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Complexity-Constrained Video Bitstream Shaping

Yiannis Andreopoulos, Member, IEEE, and Mihaela van der Schaar

Abstract—In scalable or layered video coding, bitstreams that fulfill spe-
cific rate or distortion profiles can be derived (shaped) postencoding, i.e.,
at transmission time. This can also be a very effective method for real-
time adjustment of the decoding complexity to bounds specified by the de-
coding processor or operating system. In this paper, a new type of bit-
stream shaping is discussed, which is able to fulfill various instantaneous
complexity profiles/constraints imposed by the decoder. Complexity is es-
timated by modeling generic metrics that can be translated into receiver-
specific execution-time or energy-consumption estimates. For various bit-
stream-shaping alternatives, we associate their corresponding complexity
estimates with the decoder modules via a decomposition into complexity co-
efficients and complexity functions. This process drives bitstream shaping
according to joint distortion and complexity constraints, while the pro-
posed model incurs limited online computational and storage overhead. In
addition, our experiments demonstrate that the proposed method that is
based on offline training can outperform various online training methods
commonly used for resource prediction in the literature. For each group of
pictures, our bitstream-shaping experiments indicate that the accuracy of
the proposed method permits adaptation to real-time imposed constraints
on the complexity metrics within a 10% error margin.

Index Terms—Bitstream adaptation, complexity modeling, video
streaming.

I. INTRODUCTION

Low-power reconfigurable processors with multitasking capabilities
are already used in wireless and portable devices. The user experience
during video communications through these devices is affected by the
capability of the decoding platform to adjust the video characteristics
(e.g., quality, frame rate) not only based on capacity of the transmis-
sion medium, but also on the decoding platform’s dynamic complexity
profile. This motivated both theoretical research [1] for the definition
of a complexity-distortion framework, as well as more applied frame-
works where basic signal processing algorithms [2], [3] or video coding
schemes [4]–[6] are analyzed based on the frequency of occurrence of
the highly complex operations under certain assumptions for the real-
ization platform.

In this paper, we are considering selective shaping and transmission
of bitstreams such that certain complexity constraints are met at the
decoder. In our framework, the bitstream-shaping process is defined
as the postencoding adjustment of quality levels, temporal decompo-
sition levels (for scalable coders [7], [8]), or parts of the motion in-
formation (using motion-scalability functionalities [7]) under certain
rate, distortion, and complexity constraints. Any postencoding modi-
fication of the bitstream implicitly alters the decoding realization as
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well, as the decoder modules are invoked a different number of times
and they process compressed bitstreams that require different compu-
tational and memory resources. Given real-time requirements of a par-
ticular decoder, the appropriate shaping can be performed such that the
decoder is expected to seamlessly process the received bitstream.

A. Basic Principles and Link to Previous Work

This paper presents an extension of our previously proposed com-
plexity-modeling framework [9] that is general and can fit to numerous
video decoding schemes. The derived models estimate the expected
(rather than worst-case) complexity. For each bitstream configuration,
this framework predicts the complexity associated with the various
modules of the video decoder based on complexity variables, which
represent the rate of change of nonzero transform coefficients or
nonzero motion parameters across each group of pictures (GOP).
The measured complexity variables for each video frame depend on
the bit rate, the content characteristics, as well as on the decoding
algorithm (entropy coding method used, motion model in the codec,
etc.). Given a certain set of the complexity variables for the current
GOP, we calculate complexity decomposition functions based on
the error frames and the motion vectors. In this way, these functions
capture the content characteristics. Finally, for each instantiation of
the complexity variables and decomposition functions, we calculate
complexity decomposition coefficients based on an offline training
process. These consist of a mapping of each frame’s complexity
decomposition functions to the measured complexity metrics. As a
result, they depend on the decoding algorithm and its implementa-
tion. Notice that for the same algorithm specification, a particular
implementation will influence the complexity metrics (and hence the
decomposition coefficients) but not the decomposition functions, since
the resulting representation will be identical. For example, the discrete
wavelet transform can be implemented via lifting or convolution in
literature; however, for every instantiation of the complexity variables,
the resulting transform representation of the error frame (and, hence,
the corresponding decomposition functions of our framework) will be
identical in both cases. Nevertheless, the decomposition coefficients
related to the inverse discrete wavelet transform operations at the
decoder will differ, due to the implementation differences between
lifting and convolution.

