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Abstract—Video decoding applications must often cope with
highly time-varying workload demands, while meeting stringent
display deadlines. Voltage/frequency scalable processors are highly
attractive for video decoding on resource-constrained systems,
since significant energy savings can be achieved by dynamically
adapting the processor speed based on the changing workload
demand. Previous works on video-related voltage scaling algo-
rithms are often limited by the lack of a good complexity model
for video and often do not explicitly consider the video quality
impact of various steps involved in the decoding process. Our
contribution in this paper is threefold. First, we propose a novel
complexity model through offline training that explicitly considers
the video source characteristics, the encoding algorithm, and
platform specifics to predict execution times. Second, based on
the complexity model, we propose low complexity online voltage
scaling algorithms to process decoding jobs such that they meet
their display deadlines with high probability. We show that on
average, our queuing-based voltage scaling algorithm provides
approximately 10%–15% energy savings over existing voltage
scaling algorithms. Finally, we propose a joint voltage scaling and
quality-aware priority scheduling algorithm that decodes jobs in
order of their distortion impact, such that by setting the processor
to various power levels and decoding only the jobs that contribute
most to the overall quality, efficient quality, and energy tradeoffs
can be achieved. We demonstrate the scalability of our algorithm
in various practical decoding scenarios, where reducing the power
to 25% of the original power can lead to quality degradations of
less than 1.0 dB PSNR.

Index Terms—Complexity modeling, dynamic voltage scaling
(DVS), priority scheduling, queuing theory, video decoding,
waiting time analysis.

I. INTRODUCTION

RECENTLY, many processors that support multiple oper-
ating frequencies have become commercially popular [1],

[2]. Consequently, various dynamic voltage scaling (DVS) al-
gorithms have been proposed for dynamically adjusting the op-
erating frequency and voltage of a processor to utilize energy-
delay tradeoffs for a task where jobs need to be completed by
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certain deadlines [3]. In CMOS circuits, power consumption
is given by , where denote the
voltage, effective capacitance and operating frequency, respec-
tively. The energy spent on one task is proportional to the time
spent for completing that task and time is inversely propor-
tional to frequency. Hence, the energy is proportional to the
square of the voltage, i.e., . The energy
spent on one process can be reduced by decreasing the voltage,
which will correspondingly increase the delay. Based on statis-
tical estimates of the cycle requirement (i.e., complexity or exe-
cution time) for each job, a DVS algorithm assigns an operating
level (i.e., power and frequency) for processing that job while
meeting delay requirements for that job.

In the past few years, a wide variety of DVS algorithms have
been proposed for delay-sensitive applications [4]–[11], [13],
[14]. Some DVS algorithms perform optimization over only one
or two tasks, such that the processor power level is determined
on the fly to meet imminent (soft) deadlines while considering
either the worst case execution time (WCET) [5], [6], or the av-
erage case execution time (ACET) [10]. While these approaches
have very low computational complexity, the performances are
limited in that future tasks with imminent deadlines may require
extremely high processing power to finish in time after the com-
pletion of the current task. On the other hand, more robust DVS
algorithms, such as the cycle-conserving and look-ahead ear-
liest deadline first DVS [4], and Feedback Control-based DVS
[7], schedule the power based on multiple future task deadlines.
The complexity of such approaches can become huge for large
job buffer sizes, since many job deadlines must be jointly con-
sidered in such scheduling schemes. This may often be the case
for multimedia where video packet arrivals over a network are
nondeterministic, and many packets are required to decode each
video frame. Consequently, various lower-complexity DVS ap-
proaches were proposed, where the number of tasks released
for execution (and hence, the number of deadlines to consider
in the DVS algorithm) could be controlled by adjusting various
parameters, such as the “aggressiveness” factor in [11].

In spite of the wide variety of algorithms proposed, current
DVS approaches are limited in several ways.

• Current DVS algorithms lack simple yet accurate com-
plexity models for multimedia tasks. Many DVS algo-
rithms are often optimized in an application-agnostic or
ad hoc manner, or otherwise they add significant overhead
to online complexity adaptation [7], [11], [29], [31]. Other
more formal, queuing-theoretic DVS approaches [15],
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[16], [43] for generic applications use models that are not
well suited toward the highly time-varying video decoding
complexity.

• Current DVS algorithms often use worst-case or average
case complexity measurements (e.g., [5], [6], [10]), which
neglect the fact that multimedia compression algorithms
require time-varying resources that differ significantly be-
tween jobs. Moreover, “worst-case” and “average-case”
metrics do not exploit the information stored by the second
moment of job execution times, or by the execution time
distributions themselves. As we will show in this paper,
such information can often be used to perform smoother
voltage scaling (i.e., fewer voltage switches) and improve
performance.

• Current DVS algorithms do not cooperate with multimedia
applications to obtain complexity statistics, which may
vary across different coders, different sequences, and
different bit rates.

• While the generic framework of imprecise computation has
been considered as an approach for loss-tolerant applica-
tions such as multimedia [17], [18], these algorithms do not
take full advantage of the properties of the multimedia al-
gorithm to optimize the quality or energy savings by jointly
adapt the power level and the workload. Moreover, there is
either no explicit consideration of the distortion impact in
loss tolerant multimedia processing, or else an unrealistic
model is used for distortion.

The address the limitations above, in this paper, we make the
following contributions.

• We propose a complexity model that not only explicitly
considers coder operations and frame dependencies (i.e.,
task deadlines), but can also be characterized by only a
few parameters. Importantly, we show that complexity
statistics can be decomposed into the sum of complexity
metrics that follow simple, well-known distributions. By
using offline training sequences, we derive complexity
distributions for different types of jobs (such as decoding
different video frame types) for different types of se-
quences/scenes. The encoder/server can then adapt the
decoder’s complexity model online with very low trans-
mission overhead whenever the sequence characteristics
or coder parameters change [29]. Hence, unlike prior DVS
work, where this information is known a posteriori and
adapting the complexity statistics may take up to several
seconds or minutes (depending on the encoding structure),
the proposed decoding system can optimally plan its use
of resources based on a priori transmitted complexity
traffic characteristics.

