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Incremental Refinement of Computation for the
Discrete Wavelet Transform
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Abstract—Contrary to the conventional paradigm of transform
decomposition followed by quantization, we investigate the com-
putation of two-dimensional (2-D) discrete wavelet transforms
(DWT) under quantized representations of the input source. The
proposed method builds upon previous research on approximate
signal processing and revisits the concept of incremental refine-
ment of computation: Under a refinement of the source description
(with the use of an embedded quantizer), the computation of the
forward and inverse transform refines the previously computed
result, thereby leading to incremental computation of the output.
In the first part of this paper, we study both the forward and in-
verse DWT under state-of-the-art 2-D lifting-based formulations.
By focusing on conventional bitplane-based (double-deadzone)
embedded quantization, we propose schemes that achieve in-
cremental refinement of computation for the multilevel DWT
decomposition or reconstruction based on a bitplane-by-bitplane
calculation approach. In the second part, based on stochastic
modeling of typical 2-D DWT coefficients, we derive an analytical
model to estimate the arithmetic complexity of the proposed
incremental refinement of computation. The model is parame-
terized with respect to i) operational settings, such as the total
number of decomposition levels and the terminating bitplane;
ii) input source and algorithm-related settings, e.g., the source
variance, the complexity related to the choice of wavelet, etc.
Based on the derived formulations, we study for which subsets of
these model parameters the proposed framework derives identical
reconstruction accuracy to the conventional approach without
any incurring computational overhead. This is termed successive
refinement of computation, since all representation accuracies are
produced incrementally under a single (continuous) computation
of the refined input source with no overhead in comparison to the
conventional calculation approach that specifically targets each
accuracy level and is not refinable. Our results, as well as the
derived model estimates for incremental refinement, are validated
with real video sequences compressed with a scalable coder.

Index Terms—Approximate signal processing, computational
complexity, discrete wavelet transform, incremental refinement of
computation.
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I. INTRODUCTION

Acommon use of multidimensional transform represen-
tations is in decorrelating input data and aiding the

processing or compression of multimedia information, such
as images or video sequences. For this purpose, conventional
approaches used in all mainstream applications or algorithms
based on industry standards for image and video coding [1], [2]
produce the transform representation to a maximum degree of
precision needed and then quantize and process (or compress)
the transform coefficients. Even though this approach follows
the conceptual design of such systems in a straightforward
manner, it wastes system resources in many cases where lossy
representations of the input are required, e.g., at medium to
low-bitrate coding, as noted by several authors [3]–[7]. Notice
that new adaptive transforms for images [8] or improved motion
estimation schemes for video [9] tend to produce very sparse
representations that are coarsely quantized for medium and
low-rate coding applications. Hence valuable resources are
wasted in transforming sparse matrices of residual data. This
realization led to schemes for computational optimization of
transforms [7], [10]–[12], or approximate signal processing
schemes [13], where the computational resources increase
monotonically under increased precision requirements [13].
These studies focused mainly on the mainstream case of the dis-
crete cosine transform (DCT) [7], [10], [11], but similar studies
can be envisaged for other popular transforms [4] such as the
discrete wavelet transform (DWT) or the Karhunen–Loève
transform.

There are two main drawbacks for these cases. First, as noted
by Lengwehasatit and Ortega [6] and Winograd and Nawab [5],
it is hard to precisely estimate in advance the exact required
quantization precision for the coding or processing of a cer-
tain source. Although there have been theoretical and ad hoc
proposals for this purpose [6], [12], [15], the authors typically
introduce rate-distortion tradeoffs in the problem and do not
achieve the same representation accuracy as the original (albeit
wasteful) computation of the transform. Second, even though
frameworks that are optimized to predict and avoid computa-
tions in sparse (or coarsely quantized) areas of the transform
representation do achieve a scalable increase in complexity with
increased quality requirements, there is no incremental refine-
ment of the computation from one operational point to the next.
From a communication and coding perspective, a practical ex-
ample is the popular case of embedded decoding of images or
video [14]: even though an embedded coder may provide a re-
finement of the source information, this refinement cannot be
used if the receiver has initiated the computation of the inverse
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transform, or, alternatively, the computation has to be restarted.
Perhaps more importantly, from a systems perspective, even
though recent advances in progressive image sensors [16] and
also progressive (bitplane-based) image displays [17] could en-
able progressive sensing, processing, and display of visual data,
current transform computation schemes do not allow for this
functionality. In general, current schemes produce an “all or
nothing” representation: the computation cannot be interrupted
when resources become unavailable and retrieve a meaningful
approximation of the final result.

One exception to this rule is the work of Nawab, Winograd,
and Dorken [5], [15], [18], [19] on incremental refinement of
discrete Fourier transforms (DFT), where they display a first
realization of incremental refinement of computation. However,
apart from the DFT, their work did not attempt to extend these
schemes to other transforms,1 such as the DWT, where one faces
different challenges. In addition, no source-dependent closed-
form model was proposed for the complexity analysis of the
derived schemes in order to examine theoretically the properties
of sources and algorithms that enable incremental refinement in
an efficient manner.

We propose a novel approach that tackles these issues. Al-
though we focus on the case of the DWT, as it is a popular choice
for number of applications such as compression [1], [14], de-
noising, or edge detection [20], similar approaches can be de-
rived for other multiscale 2-D transforms. The paper makes the
following contributions.

• We propose a bitplane-based computation for the 2-D
DWT and analyze its design for the multilevel decompo-
sition and reconstruction. Two schemes are proposed, the
first being the straightforward approach that computes all
the required bitplanes of each decomposition level incre-
mentally before moving to the next level (“quality-first”);
the second approach performs a “frequency-first” com-
putation, where all the intermediate results of all decom-
position levels (i.e., all frequency bands) are computed
for each input bitplane, prior to the processing of the next
bitplane.

• In order to analyze the results, a stochastic modeling frame-
work of the input source data is used. By focusing on
the inverse DWT (where resource optimization is of para-
mount importance and lossy representations of the input
transform coefficients are typically provided) we propose
an analytical framework for the estimation of the required
computations of the proposed incremental refinement ap-
proach. We use the derived model to establish the min-
imum bitplane above which the proposed scheme requires
the identical or less amount of computation in comparison
to the conventional approach.

