k. It is now proven that, given the
WPs w

k+1
0 (z)

n
; . . . ; wk+1

M �1
(z)

n
, if (14) holds for E = k, it

also holds for E = k + 1.
For level k+1, by the definition of l, we have 0 � l � k. Moreover,

0 � m � Mk � 1. First, we construct all the WPs

w
k
M bm=M c(z)

bn =Mc
; w

k
M bm=M c+1(z)

bn =Mc
; . . . ;

w
k
M bm=M c+M �1(z)

bn =Mc

as (21), shown at the bottom of the page.
For l = 0, we reach w

k+1
m (z)

n
by a decomposition of subband

SkmmodM;bm=Mc(z) bn =Mc
derived in (21) withEn modM (z) since

we have bns=Mc = bnd=Mc for this case, i.e., both w
k+1
m (z)

n
and

w
k+1
m (z)

n
packets have the same “parent” subband at decomposi-

tion level k. Hence, we derive (14) for the special case of F1m;i(z) �
F
1(z), i.e., with the replacement of k by k + 1. This concludes the

proof for this case.
For the remaining cases, for each m = M � x + j, 0 � j �

M � 1, x 2 , we can apply a part of (14) to construct subband
Skj;bm=Mc(z) bn =Mc

by the derived WPs of (21), since it is true by
assumption. Also, due to the fact that l > 0, we have bns=Mc 6=
bnd=Mc, hence the proposition is applicable for our case:

Skj;bm=Mc(z)
bn =Mc

=

M �1

i=0

Gl+1
m;i�M(z) . . . Gl+1

m;i�M+M�1(z)

� wk
M bm=M c+i(z)

bn =Mc
: (22)

Notice that we chose to create subband Skj;bm=Mc(z) bn =Mc
since

it consists of the “parent” subband of the target WP w
k+1
m (z)

n
. A

pictorial example is given in Fig. 1 for levels k = 2, 3 and M = 2.
We can reach w

k+1
m (z)

n
by decomposing Skj;bm=Mc(z) bn =Mc

with En modM (z) and expanding the resulting expression based on
(21) and the first Noble identity [21]:

w
k+1
m (z)

n

= En modM (z)

�

M �1

i=0

M�1

v=0

Gl+1
m;M�i+v(z)

0

I

+

M�1

q=1

z�1 Gl+1
m;M�i+v(z)

q
Pq(z)

�Rn modM (z) wk+1
M bm=M c+M�i+v

(z)
n
: (23)

The last equation can be simplified further if we set i0 = M � i + v,
i.e., v = i0 modM for 0 � v � M � 1, as follows:

w
k+1
m (z)

n

= En modM(z)

�

M �1

i =0

Gl+1
m;i (z)

0

I

+

M�1

q=1

z�1 Gl+1
m;i (z)

q
Pq(z)

�Rn modM (z) wk+1
M bm=M c+i

(z)
n
: (24)

It is straightforward to verify that (24) corresponds to (14) with l0 =
l + 1 and, therefore, l � l0 � k. Moreover, 0 � l0 � M l � 1. As a
result, (24) corresponds to (14) with k replaced by k + 1. This means
that the proposition is true for the case of E = k + 1. Consequently,
by induction, it is true for any level E, E � 1.

w
k
M bm=M c+i(z)

bn =Mc
=

D�1
Rn modM (z) wk+1

M bm=M c+Mi
(z)

n

...
D�1

Rn modM (z) wk+1
M bm=M c+Mi+M�1

(z)
n

with 0 � i �M l � 1: (21)
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Myriad-Type Polynomial Filtering

Tuncer C. Aysal, Student Member, IEEE, and
Kenneth E. Barner, Senior Member, IEEE

Abstract—Linear combinations of polynomial terms yield poor per-
formance in environments characterized by heavy-tailed distributions.
Weighted myriad (WMy) filters, however, are well known for their outlier
suppression and detail preservation properties. It is shown here that
the WMy methodology is naturally extended to the polynomial sample
case, yielding filter structures that exploit the higher order statistics of
the observed samples while simultaneously being robust to outliers for
heavy-tailed distributions environments. Moreover, the introduced power
weighted myriad (PWMy) filter class is well motivated by analysis of cross-
and square-term statistics of heavy-tailed distributions. The effectiveness
of the proposed filter is evaluated through simulations.

Index Terms— -stable distributions, impulsive processes, myriad filters,
polynomial filtering, Volterra series.

I. INTRODUCTION

Nonlinear systems are at the heart of many contemporary signal pro-
cessing problems. A nonlinear input—output characterization that is
particularly amenable to analysis and synthesis is the discrete Volterra
series representation [1]. Nonlinear systems are, in many cases, effec-
tively represented by truncated Volterra series, which results in sim-
pler realization that requires limited knowledge of higher order statis-
tics [2]. Although the order of polynomial terms in the Volterra series
extends to infinity, many practical problems are effectively addressed
with second-order Volterra filters, which are restricted to include only
linear and second-order quadratic components [2]–[5].

The polynomial nature of the Volterra filter leads to poor per-
formance in environments characterized by impulsive distributions.
Clearly, quadratic terms residing in the second-order kernels of the
filter amplify the damaging effects of present outliers. To address
the robustness issue, the polynomial weighted median (PWM) filter
structure was recently proposed [6]. The PWM is robust to outliers
while still exploiting the higher order statistics of observed samples.
The PWM filter structure is, however, based on the assumption that
the observed samples obey Laplacian statistics, yielding a filter output
formulation given by the weighted sum of subweighted median (WM)
filter outputs. An important shortcoming of the WM-type filters
is that their output is always constrained, by definition, to one of
the samples in the window. Although, this selection characteristic
is desirable in, for example image processing applications [7], it
results in efficiency losses for many other applications [8]. It can be
argued that the inefficiency of median-based methods in practical
problems arises from their unsuitability for processing noise processes
that are found in real applications. While most noise processes that
appear in practice obey probability density functions (PDFs) that are
bell-shaped, the Laplacian model, for which the median is optimal in
the maximum-likelihood (ML) sense, has a peaky density that makes
it, in general, rather artificial [7].

In this correspondence, the class of polynomial weighted myriad
(PWMy) filters is proposed as a polynomial filtering framework with
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