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Adaptive Linear Prediction for Resource
Estimation of Video Decoding
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Abstract—Current systems often assume “worst case” resource
utilization for the design and implementation of compression tech-
niques and standards, thereby neglecting the fact that multimedia
coding algorithms require time-varying resources, which differ sig-
nificantly from the “worst case” requirements. To enable adaptive
resource management for multimedia systems, resource-estima-
tion mechanisms are needed. Previous research demonstrated
that online adaptive linear prediction techniques typically exhibit
superior efficiency to other alternatives for resource prediction of
multimedia systems. In this paper, we formulate the problem of
adaptive linear prediction of video decoding resources by analyt-
ically expressing the possible adaptation parameters for a broad
class of video decoders. The resources are measured in terms of
the time required for a particular operation of each decoding
unit (e.g., motion compensation or entropy decoding of a video
frame). Unlike prior research that mainly focuses on estimation
of execution time based on previous measurements (i.e., based
on autoregressive prediction or platform and decoder-specific
off-line training), we propose the use of generic complexity metrics
(GCMs) as the input for the adaptive predictor. GCMs represent
the number of times the basic building blocks are executed by the
decoder and depend on the source characteristics, decoding bit
rate, and the specific algorithm implementation. Different GCM
granularities (e.g., per video frame or macroblock) are explored.
Our previous research indicated that GCMs can be measured or
modeled at the encoder or the video server side and they can be
streamed to the decoder along with the compressed bitstream. A
comparison of GCM-based versus autoregressive adaptive predic-
tion over a large range of adaptation parameters is performed.
Our results indicate that GCM-based prediction is significantly
superior to the autoregressive approach and also requires less
computational resources at the decoder. As a result, a novel
resource–prediction tradeoff is explored between: 1) the commu-
nication overhead for GCMs and/or the implementation overhead
for the realization of the predictor and 2) the improvement of
the prediction performance. Since this tradeoff can be significant
for the decoder platform (either from the communication or the
implementation perspective), we propose complexity (or commu-
nication)-bounded adaptive linear prediction in order to derive
the best resource estimation under the given implementation (or
GCM-communication) bound.
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I. INTRODUCTION

THE proliferation of media-enabled portable devices
based on low-cost processors makes resource-constrained

video decoding an important area of research. However,
state-of-the-art video coders tend to be highly content-adap-
tive in order to achieve the best compression performance
[21]–[24]. Therefore, they exhibit a highly variable complexity
and rate profile [1]–[3]. This makes efficient resource-predic-
tion techniques for video decoding a particularly important and
challenging research topic.

A. Related Work

Previous work can be broadly separated in two cate-
gories. The first category encompasses coder-specific or
system-specific frameworks for resource prediction. For ex-
ample, Horowitz et al. [1] and Lappalainen et al. [2] analyze the
timing complexity of an H.264/AVC baseline decoder on two
popular platforms using reference software implementations.
Valentim et al. [3] analyze the visual part of MPEG-4 decoding
with the use of descriptors from the encoding parameters and
the definition of worst case performance results. Saponara et al.
[4] analyze in a tool-by-tool basis the H.264/AVC encoding and
decoding complexity in terms of memory usage and relative
execution time using profiling tools and compare it to MPEG-4
Simple Profile. Ravasi and Mattavelli [5] propose a tool-based
methodology for complexity analysis of video encoders or
decoders using a typical software description. Most of these
approaches are inspired by profiling-based methodologies for
execution time prediction [6] and specialize their application to
media decoding algorithms.

The second category of approaches attempts to capture the
dynamic resources of video decoders following online adap-
tation or offline training approaches that “learn” the features
of a particular system following a generic methodology. For
example, Bavier et al. [7] predict MPEG decoding execution
time using offline measurements for typical video sequences
and regression analysis. Dinda and Hallaron [8] experiment
with different autoregressive models for host load prediction.
Yuan and Nahrstedt [9] predict video encoding complexity
using a histogram-based estimation. Liang et al. [10] analyze
processor utilization for media decoding and compared various
autoregressive linear predictors. Similarly, Sachs et al. [11]
model H.263 encoding time using a variety of linear predic-
tors. Stolberg et al. [12] use a mixed methodology based on
prediction techniques and offline tool-based analysis and, in
more recent work [13], propose a generic approach for offline
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or online linear mapping of critical function executions to the
observed timing complexity. He et al. [14] proposed an analytic
model for power/rate/distortion estimation of hybrid video
encoding and investigated several tradeoffs using dynamic
voltage-scaling techniques. Mattavelli and Brunetton [15]
derive a broad framework for estimation of media decoding
execution-time based on a linear mapping of encoding-modes
(extracted from the video bitstream) to the execution time of the
critical functions of the video decoder. Offline measurements
were used to define the parameters of the linear mapping. Our
previous work [16]–[18] follows a similar approach but, instead
of encoding decisions (which are both algorithm and imple-
mentation dependent), it uses compressed-content features,
such as motion vectors and the number of nonzero trans-
form coefficients, which apply in a broader category of video
compression algorithms and are also easily extracted during
encoding. In addition, instead of a linear estimation of decoder
functions, we recently proposed a decomposition framework
[17] that estimates platform-independent generic complexity
metrics (GCMs), such as the number of motion-compensation
operations, the number of nonzero filter-kernel applications for
fractional-pixel interpolation and spatial reconstruction of a
video frame.

B. Contribution of the Paper

In this paper we focus on online prediction-based approaches
for video decoding resource estimation. Following previous
work [10], [15], [17], we attempt to systematically address
the following two basic problems for state-of-the-art video
decoding algorithms with rapidly time-varying complexity
profile:

• a general framework for resource-optimized prediction of
video decoding execution time under a given computa-
tional bound for the predictor;

• a comparison of autoregressive prediction methods with
adaptive linear prediction methods based on encoder-gen-
erated GCMs.

Instead of focusing on worst case complexity estimation, as
it is commonly done in recent video complexity verifier (VCV)
models for MPEG video [3], we follow a recently proposed
VCV model [19] that focuses on average decoding complexity
by introducing variable-size frame buffers and controlling
the decoding delay. This type of VCV model was shown to
be significantly better than the conventional VCV models
for streaming video and soft real-time decoding applications,
where additional decoding delay is permitted. This is due to
the fact that the model targets systems with flexible resource
utilization rather than systems that are designed based on worst
case performance guarantees.

