
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 7, NOVEMBER 2007 1493

A Queuing-Theoretic Approach to Task
Scheduling and Processor Selection for

Video-Decoding Applications
Nicholas H. Mastronarde, Student Member, IEEE, and Mihaela van der Schaar, Senior Member, IEEE

Abstract—We propose a cross-layer design for resource-con-
strained systems that simultaneously decode multiple video
streams on multiple parallel processors, cores, or processing ele-
ments. Our proposed design explicitly considers the coder specific
application characteristics such as the decoding dependencies, de-
coding deadlines, and distortion impacts of different video packets
(e.g., frames, slices, groups of slices etc.). The key to the cross-layer
design is the resource management control plane (RMCP) that co-
ordinates the scheduling and processor selection across the active
applications. The RMCP deploys a priority-queuing model that
can evaluate the system congestion and predict the total expected
video quality for the set of active decoding tasks. Using this model,
we develop a robust distortion- and delay-aware scheduling algo-
rithm for video packets. This algorithm aims to maximize the sum
of achieved video qualities over all of the decoded video sequences.
Additionally, we propose a processor selection scheme intended
to minimize the delays experienced by the queued video packets.
In this way, the number of missed decoding deadlines is reduced
and the overall decoded video quality is increased. We compare
queuing-theoretic based scheduling strategies to media agnostic
scheduling strategies (i.e., earliest-deadline-first scheduling) that
do not jointly consider the decoding deadlines and distortion
impacts. Our results illustrate that by directly considering the
video application’s properties in the design of a video decoding
system, significant system performance gains on the order of 4 dB
peak-signal-to-noise ratio can be achieved.

Index Terms—Middleware, multiprocessor decoding, multi-
media systems, queuing models for systems, real-time system
scheduling, video decoding complexity.

I. INTRODUCTION

EMERGING multiprocessor devices are poised to en-
able the proliferation of real-time video applications

that require simultaneously decoding multiple video streams
on a single device. Typical applications include multipoint
videoconferencing, multicamera surveillance, multiview video
streaming, and augmented reality. Due to their real-time re-
quirements and high complexity, however, efficiently designing
and implementing these video decoding applications on ex-
isting resource-constrained and heterogeneous devices poses

Manuscript received February 9, 2007; revised April 27, 2007. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Dr. Anna Hac.

N. H. Mastronarde and M. van der Schaar are with the Department
of Electrical Engineering (EE), University of California at Los Angeles
(UCLA), Los Angeles, CA 90095–1594 USA (e-mail: nhmastro@ee.ucla.edu;
mihaela@ee.ucla.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2007.906568

numerous challenges. First, we must model the processing
delays, which depend on the source characteristics, the en-
coding parameters, the deployed compression algorithm, and
the system’s processing capabilities. Second, we must model
the queuing delays, which depend on the processing delays,
the competing tasks, the number of processors, the distribution
of the processing load across each processor, and the deployed
coding structures. Predicting these delays is particularly im-
portant for delay-sensitive multimedia applications because the
derived video quality depends on processing jobs before their
deadlines.

Recognizing the importance of these diverse multimedia
applications in future commercial enterprises and the need for
systems better suited for multimedia applications, Intel and
AMD have introduced processing technologies such as dual-
and quad-core processors [1], [2] that enable higher throughput
for parallelizable workloads. Also, IBM recently developed
the Cell Broadband Engine Architecture [3] that is designed
specifically for computationally intensive digital entertainment.
IBM’s Cell allows developers to program middleware that
tailors the processor’s operation to the specific application. For
example, developers can specify that different processing jobs
be distributed across the high-bandwidth synergistic processing
elements [3] in a way that minimizes delays in the job queue(s).
Moreover, IBM’s Cell is a scalable processor architecture; that
is, it can be produced with different numbers of processing
elements. This scalability makes it suitable for a variety of
multimedia-enabled devices.

To exploit the available processing resources and efficiently
cope with the diverse and dynamic requirements of decoding ap-
plications, resource management becomes of paramount impor-
tance. Due to the scalability of video applications that can run at
different quality- and complexity-levels, a successful video-cen-
tric resource management scheme should be designed with the
goal of minimizing the decoded video distortion. We argue that
existing approaches to implementing multimedia decoding al-
gorithms on systems have several drawbacks:

1) No consideration of time-varying application require-
ments: Current systems often assume worst-case resource
utilization for the design and implementation of com-
pression techniques and standards, thereby neglecting
the fact that multimedia algorithms require time-varying
resources [4], [5], which can differ significantly from
the worst-case requirements. Specifically, the workload
evolves dynamically over time depending on many factors
including the source characteristics (e.g., high-motion,
complex textures, object occlusion), the encoded bit rates,

1520-9210/$25.00 © 2007 IEEE

1494 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 7, NOVEMBER 2007

the transmission bit rates (if the video is streamed over a
network), the error concealment strategies, the sub-pixel
motion estimation accuracy, and the coding structures
of the various decoding tasks in the system. In order
to achieve more efficient resource utilization without
compromising the decoded video quality, media-aware
resource management schemes must rapidly adapt to
the applications’ time-varying resource requirements.
Timely adaptation becomes even more important when
there are multiple decoding tasks competing for the same
processing resources.

2) Compression agnostic adaptation: Existing resource
management solutions that do consider dynamic appli-
cation requirements are, nevertheless, often compression
agnostic [6], [7]. In [7], for example, a task’s CPU al-
location is made to satisfy a statistical cycle demand
corresponding to an arbitrary fraction of recent jobs in
a sliding window (e.g., 95% of frames). This solution,
however, ignores the differential distortion impacts of
the various encoded frames that naturally arise from
the deployed coding structures of state-of-the-art hybrid
codecs. Similarly, existing real-time scheduling algo-
rithms for multimedia systems ignore the application’s
characteristics. For example, most multimedia systems
use a compression agnostic earliest-deadline-first (EDF)
scheduling policy that schedules tasks based purely on
their relative decoding deadlines [6]. Distortion-aware
resource management and scheduling is particularly
important when deploying state-of-the-art video coders
because decoding bit streams created by these video coders
often requires processing large workload bursts that can
overload the system. In such a scenario, it is essential
that any missed decoding deadlines are mitigated to less
important (in terms of distortion impact) video packets
(e.g., frames, slices, groups of slices etc.). For instance, in
an H.264/AVC based coder, losses should be mitigated to
B frames in order to protect the more important I and P
frames on which subsequent frames depend. Alternatively,
if an I or P frame is not decoded, then the quality of
the subsequent frames is severely degraded due to error
propagation [8].

3) No Models for multiprocessor system performance: In the
majority of work that considers multiprocessor decoding
there are no models that can predict the load across the
processors based on the active video decoding tasks in the
system [9], [10].

Our contributions to designing a distortion- and delay-aware
cross-layer solution for multitask, multiprocessor, video de-
coding systems are as follows:

1) Resource management control plane (Section II): We
propose a Resource Management Control Plane (RMCP)
that coordinates the scheduling and processor selection
(see contributions 4 and 5 below) across the various video
applications while considering their time-varying charac-
teristics, their complexity-scalability properties and the
resulting impact on the multimedia quality. The RMCP’s
actions are driven by the descriptions of the video applica-
tions (see contribution 2) and the decoding system model
(see contribution 3).

2) General framework for describing codec specific prop-
erties (Sections II–III): We propose a general framework
that can be used for describing codec-specific coding struc-
tures, decoding dependencies, deadline distributions, dis-
tortion impacts, and workload characteristics. Based on
this information, we group each sequence’s video packets
into several coding-structure-specific priority classes. In
our framework, any video sequence encoded by a state-of-
the-art video coder can be parameterized to interface with
the proposed RMCP. This interoperability allows efficient
mapping of new multimedia applications to heterogeneous
systems and allows existing and new applications to grace-
fully scale and fairly compete for available resources.