• Based on the online complexity distribution adaptation
scheme, we propose a new, queuing theoretic model
driven DVS paradigm, where by using the complexity
model, the processor can efficiently select from various
job processing disciplines (e.g., earliest deadline first,
quality-aware priority scheduling) and adapt the processor

power accordingly. We show the advantages of this ap-
proach compared to previous works where execution times
are guided by simple metrics such as worst case execution
time.

• We propose a quality-aware DVS algorithm based on
priority scheduling, where jobs are decomposed based
on their dependencies and contributions to overall video
quality, such that more important jobs are processed first.
In this way, the video stream can be decoded at various
quality levels given different power levels, even if the
average power is insufficient for decoding all jobs before
their deadlines. Hence, the quality-aware DVS algorithm
can retain high quality even if the available energy is
reduced significantly.

The paper is organized as follows. Section II reviews a
look-ahead DVS approach introduced in [4], which will be com-
pared against the queuing-model paradigm for DVS. Section III
introduces a queuing model approach for deadline-driven DVS
algorithms. Section IV introduces a quality-adaptive DVS via
a priority scheduling approach, where more important jobs
are processed first. Section V provides performance compar-
isons between the look-ahead DVS and our deadline-driven
queuing-based DVS algorithms, and shows different average
power and quality tradeoffs achieved by priority-based DVS.
Finally, Section VI concludes our work.

II. REAL-TIME LOOK-AHEAD DVS AND MOTIVATION FOR

QUEUING-BASED DVS

A. Look-Ahead EDF DVS Algorithm

We begin by introducing a well-known real-time DVS algo-
rithm called look-ahead earliest deadline first (laEDF), which
has been shown to provide 20%–40% energy savings [4]. The
laEDF DVS algorithm attempts to process tasks at the lowest
frequencies possible based on a look-ahead technique that con-
siders future computational requirements. Rather than using a
high operating frequency to satisfy the WCET for all tasks re-
leased for execution, as in the cycle-conserving EDF DVS [4],
the laEDF tries to defer jobs such that the minimum amount of
work is done while ensuring that all future deadlines will still
be met. Of course, this means that the processor may be forced
to speed up when worst-case situations occur.

The laEDF algorithm is shown below. Given jobs ,
, and operating frequencies , , we de-

note to be the estimated WCET of job , the period of
arrivals of the jobs of the same type as , the decoding dead-
line for job , and the worst case remaining computation
for job . Note that in the laEDF algorithm, we have assumed
that, due to the regular frame structure of encoded videos, de-
coding jobs arrive periodically with . However, depending on
the decoding buffer size, the application delay requirements, and
the structure of the encoded frames, the decoding deadlines for
each job, , may vary for different jobs.
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Fig. 1. (a) Periodic 3 temporal level MCTF structure (with dotted lines indicating motion compensation operations). (b) Job decomposition for each soft decoding
deadline. (c) Corresponding workloads for the jobs in sequences Stefan and Coastguard.

laEDF DVS Algorithm:

select_frequency(x):

use lowest freq.
such that .

upon job_release :

set ;

defer();

upon job_completion

set

defer();

during job_execution :

decrement ;

defer():

set ;

set ;

for to 1, step 1 (where )

/ Note: reverse EDF order of tasks /

set ;

set ;

set ;

set ;

select_frequency ;

B. Limitations of laEDF DVS and Motivation for
Queuing-Based DVS

In this section, we describe in detail and give examples of
some limitations of laEDF DVS. It was shown in [28] that

power is a convex function of operating frequency, and there-
fore the total energy is minimized when the processor runs at a
near constant power due to Jensen’s inequality. However, one
limitation of laEDF DVS is that it does not perform well when
there are significant variations in complexity between jobs [4],
since the power must be adjusted aggressively to accommodate
worst-case scenarios. Unfortunately, sophisticated video coders
have complex encoding structures and sequence characteristics,
which lead to highly varying complexities between different
jobs. To illustrate this, we consider an example from a motion
compensation temporal filtering (MCTF) based video coder
[33], which adopts a complex temporal prediction structure
as shown in Fig. 1(a). Such sophisticated structures are very
common in most current state-of-the-art video coders, as they
can effectively exploit existing correlations among frames.
However, this leads to groups of frames that need to be jointly
decoded at the same time, and thus a burstier complexity traffic
characteristic [see Fig. 1(b)]. For example, reconstructing the
frame pair (i.e., job 1) in a 3–temporal level MCTF
structure involves decoding or reconstructing the set of frames

(other required frames are already decoded for jobs in the pre-
vious GOP). On the other hand, reconstructing the subsequent
frame pair (i.e., job 2) requires only decoding or
reconstructing the set , since other required
frames were already previously decoded. To provide better
intuition, we also decoded several sequences and various bit
rates on a Pentium 4 processor using Windows XP safe mode
with only a command prompt to ensure that context switches
and interrupting processes were kept at a minimum. In Fig. 1(c),
we measured the actual decoding complexity (workload) for
each type of job in a group of frames of the Coastguard and
Stefan sequences at the same bit-rates. Note that even within
the same job type for a particular coder, different sequences
can lead to significantly different complexities, i.e., jobs that
require reconstructing many frames in high motion sequences
such as Stefan may have much higher complexity than the
corresponding jobs for Coastguard. Hence, even if laEDF
DVS employs different WCET estimates for different types of
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Fig. 2. The total service time distribution for various classes of jobs (out of a total of 8 classes) in 4 temporal level MCTF for (a) Coastguard and (b) Stefan
sequences, decoded at 1152 kb/s.

jobs (e.g., the decoding of an I-frame, B-frame, or P-frame in
MPEG), rapidly changing video content may force the laEDF
to produce large processor power fluctuations during decoding,
which is suboptimal in terms of energy savings.