For both autoregressive and GCM-based prediction, we ex-
amine different configurations for the adaptive predictor de-
pending on the granularity of the decoder measurement feed-
back, the complexity requirements imposed at the decoding and
the granularity of the input GCMs (if available). In addition, an
optimization framework is proposed that selects the prediction
parameters under prediction-accuracy constraints using offline
statistical estimates of the prediction error such that decoder or
transmission resources are utilized in the best possible way.

II. VIDEO DECODING ARCHITECTURES—GCMS

A. Motion-Compensated Video Decoding

In MPEG video coding standards, after the motion-compen-
sation step, the output frames are categorized as intra-frames
(I-frames—denoted as frames in this paper), predicted
frames (P-frames) from past pictures, and bi-directionally
predicted frames (B-frames). Both P- and B-frames are denoted
as frames in this paper. All output frames are spatially
transformed and entropy-coded. The decoder receives the
compressed bitstream and, after decoding and the inverse
spatial transform, inverts the prediction relationships in order
to reconstruct the decoded video frames . In order to allow
efficient synchronization and random access capabilities to the
decoded bitstream, typical coding structures follow a temporal
prediction pattern for a group of pictures (GOP). An example
of the decoding process for a “IBPBPBPB” GOP structure
is pictorially shown in Fig. 1(a), where we also highlight the
analogy between and frames and the conventional I-, P-
and B-frame notation used in MPEG [20]. The superscripts

indicate for each frame the temporal-decomposition level
it belongs to (decreased levels indicate dyadically increased
frame-rate, ), as well as the frame index within
each level . Notice that all of the frames (and )
are first entropy-decoded and then reconstructed spatially by
performing the inverse spatial transform prior to their use in the
inverse temporal reconstruction example of Fig. 1(a).

Although the example of Fig. 1(a) corresponds to a temporal
analysis framework with three P-frames and
four B-frames , other combinations
may utilize multiple reference frames from the past or the future
[21]. In addition, in recent state-of-the-art coding frameworks,
such as the MPEG/ITU AVC/H.264 codec [21], macroblocks
of the same video frame may utilize motion-compensated pre-
diction with variable block sizes and multiple motion vectors
from several reference frames in order to adapt better to the
video content characteristics. Although these techniques in-
crease coding efficiency by a significant amount, they pose new
challenges for efficient resource-prediction approaches since a
rapidly varying complexity profile is generated. Consequently,
this demands a generic treatment of the resource-prediction
issue that can encapsulate a variety of encoding parameter
settings in an automatic manner.

Scalable video coding architectures based on motion-com-
pensated temporal filtering (MCTF) have been shown to be a
generalization of the previous predictive coding architectures of
MPEG [22]. In particular, at the encoder, video frames are fil-
tered into (low-frequency or average) and (high-frequency
of difference) frames by performing a series of motion-com-
pensated predict and motion-compensated update steps [22].
The process is applied in a hierarchy of temporal levels. An
example instantiation of the inverse MCTF that reconstructs
the input video at the decoder side is shown in Fig. 1(b) (with

), where, based on the decompressed frame and the
hierarchy of frames, the temporal filtering is inverted (by per-
forming inverse predict and update steps) in order to reconstruct
the decoded video frames (shown at the top of the figure).

Similarly as before, in state-of-the-art MCTF-based video
coding [23], [24], the example of inverse MCTF illustrated in
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Fig. 1. (a) Example of the temporal reconstruction of conventional MPEG coding using a GOP structure with one I-frame (L ), three P-frames
(H ;H ;H ), and four B-frames (H ;H ;H ;H ). The decoded frames are indicated by a pyramidal (two-level) spatial wavelet decomposition,
although different transforms such as DCT could be employed. (b) Example of MCTF reconstruction using the bidirectional Haar filter [24].

Fig. 1(b) is generalized to motion-compensated temporal fil-
tering using multiple block sizes with different temporal filters
for each macroblock. Finally, it is important to notice that, when
motion-compensated update is disabled in the MCTF process,
the decoder structure becomes equivalent to a conventional pre-
dictive framework. Therefore, MCTF-based frameworks can be
seen as a generalization of conventional motion-compensated
video decoders.

B. Generic Complexity Metrics: A Framework for Abstract
Complexity Description

In order to represent at the encoder (server) side different
decoder (receiver) architectures in a generic manner, in our
recent work [17], [18], we have deployed a concept that has
been successful in the area of computer systems, namely,
a virtual machine. We assume an abstract decoder referred
to as a generic reference machine (GRM), which represents
the vast majority of video decoding architectures. The key
idea of the proposed paradigm is that the same bitstream will
require/involve different resources/complexities on various
decoders. However, given the number of factors that influence
the complexity of the decoder, it is impractical to determine at

the encoder side the specific (real) complexity for every pos-
sible decoder architecture. Consequently, we adopt a generic
complexity model that captures the abstract/generic complexity
metrics of the employed decoding or streaming algorithm de-
pending on the content characteristics and transmission bit rate.
GCMs are derived by computing the average number of times
the different GRM operations are executed. Assuming that the
GRM is the target receiver, we developed abstract complexity
measures to quantify the decoding complexity of multimedia
bitstreams [17], [18].

The GRM framework for the majority of transform-based
motion-compensated video decoders can be summarized by the
modules illustrated in Fig. 2 [17]. The decoder modules, de-
picted as nodes connected by edges, communicate via decoded
data that are determined by the received bitstream. For a partic-
ular realization of a video decoding algorithm (i.e., using a pro-
grammable processor, an application-specific media processor,
or custom hardware), the decoding complexity associated with
the information exchange between the modules of Fig. 2 may
be expressed in execution cycles, processor functional-unit uti-
lization, or energy consumption. Based on preliminary experi-
ments that analyzed several such costs [16], we assume generic
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operations for each module that are indicated by the connecting
arrows.

• Entropy decoding: the number of iterations of the “Read
Symbol” (RS) function is considered. This function encap-
sulates the (context-based) entropy-decoding of a symbol
from the compressed bitstream.

• Inverse transform: the number of multiply-accumulate
(MAC) operations with nonzero entries is considered, by
counting the number of times a MAC operation occurs
between a filter-coefficient (FC) and a nonzero decoded
pixel or transform coefficient.1

• Motion compensation: the basic motion-compensation
(MC) operation2 per pixel or transform coefficient is the
dominant factor in this module’s complexity.