3) Modeling system congestion and video distortion
(Sections II, IV): Given the parameterized video applica-
tions, the RMCP employs a queuing model to evaluate
their expected resource requirements with only a few
parameters. In particular, we model the system using pre-
emptive M/G/1 priority queues [11]. This queuing model
allows the RMCP to predict the system congestion (across
all processors) as well as the expected video distortion
(across all decoded video sequences). Additionally, the
RMCP can use the queuing model to estimate the expected
waiting times for each priority class on each processor
based on the video applications’ characteristics, e.g., the
distortion impacts of the various priority classes and the
off-line modeled service time distributions for different
frame types.

4) Distortion- and delay-driven video packet scheduling
(Section V): We explore several scheduling policies for
allocating processor-time to video packets. We demon-
strate that conventional EDF and priority-queuing (PQ)
scheduling policies are sub-optimal (in terms of achieved
video quality) when used for decoding H.264/AVC based
bit streams. Subsequently, we propose two new distortion-
and delay-driven scheduling policies that jointly consider
the decoding distortion and the decoding deadlines when
allocating processor time to video packets.

5) Delay-driven processor selection (Section VI): Based on
the expected waiting times computed using the priority-
queuing analysis, we assign packets to be decoded on the
processor that is expected to have the shortest queuing
delay. Importantly, minimizing the packet’s queuing delay
maximizes the probability that it will be successfully de-
coded before its decoding deadline expires.

To evaluate the cross-layer RMCP solutions proposed in
Sections II–VI, we present and discuss our experimental results
in Section VII. Finally, we conclude in Section VIII.

II. RESOURCE MANAGEMENT CONTROL PLANE

In this section, we introduce the RMCP that is illustrated in
Fig. 1. The RMCP consists of two layers: i) The Application
Abstraction Layer (AAL), which stores information about the
active video applications (i.e., the codec specific decoding dead-
lines, distortion impacts, and workload distributions) and ii) The
System Abstraction Layer (SAL), which uses the application-
specific data from the AAL in order to model the system oper-
ation (i.e., the expected queuing and processing delays). Based
on the information provided by these two layers, the RMCP is

MASTRONARDE AND VAN DER SCHAAR: QUEUING-THEORETIC APPROACH TO TASK SCHEDULING AND PROCESSOR SELECTION 1495

Fig. 1. Block diagram of the Resource Management Control Plane (RMCP).

able to coordinate the real-time scheduling and processor selec-
tion by taking into account the applications’ time-varying char-
acteristics, complexity-scalability properties, and the resulting
impact on the multimedia quality. In the rest of this section, we
describe in more detail the functions of the RMCP, AAL, and
SAL.

A. Application Abstraction Layer Overview

To enable video sequences encoded by any popular video
coders (e.g., MPEG-2, DIVX, MPEG-4, H.264/AVC, wavelet
etc.) to interface with the proposed RMCP via the AAL, we
desire a general framework for describing codec specific prop-
erties such as the delay deadlines, distortion impacts, and the
dependencies resulting from the chosen multimedia algorithm.
Having a consistent and general interface facilitates efficient
mapping of new multimedia applications to heterogeneous sys-
tems and allows existing and new applications to gracefully
scale and fairly compete for available resources.

We refer to the basic video units in the system as “packets”
because video data is often transmitted or stored in a packetized
format (e.g., MPEG-21). We let denote a video packet and we
assume that its payload comprises an entire frame, a group of
slices within a frame, individual slices, or data partitions, such
that the video packets comprising a specific frame are indepen-
dently decodable. Within the AAL, each video packet is pa-
rameterized as follows:

• Decoding deadline: denotes the time by which packet
must be decoded in order for it to contribute to the overall
quality of the decoded video.

• Distortion reduction: denotes the decrease in distor-
tion that is observed when the packet is successfully de-
coded before its decoding deadline. The distortion values
may be determined during encoding and transmitted to the
decoder as hinting information or metadata [12]. There are
many approaches in the literature for determining , see
e.g., [13] and [14].

• Set of Ancestors: When decoding a sequence
, packets from different frames are processed in de-

coding order, which is dictated by the dependencies in-
troduced by predictive coding (i.e., motion-estimation and
motion-compensation). In general, the dependencies that
arise in state-of-the-art video coders for different group
of pictures (GOP) structures can be described by directed
acyclic graphs (DAGs) [13] with the nodes representing

video frames and the edges representing the dependen-
cies between frames. To denote the decoding dependencies
among packets, we define as the set of the th packet’s
ancestors [15]

(1)

where we borrow the notation used in [13] to indicate
that depends on .

• Indicator of Successful Decoding: We use a binary indi-
cator variable that takes value 1 if the th packet has
been decoded and takes value 0 otherwise. If all packets

have been decoded (i.e., for all),
then we say that the th packet is decodable. Conversely,
as in [13], [15], we assume that if any packet has
not been decoded (i.e., there exists an such that

), then cannot be decoded1

Additionally, we define as the DAG repre-
senting the decoding dependencies across an entire sequence.
Specifically

(2)

where represents the set of packets comprising the th
video sequence .

Within the AAL, the packets in the video sequences are
grouped into a total of priority classes. In general, a video
packet’s priority increases with the number of packets that are
dependent on it. Hence, the video packet prioritization depends
on the encoded dependencies encapsulated in ,

. We denote the th priority class as
and we write if the th video packet is in priority class

. Within each GOP of an encoded video sequence, all of the
packets in priority class are assigned a common decoding
deadline (i.e., , within the same GOP).
Successfully decoding every packet in one GOP of priority class

yields a distortion reduction . Since we assume that the
distortion is incrementally additive [13], is equivalent to
the sum of each packet’s distortion reduction, , for any

within one GOP.
When defining the priority classes, the AAL orders

such that .
Note that, unlike in an embedded bit stream (e.g., a bit stream
created by an embedded 3-D wavelet codec), the packets in
an H.264/AVC compliant bit stream do not have decreasingly
stringent delay requirements as their priority decreases. For this
reason, sophisticated hybrid codecs such as H.264/AVC require
more complex scheduling algorithms that jointly consider delay
deadlines, distortion impacts, and expected processing/service
times in order to maximize the decoded quality. This ob-
servation motivates the proposed scheduling algorithms in
Sections V-C and V-E.

B. System Abstraction Layer Overview

We assume that there are video decoding tasks sharing the
resources of a system comprising parallel processors. Fig. 2
illustrates the abstraction of the system from the point of view

1We do not consider error concealment in our treatment of the problem; how-
ever, it can be incorporated into the proposed framework.

1496 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 7, NOVEMBER 2007

Fig. 2. Internals of the RMCP’s System Abstraction Layer. � and � are the RMCP processor selection and scheduling strategies for the kth priority class
on the mth processor. L represents the set of L packets in the mth processor’s queue.

of the RMCP. The RMCP assumes that video packets from
remote applications (i.e., video sources) are streamed, from a
network (or storage device), into an input buffer present at the
client system. Video packets are then pushed into parallel
queues that are served by processors (with one queue per
processor). The decoded packets from each processor are then
recombined at the output buffer and the sequences are si-
multaneously displayed for the client. In this paper, we do not
consider the streaming delays or the pre-roll delays at the input
buffer because we are primarily concerned with the delays in-
curred in the processing pipeline. Specifically, we consider the
queuing delays and the processing delays. The main purpose of
the SAL is to analyze (before and during run-time) the expected
queuing and processing delays for the set of active video appli-
cations described by the AAL.