B. Contributions and Outline of This Paper

In this paper, we build on our prior work [9] and establish bitstream
truncation points using the corresponding metadata (complexity vari-
ables and decomposition functions). We propose a new framework for
bitstream shaping based on complexity constraints, which, unlike pre-
vious work [9], adapts several decoding parameters in real time in
order to comply with rapidly changing complexity bounds. We select
module-specific complexity metrics that can be easily mapped into real
complexity such as execution time or energy consumption, as shown
in our recent experiments [10]. Moreover, unlike our initial work [9],
the proposed training process is performed without any modifications
or parameter enforcement to the decoder. To substantiate our com-
plexity-estimation method experimentally, we present an extensive set
of results as well as a comparison with relevant methods from the lit-
erature for dynamic resource prediction.

Section II explains the chosen complexity metrics and analyzes our
modeling approach. Section III presents experimental validations of
the modeling accuracy. Bitstream shaping under decoder complexity
and distortion constraints is presented in Section IV. Finally, Section V
presents our conclusions.
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Fig. 1. Basic modules of the proposed generic video decoding complexity
modeling framework. The complexity functions (with the corresponding
complexity variables) are indicated in each module; the generic complexity
metrics of each module are indicated at the connecting arrows.

II. COMPLEXITY MODELING BASED ON GENERIC METRICS

The basic operational framework for the majority of transform-based
motion-compensated video decoders can be summarized by the mod-
ules illustrated in Fig. 1. The decoder modules, depicted as nodes con-
nected by edges, communicate via decoded data that are determined
by the received shaped bitstream. The functions within each module
of Fig. 1 consist of the complexity decomposition functions associated
to this module. The schematic of an entire video transmission frame-
work incorporating bitstream-shaping is illustrated in Fig. 2. As shown
in the figure, bitstream shaping occurs postencoding and it may be per-
formed in various places in the network, i.e., at the encoder side, at an
intermediate location (server or proxy), or at the decoder side, prior to
the actual decoding. In the following subsection we define the metrics
quantifying the generic complexity cost for the data flow between mod-
ules. In addition, Section II-B presents the complexity variables with
the corresponding complexity functions and formalizes the proposed
estimation framework.

A. Complexity Metrics

For a particular realization of a video decoding algorithm (i.e., using
a programmable processor, or an application-specific media processor,
or custom hardware), the decoding complexity associated with the in-
formation exchange between the modules of Fig. 1 may be expressed
in execution cycles, processor functional-unit utilization, energy con-
sumption, etc. Based on experiments that analyzed several such costs
[10], we assume generic operations for each module that are easily
mapped to real decoding complexity and are indicated by the con-
necting arrows.

• Entropy decoding: The number of iterations of the “read symbol”
(RS) function is considered. This function encapsulates the (con-
text-based) entropy decoding of a symbol from the compressed
bitstream.

• Inverse transform: The number of multiply-accumulate (MAC)
operations with nonzero entries is considered, by counting the
number of times a MAC operation occurs between a filter coef-
ficient (FC) and a nonzero decoded pixel or transform coefficient.

• Motion compensation: The basic motion compensation (MC) op-
eration per pixel or transform coefficient is the dominant factor in
this module’s complexity.

• Fractional-pixel interpolation: The MAC operations corre-
sponding to horizontal or vertical interpolation (IOH), and also
the MAC operations corresponding to diagonal interpolation
(IOD), can characterize the complexity of this module. Notice
that diagonal interpolation is more complex since it includes both
horizontal and vertical interpolation.