• Fractional-pixel interpolation: the MAC operations cor-
responding to horizontal or vertical interpolation ,
and the MAC operations corresponding to diagonal inter-
polation , can characterize the complexity of this
module. Notice that diagonal interpolation is more com-
plex since it includes both horizontal and vertical interpo-
lation. If a deblocking filter is used at the decoder, ,

could incorporate the additional MAC operations for
the deblocking filter realization, since both the interpola-
tion and the deblocking filter depend on the values of the
decoded motion vectors.

In total, we define the set of operations

(1)

The value of each may be determined at encoding
time for each adaptation unit (AU) (e.g., the th video frame
or the th macroblock) following experimental or modeling ap-
proaches [17]. We define the cardinality of set as

; based on (1), . In this way, the GCMs3 are
generated, with bounded by the total AUs of the input video.
Any discrete data entity at the decoder can be selected as an
AU, such as a macroblock within a frame, a spatial resolution
level in the decoded and frames, or an entire , , or
frame. Finally, notice that the chosen operations of (1), as well as
the subsequent adaptive linear complexity prediction methods in
this paper are in no way restricted to a particular coding struc-
ture (predictive or MCTF-based) and hence are applicable for a
broad class of motion-compensated video decoders.

The GCMs, or model parameters via which the GCMs can
be derived [17], are encapsulated in the compressed bitstream.
GCM-based complexity prediction at the decoder aims at trans-
lating the GCMs into real complexity. In our case, real com-

1Notice that, regardless of the use of convolution or faster algorithms (e.g.,
the lifting-scheme), the inverse transform always consists of filtering opera-
tions (similar rules apply for the case of the discrete cosine transform or other
linear transforms) or at least of accumulated bit-shift-and-addition operations
(for the case of simplified integer-to-integer transforms). Consequently, nonzero
MAC operations are a good metric for a large variety of transform realiza-
tions. Notice that GCMs are not expected to capture the precise implementa-
tion complexity, which is affected regardless by the implementation architecture
specifics, memory accesses, and the software/compiler optimizations. They are
rather meant as metrics that represent the content-dependent complexity varia-
tion for a generic reference machine.

2In this operation we also encapsulate the decoding of the motion vectors,
which, in the vast majority of cases, requires negligible complexity in compar-
ison to motion compensation.

3Notice that g indicates the different operations shown in (1), while g(n)
represents the particular GCM value for AU n.

Fig. 2. Basic modules of the proposed GRM for our video-decoding com-
plexity modeling framework. The complexity functions (with the corresponding
complexity variables) are indicated in each module; the GCMs of each module
are indicated at the connecting arrows.

plexity is the time required for the completion of the AU pro-
cessing for each module of Fig. 2. The summation of the execu-
tion time for all operations of all AUs participating in the recon-
struction of a video frame represents the decoding complexity
for the particular frame. A resource monitor can be implemented
at the receiver that measures the execution time after the com-
pletion of each task in an AU, in order for them to be used in up-
dating the linear prediction parameters for the subsequent com-
plexity estimation. In this paper, we follow the generic approach
of assuming that the required time for the processing of every
AU in every module of Fig. 2 can be measured in real-time.
The vast majority of general-purpose processors or DSPs have
built-in registers that can accurately monitor the timing based on
the processor built-in clock circuitry [25]. This process is very
low-complex and provides accurate measurements. Moreover,
the instrumentation required in the software implementation is
minimal and can be done in a similar fashion for a variety of
underlying architectures and software implementations.

III. ADAPTIVE LINEAR PREDICTION OF VIDEO

DECODING COMPLEXITY

A. Basic Framework

The complexity mapping problem can be formulated as an
adaptive linear mapping between the input GCMs and the real
complexity (execution time) or between previous and current
complexity. The -step linear mapping problem estimates com-
plexity , which corresponds to the execution time of
operation for AU , using either the current GCM se-
quence or previous values of . Specifically

(2)

where

(3)

for the case of adaptive linear prediction of the complexity of
AU from previous complexity measurements, while

(4)
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for the case of adaptive linear mapping of GCMs to the com-
plexity of AU . The maximum order of the predictor is
indicated by and the predictor coefficients are

(5)

We define the utilized measurements vector or GCM vector as

(6)
We additionally define the prediction error for each AU as

(7)

Based on (2), the last equation becomes

(8)

For each operation , the optimal linear predictor in
the mean-square error sense is minimizing . We can
identify the (unique) predictor which achieves this by taking the
gradient of (8) for and setting it to zero, thereby deriving

(9)

which can also be expressed as

(10)

where us the input’s autocorre-
lation matrix and . If (3) holds,
then (10) corresponds to the th-order autoregressive process
with an additional delay of samples.

Due to the fact that the optimal solution of (10) requires the
knowledge of the autocorrelation of the input, as well as the
inversion of , we use the popular normalized least-mean
square (NLMS) adaptation [26], which periodically updates the
coefficients of the predictor based on the normalized gradient of
(9) to yield

(11)

where is the predictor step-size, is the
predictor adaptation interval, and

(12)

is the square of the vector norm of the input. The value of the
scaling (step-size) controls the convergence
speed. Higher values lead to faster convergence to the optimal
solution (which is achieved under wide-sense stationarity) and
faster adaptation to input changes; however they also lead to
higher predictor-coefficient fluctuations after convergence [26].
If we arbitrarily set

(13)

then (11) corresponds to the conventional LMS algorithm,
which does not require the computation of the square of the
norm of the input, but may exhibit worse convergence proper-
ties than NLMS. The value of of (11) is the predictor update
period, where larger values lead to lower complexity due to less
frequent updates but also to less accuracy in the adaptation.

Although there are several alternatives to this algorithm [26],
(2) and (11) consist of a good approach for our problem since

LMS combines good adaptation properties, stability of conver-
gence with nonstationary inputs, and low implementation com-
plexity compared with other approaches such as recursive least-
squares estimation [26]. Moreover, it was also proven that LMS
is optimal [27], hence, under proper step-size se-
lection, the adaptation minimizes the maximum energy gain
from the disturbances to the prediction error. This is an impor-
tant aspect for our study, since, under bounded disturbances in
the steady state of the prediction, it guarantees that the energy
of the prediction error for the resource estimation of each de-
coded video frame will be upper bounded, which means that,
depending on the LMS parameters, the complexity prediction
over a time interval (e.g., one GOP) should be within a certain
accuracy range.