• The derived incremental refinement of computation for the
DWT is tested with real video data produced by a mo-
tion-compensated wavelet-based video coder in order to:

1Even though Winograd’s Ph.D. thesis contains an example of incremental
refinement for the DCT [19], this is based on a rather straightforward summation
of precomputed results using lookup tables. This requires a significant amount
of additional memory and cannot be generalized to global transforms such as
the DWT since the memory requirements grow exponentially with the transform
length [19].

i) practically validate the feasibility and the benefits of in-
cremental refinement of computation for real-world multi-
media data; ii) assess the accuracy of the proposed mod-
eling framework for the estimation of complexity in incre-
mental refinement; iii) establish the potential of the pro-
posed approach for real-world media systems.

Concerning the system-related aspects of our work, we re-
mark that there has been a flurry of research on novel sam-
pling and capturing devices that merge successive approxima-
tion-based analog-to-digital converters with image sensors at
the pixel or sample level [16], [21]. This enables the sample-
based [21], or bitplane-based [16] capturing of the input mul-
timedia data. Very recent results demonstrated that image dis-
plays enabling the incremental refinement of a large number of
luminance shades without flicker are also possible [17]. This
enables the incrementally produced output to be directly con-
sumed by the display monitor. These novel developments in
circuit theory and design seem very promising in solving the
capturing and display aspects for systems that process the input
data incrementally.

This paper is organized as follows. Section II presents the
proposed framework for incremental refinement of the DWT.
Section III discusses the proposed modeling for the estimation
of computational resources required by the new approach
and performs a theoretical comparison to the conventional
approach. Section IV presents results for the proposed frame-
work as well as validation of the proposed model for resource
estimation and, finally, Section V concludes the paper. A short
version of this work without the theoretical analysis appears in
our corresponding conference paper [22].

II. LIFTING-BASED DWT UNDER INCREMENTAL REFINEMENT

OF COMPUTATION

A. The Discrete Wavelet Transform—Direct 2-D Computation
Using the Lifting Scheme

The fast discrete wavelet transform was initially proposed as
a critically sampled time-frequency representation realized by
filtering the -sample input signal
with a -tap low-pass filter and a

-tap high-pass filter followed
by downsampling by two [20]. Based on the first Noble iden-
tity, the signal analysis can be expressed in the time domain as

, where is the analysis matrix. Assuming
(for illustration purposes) that and have equal maximum
degrees in the domain, the analysis matrix is (block Toeplitz
form)2 [see (1) at the bottom of the next page]. The output of
the decomposition is

consisting of alternating low- and high-frequency coefficients
and , . The decomposition can it-

2In order to treat the signal borders, the border coefficients ofE are modified
to perform symmetric extension, as appropriate.
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erate on low-frequency coefficients of thereby forming
a multiresolution transform decomposition of the input signal
[20].

Daubechies and Sweldens demonstrate in their tutorial paper
[23] that any analysis matrix allowing for perfect reconstruc-
tion of from (i.e., has to be invertible) can be factorized in
a succession of liftings (updates) and dual-liftings (predictions),
up to shifting and multiplicative constants

(2)

where matrices , are breaking the realization of the high-
pass and low-pass filters, respectively, into a series of lifting
steps. The factorization of (2) is scaled by the diagonal matrix

with alternating scaling factors
and . The conceptual explanation of the factoring algo-

rithm is based on the notion that a high-pass filter “predicts” its
current input signal value from its neighbouring context, while
a low-pass filter “updates” its current input signal value based
on the prediction error [23]. The respective lifting steps are ex-
pressed as the progressively shifted row of filter coefficients al-
ternating with one row consisting of zeros and the unity sample,
which propagates the output of the previous step [see (3) at the
bottom of the page and (4) at the bottom of the next page] with

, the th nonzero (and nonunity) predict and up-
date filter coefficients respectively out of ,
nonzero taps, and , the respective maximum degrees
in the -domain for the predict and update filters. Since the pre-
dict and update filters are applied to the even and odd polyphase
components of the input, is an even number (or zero) and

is an odd number. A unity tap is always placed at the po-
sition of the “current” input sample3 in order to enable “predic-
tion” or “update” of the sample based on its context. The corre-
sponding signal flow graph is given in Fig. 1.

As an example, for the 9/7 filter-pair we have: ,
, and: , ,

, for each .
For the 5/3 filter-pair we have the same settings but with
(one predict and one update step). Since these filter-pairs will be
used in our experiments, their parameters are given in Table I.
We provide the filter coefficients in a representation suitable
for fixed point computations.

Since the factorization algorithm is based on polynomial
division [23], there are many possible factorizations that allow
for the realization of a given filter-bank with the lifting scheme.

3In our analysis, the “current” input sample is defined as the filter position
corresponding to zero degree in theZ-domain representation of the update filter
and to �1 degree in the Z-domain representation of the predict filter (because
we assume that the high-pass filter is applied to the odd polyphase components
of the input signal).

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

(1)

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

(3)
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Fig. 1. Signal flow graph for the lifting decomposition. Reconstruction is performed symmetrically by switching the split and merge steps and the scaling factors,
traversing the graph from right to left (reversed signal flow) and flipping the signs of the predict and update coefficients.

TABLE I
FILTER COEFFICIENTS FOR THE PREDICTION AND UPDATE FILTERS OF THE 9/7 AND 5/3 FILTER-PAIRS. EACH COEFFICIENT IS REPRESENTED AS

a [l] = a [l] � 2 . DUE TO THE FILTERS’ SYMMETRY, a [0] = a [1] AND a [0] = a [1]

In addition, even though the factorization presented in (2) starts
with a prediction matrix, the order of steps ( and ) can
be interchanged. In the remainder of the paper, without loss of
generality, we focus on factorizations beginning with a predic-
tion step. The lifting scheme combines many advantages, such
as low implementation complexity by reducing the required
number of multiplications and additions, integer-to-integer
transforms, and complete reversibility even if nonlinear or
adaptive filters are used in the prediction and update steps.