C. RMCP Strategies

The queuing delays incurred by different video packets de-
pend on the deployed RMCP processor selection and real-time
scheduling strategies. These strategies are the means through
which the RMCP controls the system congestion (i.e., queuing
delays) and, ultimately, the decoded video quality across all
sequences.

For every video packet in the video decoding system shown
in Fig. 2, many RMCP strategies exist for serving the packet.
Let denote the set of RMCP strate-
gies that can be deployed by class packets on the th pro-
cessor. We denote as the
RMCP strategy selected for video packet . The components of

are defined as follows.
• Packet scheduling strategy (Section V): The set con-

tains all possible scheduling strategies that can be de-
ployed for a video packet on the th processor.
The scheduling strategy determines which packets in the

th processor’s queue are allocated processing time. The
packet schedules depend on the decoding deadlines ,

distortion reductions , and the DAG that represents
the decoding dependencies (,

).
• Processor selection strategy (Section VI): The processor

selection parameters specify the fraction
of class video packets in the input buffer that will be
forwarded to the th processor’s queue .
That is, allows the decoding workload of class

packets to be distributed across the processors.
The processor selection parameters are defined such that

.
We note that, in Fig. 2, represents the set of packets

in the th processor’s queue .

D. Problem Formulation

Given the video packet prioritization scheme, dependencies
between different packets, and the RMCP strategy space, we de-
sire to minimize the total distortion over the packets, from
all video sequences, that are currently in the input buffer.
Note that , where is the number of packets
in class . Let us define the joint RMCP strategy vector

as
a vector of RMCP strategies that can be deployed for packets
in the input buffer (i.e., specifies the th
packet’s scheduling strategy and the processor on which it will
be decoded). The problem of selecting the joint RMCP strategy
vector that minimizes the total distortion becomes

(3)

where is the distortion if no packets are decoded for any of
the video sequences and is an indicator variable that takes
value 1 if the th packet is successfully decoded based on the

MASTRONARDE AND VAN DER SCHAAR: QUEUING-THEORETIC APPROACH TO TASK SCHEDULING AND PROCESSOR SELECTION 1497

deployed strategies and takes value 0 other-
wise. Importantly, whether or not the th packet is successfully
decoded is dependent on its own strategy as well
as the strategies selected for all of the other packets.

The above problem is intractable for several reasons. Firstly,
even when we consider a single processor scenario (i.e.,

) the complexity of this algorithm is which
makes an exhaustive search for the optimal solution unreason-
ably complex (in fact, as will be discussed in Section V, just
determining the optimal scheduling on a single processor is
NP-complete). Secondly, we do not know a priori the actual
decoding complexity of the packets. Hence, it is impossible
to determine whether a packet will be successfully decoded
given the joint strategy vector (i.e., we cannot determine

a priori).
To suboptimally solve the intractable problem in (3), we

decompose it into two separate problems. In Section V,
we simplify the packet scheduling problem (i.e., selecting

) by dividing it into separate scheduling
problems (one for each processor queue). In Section VI, we
propose a processor selection algorithm (i.e., an algorithm for
selecting) that distributes the packets in the var-
ious priority classes to the processor queues where they wait
to be scheduled. This algorithm attempts to reduce decoding
deadline expirations by minimizing the queue waiting times
across the processors.

III. WORKLOAD DISTRIBUTIONS AT THE APPLICATION

ABSTRACTION LAYER

The GOP structure and decoding dependencies described in
Section II-A are particularly important because they dictate the
decoding deadline distribution of frames within a GOP. The de-
coding deadlines, in turn, influence the system workload char-
acteristics (i.e., the processor load over time) because they de-
termine when each frame must be decoded. In this section, we
analyze and model the workload/complexity distributions asso-
ciated with decoding a single frame. This will facilitate our anal-
ysis of the expected queuing delays experienced by the video
packets in the various priority classes,

I, P, and B frame types have widely varying complexity distri-
butions that are dependent on many factors including the source
characteristics (e.g., high-motion, complex textures, object oc-
clusion) and the encoding parameters (e.g., the average bit rate
or the quantization parameter [4]). In order to measure the frame
decoding complexities, we profiled the JM 10.2 H.264/AVC ref-
erence software with system calls that query the internal pro-
cessor counter to obtain high-resolution timing measurements.
The measurements are taken on a Dell Pentium IV system run-
ning Microsoft Windows XP safe mode with only a command
prompt to ensure that context switches and interrupting pro-
cesses are minimized. The reported measurements for the de-
coding complexities of individual frames are taken as the min-
imum measurements over three trials. This technique is used
to further minimize outlier measurements caused by context
switches and interrupting processes that are not representative
of the actual decoding complexity.

A video packet’s decoding complexity is dependent on its
frame type, source sequence (e.g., Mobile or Foreman), and

quantization parameter which we denote as ,
, and , respectively. Based on our decoding complexity

measurements, we found that the normalized complexity,
, for each frame type (for a particular source se-

quence encoded with a fixed quantization parameter) is a
random variable with a distribution that is nearly Poisson, i.e.,

(4)

where is a Poisson bin number, is the probability
that the normalized complexity falls into bin , and is
a shape parameter for the normalized complexity distribution.
The actual decoding complexity, (measured in pro-
cessor cycles), can be modeled by a shifted and scaled Poisson
distribution, as follows:

(5)

where and are constants (with units in
processor cycles) that depend on the sequence, frame type,
and quantization parameter. Table I shows example affine
transform coefficients and shape parameters for the decoding
complexity when , , 24,
and . Note that, in Table I, the super-
scripts and subscripts on , , and
are removed for simplicity of notation. In the Appendix, we
describe how we derived the affine transform coefficients and
shape parameters shown in Table I using histograms of our
complexity measurements.

In a real-time streaming scenario, the complexity model pa-
rameters are not be known a priori. Therefore, these parameters
need to be estimated at the decoder. To facilitate this estimation
process, hinting information or metadata can be created at the
encoder and transmitted with the bitstream [12]. This hinting
information can be used by the decoder to estimate the affine
transform coefficients and the shape parameters for the different
frame types. More specifically, the hinting information can con-
tain a feature vector that describes the sequence content char-
acteristics such as the number of motion vectors, percentage of
non-zero transform coefficients etc. and/or encoding parameters
such as the quantization-parameter (QP). Based on the feature
vectors communicated via the metadata, an online classifier [16]
at the decoder can be used to determine the complexity model
parameters for the I, B, and P frames. This online classifiers
performance will depend on previous offline training or pro-
filing [4], [12] done at the decoder on a variety of representative
video sequences with different content characteristics and en-
coded with different encoding parameters (e.g., different values
of QP).

IV. QUEUING DELAY ANALYSIS AT THE SYSTEM

ABSTRACTION LAYER

In this section, we develop a model that the SAL can deploy
in order to analyze the queuing delays experienced by packets
in different priority classes in the processor queues. Due to
the delay-sensitive nature of the video applications, knowledge
of the queue waiting times (i.e., the time that packets in
priority class spend in the th processor’s queue before they

1498 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 7, NOVEMBER 2007

TABLE I
AFFINE TRANSFORM COEFFICIENTS AND SHAPE PARAMETERS FOR THE DECODING COMPLEXITY OF THE I, P, AND B FRAMES IN THE MOBILE,

FOREMAN, STEFAN, AND COASTGUARD SEQUENCES (CIF RESOLUTION, 30 HZ, QP 39 AND 24)

are served) is particularly important. Since is a random
variable, the waiting time tail distribution gives
the probability that the waiting time exceeds seconds.
When , the waiting time tail distribution can be used to es-
timate the probability that class packets will be successfully
decoded (before their decoding deadline) given the deployed
RMCP strategies described in Section II-C. In Section IV-A, we
use queuing theory to determine .