B. Extensions of Adaptive Prediction

Apart from the order of the predictor , the LMS
step-size selection, and the predictor-update period

, other parameters can also influence the prediction
efficiency and the complexity of the adaptation. The most im-
portant is the selection of the appropriate AU granularity for the
input and output of the adaptive prediction. For the complexity
prediction of motion compensation and interpolation opera-
tions ( and , ), we are experimenting
with the following three AUs: 1) a video macroblock; 2) one
macroblock row; or 3) an entire video frame. For the inverse
transform and entropy decoding ( and ), we are
experimenting with the following two AUs: 1) one spatial
resolution of the discrete wavelet decomposition and 2) an
entire decompressed frame. Notice that, in all cases, higher
granularity of the utilized measurements should lead to better
prediction results, albeit at the expense of additional com-
plexity at the decoder. We also investigate whether increased
granularity in the provided GCMs assists the linear adaptation.
Since the prediction is done at the decoder side, this comes at a
cost of higher communication overhead for the transmission of
these metrics. It is important to mention that in our experiments
we always predict separately for each temporal decomposition
level and each frame type. Therefore, complexity prediction of
the or frames of each level of the MCTF reconstruction
of Fig. 1 is performed separately for each level with a different
adaptive linear predictor, leading to
separate linear predictors for temporal decomposition levels,
where the increase by two is due to the additional separate
predictor for the frames (“intra” frames), as well as the adap-
tive prediction performed at the decoded output video frames
(temporal level zero in Fig. 1). In addition, we always perform
the adaptive prediction over an interval of frames (typically
one GOP). Therefore, for each temporal level of Fig. 1 and
each operation , we have for au-
toregressive prediction. On the other hand, for the GCM-based
prediction, we have since the GCMs of each interval
of frames (e.g., current GOP) are available from the video
bitstream. In both cases, in order to have causality, the utilized
coefficients for the realization of the prediction are updated only
after the frames of the prediction interval have been decoded
and the complexity (execution-time) measurements have been
obtained, even though multiple predictor-coefficient updates
may occur within a prediction interval. It is also important to
mention that we are always measuring the prediction error for
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each individual decoded video frame, even though the predic-
tion interval can be larger (e.g., the duration of one GOP).

Finally, we would like to remark that general combinations of
autoregressive prediction [under (3) and GCM-based prediction
[under (4)] could also be envisaged for different time intervals,
or for varying video content characteristics. Alternatively, com-
binations of autoregressive and GCM-based predictors for the
various temporal decomposition levels could be devised. How-
ever, we do not investigate these mixed estimations in this work.

C. Generalization of Adaptive Prediction Parameter Set

Let be a set-element indicating the prediction
operation-type and the temporal level of the prediction
out of the entire set of possible
choices. For each set element , , we represent
the AU granularity (sampling) of the input and output of the
adaptive prediction by , with ,
i.e., the subscript of AU (for operation at temporal level
) increases with the increase in the AU granularity. In the

presented experiments, following the previous description in
the beginning of Section III-B, we have for

, and for
. Notice that, for all cases, corre-

sponds to the coarsest AU granularity, which is one entire
decompressed video frame . Moreover, if the provided
granularity for the input GCMs is lower than that of the desired
granularity for the predicted complexity, bilinear interpola-
tion or sample-and-hold techniques are used to increase the
sampling rate of the input GCMs. The generalized adaptive
complexity prediction of AU is now formulated as

(14)

The adaptation of the predictor is performed as

(15)

The last two equations represent a very large number of possi-
bilities since the cardinality of the set of choices is4

(16)

and the parameters that can be adjusted are , , and .
For example, if the prediction is performed for an interval

of one GOP, for (typical parameter for MCTF-based
coders), and [following (1)], we get .
Then, even for a fixed predictor order , for two possible
values for each of the , parameters, we get over
possible combinations of predictor assignments for each GOP
of decoded video. Each parameter assignment requires certain
computation for the prediction realization and can lead to dif-
ferent expected prediction efficiency. Hence, under a general
optimization framework for complexity prediction, all possible
assignments should be considered.

4In (16), the second term is T + 1 and not T + 2 since some operations do
not occur for T = 0 or T = T + 2 as it will be explained in Section III-E.

D. Generalization of the Adaptive Prediction Time Interval

Depending on the particular application, the proposed adap-
tive prediction of video decoding complexity may be applicable
for the derivation of the expected complexity for one frame, or
for a group of decoded frames. This can be expressed as

(17)

where was defined previously, is
the output complexity estimate for AU (decoded video frame)5

, is the set containing the indexes to the AUs, denoted
by , which are utilized for the construction of the output
AU (i.e., the temporal dependencies of AU ), and the com-
plexity of each individual AU , denoted by ,
is defined as in (14). Notice that the cardinality of each set ,
denoted by , depends on the AU sampling choice .

As an illustrative example, if we assume that , we
select for the instantiation of the MCTF decoding
depicted in Fig. 1(b), for the complexity for the reconstruc-
tion of frame , i.e., , we have
and for and

for . In addition, for
the complexity of the reconstruction of the entire GOP,

with , we have ,
, and for

and for .
It is important to emphasize that, , the complexity

in (17) has a different granularity expressed by .
As a result, depending on the choices for in (14), the output
of (17) changes and the cost (in terms of implementation or
communication overhead) for deriving this complexity estimate
varies. The analytical formulation of this cost is the topic of the
following subsection.

E. Complexity and Information Requirements
for Adaptive Prediction

Following the generalized adaptive prediction of (14) and
(17), for every decoded video frame we need the fol-
lowing average number of operations (MACs):

(18)
where is defined previously for (17) and

if NLMS is used
if LMS is used

(19)

where the case of NLMS corresponds to (12), while LMS is the
case where the simplification of (13) is used. In (18), we account
for MAC operations for (14) and operations for the
predictor update every samples. In addition, we account for

operations for the term in (15) for the case of
NLMS. Notice that is predefined and fixed for a particular
predictor (as discussed in the experimental results section of the

5Notice that in c the subscript of the AUn is always one since in this paper
we are interested in predicting the complexity at the coarsest AU granularity,
which is at the video frame granularity.
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paper). Hence, the division of by in (15) is as-
sumed to be performed by rounding and a lookup table (LUT)
and is not included in the complexity estimation of (18), since
the comparison of division and multiplication operations is ma-
chine dependent. However, even under the inclusion of the divi-
sion operation, the predictor complexity results are simply offset
by the machine-specific division overhead.