We collected job execution times (offline) from a set of 11
training sequences with 16 GOPs each, decoded at seven dif-
ferent bit rates. As shown in Fig. 2(a) and (b), the complexity
distributions for decoding different sequences shared similar
features, such as the existence of peaks. (Here, tics correspond
to the number of times an internal clock counter in the CPU is
incremented, and can be converted to the number of CPU cycles
through a constant scaling factor.) Nevertheless, the shapes vary
greatly between different sequences, as shown in the figure for
Coastguard and Stefan.

A final limitation is that laEDF DVS does not consider the
loss-tolerant nature of multimedia, and therefore does not adapt
gracefully to different levels of video quality and power when-
ever jobs are dropped. For example, in Fig. 1(a), the level 3
L-frame is required to decode all A-frames in the GOP, while
lower level L-frames and H-frames are required to decode fewer
frames. Hence, some of the lower level frames can be discarded
with less impact on the quality of the video sequence compared
to discarding the highest level L-frame. The order in which these
frames are decoded forms a basis for a quality-adaptive DVS ar-
chitecture, which will be discussed in Section IV.

In the next section, we present a complexity modeling
approach that captures time-varying distributions at a fine
granular level. In addition, a DVS approach based on delay
deadline-driven queuing theory is introduced, where power
is adapted based on the proposed complexity model to meet
“hard” deadlines with high probability. In Section IV, we
extend this queuing model to include priority-scheduling of
jobs, such that less important jobs may be discarded without
significant degradation to the video quality.

III. DEADLINE-DRIVEN QUEUING-BASED DVS COMPLETE TO

OVERCOMPLETE REPRESENTATIONS

In this section, we introduce a queuing theoretic approach to
determine the probability of missing job delay deadlines given
a processor frequency level and show how this can be used to
derive efficient DVS policies. In order to use queuing theory
however, we must first derive a stochastic complexity model that
is practically accurate.

A. Challenges and Previous Works for Complexity Modeling

Modeling the complexity of state-of-the-art video coders
in a both accurate and elegant way is a challenging task due
to the complex group-of-pictures (GOP) structures that exist,
where many neighboring video frames are coded together. In
addition, some advanced coders (e.g., MPEG4) allow the GOP
structure to change over time to adapt to changing video source
characteristics, in which case the complexity model must adapt
by recapturing statistics whenever the GOP structure changes.
As a result of these complex and potentially changing encoding
structures, research on complexity prediction and modeling
have traditionally fallen into two categories. The first category
involves methods that ignore coder-specific operations, such
as coarse levels of empirical modeling for complexity [31], or
the use of a statistical sliding window [5]. The second category
involves modeling complexity at a fine granular level based
on functions associated with the process of decoding (e.g.,
entropy decoding, inverse transform, etc.). However, these
works do not provide theoretical models [33], or else they are
based on platform-independent “virtual” complexities that can
not be mapped into real complexity (time) in a straightforward
manner [21], [32]. In the following section, we propose a mixed
modeling technique, where decoding complexities are mea-
sured at a fine-granular level and then modeled by well-known
distributions.
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Fig. 3. Normalized entropy decoding complexity for various L- and H-frames in a 4 temporal level MCTF GOP for (a) Coastguard and (b) Stefan sequences,
decoded at 1152 kb/s.

B. Deriving and Modeling the Service Distribution for Jobs
Properties of the Derived Formulation

Based on our discussion earlier on mixing training data with
analytical models, we show an example using an MCTF coder
with four temporal levels. In order to differentiate between var-
ious jobs associated with each GOP, we define job classes

, where a job belongs to class if it is the th job to be
decoded in its associated GOP. For example, in the MCTF struc-
ture shown in Fig. 1, there are a total of 4 classes of jobs which
correspond to the decoding of the , ,

, and frames in a GOP. For 4 temporal
levels, we have eight job classes. It is important to classify these
jobs in such a way because jobs in the same class are expected
to have similar complexities, and similar waiting times before
being processed.

We collected job execution times (offline) from a set of 11
training sequences with 16 GOPs each, decoded at seven dif-
ferent bit rates. In Fig. 2(a) and (b), we show the complexity
distributions (in tics) for various job classes, averaged over all
sequences, decoded at bit rates 1152 and 320 kb/s. Here, tics
are the number of times an internal clock counter in the CPU is
incremented, and can be converted to the number of CPU cy-
cles through a constant scaling factor. We noticed that the com-
plexity distributions shared similar features, such as the exis-
tence of peaks. We also explored the complexity distribution de-
pendency on sequences by collecting data from different classes
of jobs for particular sequences over seven different bit rates
(from 200 kb/s to 1.5 mb/s) and normalizing the measurements
by their scales in order to obtain an average distribution shape
for each sequence. It was discovered that the shapes vary greatly
between different sequences, as shown in the comparison of the
sequences Coastguard and Stefan in Fig. 2(c) and (d).