B. Complexity Variables, Complexity Decomposition Functions, and
the Proposed Estimation Framework

As proposed in our recent work [9], we are modeling complexity
based on compressed-source statistics that are easy to determine at en-
coding time. For this purpose, we use the concept of a video adapta-
tion unit (AU), which can be a video frame, a group of macroblocks, a
transform subband, etc. [9]. A compressed AU consists of the smallest
bitstream component taken into account in the complexity model. Typ-
ically, a GOP consists of N AUs, with N being a parameter of the
video decoding algorithm. It is important to notice that, in the pro-
posed framework, complexity modeling and bitstream shaping are al-
ways performed with a GOP granularity. This complexity-modeling
granularity is chosen such that the model equations express an inner
product (i.e., decomposition) of the GOP complexity into complexity
coefficients and complexity functions that obtain different values for
each AU depending on the individual bitstream component character-
istics. Both our current experimental findings (Sections III and IV), as
well as our previous work [9], indicate that the averaging performed
during the calculation of the model-based GOP complexity decreases
the estimation error in comparison to the AU-level complexity estima-
tion. Moreover, the derived estimates are more relevant for practical
bitstream-shaping algorithms that operate on a GOP level.

We define the following complexity variables: the percentage of de-
coded nonzero transform coefficients pT ; the percentage of decoded
nonzero motion vectors pM out of the maximum possible motion vec-
tors per video frame; and, finally, the percentage of nonzero horizon-
tally or vertically interpolated fractional-pixel positions pH and diago-
nally interpolated fractional-pixel positions pD . These can be perceived
as the rate of utilization of each module per decoded pixel.

1) Definition of Complexity Decomposition Functions: For each
AU i, with 1 � i � N within each GOP, we define complexity de-
composition functions with respect to these variables. Starting from
the entropy decoding, we define Tnonzero(pT (i)) [9], [11] as the sum
of magnitudes of the nonzero coefficients

Tnonzero (pT (i)) =

X �Y

k=1;c (p (i)) 6=0

(blog2 jwk (pT (i))jc + 2) : (1)

where each AU reconstructs Xl � Yl pixels (l indicates the resolution
level, where l = 0 is the full-resolution) and wk represents the kth
nonzero coefficient, after reordering all the transform coefficients in a
one-dimensional array.1 In embedded or layered-coding schemes, the
value of each coefficient is a function of the percentage of decoded
nonzero coefficients pT (i) [9]. We additionally define Trunlen(pT (i))
[11] as the sum of the run lengths of zero coefficients, after the con-
version of the decoded coefficients of each AU in a one-dimensional
array. First, we count the run lengths across the coefficients of each
AU i as follows. For every k 2 [1; Xl � Yl] with wk(pT (i)) = 0 and
wk�1(pT (i)) 6= 0, we have

Qk (pT (i)) =
j; if 9j � 1 : fwk+m (pT (i)) = 0g1�m�j
0; otherwise

(2)

otherwise Qk(pT (i)) = 0. Then, we define the corresponding com-
plexity decomposition function as

Trunlen (pT (i)) =

X �Y

k=1

Qk (pT (i)) : (3)

The complexity decomposition function related to motion-compen-
sation is defined as follows [9]:

Tfull pel (pM(i)) = v � pM(i) �Xl � Yl (4)

1Following similar definitions [13], the log-magnitude of each coefficient in
(1) is incremented by 2, and not by 1, in order to include the sign information.
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Fig. 2. Schematic of the proposed bitstream-shaping video coding system. The symbol � indicates the potential existence of a transmission channel.

with v indicating the maximum number of motion vectors assigned for
each pixel of AU i. Additional decomposition functions can be defined
for modeling the complexity of deblocking operations, as in our pre-
vious work [9]. Finally, for each AU i, the interpolation complexity
decomposition functions are defined in a similar manner as

Thor ver (pH(i))=pH(i) �Xl � Yl; Tdiag (pD(i))=pD(i) �Xl � Yl:
(5)