Notice that the outer summation of (18) operates times
for each operation . However, depending on the operation,

or may entail no complexity. This is because we have
, , and , i.e.,

there are no motion-compensation or interpolation operations
for the construction of the frame, and ,

due to the fact that the output video frames
do not require entropy-decoding operations or inverse spatial
transform operations.

For complexity prediction with GCMs at the decoder side, the
server must transmit

(20)

GCMs, where is the ratio of complexity measurements to
GCMs for each operation of each temporal level . Typical
values are , or we may set , , and
equal to the number of macroblocks within a video frame and

, equal to the number of spatial resolutions of
a video frame and bilinearly interpolate (or sample-and-hold)
in order to produce the required GCM granularity at the re-
ceiver side. Although the calculations of this subsection were
presented under the assumption of a total of temporal recon-
structions, low frame-rate decoding may be accommodated by
excluding the calculations for , where
is the lowest reconstructed temporal level. Low-resolution de-
coding (for scalable coders) can be accommodated in a similar
manner.

Finally, concerning the expected prediction error, similar to
(7), we can formulate the error of the generalized complexity
prediction for decoded frame as

(21)
which becomes

(22)

The last equation indicates that the contribution of each op-
eration of each temporal level to the output prediction error

may differ. In fact, the intermediate prediction errors
of (22), along with the required complexity or information
overhead for the realization of the prediction [(18)–(20)] may
be used as the driving force of a low-complexity optimization
mechanism for the adaptive selection of parameters of the
adaptive complexity prediction formulated by (17). This is the
topic of the following subsection.

F. Resource-Constrained Adaptive Linear Complexity
Prediction

Based on the previous definition of the adaptive prediction,
for each , we can modify the AU granularity ,
the prediction update period , the predictor order
and the predictor step-size . In this paper, the optimal pre-
dictor order and step-size were selected based on ex-
haustive experimentation with a large set of possible values, as it
will be explained in the experimental section of the paper. Con-
sequently, we are focusing on the and parameters here.
In principle, we would like to select the parameters that would
minimize the output prediction error given in (22).
However, this may entail high computational complexity or high
information requirements (under the calculations of (18) and
(20), respectively). Moreover, under the flexible VCV model
[19] adopted in this study, the complexity (timing) bound for
each group of output frames (AUs) may be satisfied without
the best-possible prediction accuracy and therefore the resource
predictor may be realized with less computation. After making
this key observation, we would like to obtain the best possible
prediction accuracy under a certain predictor-complexity bound

(23)

where the optimal solution is a point in the -di-
mensional hyper-set of possible parameters , which is
bounded by

(24)

In the last equation, we selected as the maximum predictor
update period in order to ensure that the predictor is up-
dated at least once during each group of AUs .

Notice that (23) represents the most general form of the
problem that, under a given predictor complexity ,
simultaneously adapts all of the available prediction parameters
in order to minimize the expected prediction error over a finite
interval of future decoded video frames . The problem can
be similarly defined for the minimization of the information
requirements

(25)
The optimization of (25) is simpler than that of (23) as, from

the definition of of (20), it only involves the selection of
the GCM granularity . As a result, we shall focus on (23)
in the remainder of this paper, since simplified solutions to (23)
can be applied for the case of (25) as well.

In order to solve (23), we follow an offline estimation and
pruning approach and then during the online estimation we se-
lect the appropriate prediction parameters based on the offline
estimates. In this way, the offline optimization part can entail
high complexity while the complexity of the online estimation
is only stemming from the adaptive filtering.

We separate the prediction error into smaller parts

(26)
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where each intermediate error is defined based on the
correspondence of (26) with (21). As seen by (26), each of
these intermediate errors is equally important in the output error
metric. Moreover, for each choice of , based on
(18), we can analytically establish the resulting computational
impact in the adaptive complexity prediction realization. It is
straightforward to observe from (18) that the required computa-
tion monotonically increases with increasing and with de-
creasing . Under the assumption6 that the expected error can
be reliably estimated offline for the possible choices of and

, the optimization of (23) can be performed with dynamic
programming techniques, as explained in the following.

Each point ( (where is the initial
parameter hyper-set) is associated with its corresponding com-
putation/prediction-error (C-P) point .
Each is selected within the bounds set in (24). As-
suming that all possible alternatives are to be utilized in our
complexity prediction system, for each , we initially
obtain C-P points, which form the initial set
of valid C-P points, denoted by . During a pruning stage,
for each we remove from all C-P points for which
there exists another C-P point in with lower or equal
computational requirements and lower prediction error.

We then group together all admitted points in sets
into the sets , by summing up the admitted points of
that correspond to the same temporal level, i.e.,

(27)
The pruning stage is repeated for all C-P points of .

Finally, in the third stage, we group all admitted points of
for all levels

(28)

where the C-P points ( are
pruned as before in order to form the set of admissible points

. Every C-P point that is finally admitted to forms a
potential (optimal) solution, depending on the bound set on
the predictor complexity by (23). Notice that the grouping and
pruning process described previously can be performed offline
if estimates for all C-P points are available. In addition, all the
admitted points can be offline sorted in ascending order with
respect to the expected prediction error (and, correspondingly,
in descending order with respect to the predictor complexity),
thereby creating the sorted list of admissible points . As
a result, the online optimization simply amounts to selecting
the C-P point in with the complexity that is closest to

. This ensures negligible complexity overhead for
the optimization of (23).

G. Offline Estimation of the Expected Prediction Error Under
Predictor-Parameter Adaptation

Having a reliable offline estimation of the expected error for
a particular set of predictor parameters is a crucial aspect of

6This will be analyzed in Section III-G.

the optimization framework of the previous subsection, because,
under wrong error estimates, a suboptimal point of the param-
eter hyper-set may be selected. Our expected error esti-
mation is performed offline based on a collection of training
data and the bootstrap principle [28]. Since the statistics of the
prediction errors are dependent on the prediction parameters
and the utilized video coding scheme, conventional statistical
modeling approaches can be very complicated and application-
specific. The bootstrap approach calculates confidence intervals
for parameters where such standard methods cannot be applied
[28]. It is essentially a computerized method that replaces sta-
tistical analysis with computation, as it will be explained in the
following.