In order to better model the complexity analytically, we in-
vestigated the complexities contributed by different steps of a
decoding process. Decoding jobs often involves multiple dif-

ferent functions such as entropy decoding (ED), inverse trans-
form (IT), motion compensation (MC), and fractional pixel in-
terpolation (FI). Hence, the total complexity for class for a
sequence , , is the sum of complexities associated with
each of the various decoding functions:

(1)

where each indicates the total complexity associated with
one type of decoding step for a job of class . Since a job of class

is composed of decoding and reconstructing various frames
at various temporal levels, we can further decompose ,

, into a sum of decoding steps per-
formed at each temporal decomposition level. For example, ED
complexity of a class 1 job in 3-level MCTF, as shown in Fig. 1,
consists of entropy decoding frames .
Likewise, for temporal level MCTF, the ED complexity for
a class 1 job can be expressed as the sum of complexities for all
of its entropy decoding tasks:

(2)

where is the entropy decoding complexity of de-
coding a frame of type at temporal level . We can finally
model with simple distributions that require only a
few parameters, and sum up the distributions to form . A
particular interesting example comes from entropy decoding,
where the normalized complexity distribution is
Poisson, i.e.,

(3)

where is a Poisson bin number, is the proba-
bility that the normalized complexity falls into bin , and
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TABLE I
AFFINE TRANSFORM COEFFICIENTS FOR THE ENTROPY DECODING COMPLEXITY IN 4-LEVEL MCTF

is a shape parameter for the normalized complexity distribution.
The real entropy decoding complexity distribution can be mod-
eled by a shifted and scaled Poisson distribution, i.e.,

(4)

where and are sequence and frame dependent con-

stants. Fig. 3 shows the normalized ED complexities
for various L-frames and H-frames of the sequences Coastguard
and Stefan decoded at 1152 kb/s. Notice that the distributions
in Fig. 3 denote a subset of the complexities forming the dis-
tributions for different classes of jobs in Fig. 2 using (4), (2),
and (1). Table I shows the coefficient values for the normal-
ized entropy decoding complexity distribution averaged over all
training sequences, along with individual sequences Coastguard
and Stefan. Note that in all three cases, the coefficients ,

, and vary significantly for different sequences. Hence,
in practice, coefficients need to be estimated separately for dif-
ferent sequences. The same modeling technique may be applied
to inverse transforms and motion compensation.

While modeling complexity in this fashion is highly source
dependent, our novelty lies in the low complexity and high
accuracy of updating the complexity model whenever changes
occur in the video source statistics. During long video se-
quences, advanced coders may change GOP sizes, coding rates,
and frame sizes many times due to time-varying source statis-
tics. Without a good complexity model, only loose bounds for
complexity can be derived based on coarse parameters, such as
the mean and variance of frame sizes and coding bit rates across
entire sequences [34]. However, using our complexity model,
the encoder can update the decoder’s information of the video
source by sending only a few distribution parameters, and the
decoder can use these parameters to form accurate complexity
distributions. (The reader is referred to [29] for more details
on possible implementations of how these parameters can be
efficiently transmitted to the decoder.)

Before moving into the queuing theoretic DVS, we make
an important remark about the complexity model. The com-
plexity distributions, which are measured and fitted to well-
known distributions, are also based on the algorithmic decoder
operations. As shown in the above example, entropy decoding
complexity follows a simple shifted and scaled Poisson distribu-
tion, which is the limiting distribution when there are only a few
high complexity tasks and many low complexity tasks. Indeed,
algorithmically, entropy decoding for video frames follows such
a distribution, since only a few decoded bits are used to recon-
struct complex coder structures such as zero-trees, while most
decoded bits are used to decode and refine significant coeffi-
cients [19], [20]. On the other hand, inverse transform followed

a nearly constant complexity due to the particular implemen-
tation of the coder. Bidirectional motion compensation com-
plexity led to the existence of two peaks, which occurred due to
various macroblocks that required either a single prediction, or
two predictions. Due to the space constraint in our manuscript,
we omit a thorough analysis of each of these distributions. How-
ever, it should be noted that there is good reason to analytically
model complexity based on these specific distributions, since
they capture the underlying decoder implementation.

C. Delay Analysis

In this section, we assume that a buffer is available for re-
ceiving traffic from the network. Based on the job deadlines, the
buffer periodically provides the decoder with jobs in the order of
their display deadlines. We deploy a cyclic multiclass
queuing system with single-service discipline for modeling a
deadline-driven DVS system as shown in Fig. 4. Cyclic sched-
uling with single service discipline is also known as round-robin
scheduling, where a job in class is always serviced directly
after a job in class , and a job of class 1 (in the next GOP) is
always serviced directly after a job in class (of the current
GOP). The service policy for each class in this system can also
be viewed as a single service discipline with a vacation period
[24]. In particular, whenever a job of class finishes service, the
processor “goes on vacation” by servicing one job in each of
the other classes, and “returns to service” to class only after
it has completed processing the jobs in other classes. Based on
this service discipline and class-dependent service time distri-
butions obtained through offline training or from an analytical
model (Section III-C), we can determine the delay distribution
for each class of jobs (Fig. 4). The delays can then be used to
drive power scheduling to ensure that jobs are decoded before
their deadlines.

In order to analyze the queuing system, we divide the in-
terarrival time between jobs into equally spaced time
intervals, thereby obtaining discrete units of time s
apart. Hence, each interarrival period contains time indices

. Let be a random variable
representing the discrete service time of the th job of the th
GOP at processor speed , and the following vacation
period. Let be the waiting time for the th job of the

th GOP. The service, vacation, and waiting times are shown
for a two jobs GOP structure in Fig. 5.

We suggest two methods for computing the delay distribution
of jobs. The first method is based on the vacation time distribu-
tion. Suppose the processor runs at a constant speed until
steady state is reached. We denote the steady state (or time av-
erage) random variables as , , and with distribu-
tions , , . Waiting times approximations
for a cyclic service queue and queues with va-
cations have been analyzed extensively [21]–[23]. For example,



384 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 1, JANUARY 2008

Fig. 4. Queuing model for deadline driven DVS.