A. Priority Queuing Analysis

The SAL models the system using M/G/1 preemptive pri-
ority queues. Using this queuing model and the set of active
video applications parameterized by the AAL, the SAL is able
to make low-complexity estimates of the average system perfor-
mance (i.e., expected waiting times and tail distribu-
tions) with only a few parameters.

Let be the arrival rate of class packets into the client
system’s input buffer illustrated in Fig. 2. can be determined
based on the network rate and coding structures or by observing
the packet arrivals over time. Given the processor selection pa-
rameters, , the arrival rate of class packets into the th
processor’s queue is:

(6)

Let be the expected waiting time for class packets
in the th processor queue. For a preemptive priority M/G/1
queue, the Pollaczek–Khinchin equation gives the following re-
sult [11]:

(7)
where the service time is related to the workloads, , pa-
rameterized by the AAL (see Section III) as

(8)

and is the operating frequency of the processor on which
packet is decoded2. Based on , the tail distribution
of the waiting time can be approximated as

(9)

In (9), we adopt the G/G/1 tail distribution approximation
based on the work of [18], [19]. Note that (7) and (9) assume that
class packets have lower priority than the packets in classes

. Additionally, (7) requires that

(10)

If the inequality in (10) does not hold, then we can greedily
reduce the arrival rate of the lower priority classes until the con-
dition is met.

Before we can evaluate (7) and (9), we must evaluate the first
and second moments of the service time distributions. Based on
the normalized complexity distribution in (4), the complexity
model definition in (5), and the conversion between the com-
plexity distribution and service time distribution in (8), the first
and second moments of the service time distributions can be ex-
pressed as

(11)

where , , and are the affine transform coefficients and the
shape parameter used in (4)–(5) with the superscripts and sub-
scripts removed for notational simplicity.

2With dynamic-voltage-scaling (DVS) [17] enabled processors, the frequency
f can vary. In this paper, we assume that f is a constant. Integrating DVS into
the proposed framework is a topic of our future research.

MASTRONARDE AND VAN DER SCHAAR: QUEUING-THEORETIC APPROACH TO TASK SCHEDULING AND PROCESSOR SELECTION 1499

B. Expected Decoded Distortion

The decoded video quality is influenced by many factors,
e.g., source content characteristics, competing tasks, available
processing power, workload traffic characteristics, the deployed
RMCP strategies etc. All of these factors are not necessarily
known a-priori and, in many cases, can only be estimated during
the actual real-time decoding. Using the M/G/1 preemptive pri-
ority queuing system model, however, the RMCP is able to pre-
dict the expected decoded distortion across all
active video decoding tasks based on the waiting-time tail dis-
tribution approximation in (9)

(12)

where is the decoded distortion if no packets are decoded
for any video sequence. is an estimate of the ex-
pected (time-average) decoded distortion based on the set of
active tasks and the system congestion at time . The expres-
sion for the distortion in (12) is similar to the expressions for the
distortion used in Section II-D and (15) in Section V. However,
(12) models the expected decoding distortion based on the prob-
ability that packets will be successfully decoded, whereas (3)
and (15) express the actual distortion reduction given the suc-
cessfully decoded packets (i.e., the packets for which).

V. VIDEO PACKET SCHEDULING

Consider a scenario where packets belonging to different
video sequences are present in the decoding system at time .
Let represent the set of packets in the th processor’s
queue. We assume that all expired packets are purged from the
queue; therefore, if , then . Given the set of
packets, , we desire to determine which packets should be
decoded based on some scheduling policy , i.e., selects a
packet to decode. We write

(13)

to denote that selects the packet from the set . In (13),
denotes the decoding dependencies of all video se-

quences in the decoding system, i.e.,

(14)

The packet scheduling depends on the sequences’ decoding
dependencies because it is subject to the constraint that the
packet has had all of its decoding depen-
dencies fulfilled, i.e., , . For the set of packets

in the th processor’s queue the optimal scheduling vector
, with repre-

senting the scheduling decision for the th packet, is a vector
of scheduling decisions that maximizes the distortion reduction
over the set of all possible scheduling decision vectors, .
Formally

(15)

where is an indicator function that takes value 1 if the
scheduling decision results in successful decoding of the th
packet, and takes value 0 otherwise. This scheduling problem
belongs to a family of scheduling problems that are known to
be NP-complete and therefore it cannot be solved in polyno-
mial time [13], [15]. In the rest of this section, we present sev-
eral sub-optimal heuristic scheduling policies that aim to max-
imize the distortion reduction as in (15). Unlike the schedule
determined in (15), the heuristic scheduling policies schedule a
single packet whenever a processor finishes processing the pre-
viously scheduled packet.

In Section V-A, we describe a conventional deadline-driven
scheduling algorithm based on an EDF discipline. In
Section V-B, we describe a priority-driven scheduling policy
that schedules packets in descending order of their distor-
tion-reduction parameter. We observe that, in the explored
multitask video decoding scenario using H.264/AVC compliant
bit streams, both of these policies have shortcomings that can
result in unnecessary packet deadline expirations and, conse-
quently, quality degradation. In Section V-C, we introduce a
risk-aware scheduling policy that jointly considers the distor-
tion impacts and delay deadlines of the packets , and
in Section V-D we provide an illustrative example comparing
the three policies. Finally, in Section V-E, we propose an
additional scheduling policy that makes scheduling decisions
by “looking-ahead” to estimate the consequences (in terms
of potential distortion reduction) of the risk-aware scheduling
decision.

A. Earliest-Deadline-First Scheduling

A frequently used scheduling strategy for multimedia sys-
tems is the EDF policy [6] in which the decodable packet with
the earliest deadline is the first packet to be allocating processing
resources. The EDF scheduling policy can be written as

(16)

where the superscript indicates that the packet was se-
lected by the EDF scheduling policy.

It is clear from (16) that does not consider the de-
coded video quality. Hence, as illustrated by the following ex-
ample, the EDF policy will perform sub-optimally in terms of
achieved video quality when the system is heavily loaded. Con-
sider a scenario where frames of a video sequence encoded with
an IBBPBB GOP structure are streamed into a single processor
queue. At the GOP boundary, just before the next I frame with
deadline and distortion impact is to be decoded, a B
frame with an earlier deadline and lower distortion impact

waits to be decoded. Since , the EDF sched-
uling policy will decode the B frame packet before the I frame
packet. If the B frame’s service time is too long because of the
system’s limited processing capabilities or the time-varying de-
coding complexity, then the I frame may not be successfully de-
coded before its deadline. Consequently, none of the frames in
the subsequent GOP that depend on this I frame can be decoded.

1500 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 7, NOVEMBER 2007

In Section V-D, we provide an example that highlights the
EDF policy’s limitations when two video decoding tasks are
competing for the same processor resources.

B. Priority-Driven Scheduling

Alternatively, we can deploy a scheduling strategy based on
a PQ policy in which the decodable packet with the highest dis-
tortion impact is the first packet to be allocated processor time.
The PQ scheduling policy may be written as

(17)

Although directly considers the instantaneous distortion
impact when scheduling a packet, it does not consider the rel-
ative decoding deadlines of the packets in the th processor’s
queue. For instance, consider again the scenario where frames
of a video sequence encoded with an IBBPBBPBB GOP struc-
ture are streamed into a single processor queue. After decoding
the first P frame in a GOP, it is possible to decode the subse-
quent P frame or B frame. However, due to the dependencies
between the frames, . Therefore, under the PQ
policy, the P frame will be decoded before the B frame even if
there is enough time to first decode the B frame and then the P
frame. Unfortunately, after decoding the P frame well before its
deadline it is unlikely that the B frame can be processed before
its deadline expires.

In Section V-D, we underscore the PQ policy’s limitations in
a scenario where two video decoding tasks compete for the same
processing resources.