Since the DWT is a separable transform, it is conventionally
implemented in two dimensions via rowwise filtering followed
by columnwise filtering of the intermediate results. However,
this approach is not suitable for incremental refinement struc-
tures, as incremental refinement of the intermediate results does
not represent a successive approximation of the final transform
coefficients [19]. Hence, we need to focus on the direct 2-D

computation of the DWT. Consider the 2-D DWT decomposi-
tion via 2-D “predict” and “update” lifting steps performed
for a 2-D image block consisting of pixels:

(5)
where , and were defined previously, and the 2-D
array of output wavelet coefficients. Meng and Wang [24] pro-
posed a reformulation in hierarchical decompositions, which, in
its generalized form, is

(6)
The last equation is computing the 2-D DWT as a series of

basic computation steps in two dimensions, starting from the

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

(4)
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Fig. 2. Sequence of steps in the 2-D polyphase components of the input of each
predict and update step [24].

inner part of (6), i.e., , and working outwards to the
final result . The computation is performed in squares of 2
2 input samples (2-D polyphase components). The computation
order of predict and update steps of (3) and (4) can be seen in
Fig. 2. The sequence of steps shown in the figure originates from
the matrix row containing only the unity tap (placed at the posi-
tion of the “current” input column sample) because this requires
a simple assignment operation. It then proceeds clockwise to
complete the computation for each square of 2 2 input sam-
ples. The analysis of this paper fits the sequence of steps seen
in Fig. 2.

Based on this calculation and the predict matrix defined in
(3), the prediction part of the th lifting
step of (6), where is the previously computed result (with

), can be written for all output coefficients
( , ) of as

(7)

(8)

(9)

(10)

where are the input coefficients of matrix
, with . Each of the above

calculations in (7)–(10) is performed in the order presented (and
illustrated in the left side of Fig. 2) and for all coefficients of the
output, before initiating the calculation of the subsequent step.
It is important to remark that this is the case for all subsequent

calculations illustrated in this section. For the th update step,
i.e., , we have

(11)

(12)

(13)

(14)

Each of the calculations of (11)–(14) is performed in the order
illustrated in the right side of Fig. 2.

B. Description of the Basic Algorithm for Incremental
Refinement of Computation of the DWT

If we use embedded double-deadzone quantization of the
input with basic partition cell [1], each quantized
coefficient of the input is represented by

(15)

with the th bit of quantized coefficient
(where is the least-significant bit), and is the
sign bit. This is the popular case of successive approximation
quantization (SAQ) [1], where, starting from the sign bit, each
additional bitplane corresponds to increased precision in the ap-
proximation of .

For incremental refinement under the SAQ approximation of
each input sample , the proposed computation of the first
predict step for each bitplane , , is

(16)

(17)
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(18)

(19)

where is the output quadrant
of coefficients, as computed from the signed quantized values
(signed bitplanes) of the input. Equation
(16) is a simple copy operation between input and output,
while (17)–(19) predict the input coefficient bit of each case
by an addition with a factor that depends on: i) the th signed
bit values of the coefficients in the spatial neighborhood of

; ii) the
quantized representation of the lifting taps corresponding to
matrix , which, for the case of the 9/7 filter-pair, can
be found in Table I. All scalings with , , are imple-
mented with bit-shifting operations and amount to negligible
complexity in relation to multiplications or additions. The
straightforward computation of (17)–(19) amounts to
integer additions and multiplications for each
set of four coefficients of (assuming that the filters of the
prediction step are point symmetric, as in the case of the 9/7
filter-pair). Notice however that there are only a limited number
of different inputs possible for the input coefficients of (17) and
(19), and consequently only a limited number of distinct values
can be produced. Similarly, for (18) that uses the previously
computed values , only a limited
number of different inputs is possible and consequently only a
limited number of distinct values can be produced. For the case
of the 9/7 filter-bank for example, after a few straightforward
calculations we find that only 15 input and output values are
possible for (17) and (19), and only 99 possible input/output
values are possible for (18). These values can be precomputed
in advance and stored in a small lookup table with negligible
memory cost. As a result, the entire calculation required for
the first prediction step given by (16)–(19) is performed with
lookup tables containing the precomputed result for each pos-
sible value of a coefficient of

. Once the possible values of both lookup tables have been
precomputed, there is no further computational overhead for
the calculation of (16)–(19).

The second matrix product is produced by
reusing the results of (16)–(19)

(20)

(21)

(22)

(23)

where is the output quad-
rant of coefficients, as computed for the output coefficients

of the prediction step of (16)–(19). Again, (20) is
a simple copy operation, while for (21)–(23) the update filter
coefficients update the output (see Table I for an
example instantiation of these coefficients). Notice that even
though for (21)–(23) we could again use lookup tables to avoid
computations since each coefficient has a small
range of possible values, the dynamic range grows larger with
each matrix product. Hence, we do not follow this approach and
instead perform the computations (additions, multiplications)
directly. The remaining steps to complete the
single-level decomposition using the 2-D lifting formulation
of (6) are performed as in (16)–(19) and (20)–(23) with the
replacement of the input with the output of each previous step
and the replacement of the coefficients , by

, , respectively. All steps can be performed
in-place as in the conventional lifting decomposition, with the
reuse of the memory for the and arrays. Once all the
steps have been completed for the current decomposition level,
the final computation is reordered in the output matrix in
binary-tree (“Mallat”) form [20] and the produced results of
each bitplane are added to the results of the previous (more
significant) bitplanes, if existing. Finally, the scaling performed
at the end of each decomposition level in the conventional
decomposition can be skipped altogether [25], or incorporated
into the subsequent encoding or processing stage of each bit-
plane and as a result it is not explicitly considered in this paper.



146 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 1, JANUARY 2008

C. Extension to Multiple Decomposition Levels and Transform
Inversion

The multilevel extension of the derived bitwise computation
can be performed in two ways. The straightforward approach
performs a “quality-first” incremental refinement of computa-
tion: all the requested bitplanes of each decomposition level
are performed as described before. Once completed, the same
process occurs in the low-frequency subband of the decompo-
sition for as many bitplanes as needed for the second level.
The calculation continues in a similar fashion until all the nec-
essary decomposition levels (defined as ) are computed
under the requested accuracy (number of bitplanes per level).
The “quality-first” approach is straightforward and fits certain
coding applications where the requested quantization precision
is known a priori. However, it fails to provide incremental re-
finement of computation of the final multilevel DWT coeffi-
cients, since each level is computed to a requested precision be-
fore initiating the computation of the next level. Instead, this ap-
proach provides only band-limited incremental refinement, i.e.,
within each decomposition level of the transform.