2) Definition of the Complexity Modeling Framework: We can now
use the following set of equations for the complexity modeling of each
module of Fig. 1, assuming that every GOP consists ofN AUs. Starting
from the modeling of the complexity metrics for entropy decoding and
inverse transformation, we have2

cm
N = C

N
nonzero � TT

N
nonzero +C

N
runlen � TT

N
runlen +C

N
dec const �1 (6)

with cmN = [RSN FCN ]
T

the generic complexity metrics for en-
tropy decoding and inverse transformation of N AUs; the complexity
decomposition coefficients are the 2� N matrices

C
N
dec op=

CRS;dec op (pT (1)) � � � CRS;dec op (pT (N))

CFC;dec op (pT (1)) � � � CFC;dec op (pT (N))
;

where dec op = fnonzero; runlen; dec constg:

The elements of these matrices form inner products with the
corresponding complexity decomposition functions TT N

dec op =
[Tdec op(pT (1)) � � � Tdec op(pT (N))]T defined by (1) and (3); we
additionally define TT N

dec const � 1.
Similarly, for the motion compensation and interpolation modules,

we have

cm
N
pred op=c

N
pred op;func � TT

N
pred op + c

N
pred op;const � 1 (7)

where cm
N
pred op = fMCN ; ION

H ; IO
N
Dg, with, respectively

pred op = ffull pel; hor ver; diagg, the generic complexity
metrics for the prediction modules (motion compensation and
interpolation) utilized for N AUs; in this case, the vectors of com-
plexity decomposition coefficients, are defined as cNpred op;term =
[Cpred op;term(pU (1)) � � �Cpred op;term(pU (N))], term =
ffunc; constg, and the elements of these vectors form inner prod-
ucts with the motion-related complexity decomposition functions
TT N
pred op = [Tpred op(pU(1)) � � � Tpred op(pU(N))]T defined by (4)

and (5), where U = fM;H;Dg.

2All superscripts indicate the number of AUs included in the complexity mod-
eling of a GOP, while subscripts indicate the related operation or operation type.
Moreover, vectors and matrices are respectively indicated in lower and upper
case boldface font, with the exception of the vectors of decomposition functions
which are indicated in uppercase, boldface calligraphic font. Finally, 1 indicates
the column vector of ones, whose length is identified from the context.

3) Estimation of the Complexity Decomposition Coefficients—Off-
Line Training Process: The estimation of these coefficients is per-
formed based on an offline training process, which is described in detail
in the following steps.

1) We selected a representative set of standard CIF3 test video
sequences and target bit rates. The spatial-domain version of
the MCTF-based4 video coder used in our experiments [8] en-
coded the first 256 frames of nine sequences: “Stefan,” “Silent,”
“Sailormen,” “City,” “Raven,” “Football,” “Coastguard,” “Paris,”
“Harbour.” Subsequently, 13 bitstreams were extracted at equidis-
tant bit rates selected between 200 kb/s and 1.5 Mb/s.

2) During the decoding of each bitstream, the complexity decom-
position functions and variables mentioned before for the various
modules are experimentally measured for the processing of each
frame. Hence, we accumulate a pool of J = 256 � 9 � 13 ex-
perimental points for each complexity variable (pT ; pM ; pH ; pD)
and function (Tnonzero; Trunlen; Tfull pel; Thor ver; Tdiag).

3) By profiling the software realization of the selected decoder, J ex-
perimental measurements are generated for each of the metrics de-
rived in (6), (7). We sort the experimental data of all the sequences
and bit rates of interest, by grouping the experimental values of
each complexity variable in G sets of P consecutive values (with
G = dJ=P e). In our training, after experimentation with several
choices, we selected P = 25, thereby G ' 1200.

4) We estimate the complexity decomposition coefficients using
linear regression for each of the complexity modeling (6), (7)
within each group g = f1; . . . ; Gg. For example, for the entropy
decoding part of (6)

rs
g = diag c

g
nonzero pgT � TT g

nonzero pgT

+diag c
g

runlen pgT � TT g

runlen pgT + c
g

dec const pgT
T

(8)