C. Risk-Aware Scheduling

Based on the above observations related to the dead-
line-driven EDF and priority-driven PQ scheduling policies, it
is clear that a scheduling policy that simultaneously considers
the priorities and decoding deadlines of the various packets in

is desirable. We consider a risk-aware scheduling policy
where the th packet’s risk, denoted as , is defined as its
decoding distortion weighted by the instantaneous, decoding
slack dependent, probability that it will not be decoded in
time. Letting denote the current time and denote the
expected service time for the th packet, the expected decoding
slack (i.e., the expected time remaining before a packet’s
deadline after the packet is decoded) can be expressed as

(18)

This definition of slack is congruent with that used in real-
time system scheduling literature [20]. Using (18), we define
the th packet’s risk as:

(19)
where we set when (i.e.,

) because packets that meet this condition are, on average,
unlikely to be successfully decoded. The risk-aware scheduling

policy, which schedules the decodable packet with the highest
risk, can be expressed as:

(20)

In general, the RA scheduling policy attempts to schedule
packets with more imminent deadlines unless a packet with a
greater distortion impact is at risk of violating its own decoding
deadline. The benefits of the RA scheduling policy, compared
to the EDF and PQ policies, are exemplified in Section V-D.

D. Scheduling Policy Comparison

A simple example illustrating the three scheduling policies
described in Sections V-A–C is shown in Fig. 3(a)–(c). Fig. 3(a)
shows a set of four packets in a congested queue where packets

1, 3 belong to sequence and packets 2, 4 belong to an-
other sequence, . The decoding dependencies, expected ser-
vice times, distortion reductions, and decoding deadlines are
shown for each packet. We say the queue is congested because
the expected time required to empty the queue (i.e., 100 ms)
is greater than the total amount of time available to decode all
of the packets before their deadlines (i.e., packet has
the latest decoding deadline at). Hence, some
packets will not be decoded regardless of the deployed sched-
uling policy. Importantly, in the context of video decoding and
multimedia systems, the scheduling policy cannot be evaluated
by the number of packets that are successfully decoded. Rather,
the scheduling policy should be evaluated based on the average
distortion reduction achieved under the deployed policy.

Fig. 3(c) demonstrates the three packet scheduling policies
based on the set of packets and their corresponding parameters
shown in Fig. 3(a). To simplify the example in Fig. 3(c), we as-
sume that each packet requires exactly its expected service time
to be decoded. The total distortion reduction achieved by each
scheduling strategy is shown at the right of the figure and is cal-
culated as , where indicates whether or not
packet is successfully decoded. It is clear from Fig. 3(c) that

[see (16)] performs inadequately in terms of overall dis-
tortion reduction. In fact, in this example, selects the least
important packets for decoding. The first packet selected by

(i.e.,) not only contributes very little to the overall
quality, but the time spent decoding it makes it impossible to
decode the high priority packet prior to its deadline. Con-
sequently, high priority packet , with the set of ancestors

, cannot be decoded despite there having been enough
processor idle time to have served it. The total distortion reduc-
tion using the EDF scheduling policy is ,
in this example.

Observing Fig. 3(c) again, we see that decodes the two
highest priority packets. However, by decoding packet
well before its deadline, packet cannot be decoded before
its deadline expires. The total distortion reduction using the PQ
scheduling policy, in this example, is .

Finally, Fig. 3(b)–(c) illustrates the risk-aware scheduling
policy, [see (20)]. Fig. 3(b) demonstrates how the risk,

[see (19)], changes over time for packets 1, 2, 3, 4.

MASTRONARDE AND VAN DER SCHAAR: QUEUING-THEORETIC APPROACH TO TASK SCHEDULING AND PROCESSOR SELECTION 1501

Fig. 3. (a) Packets in the congested queue. Packet dependencies, expected
service times, distortion reductions, and decoding deadlines. (b) Risk-aware
scheduling showing � versus t . (c) Packet scheduling based on the ear-
liest-deadline-first ((�)), Priority-Queuing (�), and risk-aware (�)
scheduling policies. The shaded boxes correspond directly to the packets in
Fig. 3(a) and the risk-aware scheduling is based on the risk curves in Fig. 3(b).

In Fig. 3(b), the large rings indicate the time at which the cor-
responding packet begins service. Immediately after a packet
is decoded, the next packet is scheduled for service based
on . The “ ” indicates that packet is discarded at

because its decoding deadline is expired.
In this example, the total distortion reduction using the RA
scheduling policy is . The RA policy
outperforms the EDF and PQ policies in this example because

it considers the distortion reduction in conjunction with the
temporal proximity of the packet deadlines, thereby enabling it
to make more dynamic scheduling decisions.

E. Proposed Look-Ahead Risk-Aware Scheduling

A weakness of the RA scheduling policy is that it is sensitive
to many parameters such as the number of priority classes, the
packet arrival rates, the first and second moments of the service
time distributions etc. Consequently, unless the applications are
carefully controlled, the RA policy can yield erratic results. In
this subsection, we augment the RA policy to stabilize its be-
havior by considering the instantaneous risk estimations in (19)
and the future schedulability and distortion impact of the packets
in . To this end, we propose a look-ahead risk-aware (LR)
scheduling policy that, at the current time , considers the
RA scheduling decision and then
evaluates the potential distortion reduction at the time

. If an alternate scheduling decision is found that can
achieve a greater distortion reduction, this scheduling decision
is made at time instead of the initially considered RA sched-
uling decision.

The following describes the LR scheduling algorithm pseudo-
code shown in Table II.

• Initialization (Steps 1–3): When the th processor be-
comes idle at time (step 1), we determine the packet

that would be scheduled by the
RA policy (step 2). We initialize the variable count to 0
(step 3). count is used to record the number of packets

that are expected to be unschedulable
after is serviced and that have a greater distortion
impact than .

• Look-ahead and evaluate alternative scheduling options
(Steps 4–8): For all packets with their
decoding dependencies satisfied (step 4), we look-ahead to
the time to estimate the distortion impact
of scheduling (steps 5–8). If

(i.e., it is expected that there
will be no time remaining to decode packet after decoding

) and (i.e., decoding packet instead
of will result in greater distortion reduction), then we
record (step 7) and increment by one (step 8).

• Schedule packet to maximize the distortion reduction over
time (Steps 9–12): If is non-zero (step 9), then we
schedule packet that maximizes
(step 10). If is 0 (step 11), then we schedule packet

(step 12).
Similar to the RA scheduling policy, the LR policy attempts to

schedule packets with more imminent deadlines unless a packet
with a greater distortion impact is at risk of violating its own
decoding deadline. The difference between the two policies is
that the RA policy evaluates an instantaneous risk using (19)
based on the priority queuing model and the packet’s expected
slack whereas the LR policy also considers the future distortion
impact of the scheduling decision made at time using the
expected service time for and the expected slack of the
packets in .

Unlike the EDF and PQ policies, which are based on incom-
plete application and system models, integrates all of the

1502 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 7, NOVEMBER 2007

application model parameters (i.e., distortion impacts, deadline
distributions, decoding dependencies, and workload distribu-
tions) at the AAL as well as the priority queuing system model
(i.e., the waiting time and service time distributions) at the SAL
to enable the RMCP to significantly improve the system perfor-
mance in terms of the total decoded video distortion.

F. Complexity of the Look-Ahead Risk-Aware Scheduling
Algorithm

As described in Section V-E, the LR scheduling algorithm
requires: (i) determining the RA scheduling solution and (ii)
evaluating if another scheduling decision would perform better
in terms of the distortion impact. Both steps (i) and (ii) have
complexity that increases linearly with the average number of
packets in each queue. Hence, if each queue contains an av-
erage of packets and there are a total of queues, then the
total complexity of an exhaustive search is . Since the
scheduling decisions at each processor queue are determined in-
dependently, these overheads are amortized over all of the pro-
cessors such that the complexity of an exhaustive search on each
processor is . We note that the queue can be very long
and that the above analysis is for an exhaustive search. In prac-
tice, however, it is not necessary to scan through packets from
more than a few frames due to their delay deadlines and inter-de-
pendencies. The number of packets/frames that are considered
can be a design parameter used to make tradeoffs between com-
plexity and performance [15].