We collect offline experimental measurements using seven
typical video sequences decoded at 13 equidistant average bit
rates between the values of interest (200–1500 kbps). We also
fix our experimentation in the prediction of the decoding time of
each frame of an entire GOP. Our test case uses temporal
levels of an MCTF-based coder, a separate adaptive predictor
per temporal level and per operation type [set of (1)], as well
as a separate predictor for the frame of each GOP and for the
decoded video frames (temporal level zero). We applied the AU
sampling granularities described in introduction of Section II-B
and, for each sampling granularity, three different predictor up-
date periods were tested, i.e., samples. The en-
tire parameter space explored is presented in Fig. 3. Notice that,
depending on the chosen application, a different (even larger)
parameter space could be used with the same methodology for
offline prediction error estimation. Under the selected parameter
space of Fig. 3, we decoded the test video material at the bit
rates of interest and generated offline decoding time measure-
ments for each operation , as well as their prediction with all
possible predictor configurations. For each temporal level and
each , was estimated as follows.

Each measurement set consists of pairs of
measurements of timing complexity and predicted values under
the particular choice , indicated by and , respec-
tively. In total, for each , we have

pairs of measurements, with
under the chosen settings (seven sequences, each

consisting of total video frames, decoded at 13 dif-
ferent bit rates). We calculate the mean absolute prediction error
as

(29)

Subsequently, based on a pseudorandom number generator,
we resample with replacement and produce a re-
sampled set containing pairs of points.
The new mean prediction error, denoted as , is calcu-
lated as in (29), with . This process is
repeated for a total of iterations, thereby generating
the set

(30)

offline generated measurements of the mean prediction error
for the particular parameter choice . Notice that sev-
eral pairs may be duplicated during the resampling process,
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Fig. 3. Explored parameter space.

Fig. 4. Example of the derived offline bootstrap estimates for the MC oper-
ations at temporal level t = 2 (under a given predictor order and predictor
adaptation interval of one sample, with N = 1000). An example of a
confidence interval is indicated as well.

thereby creating a different bias for the resampled set of mea-
surements, which is a key aspect for the utilized bootstrap pa-
rameter estimation technique. These measurements are sorted
in increasing order ,
where is the th smallest element of . We

define the sorted measurement set as .
If we desire bootstrap confidence interval,

then the expected mean prediction error is bounded by
, with the indexes defined as

(31)

(32)

Fig. 4 shows an example of the (sorted) bootstrap-estimated
error for the MC operations of temporal level one under various
granularities for the prediction. As shown there, we performed

iterations for each case. In our experiments,
we adapt the confidence interval dynamically based on the pre-
viously observed errors. In this way, although the error estima-
tion is performed offline, our “confidence” on the estimate is
adapted online by matching the offline (bootstrap) estimate with

the observed error estimate of the previously predicted frames.
Since different confidence intervals have to be considered and
this may alter the points excluded from the pruning process of
the previous subsection, we selected ten values for the confi-
dence interval, defined by , and per-
formed the pruning process under each one. Once the derived
indexes are derived for each interval based on (31) and
(32), we define the bootstrap mean error for this interval (for
each operation at each temporal level and each predictor pa-
rameter choice ) as

(33)

In total, during the online complexity prediction process, the
optimal predictor is selected based on (23), with the expected
error found from the bootstrap estimates under the ap-
propriate confidence interval for every , denoted by . After
the video frames are decoded and the complexity prediction
error is calculated based on the experimental measurements, the
confidence interval is readjusted according to the mismatch be-
tween and the measured error . Although
we used the first sample moment for our optimization process
[mean estimate of (33)], higher sample moments such as the ex-
pected error variance could be used in the proposed framework.

Finally, it is important to emphasize that, although we
selected the uniform distribution for the resampling of the
bootstrap process (via the use of a pseudorandom number
generator), if explicit knowledge is given for the probability
distribution function (pdf) of the errors of a particular param-
eter choice , this pdf can be used for the resampling
process in order to increase the bootstrapping estimation
performance.

IV. EXPERIMENTAL EVALUATION

A. GCM-Based Prediction Versus Autoregressive Prediction

We first indicate the achieved prediction performance and av-
erage complexity requirements for the predictor (in terms of
MAC operations per video frame) for different configurations.
The results are seen in Table I for the GCM-based adaptive pre-
diction and in Table II for the autoregressive adaptive prediction.
The numbers in parentheses indicate the required number of
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TABLE I
ERROR-OVER-MEASUREMENT POWER RATIO (IN PERCENTAGE) AND COMPUTATIONAL REQUIREMENTS PER FRAME (IN NUMBER OF MACS—IN PARENTHESIS) OF

GCM-BASED PREDICTION FOR ALL THE DIFFERENT OPERATIONS. SEVEN CIF VIDEO SEQUENCES DECODED AT 512 kbps WERE USED

TABLE II
ERROR-OVER-MEASUREMENT POWER RATIO (IN PERCENTAGE) AND COMPUTATIONAL REQUIREMENTS PER FRAME (IN NUMBER OF MACS—IN PARENTHESIS) OF

AUTOREGRESSIVE PREDICTION FOR ALL THE OPERATIONS. SEVEN CIF VIDEO SEQUENCES DECODED AT 512 kbps WERE USED

MAC operations for the realization of the complexity predictor,
calculated based on (18) for each predictor granularity and adap-
tation interval. We used seven MPEG CIF sequences (“City,”
“Football,” “Raven,” “Sailormen,” “Tempete,” “Mobile,” and
“Foreman” of 300 frames each) with a replay rate of 30 Hz, de-
compressed at an average of 512 kbps (variable bit rate) with the
advanced MCTF-based video decoder [24] used in our previous
experiments [18], [24], which combines multiframe advanced
motion-compensated prediction with variable block sizes and
context-based entropy coding. Our choice of the particular de-
coder stems from three factors: 1) complexity prediction within
an MCTF-based framework is more challenging than in predic-
tive coding due to the more complex interactions required for
the decoding of each GOP; 2) the decoder of [24] performs ad-
vanced multiframe multihypothesis motion compensation with
variable block sizes and in this way it resembles state-of-the-art
video coding systems such as the MPEG AVC/ITU H.264; and
3) by using the decoder of [24], this paper is directly linked to
our previous related work [17].