For this reason, we propose a “frequency-first” incremental
refinement of computation by continuing the bitwise lifting-
scheme computations for all subsequent levels after the termi-
nation of one bitplane at the first level. This is achieved by re-
formulating the first prediction step of (16)–(19) for all levels
beyond one as ( , , )

(24)

(25)

(26)

(27)

where we use the outputs of the last update step of the
previous level and, importantly, at the end of the previous level
we only perform the reordering and addition to the previous

results for the high-frequency coefficients ( ,
, , ,

) and do the reordering of the low-frequency
coefficients only for the final (coarsest) decom-
position level . This is due to the fact that each interme-
diate level receives the necessary low-frequency coefficients of
the previous level with the change of indexing performed in
(24)–(27) in comparison to (16)–(19).

Notice that, under the changed computation proposed in
(24)–(27), the use of lookup tables becomes cumbersome for
the first prediction step of all levels beyond one, as the inputs

may have high dynamic range. Hence the com-
putation is performed directly as shown in (24)–(27) without
the use of lookup tables for these cases.

The precise algorithm steps for the “frequency-first” case,
which is the multilevel incremental refinement of the DWT
computation, are presented in pseudocode in Fig. 3.

Concerning the inverse transform, the process is exactly anti-
symmetric as in the conventional lifting computation: all lifting
steps are performed in reverse order by solving the forward bit-
wise lifting equations for the coefficients being predicted or up-
dated during the forward transform. This means that all the steps
presented in the pseudocode of Fig. 3 are executed in reverse
order and from the coarsest level to the finest one. As an illus-
trative example, the inversion of (20)–(23) is

(28)

(29)

(30)

(31)

The only difference in the anti-symmetry rule between for-
ward and inverse transform occurs in the use of bitwise compu-
tation. In particular, in the forward transform we use the bitwise
representation of the input image samples only in the first pre-
dict step of the first decomposition level ( of
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Fig. 3. Pseudocode for “frequency-first” incremental refinement of computation of the DWT.

(16)–(19) with ) and then the intermediately pro-
duced results are used as inputs. However, in the inverse trans-
form the bitwise representation of the input wavelet coefficients
is used for all the decomposition levels, since at each decom-
position level we get new coefficients from the high-frequency
bands, which are processed bitplane-by-bitplane under the pro-
posed incremental refinement of computation.

III. MODELING OF INCREMENTAL REFINEMENT OF

COMPUTATION

The proposed algorithm for incremental refinement of
computation of the DWT presents a data-adaptive computation
where each nonzero input bit causes a certain amount of compu-
tation towards the completion of the transform decomposition.
In order to understand the behavior of such approaches better,
we analyze the expected performance using stochastic source
models. Coupled with assumptions on the implementation
complexity of each operation (addition or multiplication), we
derive a parametric estimation of the expected complexity that
depends on: i) the source statistics; ii) the operational param-
eters (number of decomposition levels, terminating bitplane);
and iii) the algorithm-dependent parameters for the complexity
estimation (expressing the filtering complexity). Based on
these, we can investigate whether incremental refinement of the
transform computation can achieve comparable or even superior
performance to the conventional computation. The presentation
of this section remains rather generic and extensions to other
filters, other quantization settings, or even other transforms can
be envisaged. Finally, we are currently focusing on modeling

the inverse DWT (IDWT) operations since the IDWT is part of
multimedia decoders that are the typical resource-constrained
systems. For example, scalable coding may encode the entire
transform representation incrementally (bitplane-by-bitplane),
but it typically enables decoding at multiple qualities corre-
sponding to various bitplanes in the transform domain.

The following subsection introduces the implementation
complexity assumptions for the performance of the required
arithmetic operations, while Section III-B introduces the uti-
lized stochastic source models and the necessary derivations
for our analytical approach. Finally Section III-C analyzes
the performance of the proposed scheme as compared to the
conventional computation of the IDWT.

A. Implementation Complexity of Variable Bit-Width
Arithmetic Operations

In this paper, we are quantifying the benefits of conventional
transform calculation versus incremental refinement in terms of
the computational effort required to complete the decomposi-
tion or reconstruction task, whether it is for a single bitplane or
for the entire set of bitplanes. In this respect, a metric used com-
monly in the literature is the required number of additions and
multiplications. However, arithmetic operations in the proposed
incremental refinement approaches deal with data with signifi-
cantly reduced bitwidth in comparison to the conventional com-
putation of the DWT that processes all bitplanes at once. To dis-
tinguish this effect, we propose the following metrics inspired
by classic research work in the area-time complexity of binary
multiplication and addition [26], [27].
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Definition 1: Addition of two numbers represented with
and bits, each having an additional bit as the sign bit as in
(15), requires the following number of operations:

if both numbers are nonzero
otherwise.

(32)

Definition 2: Multiplication of two numbers represented with
and bits, each having an additional bit as the sign bit as

in (15), requires the following number of operations:

if both numbers are nonzero
otherwise.

(33)

with a system parameter indicating how “hard” is binary
multiplication in comparison to binary addition.

These definitions can be intuitively viewed as follows: As-
sume a virtual processing element (PE) able to perform signed
addition between two bits and the carry information. Addition is
(maximally) requiring activations of the PE
for two numbers with and bits. Similarly, by viewing
multiplication as cumulative additions, the number of activa-
tions of the PE is given by (33), with the system parameter

indicating the cost of accumulating the intermediate results.
If any of the two operands is zero, no operations are required
(apart from a minimal “zero detection” effort), since the result
is trivial.

Notice that the aim of Definition 1 and Definition 2 is not in
providing the exact arithmetic complexity relating to a partic-
ular processor or custom hardware (which depends on a number
of system factors), but rather to parametrically characterize in
a generic manner the relative importance of addition and mul-
tiplication under different bitwidths. This will enable generic
but useful comparisons of different algorithms for the trans-
form computation to indicate the potential of the proposed in-
cremental refinement approaches.