When determining the RA scheduling decision, each packet’s
risk must be calculated using (19). For packet in priority class

, the number of floating point operations (FLOPs) required
to calculate is approximately 10 k (assuming that
and are already calculated). The number of FLOPs is pro-
portional to the priority class index because the risk calcula-
tion depends on the G/G/1 tail distribution approximation in (9)
and the expected waiting time of the preemptive priority M/G/1
queue in (7). Importantly, the number of FLOPs can be reduced
to a small constant by pre-calculating all of the time-indepen-
dent quantities in (7) and (9) and storing them in a lookup table.

VI. PROCESSOR SELECTION AND LOAD BALANCING

Depending on the set of active video applications, their
coding structures, their decoding dependencies, deadline, and
their workload distributions, the packets in the various priority
classes should be pushed onto the processor queues according
to different distributions of the processor selection parameters

, with and in order to
minimize queuing delays and maximize the video quality. We
propose a processor selection policy that attempts to minimize
the total delay experienced by packets in each priority class
from the time the packets enter the processor queues to
the time they start being served. This delay is estimated by the
RMCP at the SAL using the M/G/1 preemptive priority queuing
analysis. Let denote the (random variable) queuing delay
incurred by class video packets over all the processor queues.
The expected delay for class can be expressed as a
function of the expected waiting times which

depend on the processor selection parameters .
The minimum expected delay is determined as

(21)
If we minimize , then the average decoding slack

is maximized. Observing the expression for the
expected decoded distortion in (12), it is clear that maximizing
the decoding slack allows us to obtain a lower distortion because
it is less likely that the waiting time will exceed a larger delay
(i.e., decreases as the time increases).

To determine the processor selection parameters, , we
employ a discouragement policy inspired by the balking ar-
rival probability in queuing theory [21]. Based on the expected
waiting time in the th processor’s queue, the discouragement
policy sets a probability that class video packets
will not join the queue as follows:

(22)

where and are constants. is set depending on the arrival
rate as in [22]. is set so that the discouragement policy favors
the processor queue with the smallest waiting time and least
congestion. Finally, normalizes the processor selection pa-
rameters to ensure that

(23)

where Table III summarizes the processor selection adaptation
algorithm.

VII. RESULTS

In this section, we evaluate the real-time system scheduling
policies proposed in Section V in conjunction with the priority
queuing framework proposed in Section IV-A. We present these
results in terms of the PSNR which is commonly used to mea-
sure video quality. We also evaluate the processor selection al-
gorithm proposed in Section VI. All of the experiments are done
by simulation using actual complexity traces that we obtained
in the same manner as the data collected for the workload traffic
models (as described in Section III).

A. Scheduling With Competing Tasks

In this subsection, we explore the dynamics of the various
scheduling strategies in a scenario where multiple video de-
coding tasks compete for a single processor’s resources. For the
simulations in this subsection, we set the processor frequency to
3.2 GHz, such that a single task can be decoded (in real-time)
with only a few missed packet deadlines, but two simultaneous
video decoding tasks will incur significant quality degradation.

Fig. 4(a) illustrates the distribution of the number of unde-
coded packets per priority class when the Mobile sequence (QP
24, GOP structure IBBPBBPBBPBB) has sole access to the pro-
cessing resources. Recall that classes are defined
such that , hence, undecoded packets in

MASTRONARDE AND VAN DER SCHAAR: QUEUING-THEORETIC APPROACH TO TASK SCHEDULING AND PROCESSOR SELECTION 1503

Fig. 4. Number of dropped packets per priority class for the EDF, PQ, RA, and
LR scheduling policies. (a) Mobile sequence has sole access to the processor.
(b) Mobile and Foreman sequences have to compete for processor resources.

higher priority classes result in higher distortion penalties. The
left hand side of Fig. 4(a) illustrates the packet losses for the
EDF, RA, and LR scheduling policies which, in this example
of an uncongested system, all perform equivalently. This result
exemplifies the power of the RA and LR scheduling strategies
that are able to automatically adapt their behavior based on the
system state. For example, when the system is uncongested (as
in this scenario) the RA and LR policies behave more like the
EDF policy. This is because, based on the queuing-theoretic
model and the definition of the risk, the RA and LR policies
can predict that the packets with the earliest deadline should be
decoded (i.e., the risk is greatest for the packets with the earliest
deadlines). Moreover, we will soon illustrate that the LR policy
adjusts itself to behave more like the PQ policy in highly con-
gested scenarios where there are insufficient resources to decode
the lower priority packets.

Although the EDF policy performs quite well when the
system is uncongested, the right-hand side of Fig. 4(a) illus-
trates that the PQ policy loses more high priority packets than
the EDF, RA, and LR scheduling policies when the system

is uncongested. This result appears counterintuitive. The PQ
policy performs poorly in uncongested scenarios, however,
because it will aggressively decode future I frames before
decoding P frames with more imminent deadlines, thereby
resulting in the expiration of the P frames’ decoding deadlines.
Consequently, the P frames cannot contribute to the decoded
video quality nor can the subsequent B frames that depend on
them.

Fig. 4(b) illustrates the distribution of the number of unde-
coded packets over the priority classes when simultaneously
decoding the Mobile and Foreman (both with QP 24 and GOP
structureIBBPBBPBBPBB) sequences on a single processor.
Note that the priority classes for the Mobile sequence are
shaded in the same way as they are in Fig. 4(b), however, the
actual class assignments are different due to the additional
classes comprising the Foreman sequence. With two tasks
sharing the processing resources, the processor is significantly
congested [which is clear when observing the large number of
undecoded packets in Fig. 4(b)]. Therefore, heavy packet losses
are inevitable. Depending on the deployed scheduling strategy,
however, the more important packets (in terms of distortion
impact) can be decoded while the packet deadline expirations
are mitigated to the lower priority packets.

Fig. 4(b) shows that the EDF policy loses many significant
frames including several of Mobile’s I frames. The PQ policy,
on the other hand, mitigates the packet expirations more effec-
tively (by aggressively decoding the I and P frames) resulting in
only a few dropped P frames from the Mobile sequence and no
dropped I frames.

The results for the RA policy illustrate the sensitivity of the
risk metric in [19]. The RA policy’s poor performance is due
to its sensitivity to myriad factors such as the expected distor-
tion of the various packets, their delay deadlines, their expected
service times, and the second moments of their service times as
well as the arrival rates and expected waiting times of the pri-
ority classes. The RA scheduling results in Fig. 4(b) illustrate
how the policy’s sensitivity to these parameters make it unsuit-
able for multitask scheduling. Specifically, we observe that the
RA policy results in the Mobile sequence greedily taking the
processor resources from the Foreman sequence without consid-
eration of the total decoded video quality across both sequences
(i.e., many low priority packets from the Mobile sequence are
decoded at the expense of the higher priority packets from the
Foreman sequence).

Finally, Fig. 4(b) shows that the LR policy outperforms all the
other scheduling policies by mitigating the packet losses to the
lower priority classes and thereby successfully decoding more
of the high priority packets and obtaining a better total video
quality. We note that, in the congested two task scenario, the LR
policy performs most like the PQ policy because it generally de-
codes the high priority packets before the low priority packets.
However, the LR policy outperforms the PQ policy in this sce-
nario because, if it detects that there is enough time to decode a
lower priority packet without causing the deadline expiration of
a higher priority packet, then it allocates processing resources to
the lower priority packet. In this way, the LR policy avoids the
pitfalls associated with the PQ policy’s overly aggressive pri-
ority-driven scheduling decisions.