Notice that, since the GCM framework of Fig. 2 is applicable
to essentially all transform-based motion-compensated video
coding schemes, the proposed framework is only tied to a par-
ticular decoder in terms of the GCM granularity and the number
of different frame types chosen. Both of these features must

be selected based on the decoder features. For example, for a
block-based transform system with predictive coding using I,
B, and P frames (i.e., an MPEG-1/2/4 coder or AVC/H.264),
the high granularity for the FC operations would be at the mac-
roblock level instead of the spatial resolution chosen for the
discrete wavelet transform. In addition, we would set
as shown in the example of Fig. 1(a). Hence, customization to
any decoder can be performed by appropriately selecting the
GCM granularity and the number of different complexity pre-
dictors based on the decoder characteristics, and the proposed
complexity prediction methodology follows.

The chosen decoding algorithm [24] for the validation exper-
iments of this paper was implemented in C++, compiled with
Microsoft Visual Studio 6.0 in release mode, and executed in the
Microsoft Windows XP environment in a Pentium-IV system.
With all the advanced coding options enabled (e.g., long tem-
poral filters, multihypothesis motion-compensated prediction,
and update), real-time decoding was not possible without addi-
tional software optimization. Hence, similar to prior work [3],
[19], we resorted to simulation-based results. In Tables I and II,
we present the average error-over-measurement (EM) power
ratio for each of the generic operations presented in Section V-B
as well as the computational complexity of each predictor in
terms of average MAC operations per decoded video frame.
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All measurements of prediction errors are obtained per de-
coded video frame. The prediction estimates the complexity of
the following GOP based on the GCMs of the GOP (GCM-based
prediction) or the previous GOP’s complexity (autoregressive
prediction) as seen in (14). In particular, for every temporal level

in (14) and (15), we have
and , for the GCM-based prediction,

and and ,
for the autoregressive prediction. During the GOP

decoding, in both cases the predictor is adapted following (15),
and, at the end of the GOP, the predictor to be used for the fol-
lowing GOP is updated. Obviously, more frequent updates of the
predictor lead to better prediction accuracy, but the number of
future frames whose complexity can be predicted is decreased.

Different sampling granularities are considered in the exper-
iments reported in Tables I and II, as explained in Section IV-B.
In addition, we considered different predictor adaptation inter-
vals. The reported experiments used the best predictor order
not greater than 64. The best predictor order for each case was
found under exhaustive offline experimentation with the video
sequences following a variation of the Akaike information crite-
rion [26], which jointly minimizes the variance of the prediction
error and the order of the predictor. During each step of this ex-
haustive testing, the step size was varied from to

in order to jointly derive the best order and step-size.
For all of our experiments, we focused on the NLMS case since
it was found to provide significantly higher stability and faster
convergence properties. It is interesting to remark that, in the
majority of cases, GCM-based prediction required small pre-
dictor orders; even worked sufficiently well for the
majority of . This indicates that there is a strong statistical
correlation between the utilized GCMs and the measured com-
plexity. On the other hand, in the autoregressive prediction case,
higher predictor orders gave better results.

For each case, the total prediction error and complexity
reported at the bottom of Tables I and II are calculated by
adding the intermediate results of all four generic metrics for
the corresponding predictor settings. Notice, however, that, in
our optimization framework, we consider all possible cross
combinations of predictors; therefore, for the same computa-
tional complexity for the adaptive prediction, the optimized
resource prediction is expected to achieve better performance
than what is reported in Tables I and II.

The results indicate that GCM-based prediction outperforms
autoregressive prediction by a significant margin of EM power
ratio. Although higher granularity and a small adaptation
interval tend to improve the complexity-prediction accuracy,
this is not always the case, especially in the autoregressive
prediction case. For example, for the GCM-based prediction of
MC operations, the best result is obtained under an adaptation
interval of 2 measurements at the macroblock granularity.
This means that other combinations with higher complexity
and higher expected error should be excluded. This is auto-
matically performed during the offline pruning process of the
proposed optimization framework, as described in the previous
section. Consequently, it can be said that the proposed offline
optimization framework automatically provides the subset of
predictor configurations that always provide lower (expected)
error for higher complexity without incurring any additional
online computation penalty.

Examples of GCM-based and autoregressive complexity
prediction across time are given in Fig. 5, where we report the
prediction estimates versus the time measured in units (“tics”)
of the internal processor counter [25]. As shown in the figure,
the autoregressive-based prediction tends to “overshoot” or
“undershoot” during the complexity estimation in comparison
to the GCM-based prediction that appears to follow the exper-
imental results more accurately. An additional aspect of the
GCM-based approach is that the prediction with a higher gran-
ularity (i.e., at the macroblock or spatial-decomposition level)
tends to follow the actual measurements with significantly
higher accuracy than that at the decoded frame granularity even
though the two methods may happen to be comparable when the
prediction is averaged over a time interval (e.g., corresponding
to a GOP). This is not necessarily true for autoregressive
complexity prediction as shown by the relevant experiments
in Fig. 5. However, notice that GCM-based prediction also
requires communication overhead for the transmission of the
GCM values or the modeling parameters via which GCMs may
be derived [17].

The communication overhead is proportional to the granu-
larity and the adaptation interval at which complexity is pre-
dicted [see (20)]. Hence, the proposed optimization framework
that operates with bounded predictor complexity implicitly
bounds the communication overhead for the GCM transmission
to the receiver as well.

B. Resource-Constrained Complexity Prediction

The results of Tables I and II demonstrate that GCM-based
prediction is significantly better than autoregressive prediction
and requires on average less complexity for the predictor real-
ization, we focus on this category for the remainder of this sec-
tion. For the optimization framework of Section V, the process
is performed as follows.

1) Algorithm Summary
• We apply the offline bootstrapping process of

Section III-G to the seven video sequences used
previously for the estimation of the expected error for
each predictor configuration under the ten confidence
intervals mentioned in Section III-G.

• The offline pruning process of Section III-F is subse-
quently applied for each confidence interval. All of the
admitted predictor configurations from the explored
parameter space of Fig. 3 are then sorted (offline) in
decreasing complexity (and hence increased estimation
error). In this way, for each temporal level, we obtain
estimations of predictor complexity and expected error
such as the ones seen in Fig. 6. The results of the figure
were generated with two confidence intervals for the
bootstrap process. Similar results were obtained with
other confidence intervals and for the remaining tem-
poral levels.