Based on the complexity definitions presented here, in the
following subsection we estimate the expected number of arith-
metic operations based on stochastic source modeling.

B. Operations for Incremental Refinement of Computation
of the DWT

1) Stochastic Source Model for Low-frequency Wavelet Co-
efficients: The rate-distortion characteristics of low-frequency
wavelet coefficients are typically modeled using the
high-rate uniform quantization assumption [1] for independent
Gaussian random variables with mean and variance

. In our recent work [30] we validated that the Gaussian
i.i.d. assumption for low-frequency spatio–temporal subbands
turns out to be accurate when one performs more than two
spatial decomposition levels in the input image or video se-
quence, since in this case the correlation between neighboring
coefficients in the low-frequency spatio–temporal subband is

often small enough such that the variance of the noise between
adjacent coefficients is close to the coefficient variances them-
selves. While low-frequency spatial (or spatio-temporal in the
case of 3-D video coding [31]) subbands account for a large
percentage of the image and video transform computation, the
high-frequency subbands also contribute a significant amount
to the overall complexity, since they represent the majority of
the multilevel DWT decomposition. Thus, accurate modeling
of the high-frequency subband statistics is also very important
for precise modeling of the DWT operations.

2) Stochastic Source Model for High-frequency Wavelet Co-
efficients: Each high-frequency subband of resolution (decom-
position) level , , consists of
wavelet coefficients , . These co-
efficients are modeled as a doubly stochastic process [28], [29],
i.e., as conditionally independent zero mean Gaussian random
variables given their variances. The vari-
ances of the high-frequency wavelet coefficients of each level
are modeled by , which is given by an exponential distribu-
tion4

(34)

In this case, the marginal distribution of each high-frequency
wavelet coefficients of decomposition level turns out
to be Laplacian [28]

(35)

We organize coefficients into vector
. In addition, for each

bitplane , we denote the bitplane threshold level as .
3) Expected Number of Operations: In this subsection we

focus on the inverse DWT and attempt to derive the expected
number of operations for the transform realization via the pro-
posed approach.

For each input bitplane of each subband (which corre-
sponds to threshold ), the wavelet coefficients that have a
significant bit at bitplane will correspond to multiplications
and additions as presented in Section II. If we quantify this cost
for each coefficient as , where
the cost for multiplications and additions is derived based on
Definition 1 and Definition 2, the operations for the significant
coefficients of bitplane across decomposition levels are

(36)

4Random variables are indicated by the capitalized symbol of their corre-
sponding quantities, while probability density functions are indicated by P(�).
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Fig. 4. Representative examples of probability of significance for different wavelet subbands of an error-frame (left) and an original video frame (right) from the
video sequence “Stefan.”

where , , indicates the probability
of the wavelet coefficients of a low or high-frequency subband
of level having a nonzero bit at bitplane and are
scaling factors relating to the particular lifting decomposition
of interest. These factors express the overhead corresponding to
the size of the lifting filters and the number of lifting steps and
they will be derived in the experimental section. Our goal in this
subsection is to establish an estimate for the probabilities
in order to derive the final complexity estimate of (36). This is
achieved in the following two propositions.

Proposition 1: An approximation result to the probability
that the wavelet coefficients of a high-frequency subband have
a nonzero bit at bitplane is

(37)

and the variance of the high-frequency subbands of decom-
position level .

Derivation: See Appendix I.
Proposition 2: An approximation result to the probability

that the wavelet coefficients of a low-frequency subband have
a nonzero bit at bitplane is

(38)

Derivation: See Appendix II.
Notice that, even though we shall be using conventional

dyadic thresholds corresponding to bitplane-based SAQ, both
Proposition 1 and Proposition 2 can be formulated with any
set of thresholds, thereby accommodating a broad family of
embedded quantizers.

Typical examples of the probability of nonzero bits for sev-
eral bitplanes of SAQ are presented in Fig. 4 for both regular
images (video frames), as well as error images produced by
motion compensated prediction. The model prediction based on
Proposition 1 and Proposition 2 is presented as well, where we

apply (37) and (38) individually for each subband, i.e., is the
variance of the doubly stochastic model (high-frequency coef-
ficients) fitted to the experimentally measured variance of each
subband. The figure demonstrates that the proposed model ap-
pears to predict rather accurately the probability of nonzero bits
in each bitplane of the different wavelet subbands. Notice that
the probability for nonzero bits of the low-frequency subband of
an error frame (left side of Fig. 4) is modeled by (37) because it
corresponds to a high-frequency spatio-temporal subband, since
the error frame is produced by motion-compensation. In addi-
tion, for the example of the low-frequency subband of images
presented in the right side of Fig. 4, the model of tends to predict
accurately for the majority of coefficient bitplanes, with the ex-
ception of the maximum bitplane. Overall, the derived models
of (37) and (38) are capturing the different trends of the various
subbands in function of the source statistics. Notice from Fig. 4
that the probability of nonzero bits decreases faster in function
of the bitplane for the case of error frames, indicating the spar-
sity of the representation.

The derived framework can be used as a theoretical basis
to study the conditions under which incremental refinement of
computation for the inverse DWT can achieve the same perfor-
mance as the conventional calculation.

C. Theoretical Comparison of Incremental Refinement of
Computation With Conventional Computation—Achieving
Successive Refinement of the IDWT Computation

We begin this section by establishing the equivalent theoret-
ical estimation of computational requirements for the conven-
tional (nonrefinable) computation of the inverse DWT. This is
achieved by the following propositions.

Proposition 3: An approximation result to the probability
that the wavelet coefficients of a high-frequency subband have
nonzero bits between bitplane (maximum bitplane) and

is

(39)
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Derivation: The result can be reached by the integration over
each (doubly stochastic) component of vector between

and , since, due to the probabilistic na-
ture of our model, coefficients are not strictly upper bounded
by . This integration can be equivalently expressed
as the difference between integrating the entire distribution of
each component of and integrating within the interval

, i.e.,

(40)

We derived an approximation of the integration in (40) given by
(50) contained in Appendix I, and this leads to the final result.