Fig. 5. An example of discrete service, vacation, and waiting times for cyclic service and 2 classes per GOP. Jobs of each class arrive at multiples of 2N , with
the first job of class 1 arriving at time 0.

given a discrete service time distribution and vacation
time distribution , the average waiting time is [23]

(5)

where and are the z-transforms of and
, respectively, and are the unique roots of the polyno-

mial that are on or inside the unit circle,
except .

The second method, which is shown below, is an analytical
queuing approach based on service times directly. Without loss
of generality, assume that we have the waiting time distribution
for class 1 jobs, . The total delay of class 1 jobs,

, follows the distribution:

(6)

where indicates convolution. Now, define for class 1 to
have the following distribution:

(7)

where

(8)

Intuitively, is the delay of a class 1 job, conditioned on
the total time being greater than , which is when job 2 arrives.
Hence, this conditional delay also defines the waiting time for
the following class 2 job, i.e.,

(9)

For all other classes , define the following distri-
butions in the same way:

(10)

where

(11)

and

(12)

The final result defining a recursive
relationship for . In fact, the vacation time can
also be expressed by its transform

(13)

where and are the z-transforms of
and . Because we are mainly interested in the probability
that the waiting time exceeds some time , we refer to [35] and
[36] for the waiting time tail approximation given

(14)
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TABLE II
OBTAINING THE WAITING TIME DISTRIBUTION AND PROBABILITY OF VIOLATING A DELAY DEADLINE

where

(15)

is the average load on the system.
The waiting time tail approximation can be derived based on

the approach shown in Table II, which iterates through (7) and
(10) until the expected waiting time converges. The distributions
are truncated at a sample size under which the expected
waiting time will be accurate. Because the waiting time tail dis-
tribution is truncated by , we use the approximation in (14)
to estimate the waiting time tail distribution. The complexity of
the waiting time estimation is proportional to ,
where is again the total number of cyclic classes, and is
the number of iterations through the algorithm in Table II.

The last step of the algorithm in Table II is used to estimate
waiting time tail distributions. However, the tail distribution of

is of greater importance to our system, since the delay de-
termines the probability that a hard deadline at time is
missed for a job arriving at time . However, since the tail distri-
bution for has the same shape as the tail distribution of

shifted by in time [as can be shown from the relation-
ship in (12)], we can apply the waiting time tail approximation
in (14) to estimate the probability of violating delay deadline

(16)

D. Queuing-Based DVS Scheduling Algorithms

In this section, we introduce a cross-layer optimization ap-
proach between the system and application based on queuing
models. The processor captures its service time and waiting time
distributions for different classes of jobs at various power levels

according to the algorithm described in Section III-C. The
decoding system then produces a lookup table containing the
net load and expected delay for each class . Using
(16), the processor can quickly estimate the probability of vi-
olating delay deadlines . Finally, the video application sets
upper bounds for the probability of dropping class jobs, and
determines a power schedule such that .
Note that can be set to vary depending on the distortion im-
pact of the respective job class. For example, job 1 in Fig. 1 may

be considered more important than job 2, since many frames
decoded in job 1 are also required to process job 2. We explore
two statistical DVS optimization problems based on power opti-
mization via queuing delay analysis, and provide two variations
of an adaptive DVS algorithm based on these problems.

Optimization Problem 1: Minimizes the Average Power
given Bounds on the Fraction of Dropped Jobs.

(17)

Note that this problem implicitly considers sleep modes,
where static power may be turned off during idle periods. Due
to the delay constraints and static power, the problem is not
convex, thus the solution has complexity . However,
since video decoding is computationally very complex [29],
[30], we assume that the static power consumption can be
neglected due to very high active power consumption. When
delay bounds are loose (e.g., is large), we expect the queue
to be almost never empty, and therefore the average processing
time per job is close to the constant arrival rate . As mentioned
in [28], for a fixed time to complete cycles, the optimal
energy saving schedule is to run the processor at a minimal
constant speed, which is . For discrete frequency
levels, can be achieved through timesharing between two
adjacent frequency levels. While the delay constraints do not
allow the processor to always run at the optimal average power
level, the processor may usually run at a constant power level,
and occasionally increase to higher power levels when the
queue size (and aggregate delay) becomes large, such that
jobs need to be processed quickly. Hence, in the absence of
a processor sleep mode, we propose an optimization problem
with much lower complexity.

Optimization Problem 2: Minimize a Fixed Power Level
given Bounds on the Fraction of Dropped Jobs

(18)

Since each power level has bounds to compute, where is
the number of job classes, the complexity of determining the
optimal power level is , where is the number of
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Fig. 6. Queuing model for priority scheduling based DVS.

processor power levels. Due to the strictly monotonically de-
creasing value of with respect to , the prob-
ability of missing deadlines is well-ordered with respect to the
power levels. Hence, a bisection algorithm can be used to deter-
mine the minimum power level such that all of the bounds are
satisfied.

We proposed two variations of an adaptive algorithm that
performs power adaptation to achieve energy savings while
meeting deadlines with high probability. Based on control
parameter , Algorithm 1 below adjusts its power such that the
decoding deadlines for all classes will be met with high proba-
bility. Hence, it solves (1) after processing each job. Algorithm
2, on the other hand, adjusts the power based only on the class
about to be processed, such that that particular class will meet
its decoding deadline with probability . The complexity
for Algorithm 2 per job is thus reduced to . Hence,
both algorithms have complexity that does not grow with the
total number of released jobs, while laEDF has complexity

due its consideration of all job
deadlines.