• During the online complexity estimation, we use
(14) and (15), and, for every temporal level , we
have and

for the GCM-based prediction. The com-
plexity predictor parameters and are obtained
by the given predictor complexity bound
and the current confidence parameter based on the
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Fig. 5. Examples of GCM-based and autoregressive-based execution time prediction. The time required for the motion-compensation and entropy=decoding
operations for the reconstruction of all MCTF frames of each GOP of one video sequence are presented. Top row: predictor adaptation with macroblock or spatial-
decomposition level granularity. Bottom row: predictor adaptation with frame granularity. “Tics” indicate the value measured by the internal processor counter
and the prediction error is always measured in a frame-by-frame basis.

offline sorted list of admitted predictor configurations
from the previous step.

V. EXPERIMENTAL RESULTS

Since only the last step from the above is performed on-
line, the online complexity prediction is guaranteed to have
complexity equal to . Table III presents the overall
complexity-prediction error for different predictor complexity
bounds based on the optimization of (25) for four sequences
(“Coastguard,” “Paris,” “News,” and “Stefan”) not belonging
to the training set for the bootstrap estimation process. Similar
to our previous experiments, the prediction error was measured
for each decoded frame and a prediction interval of one GOP
was selected. We begin the prediction with confidence interval
corresponding to , and, for each consecutive
GOP, we adapt the confidence parameter (parameter for
each operation and each temporal level) to the one which pro-
duces the closest prediction to the observed errors. During our
experimentation we observed that, depending on the sequence
characteristics and the mismatch between the offline estimated
error and the actual prediction error, frequent changes in the
predictor configuration may occur. This is not desirable since
additional error is caused until the new predictor converges
to the (quasi-)steady state. Hence, to indicate the penalization
cause by the new predictor convergence time, we included a
bias for the error estimate of the current predictor configuration
by scaling it down by a certain percentage. The best scaling
value was determined experimentally.

A. Practical Complexity and Communication Overhead for
GCM-Based Adaptive Complexity Prediction

Due to the fact that we are performing software-only de-
coding simulations and the utilized codec does not support real-
time decoding under the chosen experimental setting, it is hard
to explicitly quantify the real effect of the complexity predictor
versus the entire decoder complexity. However, considering that
one of the most complex modules of the decoder is the inverse
spatial transform, which by itself can operate in real-time in
our decoder, preliminary results indicate that the most complex
instantiation of the predictor used in the results of Table III
and tested as a software-only C++ module, required approxi-
mately 25% of the execution time of the inverse transform. This
complexity is substantially reduced as the bound on the pre-
dictor MAC operations is decreased. In addition, further opti-
mization of the decoder or the complexity predictor implemen-
tation may change the relative complexity overhead added into
the overall decoding process. Hence, the practical quantification
of this overhead in a real-time environment remains a future re-
search topic.

Finally, concerning the transmission overhead for the com-
munication of the GCM values to the decoder, in all the experi-
ments reported in Table III, the overhead was ranging from 0.5%
to no more than 8% of the overall transmission bit rate. Since
there is a linear relationship between (18) and (20) (complexity
and information requirements of GCM-based prediction), the
higher the bound set for , the more the GCM trans-
mission overhead.
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Fig. 6. Complexity and bootstrap error of the GCM-based prediction for the case of temporal level two. Top: confidence interval 8g : "[g; 2] = 1:0. Bottom:
confidence interval 8g : "[g; 2] = 0:5. Each predictor configuration number corresponds to a particular setting for the predictor order, predictor adaptation period,
and granularity of the application of the predictor from the parameter space of Fig. 3.

TABLE III
RESULTS OF RESOURCE-CONSTRAINED COMPLEXITY PREDICTION.

PREDICTION WAS APPLIED FOR THE DECODING COMPLEXITY

OF EACH SUBSEQUENT GOP OF THE SEQUENCE AND THE

PREDICTION ERROR IS MEASURED PER VIDEO FRAME

B. Discussion

The results of the statistical estimation of the expected
error versus the predictor complexity shown in Fig. 6 serve
as a validation that the proposed GCM-based complexity
prediction approach provides lower resource-prediction error
for increased computation bound for the predictor. This was
additionally tested in practice with new sequences as demon-
strated by the results of Table III. The monotonic relationship
between predictor complexity and expected prediction error is
a significant aspect of the proposed framework since, in this
way, depending on the delay deadline for the decoding of each
GOP, one can assign appropriate complexity to the resource
prediction such that sufficient prediction accuracy is obtained
for the particular application. The proposed framework appears
to be able to provide good complexity estimates over a variety
of sequences and bit rates, even though all the offline training
steps and the online adaptation are essentially agnostic to the

specific decoding operations and their implementation details.
In fact, even though the estimation experiments for Table III
were performed under a slightly different processor and under
different processor load (which is anyway not constant in the
Windows XP operating system) in comparison to our training
stage, the online adaptation of the confidence interval for
the bootstrap error estimates appears to cope well with these
effects.

The proposed complexity-prediction framework can be used
in several cases where delay-bounded video decoding is to be
performed at a receiver. For example, under the flexible video
decoding model [19], the proposed adaptive prediction can be
used to accurately estimate the remaining time for each frame
of each GOP. These estimates can be communicated to the op-
erating system which can decide to increase or decrease the re-
sources allocated to the particular task [29]–[31] as long as the
delay deadline is not violated.

Another application of the proposed complexity-prediction
framework is in admission control for a video bitstream to
be decoded by a particular system. As shown in our previous
work [17], the complexity mapping can generate bounds on
each of the possible operations (MC, , , FC, and RS)
and request that these bounds be satisfied for each GOP of the
decoded video sequence. This effectively creates a dynamic
complexity-specification (C-SPEC) negotiation mechanism be-
tween the video server and each client decoder that implements
the complexity prediction. Although we have presented some
preliminary results of such a negotiation in our previous work
[17], [18], we plan to investigate this issue further in our future
research.
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VI. CONCLUSION

Accurate and generic methods for video-decoding resource
prediction can provide significant improvements for scheduling
and resource optimization algorithms in multimedia platforms.
This paper analyzed in a systematic manner the various alterna-
tives involved in autoregressive linear prediction or prediction
based on generic complexity metrics. Our analysis led to the def-
inition of an offline estimation process for resource-constrained
complexity prediction followed by online adaptation of the pre-
diction parameters. A large parameter space was taken into con-
sideration. Our results indicated that the GCM-based approach
provides better resource-prediction accuracy with lower com-
putational requirements for the adaptive predictor. Moreover,
under the proposed optimization approach, the resource-predic-
tion accuracy is gracefully improved with increased predictor
complexity, thereby providing an adaptable framework useful
for a variety of applications involving resource optimization for
multimedia decoding.
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