Proposition 4: An approximation result to the probability
that the wavelet coefficients of a low-frequency subband have
significant bits between bitplane (maximum bitplane)
and is

(41)

Derivation: Based on the central limit theorem and the same
numerical estimation process as in the derivation of Proposition
2, we derive the parameters of the final Gaussian distribution:

and . With proper
scaling to normalize the result to the range of the observed mea-
surements we derive the final result of (41).

Under the derived results of Proposition 3 and Proposition 4,
we can formulate the complexity estimate for the case of the di-
rect computation of all bitplanes following similar
steps as in the case of (36), thereby deriving

(42)

Notice that, similar to (36) where we are considering only the
bitplane-by-bitplane computation, represents the ex-
pected number of operations for each coefficient. Since the the-
oretical estimation of this cost in function of the relevant cost in
(36) is difficult, we set , with , and
treat the scaling as a system parameter that should be taken
into account in our further exploration. This scaling represents
the average overhead of each expected computation expressed
in (42) as compared to the incremental refinement approach ex-
pressed by (36), with representing the case of no over-
head.

We can now attempt to answer the following interesting ques-
tion. Under the given source model and starting from bitplane

, what is the lowest bitplane until which the proposed
incremental refinement approach performs equal (or less) com-
putations to the conventional (nonincremental) approach? This
is the subset of operational settings where both schemes would
obtain the equivalent approximation of the input source, with the
proposed approach possessing also the property of incremental

refinement. We term this as successive refinement of computa-
tion following the analogous information-theoretic definition of
Equitz and Cover [32]. This can be derived by the following in-
equality for the computation between (36) and (42)

(43)
which, after a few straightforward manipulations becomes

(44)

where we replaced by based on (54) derived
in Appendix II (derivation of Proposition 2). Apart from ,
the resulting expression of (44) is parametrical to the variance of
the high-frequency subbands [due to (37), (39)], the maximum
number of decomposition levels, the scaling , and, finally, the
ratio of scaling factors relating to the
particular lifting decomposition of interest. However, since we
cannot determine the solutions for analytically from (44),
in the following section we present experimental results that de-
rive based on experiments with two filter-pairs applied to
real images. We provide some practical values for the modeling
parameters , and of (44), (33) that help us evaluate the
accuracy of the derived model for predicting the performance
of incremental refinement, as well as establishing the succes-
sive refinement region. The experimental results also validate
the practical efficiency of incremental refinement of computa-
tion for the IDWT.

IV. EXPERIMENTAL RESULTS

We first examine the performance of incremental refinement
in individual cases of IDWT applied to video frames as well as
error frames produced by motion-compensated prediction. We
also establish the performance of the proposed approach exper-
imentally, and via the proposed model of Section III. Subse-
quently, we test the performance of incremental refinement of
computation for entire video sequences decompressed with a
scalable video coder.

Fig. 5 and Fig. 6 present representative results from two video
sequences in terms of computation [measured based on (32),
(33) in conjunction with our experimental software implemen-
tation] versus distortion (measured in terms of peak-signal to
noise ratio—PSNR) achieved by stopping at several bitplanes
(from to ) and focusing directly at the multi-
level decomposition with . The results of the con-
ventional (nonrefinable) approach are measured also based on
(32), (33) and by performing multiple IDWTs. The 9/7 and 5/3
filter-pairs were used for these results and throughout this sec-
tion. We set the precision for fixed-point software implementa-
tion to 14 bits for the fractional part and 13 bits for the integer
part (including the sign bit). In the results of this section we
focus on the “frequency-first” approach for the proposed incre-
mental refinement since we determined experimentally that it
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Fig. 5. Computation-Distortion results for the conventional and the proposed approach for the case of video frames: (two left plots) 9/7 filter-pair with � = 0:0

and � = 0:5 (for which we indicate the successive refinement region) and two representative video frames; (right plot) 5/3 filter-pair (results with one video frame,
indicating the successive refinement region). For each case, the transform terminates at bitplane n = f2; . . . ; 6g corresponding to low, medium and high distortion.
The model results are also presented for each case.

Fig. 6. Computation-Distortion results for the conventional and the proposed approach for the case of error frames: (two left plots) 9/7 filter-pair with � = 0:0

and � = 0:5 (for which we indicate the successive refinement region) and two representative error frames; (right plot) 5/3 filter-pair (results with one error frame,
indicating the successive refinement region). For each case, the transform terminates at bitplane n = f2; . . . ; 6g corresponding to low, medium and high distortion.
The model results are also presented for each case.

performs almost identically to the “quality-first” approach and
it also represents the generic multilevel incremental refinement
paradigm where each input source bitplane refines the final re-
sult of the IDWT.

Starting with the case of regular (intra) video frames (Fig. 5),
we observe that the proposed approach does not achieve perfor-
mance close or inside the successive refinement region marked
by the computation required by the conventional approach. To
the contrary, it introduces significant computational overhead
for both cases of values tested for the 9/7 filter-pair. However,
it appears that the incremental refinement case with is
close to the conventional case for in the high-distor-
tion (low PSNR) region. This is a scenario that could be fea-
sible in practice, since the overhead of multiplication versus
addition (expressed by increased values of ) increases with
increased dynamic range, and this is indeed the case of the
conventional approach versus the proposed incremental refine-
ment of computation: the conventional computation performs
less operations but with a higher dynamic range on average, in
comparison to the proposed approach. The 5/3 filter-pair does
not perform any multiplications because the filter taps seen in
Table I can be applied with additions and bit shifts. Hence,
does not apply for this case. Notice that the lack of multiplica-

tions combined with the simplicity of the 5/3 filter-pair as com-
pared to the 9/7 decreases the required operations almost by a
factor of 50 for the same output distortion (PSNR). Of course,
as typical JPEG-2000 experiments show [1], in image compres-
sion applications the 5/3 filter-pair leads to a 10%–20% rate in-
crease in comparison to the 9/7 for the same output distortion.
Nevertheless, for many resource-constrained environments this
is only a small disadvantage compared to the significant com-
plexity reduction exemplified by the comparative results of the
two filter-pairs.