Algorithm 1 Adjusting power for all classes
based on service time overshoot or undershoot

1. Solve problem 2.

2. While jobs are available,

3. Set time t to 0 for each (soft) arrival
point.

4. If job i finishes at time t = � +��

5. Change delay bounds for all classes j to
PrfDj;k > Tj � ���g < "j, 0 � � � 1

6. Solve problem 2 under new constraints.

7. end

8. end

Algorithm 2 Adjusting power per class based on
service time overshoot or undershoot

1. Solve problem 2. Set Pk = Pk for job 1,
where Pk is solution to problem 2.

2. While jobs are available,

3. Set time t to 0 for each (soft) arrival
point.

4. If job i finishes at time t = � +��

5. Change delay bound for class i + 1 to
PrfDi+1;k > Ti+1 � ���g > "i, 0 � � � 1

6. Find Pk by solving problem 2 for class
i+ 1 with only the i+ 1th delay constraint.

7. end

8. end

IV. PRIORITY SCHEDULING BASED DVS

In this section, we introduce the concept of a joint DVS and
priority-based job scheduling algorithm (Fig. 6). By dropping
less important jobs, we can gracefully degrade the quality by
operating at lower power levels. We will show examples of this
graceful degradation in our results section.

A. Incoming Traffic Model and Service Model

Unlike the deadline-driven decomposition of jobs, we con-
sider jobs that are decomposed based on their contribution to
quality (Fig. 7). Jobs are then organized into priority classes,
where a job that contributes more to quality belongs to a higher
priority class. Consider again a buffer that streams jobs to the
decoder. By varying the way the bits are streamed to the de-
coder, we can derive a model where ED complexity arrives in
groups of cycles (GOCs) of fixed size according to a mixed ar-
rival process. Because ED complexity is closely related to the
arrival rate of bits, ED GOCs can be seen as a complexity rep-
resentation of packets. Below, based on some simplifying as-
sumptions, we will show that ED complexity can be modeled
by GOCs that arrive according to a Poisson arrival process plus
a general arrival process.

Proposition 1: Let us assume the following.
1) Jobs of class arrive in periodic time intervals of size .
2) The bit-rate per job of each class is quasi-constant.
3) The shifted and scaled Poisson distribution for ED com-

plexity per frame holds.
4) Different temporal level transform frames corresponding

to the same job have independent ED complexity statistics
(as a result of motion compensation).

5) The buffer can feed the decoder with bits that arrive ac-
cording to an arbitrary distribution, as long as the total
number of bits that arrive within time is .
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Fig. 7. (a) Job decomposition based on deadlines for 3 level MCTF. (b) An example of job decomposition based on priority classes. Connected frames are asso-
ciated with the same job.

Then ED complexity can be modeled by a Poisson arrival
process plus a general arrival process.

Proof: It is a well-known fact that a Poisson arrival process
with i.i.d. exponential interarrival times can be
decomposed into a doubly stochastic model based on a Poisson
distributed number of arrivals within a fixed time period , and
a uniform distribution of arrivals within that period [37], i.e.,

(19)

(20)

where is the arrival rate of the process, is the random
number of arrivals within the period, and is the uniform dis-
tributed vector over an -dimensional hypercube of all combi-
nations of possible arrival times. (Note that components of
do not necessarily have to arrive in order.)

Now, consider the case where ED complexity for a frame fol-
lows a Poisson distribution with mean . The buffer, which
can arbitrarily stream bits that it contains for a given job, will
stream in such a way that GOCs of size 1 (cycle) arrive at rate

uniformly distributed in time interval . Hence, the
ED complexity for the frame follows a Poisson arrival process.
Since wavelet transformed frames are often independent, we
may assume the ED complexity associated with each frame in a
job to be independent. The sum of independent Poisson arrival
processes is another Poisson arrival process, hence the ED com-
plexity per each job, which may include entropy decoding sev-
eral frames, is a Poisson process. Denote the average ED com-
plexity per job of class as . Based on the above construction
per frame, the buffer now streams bits in a manner such that,
based on the ED complexity associated with each bit, the ED
complexity is “streamed” as a Poisson process in GOCs of size
1 (cycle) with arrival rate with total job complexity

(21)

Fig. 8. Example of total complexity per arriving ED GOC for various frames
in a 4 temporal level MCTF GOP. The statistics are averaged over several
sequences.

Now consider , where follows
the distribution in (21). First, can be modeled as a
Poisson process as above, but with GOCs of size . Second,
we can model the complexity as arriving across an indepen-
dent complexity stream, where exactly GOCs of size
arrive within time . Hence, the total arrival process is a mix-
ture of Poisson and a general arrival process.

For the remainder of this section, we simplify the model for
ED complexity to be a pure Poisson arrival process. We use

to denote the quantized ED arrival rate for pri-
ority classes , and is the total job arrival
rate.

B. Proposed DVS Service Policy and Model

Based on the decomposition of jobs into ED GOCs in
Section IV-A, we propose a DVS system that uses priority
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scheduling to process the incoming GOCs. We model the
service of GOCs as a nonpreemptive priority queuing
system, where corresponds to the service time distribution
of each GOC (example distributions are shown in Fig. 8). In
other words, whenever the system finishes servicing a GOC,
it will then process the highest priority GOC waiting in the
queue at the time. However, while a GOC is being processed,
a GOC of higher priority can not interrupt the ongoing service
(i.e., nonpreemptive). Based on priority scheduling, the system
will ensure that even if not all jobs can be processed before the
display deadline, the higher priority jobs will be processed first,
so that they are more likely to satisfy their deadline constraints.
Effectively, a lower quality video can be streamed by decoding
(in time) only jobs in higher priority classes without having to
process jobs from every priority class. This creates a quality and
energy tradeoff, as we can lower the average processor power
to create a video of lower quality. To model the service rate
per GOC, we divided the total complexity (in tics) associated
with the decoding of each frame by the complexity of entropy
decoding.