where the superscripts indicate the current group (g) of
values, pgT = (1=P ) P

i=1
pgT (i), rs

g = [RSg1 � � �RS
g

P ]
T ,

TT g

dec op(p
g

T ) = [T g

dec op(p
g

T (1)) � � � T
g

dec op(p
g

T (P ))]
T , and

c
g

dec op(p
g

T ) = [Cg

dec op(p
g

T (1)) � � �C
g

dec op(p
g

T (P ))]. Hence, P
represents the size of the linear system of (8). Larger values lead
to estimation of complexity coefficients over a larger span of data,
which is generally preferable since it reduces the effect of outlier
points. However, this also leads to smaller granularity in the in-
tervals of complexity variables since each group g = f1; . . . ; Gg
contains more experimental points. The complexity decomposi-
tion coefficients derived with P = 25 were experimentally found
to produce the best prediction, over all our simulations.

3CIF: Common Interchange Format.
4MCTF: Motion Compensated Temporal Filtering.
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Fig. 3. From left to right, for all the range of the percentages of nonzero coefficients (p ) collected from the training data set: (a) complexity decomposition
coefficients corresponding to (9), complexity decomposition functions, and the resulting model-based prediction (lines) versus the experimental data (points) and
(b) complexity decomposition coefficients for the inverse transform and the resulting model-based prediction (lines) versus the experimental data (points). The
normalization was performed by dividing with the number of pixels of each decoded frame (AU).

For each group, the exact derivation of these coefficients based on
linear regression is

C
g;�
nonzero p

g

T C
g;�
runlen p

g

T C
g;�
dec const p

g

T

T

= TT gnonzero p
g

T TT grunlen p
g

T 1

T

TT gnonzero p
g

T TT grunlen p
g

T 1

�1

� TT gnonzero p
g

T TT grunlen p
g

T 1

T

rs
g (9)

and we set cg;�dec op(p
g

T ) � C
g;�
dec op(p

g

T ) � 1
T for every dec op =

fnonzero; runlen; dec constg. The process is performed simi-
larly for the remaining complexity decomposition coefficients of
other modules.

Once they have been obtained for each group and each module,
these coefficients are kept in lookup tables to be used during the com-
plexity estimation process. In Fig. 3(a), we illustrate the complexity de-
composition coefficients corresponding to (9) for every group g, along
with the complexity decomposition functions calculated for each in-
terval, and the resulting model-based complexity estimate. Similarly,
Fig. 3(b) illustrates the complexity decomposition coefficients corre-
sponding to the inverse transform, and the resulting model-based com-
plexity estimate. Notice that the complexity functions and decompo-
sition coefficients shown in Fig. 3 exhibit certain trends. When the
decoded transform-domain representation of the video frame consists

of a sparse representation (pT is small), then Trunlen(pT ! 0) is
large and Tnonzero(pT ! 0) is small, since the probability of zero
run lengths in the source data approaches one and the probability of
significant coefficients approaches zero. However, the decoding com-
plexity is not significantly affected by the zero run lengths (since they
are always treated by low-cost operations—such as the decoding of a
“nonsignificance” symbol), but rather from the (sparse) nonzero coef-
ficients in this case, since CfRS;FCg;runlen(pT ! 0) remain small and
CfRS;FCg;nonzero(pT ! 0) have large magnitude. Equivalent obser-
vations can be made for large values of pT . In general, depending on
the variation of the compressed data across each GOP (as captured by
the complexity variables pT , pM , pH , pD of each video frame), the
decomposition functions encapsulate the source statistics, while the
decomposition coefficients consist of a mapping of the source statis-
tics to the decoding algorithm and its particular implementation. Fi-
nally, althoughCfRS;FCg;nonzero(pT ) andCfRS;FCg;dec const(pT ) ap-
pear to be, respectively, antisymmetric in certain intervals of pT , their
effect is not cancelled out, since (6) shows that the contributions of
CfRS;FCg;nonzero(pT ) are weighted by Tnonzero(pT ).