1504 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 7, NOVEMBER 2007

TABLE II
LOOK-AHEAD RISK-AWARE (LR) SCHEDULING ALGORITHM

Fig. 5. Normalized complexity distributions.

TABLE III
PROCESSOR SELECTION ADAPTATION ALGORITHM

Table IV illustrates the PSNR improvement of the PQ, RA,
and LR policies relative to the EDF policy for the single task
and two-task scenarios illustrated in Fig. 4. The bottom row of
Table IV is the sum of the PSNR improvements of the Mobile
and Foreman sequences in the two-task scenario. Note that, in
the two task scenario, the LR policy performs 0.9 dB worse than
the EDF policy when decoding Foreman (QP 24). However, the

total decoded quality is highest (4.5 dB above the EDF policy)
when the LR policy is deployed.

As we have illustrated, the PQ and LR policies perform better
than the EDF policy when two video decoding tasks compete
for a single processor’s congested resources. However, we have
found through extensive experiments (omitted here due to space
constraints) that when a single task is using a congested pro-

MASTRONARDE AND VAN DER SCHAAR: QUEUING-THEORETIC APPROACH TO TASK SCHEDULING AND PROCESSOR SELECTION 1505

TABLE IV
PSNR IMPROVEMENT OF THE PQ, RA AND LR SCHEDULING POLICIES RELATIVE TO THE EDF SCHEDULING POLICY BEFORE AND AFTER A SECOND TASK ENTERS

THE DECODING SYSTEM AND COMPETES FOR PROCESSOR RESOURCES. NEGATIVE VALUES INDICATED WORSE PERFORMANCE THAN THE EDF POLICY

TABLE V
AVERAGE QUEUING DELAY (ms) ACROSS TWO PROCESSORS AND THE CORRESPONDING ACHIEVED PSNR

FOR THE MEDIA-AGNOSTIC AND MEDIA-AWARE SYSTEM DESIGNS

cessor’s resources, the PQ and LR policies3 outperform the EDF
policy by only a small margin on average (i.e., by up to 1.0 dB).
This is because there are many less packets that can be decoded
at any given time (due to the dependencies among packets) in
single task scenarios. Therefore, the range of scheduling deci-
sions is often limited to picking the highest priority packet or the
packet with the earliest deadline. When multiple tasks compete
for the same limited resources, however, more dynamic sched-
uling possibilities exist and it becomes more important to al-
locate the processor resources intelligently, based on a delay-
and distortion-aware scheduling policy, to achieve the best video
quality.

We note that, in the two task scenario in Table IV, the pro-
cessor queue contained an average of 17.8 packets. Hence, based
on the discussion on the complexity of the look-ahead risk-
aware scheduling algorithm in Section V-F, it is clear that the
scheduling incurs negligible processing overhead compared to
the actual video decoding complexity in this example.

B. Combining Processor Selection and Scheduling

In this subsection, we evaluate the performance of the system
illustrated in Fig. 2 when there are two video decoding tasks
(Mobile with QP 24 and Foreman with QP 24) sharing resources
on parallel processors each with a 3.0 Ghz processor
frequency. We compare a media-agnostic system design with a
media-aware system design.

• In the media agnostic scenario, half of the packets from
the two video sequences are arbitrarily (i.e without consid-
eration of the priority classes, service times etc.) pushed
onto each processor’s queue. Subsequently, the packets are

3In the single tast scenario, the RA also outperforms the EDF policy, on av-
erage, by approximately 0.5–0.1 dB. We omit the RA policy in our discussion
here because it does not perform well under congested multitask scenarios.

allocated processor resources using the EDF scheduling
policy.

• In the media-aware scenario, video packets are pushed
onto the processor queues using the processor selection
scheme proposed in Section VI. Then, the packets in the
queues are allocated processor time using the LR sched-
uling policy.

Our experimental results, illustrating the average queuing
delay across the two processors (see [21]) and the achieved
PSNRs in the media-agnostic and media-aware system sce-
narios, are shown in Table V. Although the EDF scheduling
policy does not consider the video packet’s priority class, we
present the average queuing delays of packets in different
priority classes to facilitate comparison between the media-ag-
nostic and media-aware system designs. In Table V, only the
first eight priority classes are shown because the decoded video
quality depends most heavily on the delays experienced by
packets in these classes. The system that deploys media-aware
processor selection and scheduling strategies has significantly
lower average queuing delays across almost all of the pri-
ority classes. The media-agnostic system, however, has some
excessively large average queuing delays (i.e.,).
These large delays indicate that many packets within that class
had their deadlines expire before being successfully decoded.
Such excessive delays are avoided in the media-aware scenario
because the application specific queuing model, in conjunction
with the processor selection scheme, anticipate and avoid
resource bottlenecks.

VIII. CONCLUSION

In this paper, we propose a cross-layer design for video
decoding systems that simultaneously decode multiple video
streams on multiple parallel processors. One novelty of our

1506 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 7, NOVEMBER 2007

TABLE VI
NUMBER OF SAMPLES AND SAMPLE VARIANCES FOR I, P, AND B FRAME SERVICE TIME MEASUREMENTS

approach is that we use a parameterization of the decoding tasks
that is detailed enough to capture codec specific characteristics
but is general enough to be applied to any popular codecs. We
deploy a queuing model that enables the system to determine
the resource requirements for the set of active applications
and also allows for low-complexity estimation of the system
state (e.g., queuing and processing delays). Our results show
that by explicitly considering the video application’s prop-
erties in the design of a video decoding system, significant
performance gains (in terms of decoded video quality) can be
achieved. In particular, our experimental results suggest that
the proposed look-ahead risk-aware scheduling policy outper-
forms a priority-queuing based policy in a highly congested
system and, on average, outperforms an earliest-deadline-first
policy in an uncongested system. The proposed application
and system modeling framework, and the experimental results,
provide important insights that can guide the design of multi-
media-aware operating systems and hardware as well as future
video applications.

There are several interesting extensions to this work. One
such extension would be to integrate dynamic-voltage-scaling
(DVS) into the proposed framework as a third strategy deployed
by the RMCP to change the system dynamics. Through pro-
cessor frequency adaptation, DVS could be used to adjust the
system performance to match the current workload. One way
to do this would involve viewing DVS as a tool for adjusting
the system’s congestion level. Then, using the priority queuing
analysis to estimate the expected decoded distortion, the op-
timal tradeoff between energy consumption and distortion can
be explored.

APPENDIX

In this appendix, we describe how we derived the affine trans-
form coefficients and shape parameters shown in Table I to de-
scribe the complexity distributions of the I, P, and B frames in
the Mobile, Foreman, Stefan, and Coastguard sequences (CIF
resolution, 30 Hz, QP 39 and 24). Subsequently, we comment
on the validity of the proposed complexity models. Fig. 5 il-
lustrates representative histograms of the measured data for the
Mobile sequence with the shifted and scaled Poisson fits super-
imposed (similar results were obtained for the other sequences
in Table I, but are omitted here for brevity). Table VI provides
the number of complexity measurement samples and the sample
variances for each frame type.

Let denote a measured sample of the random vari-
able . In order to find the Poisson fits shown in
Fig. 5, we first normalized to obtain using
(5). From (5), is determined as the minimum sample
complexity and is chosen to reflect the sample sets’
variance. Given and , we then solved for
the shape parameter, , as the mean of the normalized
samples.

In Fig. 5, it is clear that the shifted and scaled Poisson model
fits are more accurate for the B frames (right column) than for
the P frames (middle column) and I frames (left column). De-
spite this, we argue that the models are reasonable for the fol-
lowing reasons.