C. Delay and Idle Time Analysis

Let be the delay of processing a GOC of class , and
define to be the probability that a GOC arriving
at time can not be processed before deadline . Note that
in reality, all GOCs of the same job have the same hard deadline
regardless of their arrival times , so the delay bound would
not be fixed for every GOC of a job. However, considering that
GOCs need to be processed in FIFO order to complete the job,
the deadlines for the first GOCs in the job may be set earlier to
accommodate the processing time delay induced on later GOCs.
For the purpose of analysis, we approximate the delays tolerated
by all GOCs within a class to be approximately equal.

In order to determine the probability of violating the delay
deadline for a non-preemptive priority queuing system, we first
define the load on the system induced by priority class with
service time as

(22)

Let be the total load of traffic coming from
priority classes 1 to , and let be the average service rate
for a class job in processor operating mode . The average
waiting time in the queue for priority class GOCs can then be
expressed as [39]

(23)

From the average waiting time, we can obtain an approxima-
tion for the probability that the waiting time exceeds some time

. We use the waiting time tail approximation to estimate the tail
of the delay

(24)

The fraction of idle time in an queuing system is the
time average probability that the system is empty

(25)

D. Priority Scheduling Optimization Problems and Algorithms

In this section, we formulate and analyze a number of opti-
mization problems based on probabilistic delay constraints. We
begin with a simple optimization problem, where a processor
continues running an idle processing thread even if there are no
jobs in system.

Optimization Problem 3: Minimize the Average Active
Power given an Average Video Quality

(26)

where

(27)

is the average quality of the decoded sequence at power level
. Here, is a vector with components that are the fraction of

time the processor is set to operate at power level , and is
the quality slope parameter for priority GOCs (i.e., the average
quality contributed to video by a priority GOC.) as introduced
in [32]. Note that is the fraction of GOCs of priority re-
ceived from the bitstream. Thus, the first constraint requires that
the average quality of the video is at least . This problem
turns out to be a linear programming problem, since and
are constants. We can thus solve this via the simplex method.
However, an even simpler closed-form solution exists if we ex-
plicitly consider the properties of power with respect to quality.

Proposition 2: If quality is a concave increasing function of
ED complexity, and there are a finite number of power levels,
the optimal solution to Optimization Problem 3 is to run the pro-
cessor always at a single power level, or perform time sharing
between two adjacent power levels.

Proof: Let Q be a discrete random variable which takes
on quality levels with probability. Power is a convex function
of frequency [28]. Likewise, complexity (and, thus, the average
processor frequency per unit time) is a convex function of
quality, which can been shown theoretically [25], [26] given a
concave PSNR curve with respect to rate. Hence, the power is a
convex function of the required average quality. From [38],
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TABLE III
FREQUENCY CHANGES FOR A COMBINED SEQUENCE WITH ABOUT 8600 JOBS

Fig. 9. Frequency and power fluctuations over 20 jobs of Coastguard for (a)–(b) 2 temporal levels temporal and (c)–(d) 4 temporal levels.

it is shown that for a convex quality to power function , the
distribution that minimizes the expected value of the function

is to choose the with probability 1 if , or else

(28)

where . then minimizes ,
which gives us the solutions to Optimization Problem 3.

If we now consider the case where the processor may shut
down during idle times and expend essentially zero energy, we
have a different optimization problem.

Optimization Problem 4: Minimize the Average Power given
an Average Video Quality

(29)

This problem is the same as Optimization Problem 3 but under
a different objective function which is not necessarily convex.
Again, we assume that the static power consumption can be ne-
glected due to very high active power consumption. Hence, the
optimal mode of operation should keep the system nonempty
with high probability, such that the processor power should run
at a nearly constant power level [28]. We propose a simplified
problem that can be solved with complexity and
can be used by a DVS algorithm to reactively adapt the power
level based on a minimum desired average quality.

Optimization Problem 5: Minimize a Fixed Power given an
Average Quality

(30)

We propose several simple priority scheduling and power
scheduling algorithms for DVS. The first algorithm chooses
a constant power based on the arrival rate and service time
statistics by solving Optimization Problem 5 with various
levels of . The second algorithm is the same as the first,
but periodically purges the queue of expired jobs, thereby
reducing the average waiting time for different classes. Finally,
we present a combined quality-aware priority and look-ahead
algorithm (Algorithm 3), which temporarily increases the
power whenever important jobs are about to expire. Whenever
a job in a class is within s of being expired, the system will
increase the processor power according to the job’s priority
by some , thereby increasing the chance of that job being
decoded in time.

Algorithm 3 Priority scheduling with last
second power increase

1. Solve problem 5 for Qavg to obtain Pinit.

2. While jobs are available,

3. For the highest priority class i, such that
the deadline of a job in class i will expire in
less than � time

4. Set P = Pinit + �(i).

5. end

6. Process highest priority job in FIFO
order. Record service time s

7. Subtract deadline of all other jobs by s.
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TABLE IV
COMPARISONS OF ENERGY CONSUMPTION, POWER LEVELS USED, AND DEADLINES MISSED FOR VARIOUS DVS ALGORITHMS ON THE COMBINED SEQUENCE.
THERE ARE A TOTAL OF FIVE POWER LEVELS. THE LEFT NUMBER IS FOR TWO TEMPORAL LEVELS, AND THE RIGHT NUMBER FOR FOUR TEMPORAL LEVELS

TABLE V
COMPARISONS OF PERFORMANCES OF VARIOUS PRIORITY SCHEDULING ALGORITHMS IN TERMS OF THE PERCENTAGE OF DEADLINES MISSED FOR VARIOUS

PRIORITY CLASSES FOR FOUR TEMPORAL LEVEL DECOMPOSITION (f INDICATES THE MINIMUM PROCESSOR POWER)

8. If deadline of a job j is less than 0,
purge job j.

9. end

V. EXPERIMENTATION AND RESULTS

In this section, we compare the performance of dead-
line-driven Algorithm 1 and Algorithm 2 with laEDF DVS. We
then compare the performances of different priority scheduling
algorithms and discuss the quality-energy adaptation points
achieved by Algorithm 3.