For our experiments, each GOP contains N = 16 video frames
(AUs). Since we utilized a fairly representative set of sequences and bit
rates for the training process, the complexity-coefficients versus com-
plexity-variables graphs [such as the one of left part of Fig. 3(a) and (b)]
represent the complexity “decomposition” of each decoding module
and depend on the chosen decoding algorithm and its realization. Since
they are estimated by measuring the number of times specific functions
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TABLE I
AVERAGE PREDICTION ERROR OF THE PROPOSED METHOD FOR ENTROPY DECODING AND INVERSE TRANSFORM IN FOUR CIF VIDEO SEQUENCES (“TEMPETE,”

“FOREMAN,” “MOBILE,” AND “NEWS”) FOR VARIOUS BIT RATES. THE PREDICTION ERROR FOR THE MOTION COMPENSATION, HORIZONTAL–VERTICAL I
NTERPOLATION, AND DIAGONAL INTERPOLATION IS ALSO REPORTED AT THE BOTTOM OF THE TABLE (SAME FOR ALL BIT RATES)

of the decoder are invoked for a large set of representative inputs, the
complexity decomposition coefficients exhibit considerable variance.
However, the right part of Fig. 3(a) and (b) shows that, when these
coefficients are multiplied (“modulated”) by the complexity decom-
position functions (as shown in (8)), an accurate prediction of the ex-
perimental measurements (points) is obtained for each group g of pT
values. To quantify this, for each module of the decoding system we
have calculated the residual variance around the regression line based
on the Pearson’s coefficients. In particular, for the entire training set
of video sequences, the residual variance (in percentage of the orig-
inal variance of the complexity measurements) for the texture decoding
was 49.98%. The inverse transform percentile residual variance was
found to be 27.17%. Concerning motion compensation, the percentile
residual variability was 3.22%, while for horizontal or vertical inter-
polation and for the diagonal interpolation it was 5.60% and 5.41%,
respectively.

These results justify the linearity of the proposed complexity mod-
eling with respect to the proposed complexity decomposition functions
for each AU, since the error variance around the regression line is sig-
nificantly reduced. For the particular case of the entropy decoding that
exhibits high residual variance, additional decomposition functions that
are particular to the chosen decoding scheme, or the exclusion of out-
lier measurement points that correspond to extreme cases, can further
decrease the residual variance. Finally, it is important to notice that, due
to the fact that complexity modeling is performed with a GOP granu-
larity (shown in (6) and (7)), the averaging of several AUs decreases
the error variance for our simulations with new sequences. As a result,
the error margin observed in practice for complexity modeling with a
GOP granularity was reasonably small, as it will be shown by the ex-
perimental results of Sections III and IV.

4) Application of the Complexity Modeling for Decoder-Complexity
Estimation: The real-time complexity modeling is performed as fol-
lows. During encoding, the complexity variables and functions are cal-
culated for each potential bitstream truncation point. In particular, if
we assume a typical scenario of three truncation points for the texture
bitstream of each temporal level (with a total of four temporal decom-
position levels), we precalculate 12 values for each of the pT , Tnonzero,
and Trunlen per AU. Similarly, with two truncation points for the motion
bitstream of each temporal level (under motion scalability), we precal-
culate eight values for each of the pM , pH , pD , Thor ver, and Tdiag .
The computational complexity for these calculations is minimal versus
the overall encoding complexity. Similarly, the compression overhead
due to the presence of these values in the bitstream is insignificant, i.e.,
less than 10 kb/s in the above example for the entire set of truncation
points corresponding to the highest bit rate.

During the decoding of each GOP, the complexity variables and
functions of every frame (AU) are used in (6), (7) in conjunction with
the precalculated values of the corresponding complexity decomposi-
tion coefficients. In this way, the model prediction for each complexity

metric is accomplished. The required computational overhead involves
only a small number of MAC operations per GOP for the calculation of
the model and is negligible in comparison to the decoding complexity.
Notice that, instead of complexity estimation with a GOP granularity,
other granularities could be considered as well, depending on the se-
lected coding scheme and the desired bitstream-shaping intervals.