For the 9/7 filter-pair, the theoretical results produced by (36)
agree very well with the experimental results for the case of intra
frames seen in Fig. 5. The model is less accurate for the case
of the 5/3 filter-pair. The two factors of (36) that scale
the estimates (which are calculated by Proposition 1 and
Proposition 2) can be estimated by a detailed analysis based on
the length of the lifting filters, as well as the average increase
in the dynamic range during the synthesis of the low-frequency
component of each level. Since this approach is cumbersome
and depends on several filter-specific factors, we estimate them
based on curve fitting. Overall, the examples reported in Fig. 5
for the 9/7 filter-pair provided: for the case of

and for the case of . In addition,
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Fig. 7. Examples of a video frame (“Stefan” sequence) when terminating the computation at n = f5; 4; 3g using the 9/7 filter-pair with � = 0:0. The
computation/distortion results correspond to the proposed approach (see Fig. 5).

in order to experimentally quantify the value of , we measured
the average ratio of the number of operations for each
nonzero input in the proposed approach versus the conventional
approach . This derived for the case where
both methods have . Based on (44), we expect that suc-
cessive refinement of computation is only marginally possible
in this case, which agrees with the quantitative comparison of
Fig. 5. Interestingly, when in the proposed approach
and in the conventional approach, we derived .
This indicates [from (44)] that . This seems to agree
with the fact that (4,6) of the incremental refinement ap-
proach with (9/7 filter-pair) is close to the successive
refinement region indicated in Fig. 5.

In the case of error frames (Fig. 6), the proposed approach
performs within the successive refinement region for the
medium to high-distortion regime. In general, error frame rep-
resentations tend to be more suitable for incremental refinement
due to the sparsity of the input transform representation. For
example, only the result for is outside the successive
refinement region in the “Coastguard” error frame, whose
variance is 30% lower than the variance of the “Stefan” error
frame. Interestingly, the proposed approach for performs
entirely within the successive refinement region of the conven-
tional approach with . Even though we do not indicate
the performance for other intermediate values of , we observed
that the curves are “shifted” to the left linearly to the increase
in value of , hence it is easy for the reader to infer these cases
from the provided experiments. Concerning the evaluation
of the model of (36), we observe that the model follows the
general trend of the experimental results. In this case, we again
derived experimentally the values for the modeling parameters

(9/7 filter-pair): for both and ,
and . By solving (44) with these parameters (using
numerical methods), we find that these values correspond to
the “good” region for successive refinement, where we have

. This agrees with the derived experiments of
Fig. 6.

Visual comparisons for video frames and error frames are
presented in Fig. 7 and Fig. 8. Notice that both the conven-
tional and the proposed approach produce virtually the same
result (i.e., near identical PSNR performance) for each termi-
nating bitplane, with some very minor discrepancy (in the order
of 0.002 dB in PSNR) due to minor differences in the rounding
errors produced by the fixed point computations for each case.
Terminating the computation at a high bitplane produces ringing
and blurring artifacts as shown in Fig. 7, effects that are well
known from the image coding literature [1]. Nevertheless, in all
cases a meaningful approximation of the final result can be ob-
tained and the quality is progressively increased with increased
computation.

As a concluding remark for the results of Figs. 5–8, it is im-
portant to note that the proposed approach has two fundamental
properties that the conventional approach is lacking:

• Incremental refinement is computationally scalable with
respect to quantization precision.

• Incremental refinement provides all the results reported in
Figs. 5 and 6 by successively continuing the computation.
On the other hand, the conventional approach has to invert
the transform in its entirety for each experimental point.
Consequently, if we consider a dynamic scenario where
the source distortion is reduced after the initiation of the
computation, the cumulative overhead of moving from one
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Fig. 8. Examples of an error frame (“Stefan” sequence) when terminating the computation at n = f5; 4; 3g using the 9/7 filter-pair with � = 0:0. We have
increased the brightness and contrast of the images to highlight the content. The computation/distortion results correspond to the proposed approach (see Fig. 6).

point to the next in the Distortion-Computation curves of
Fig. 5 and Fig. 6, is significantly higher for the conventional
approach.

The proposed approach appears to provide benefits for the
case of error frames. As a result, it would be interesting to
evaluate its performance in a coding framework using motion-
compensated prediction. Representative results are presented in
Fig. 9 in terms of mean PSNR for embedded coding of the Y,
U, V channels of CIF-resolution video using a scalable video
coder [33] with a group-of-pictures structure consisting of one
intra-frame and 23 error frames. We have included as a refer-
ence in these results the computation required for the conven-
tional separable (row-column) lifting computation [23], because
it is commonly used in practical applications [1]. The results in-
dicate that incremental refinement becomes beneficial for the
medium to high distortion regime, corresponding to medium
to low-rate (28–31 dB in PSNR, corresponding to 128 to 350
kbps), with the exception of the “Stefan” sequence where the
proposed approach provides comparable computation only in
the high distortion regime. Fig. 9 shows the striking difference
in complexity scalability between the proposed approach and
the conventional computation approaches.

Concerning the low-distortion (high-rate) regime, an over-
head ranging up to three-fold increase in computation is
imposed due to the incremental refinement property. We re-
mark though that the comparison is carried out under the direct
2-D lifting-based realization, which is already reducing compu-
tation by approximately 40% in comparison to the conventional
separable lifting-based DWT [24]. Hence, as shown by Fig. 9,

the proposed approach performs relatively better when com-
pared to the conventional separable lifting realization. Notice
that all the results presented for each sequence in Fig. 9 are pro-
duced incrementally by the proposed approach (with respect to
the IDWT part), while both conventional computations require
reinitiating the computation for each experimental point re-
ported in the figure. This indicates that under dynamic resource
allocation, the proposed approach can refine the output repre-
sentation. Moreover, when system resources become scarce,
the proposed approach can still produce a high-distortion, albeit
meaningful, result unlike the conventional approach that is
constrained to a certain range of computation.