• Differential frame complexities: Using (11) and the data
in Table I, it is clear that the mean I frame complexity is
significantly less than the mean P frame complexity which,
in turn, is less than the B frame complexity. For example,
for the Mobile sequence (CIF resolution, 30 Hz, QP 39),
the mean B frame complexity is times the mean P
frame complexity and times the mean I frame com-
plexity. Consequently, accurately modeling the B frame
complexity distribution is more important than accurately
modeling the P and I frame complexity distributions.

• Sample size: In Table VI, the sample size for the I frames
is significantly smaller than the sample size for the P and B
frames. For any GOP structure that is designed to achieve
reasonable compression performance, there will always be
less I frames than P or B frames. Consequently, the imper-
fect models for the I frame complexity distributions will
have an insignificant impact on the system performance.

• Sample variances: Observing Table VI, it is clear that the
sample variance for the I frame service time measurements
[related to the complexity measurements by (8)] is on av-
erage an order of magnitude less than the sample variance
of the P frame service time samples which, in turn, is nearly
an order of magnitude less than the variance of the B frame
service time samples. As the sample variance decreases,
using a model that captures the mean service time and ap-
proximate variance becomes more important than perfectly
matching the service time distribution.

In summary, we have found that the affine transformed
Poisson distribution is a reasonable model for sequences with
a variety of characteristics (i.e., Mobile, Foreman, Stefan and
Coastguard) encoded with a practical range of quantization
parameter values (i.e., 24 and 39).

MASTRONARDE AND VAN DER SCHAAR: QUEUING-THEORETIC APPROACH TO TASK SCHEDULING AND PROCESSOR SELECTION 1507

REFERENCES

[1] Intel Multi-Core Processors: Leading the Next Digital Revolution
[Online]. Available: http://www.intel.com/technology/magazine/com-
puting/multi-core-0905.pdf

[2] M. Hachman, AMD Details Early Quad-Core Plans Extreme
Tech, 2005 [Online]. Available: http://www.extremetech.com/ar-
ticle2/0,1558,1826663,00.asp

[3] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer,
and D. Shippy, “Introduction to the cell multiprocessor,” IBM J. Res.
Develop., pp. 589–604, Sep. 2005.

[4] M. Horowitz, A. Joch, F. Kossentini, and A. H. Hallapuro, “H.264/AVC
baseline profile decoder complexity analysis,” IEEE Trans. Circuits
Syst. Video Technol., vol. 13, no. 7, pp. 704–716, Jul. 2003.

[5] V. Lappalainen, A. Hallapuro, and D. Hamalainen, “Complexity of op-
timized H.26L video decoder implementation,” IEEE Trans. Circuits
Syst. Video Technol., vol. 13, no. 7, pp. 717–725, Jul. 2003.

[6] W. Yuan, K. Nahrstedt, S. V. Adve, D. L. Jones, and R. H. Kravets,
“GRACE-1: Cross-layer adaptation for multimedia quality and battery
energy,” IEEE Trans. Mobile Comput., vol. 5, no. 7, pp. 799–815, Jul.
2006.

[7] W. Yuan and K. Nahrstedt, “Energy-efficient soft real-time CPU sched-
uling for mobile multimedia systems,” in Proc. 19th ACM Symp. Op-
erating Systems Principles, 2003, pp. 149–163.

[8] T. Stockhammer, M. M. Hannuksela, and T. Wiegan, “H.264/AVC in
wireless environments,” IEEE Trans. Circuits Syst. Video Technol., vol.
13, no. 7, pp. 657–673, Jul. 2003.

[9] E. B. van der Tol, E. G. Jaspers, and R. H. Gelderblom, “Mapping of
H.264 decoding on a multiprocessor architecture,” in Proc. SPIE Conf.
Image and Video Communications and Processing, Jan. 2003.

[10] S. Dutta, R. Jensen, and A. Rieckman, “Viper: A multiprocessor SOC
for advanced set-top box and digital TV systems,” IEEE Design Test
Comput., vol. 18, no. 5, pp. 21–31, Sep.–Oct. 2001.

[11] D. Bertsekas and R. Gallager, Data Networks. Upper Saddle River,
NJ: Prentice-Hall, 1987.

[12] M. van der Schaar and Y. Andreopoulos, “Rate-distortion-complexity
modeling for network and receiver aware adaptation,” IEEE Trans.
Multimedia, vol. 7, no. 3, pp. 471–479, Jun. 2005.

[13] P. A. Chou and Z. Miao, “Rate-distortion optimized streaming of pack-
etized media,” IEEE Trans. Multimedia, vol. 8, no. 2, pp. 390–404, Apr.
2006.

[14] M. van der Schaar and D. S. Turaga, “Cross-layer packetization and
retransmission strategies for delay-sensitive wireless multimedia trans-
mission,” IEEE Trans. Multimedia, vol. 9, no. 1, pp. 185–197, Jan.
2007.

[15] D. Jurca and P. Frossard, “Packet selection and scheduling for mul-
tipath video streaming,” IEEE Trans. Multimedia, vol. 9, no. 2, pp.
629–641, Apr. 2007.

[16] Y. Wang, M. van der Schaar, S.-F. Chang, and A. C. Loui, “Classifica-
tion-based multidimensional adaptation prediction for scalable video
coding using subjective quality evaluation,” IEEE Trans. Circuits Syst.
Video Technol., vol. 15, no. 10, pp. 1270–1279, Oct. 2005.

[17] P. Pillai and K. Shin, “Real-time dynamic voltage scaling for low-
power embedded operating systems,” SIGOPS Oper. Syst. Rev., vol.
35, no. 5, pp. 89–102, Dec. 2001.

[18] T. Jiang, C. K. Tham, and C. C. Ko, “An approximation for waiting
time tail probabilities in multiclass systems,” IEEE Commun. Lett., vol.
5, no. 4, pp. 175–177, Apr. 2001.

[19] J. Abate, G. L. Choudhury, and W. Whitt, “Exponential approxima-
tions for tail probabilities in queues I: waiting times,” Oper. Res., vol.
43, no. 5, pp. 885–901, 1995.

[20] A. Burns, “Scheduling hard real-time systems: A review,” Software
Eng. J., vol. 6, no. 3, pp. 116–128, May 1991.

[21] D. Gross and C. M. Harris, Fundamentals of Queuing Theory, 3rd ed.
New York: Wiley, 1998.

[22] L. Kleinrock, Queuing Systems Volume I: Theory. New York: Wiley-
Interscience, 1975.

Nicholas H. Mastronarde (S’07) received the M.S. degree in electrical engi-
neering from the University of California at Davis in 2006. He is currently pur-
suing the Ph.D. degree in the Electrical Engineering Department at the Univer-
sity of California at Los Angeles.

His research interests are in multimedia systems, multimedia complexity
modeling, and multimedia system software design

Mihaela van der Schaar (SM’04) is currently an Associate Professor in the
Electrical Engineering Department at the University of California, Los Angeles
(UCLA). Since 1999, she was an active participant to the ISO MPEG standard
to which she made more than 50 contributions and for which she received three
ISO recognition awards.

Dr. van der Schaar received the NSF CAREER Award in 2004, IBM Faculty
Award in 2005, Okawa Foundation Award in 2006, Best IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY Paper Award in 2005,
and Most Cited Paper Award from EURASIP Journal Signal Processing:
Image Communication between the years 2004–2006. She holds 28 granted
U.S. patents. She is currently an associate editor of IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, IEEE SIGNAL PROCESSING

LETTERS and IEEE Signal Processing e-Newsletter. She is also the editor
(with Phil Chou) of the book Multimedia over IP and Wireless Networks:
Compression, Networking, and Systems.