III. MODEL VALIDATION

Four sequences not belonging to the training set were selected for the
purpose of validating the proposed method. For each sequence, the av-
erage model prediction error over ten GOPs is presented in Table I for a
variety of decoding bit rates, while Table II presents the corresponding
results with two other online complexity estimation methods, adapted
from the relevant literature on system resource prediction [12]–[14]. In
particular, the first comparison is performed with the autoregression
with mean adaptation (ARM) algorithm from Liang et al. [12, Sec.
4], which was shown to outperform various alternative autoregressive
methods for system resource prediction [12], [14]. Per temporal de-
composition level, this method predicts the complexity metrics of each
GOP based on the mean of observed values of the corresponding level
of the previous GOP.

The results of Table II indicate that this method is less accurate
than the proposed method by a significant margin. Consequently, even
though this method has the advantage of observing the dynamic be-
havior of the previous GOP’s decoding, the lack of a source-adaptive
driving mechanism for the modification of the prediction appears to
be important. For this reason, as a second comparison, we opted for a
widely used adaptive linear prediction method, where the knowledge
of the transmitted complexity variables can be exploited for the adap-
tive prediction of the complexity metrics of each GOP. In this case,
for each temporal decomposition level, we perform a linear mapping
between the input complexity variables (pT ; pM ; pH ; pD) and the ob-
served complexity metrics (RS, FC, MC, IOH , and IOD) of the pre-
vious GOP, e.g., RS(i) = � � pT (i) + � for each decoded frame i

within a temporal level. The parameters of the mapping are estimated
based on linear regression and are used for the prediction of the com-
plexity metrics of the current GOP in conjunction with the complexity
variables of the current GOP. This method performs better than ARM
and also outperforms the proposed method in certain cases where the
complexity variation is small (e.g., low motion sequences or higher bit
rates). Notice, however, that both ARM and the adaptive linear predic-
tion use online measurements, which may be difficult to obtain in a real
decoding system, since modifications at the decoder software would be
required. In addition, the adaptive linear regression is computationally
demanding since it performs online parameter estimation for the linear
mapping for each decoded GOP.
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TABLE II
RESULTS CORRESPONDING TO TABLE I WITH THE USE OF THE ARM MODEL [12], [14], AND WITH ADAPTIVE LINEAR REGRESSION (IN PARENTHESES) [13]

TABLE III
AVERAGE PREDICTION ERROR FOR MOTION COMPENSATION AND

FRACTIONAL-PIXEL INTERPOLATION IN FOUR CIF VIDEO SEQUENCES

(SEEN IN TABLE I) FOR VARIOUS BITSTREAM-SHAPING CONFIGURATIONS,
WHERE SEVERAL TEMPORAL LEVELS OR MOTION PARAMETERS

(INTERPOLATION DATA) ARE OMITTED

Fig. 4. Example of the prediction error for various GOPs of the “Foreman”
sequence.

Overall, the proposed algorithm provides accurate predictions under
varying decoding configurations without considering the specific
video decoding algorithm characteristics such as the particular MCTF
process, the number of decoded temporal levels, the chosen motion
information, etc. To the contrary, this is achieved in a generic manner
based only on the derived complexity decomposition functions and
the complexity decomposition coefficients for each AU of each GOP.
This is further illustrated by the results of Table III, where various
decoding configurations were considered, while Fig. 4 illustrates a

Fig. 5. Complexity upper bounds set for each GOP.

typical example of the prediction error for each metric across various
GOPs. Finally, the required training process is performed offline, and
the complexity prediction can be achieved with minimal complexity
overhead and without the need for online decoder feedback. As a re-
sult, the complexity adaptation via bitstream shaping can be performed
at the server side and the decoder only needs to provide bounds for
each complexity metric. This is further elaborated in the next section.