A. Deadline-Driven DVS Results

Based on the assumption of zero passive power, we compare
our algorithms with no DVS and laEDF DVS below using five
equally spaced frequency levels. For our simulations, we com-
bined 11 video sequences of 16 GOPs each (e.g., Coastguard,
Foreman, Harbor, Mobile, Silent, Stefan, and several others)
into a long sequence, which was then decoded. We set the hard
deadlines for Algorithm 1 and Algorithm 2 to be 8 frames after
the (soft) periodic arrivals, and we collected data for both 2
temporal level and 4 temporal level MCTF sequences. When
choosing the steady state deadline violation probability con-
straints for the algorithms, we noticed that for , the av-
erage delay tended to be large, such that not only were deadlines
frequently missed, but the power level per job also varied sig-
nificantly due to trying to meet imminent deadlines. However,
for small , the power setting per job was on average higher,
since there was more idle time between jobs. Based on exper-
imental results where the probability of deadline violation for

every class of jobs is be equal, we found the optimal setting to
be for all classes .

In Table III, the combined sequence is decoded using a 4-tem-
poral level MCTF GOP structure, and the number of processor
frequency changes are compared between different algorithms.
Interestingly, Algorithm 2 had the fewest frequency changes,
but both queuing-model-driven algorithms switched operating
levels about 20%–25% as often as laEDF DVS. Hence, our al-
gorithms greatly reduces the switching overhead. To illustrate
this effect, Fig. 9 shows an example of (normalized) frequency
fluctuations induced by the various DVS policies for 25 con-
secutive jobs of the Coastguard and Stefan sequences, encoded
with 4 temporal level MCTF. Note that frequency levels vary
dramatically for laEDF DVS due to the highly varying job com-
plexities per class.

In Table IV, we compared the average energy, power fluctu-
ations, and deadline misses for the combined sequence using
various algorithms. Note that our queuing-based algorithms had
nearly the same performance in spite of different power sched-
ules, and when compared with the laEDF DVS, provided ap-
proximately 10% energy savings for 2 temporal level MCTF and
15% energy savings for 4 temporal level MCTF.

B. Priority Scheduling DVS Implementation and Results

For the priority scheduling approach, we decomposed jobs
from the MCTF GOP structure in the same way shown in
Fig. 5. We note that while there are other ways to prioritize
jobs based on different classes for single frames, for resolution
levels within frames, or even for subbands within resolution
levels in order to achieve results with finer granularity, the
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TABLE VI
COMPARISONS OF PERFORMANCES OF VARIOUS PRIORITY SCHEDULING ALGORITHMS IN TERMS OF THE PERCENTAGE OF DEADLINES

MISSED FOR VARIOUS PRIORITY CLASSES FOR 2 TEMPORAL LEVEL MCTF DECOMPOSITION

TABLE VII
COMPARISONS OF AVERAGE ENERGY CONSUMPTION AND QUALITY LEVELS FOR ALGORITHM 2 AND QUALITY-ENERGY ADAPTATION POINTS OF

ALGORITHM 3 FOR THE COASTGUARD AND STEFAN SEQUENCES DECODED A BIT RATE 768 kb/s. THE AVERAGE FRAME RATES (FRAMES PER SECOND)
OVER ALL GOPs ARE GIVEN FOR DIFFERENT ADAPTATION POINTS FOR ALGORITHM 3

priority classification method depicted in Fig. 5 was sufficient
for our priority-driven DVS implementation.

Based on various average power levels for the processor,
we compared the probability of dropping jobs of different
classes based on the strict priority scheduling policy, the pe-
riodic queue purging priority policy, and our DVS strategy in
Algorithm 3. Table V includes the results from the combined
sequence encoded by 4 temporal level MCTF, and Table VI
includes the same results for 2 level MCTF based on some
lowest operating frequency . For Algorithm 3, we used

for 4 temporal level MCTF
with five priority classes, and for 2
temporal level MCTF with 3 priority classes. While Algorithm
3 may expend slightly more power than pure priority queuing
due to speeding up when jobs are about to expire, it performs
better than pure priority queuing due to reactively rushing jobs
through at the last minute. In the case of job classes being
frames or groups of frames, the effect of dropping different
priority classes is the same as reducing the frame rate of the
corresponding GOP. Finally, Table VII shows how different
power levels correspond to different frame rates, energies,
and quality levels. Notice that as long as the frame rate is
sufficiently high (e.g., 10 fps), there is only a loss in quality
of less than 1.5 dB when the power is scaled down to 10%,
which demonstrates that Algorithm 3 achieves high-scalability
in terms of quality and power tradeoffs.

VI. CONCLUSION

Current multimedia compression algorithms and stan-
dards provide only very coarse levels of complexity, thereby
neglecting the vast resource diversity and heterogeneity of
state-of-the-art systems. Also, current systems lack good com-
plexity models for resource management, and, hence, statistics

must be collected and updated frequently online in order to
reactively adapt to time-varying source and coding structures.
To improve the implementation of multimedia applications on
voltage/power configurable systems, we constructed a (fine)
granular complexity model that can be adapted in real-time by
a low overhead transmission from the encoder/server. Based
on this model, we proposed a queuing-driven DVS approach
for a video decoding system, which achieves significant energy
savings compared to conventional DVS. Finally, we proposed
an adaptive architecture combining both power and job sched-
uling to obtain energy-quality tradeoffs. Our results indicated
that the priority-scheduling based DVS algorithms can save a
significant amount of energy with only a small reduction to the
quality level. Future work includes the consideration of high
static power, and of several multimedia tasks that are running
simultaneously on the same system.
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