V. CONCLUSION

We propose a method for incremental computation of the for-
ward and inverse DWT under a bitplane-based formulation of
the 2-D lifting decomposition. This results in a continuous com-
putation for the output where, under any termination point, the
representation corresponding to the provided input source accu-
racy can be retrieved. In addition, to granular and scalable com-
putation, the proposed DWT calculation ensures that, should
additional computational resources and source refinement bits
be provided, the transform calculation can be enhanced from
the previously computed result. In order to study the properties
of the proposed approach, we proposed a stochastic model that
predicts the expected computation in function of source statis-
tics as well as operational and algorithm settings (decomposi-
tion levels, terminating bitplane, filtering complexity etc.). This
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Fig. 9. Computation-Distortion results for the conventional approach versus the proposed approach in the case of video sequences. The computation required by
the nonrefinable separable lifting is included as well as a reference.

enables a first exploration of the subspace of operational pa-
rameters for which incremental refinement provides comparable
or even superior computational efficiency in comparison to the
conventional (nonrefinable) computation. This property, termed
successive refinement of computation in this paper, is tested in
practice with real video sequences and an initial model valida-
tion is carried out with two popular wavelet filter-pairs. The re-
sults demonstrate that successive refinement of computation is
feasible for the medium to high distortion regime.

Further exploration of the proposed approach could in-
volve theoretical and experimental validation of successive
refinement for the forward DWT. Note that applications of
incremental refinement for the forward DWT exist, e.g., for
progressive image denoising and edge detection using mul-
tiresolution decompositions [20], or for the residual image
transformation of the enhancement layer in progressive FGS
coding [34]. In addition, a detailed experimental study with a
variety of filter-pairs, image sizes and decomposition levels
would be of interest in order to ascertain the practical impact of
several algorithmic features in the required computation. This
can be coupled with an analytical study of the interrelationship
between the input source model and the system parameters

, and (in function of various wavelet filter-pairs),
which would lead to a deeper understanding of incremental
refinement properties. Higher-dimensional extensions of the
proposed framework could also be investigated, e.g., for 3-D
medical data or even 3-D motion-compensated wavelet video
coding. Furthermore, extensions of the proposed bitplane-based
calculation to other quantizers or other approaches that reduce
computation by exploiting correlations in the input source, e.g.,
via the use of bitplane-based prediction could be envisaged.
Finally, interesting extensions could involve the formulation of

the proposed scheme in adaptive and nonlinear lifting scheme
decompositions [8], [35] that produce sparse transform repre-
sentations.

APPENDIX I

Derivation of Proposition 1: The probability that the coeffi-
cients of a high-frequency subband have a significant bit at bit-
plane can be expressed by integrating over the density func-
tion of each component of between and

, i.e., over the intervals corresponding to bitplane .
The key insight for reaching the result is that this integration
can be expressed as the difference between integrating from

and

(45)

Replacing as Gaussian distributions pa-
rameterized by which follows the distribution of (34) [see
(46) and (47) at the bottom of the page] where (47) was reached
by rearranging integrals and by the fact that the
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resulting integrals of each of the two terms are equal, therefore
variables , where replaced by
in the final expression.

The remaining steps follow a similar methodology as in our
previous work [30]. Recall the definition of the erf function

. Using substitution of variables,
we get the following expression:

(48)

Hence, substituting (48) into (45) with gives
us

(49)

In lack of an analytical solution for (49), we use the following
approximation [30]:

(50)

with the indicator function, which is used
for the term . The justification of this re-
placement is based on the observation that we can approximate
the error function raised to a large power based on the indi-
cator function, by choosing the threshold of the indicator func-
tion appropriately. For images of 256 256 to 1024 1024
pixels and or decomposition levels, typical plots
of versus are seen in
Fig. 10. Instead of using a fitting technique to derive the ap-
propriate threshold value for the indicator function based on the
plots of Fig. 10, we derived the utilized value based on the agree-
ment of the derived approximation with the observed experi-
mental results of probability of significance of high-frequency
wavelet subbands. This derives the setting used
in the indicator function in (50).

(46)

(47)
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Fig. 10. Justification of the approximation of erf(T=
p
2� ) by I(T=

p
2� �

2:5): the plot shows each function for typical values ofn corresponding to image
sizes and decomposition levels of interest. The range of T=

p
2� shown in the

plot covers the experimentally derived range of values.

The replacement of (50) in (49) for along with
the relationship:

(51)
derives the approximation of (37).

APPENDIX II

Derivation of Proposition 2: Under the i.i.d. Gaussian
distribution of each low
frequency wavelet coefficient , the probability that a
low-frequency coefficient has a significant bit at bitplane ,
denoted by , is estimated by integrating the Gaussian
distribution over and . The desired
probability amounts to the difference between integrating from

and

(52)

Based on the property we have

(53)

If we model of each low-frequency wavelet coefficient
as i.i.d. random variables (since are i.i.d.) and derive

their distribution function, the probability that the wavelet co-
efficients of the low-frequency subband have a significant bit
at bitplane is the convolution of these distributions for all

low-frequency wavelet coefficients. Under the
central limit theorem, this is a Gaussian distribution with mean

and variance defined based on the param-
eters of each individual distribution. However, instead of de-
riving the parameters of each individual distribution, we opt to
fit (using least squares) the parameters and
directly to the experimental histogram of probabilities of sig-
nificance of low-frequency wavelet coefficients of several real
images. A variety of image sizes (from 256 256 to 1024
1024) and decomposition levels (from three to five) was used.
In addition, based on the gains of low-pass filters of popular
wavelet filter-pairs [1] and by bounding the input signal values
in the interval [0,255] (i.e., regular 8-bit images), the maximum
bitplane threshold for which significant bits may occur for the
low-frequency subband of typical images decomposed up to

levels is

(54)

Hence, the set of dyadically increased thresholds:
was used during the experimental

parameter fitting. This derived the following approximation for
the parameters for the resulting Gaussian distribution:

(55)

i.e., a near-zero mean Gaussian distribution with variance pro-
portional to . The proportionality of the variance to this
factor is justifiable because, based on the central limit theorem,

, with the vari-
ance of the distribution of . We set for sim-
plicity since this had marginal effect in the model precision and
also scale the final Gaussian distribution by a factor proportional
to (i.e., proportional to the subband dimensions) in order
to normalize the result to the range of the observed measure-
ments. The final probability of significance for low-frequency
coefficients for every threshold under these approximations,
is given by (38).
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