IV. BITSTREAM SHAPING BASED ON COMPLEXITY CONSTRAINTS

We present an example of bitstream shaping for each video GOP
under complexity and distortion constraints. In particular, for each
of the test sequences used in Section III, we set random complexity
bounds for each GOP in terms of upper bounds for each complexity
metric. This is done as a simulation of the time-varying resources
available at the receiver side for the decoding of each GOP. In a video
decoding scenario for a real multitasking multimedia platform these
complexity bounds would be determined in real-time based on the
system-resource utilization, the energy consumption and the current
configuration of the processor [10]. We consider bounds for the
entropy decoding, the inverse transform and the motion compensation
metrics, since they capture the whole range of different operations
(symbol decoding, motion compensation and filtering) performed
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Fig. 6. Pseudocode for the proposed bitstream-shaping process. Notation p (i; k), U = fT;M;H;Dg, indicates the complexity variable of the kth truncation
point of the ith AU. Parameters �, �,� indicate the importance of each metric in the overall complexity estimate di� C(k) and they are typically system dependent.
In our simulations, for simplicity we set � = � = � = 1.

TABLE IV
SELECTED OPERATING POINT FOR EACH GOP. THE SEQUENCE “FOREMAN”

WAS USED. THE AVERAGE COMPLEXITY ERROR IS THE AVERAGE (OVER ALL

THREE METRICS SHOWN IN FIG. 5) OF THE ABSOLUTE ERROR BETWEEN THE

UPPER BOUND SET FOR EACH GOP AND THE OBTAINED COMPLEXITY

at the decoder side.5 Moreover, we set a lower bound in terms of
peak signal-to-noise ratio (PSNR) distortion for the decoded video
at 33 dB; notice that, for each operational point, the chosen PSNR
measurement quantifies in an objective manner the distortion between
the selected operating point and the sequence decoded at a very high
bit rate under the shaped bitstream (which corresponds to the “best”
quality that this bitstream can obtain if more bit rate is provided) [16].
This can be a user or Quality-of-Service (QoS) specification and it is
application-dependent. One representative result for a video sequence
is presented in Table IV, under the dynamic conditions of Fig. 5.
Similar results were obtained for the remaining sequences and for a
large variation in the complexity bounds for each GOP.

Bitstream shaping in Table IV was performed by selecting the trun-
cation point that best matched the complexity bounds set in real time for
each GOP, as explained in the pseudocode of Fig. 6. Since each trun-
cation point in our scalable coder corresponds to a particular bit rate
and frame rate, the results of Table IV indicate the practical bit rate
and temporal-level selections corresponding to the optimal truncation
of each GOP. In our simulations, the distortion is experimentally mea-
sured versus the decoder-side reference video sequence since the focus
on this paper is on the complexity aspects of bitstream shaping. How-
ever, model-based distortion estimates [15] could be used instead of the
measured distortion. From all the potential truncation points, only the
ones above the lowest permissible distortion are considered (line 3 of
Fig. 6).

The results of Table IV indicate that this simple algorithm generates
accurate complexity adaptation to the dynamically changing require-
ments that simultaneously satisfies the distortion bound. The relatively

5Bounds on the interpolation process can be set separately, or incorporated
with the inverse transform bounds, since both are realized by MAC operations.

large PSNR fluctuation for various GOPs is due to the large complexity
variations imposed by the randomly selected constraints of Fig. 5, as
well as the attempt of the bitstream shaping to match the complexity
bounds accurately, rather than provide a constant distortion. Similar to
rate shaping under varying channel conditions, an algorithm that per-
forms bitstream shaping with quasi-constant distortion can be easily
derived. However, such an algorithm can potentially result in an un-
necessarily conservative system-resource usage.

V. CONCLUSION

A complexity modeling framework and its utilization for bitstream
shaping in video decoders has been discussed. For each GOP of sev-
eral decoded video sequences, the derived models produce accurate
complexity predictions with respect to certain generic metrics that can
be mapped into real complexity measurements such as timing results
and energy consumption. The proposed complexity prediction is very
low complex since the required training is performed offline. Never-
theless, our experiments indicate that it can outperform autoregressive
and linear-mapping prediction methods from the literature, even though
these methods adapt based on online training. Using the model-based
complexity prediction, the proposed bitstream shaping determines ad-
missible bitstreams with respect to upper bounds on complexity and a
lower bound on distortion. Our future work will attempt to investigate
additional metrics for several decoder modules, as well as their com-
bination and mapping process for the production of bitstream shaping
based on energy or performance bounds.
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