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Analytical Rate-Distortion-Complexity Modeling
of Wavelet-Based Video Coders
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Abstract—Analytical modeling of the performance of video
coders is essential in a variety of applications, such as power-con-
strained processing, complexity-driven video streaming, etc.,
where information concerning rate, distortion, or complexity (and
their interrelation) is required. In this paper, we present a novel
rate-distortion-complexity (R-D-C) analysis for state-of-the-art
wavelet video coding methods by explicitly modeling several
aspects found in operational coders, i.e., embedded quantiza-
tion, quadtree decompositions of block significance maps and
context-adaptive entropy coding of subband blocks. This paper
achieves two main goals. First, unlike existing R-D models for
wavelet video coders, the proposed derivations reveal for the first
time the expected coding behavior of specific coding algorithms
(e.g., quadtree decompositions, coefficient significance, and refine-
ment coding) and, therefore, can be used for a variety of coding
mechanisms incorporating some or all the coding algorithms
discussed. Second, the proposed modeling derives for the first
time analytical estimates of the expected number of operations
(complexity) of a broad class of wavelet video coding algorithms
based on stochastic source models, the coding algorithm charac-
teristics and the system parameters. This enables the formulation
of an analytical model characterizing the complexity of various
video decoding operations. As a result, this paper complements
prior complexity-prediction research that is based on operational
measurements. The accuracy of the proposed analytical R-D-C
expressions is justified against experimental data obtained with
a state-of-the-art motion-compensated temporal filtering based
wavelet video coder, and several new insights are revealed on the
different tradeoffs between rate-distortion performance and the
required decoding complexity.

Index Terms—Analytical modeling, complexity, rate-distortion,
wavelet-based video coding.

I. INTRODUCTION

ENERGY consumption is an important issue in mobile de-
vices. In the case of multimedia, the battery life of such de-

vices has been shown to be directly linked to the complexity of
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coding algorithms [3], [4], [8]. For this reason, recent advances
in scalable coding algorithms that provide schemes enabling
a variety of rate-distortion-complexity (R-D-C) tradeoffs with
state-of-the-art performance [2] are very appealing frameworks
for such resource constrained systems. This flexibility in video
encoding and decoding is also very suitable for the increasing
diversity of multimedia implementation platforms based on em-
bedded systems or processors that can provide significant trade-
offs between video coding quality and energy consumption [3],
[4]. In order to select the optimal operational point for a multi-
media application in a particular system, accurate modeling of
the source, algorithm and system (implementation) character-
istics is required. Such modeling approaches are important be-
cause they can also serve as the driving mechanism behind the
design of future complexity-scalable coders.

Two methods have been used to determine the rate-distortion
and the complexity characteristics of operational video coders.
The first is an empirical approach, where analytical formula-
tions are fitted to experimental data to derive an operational
model suitable for a particular class of video sequences and a
particular instantiation of a compression algorithm in a fixed
implementation architecture; see [17] and [18] for such exam-
ples of R-D models and [3]–[7] for such examples of complexity
modeling. While this modeling approach is simple, the obtained
R-D-C expressions cannot be generalized because their depen-
dency on the sequence, algorithm and system parameters is not
explicitly expressed via the model. As a result, while current
state-of-the-art multimedia compression algorithms and stan-
dards provide profiles for rate control [1], [4], [6], they lack an-
alytical methods to determine the complexity tradeoffs between
different coding operations that can be exploited for different
systems.

The second approach is a theoretical approach, where sto-
chastic models are used for pixels or transform coefficients.
Using this approach, analytical expressions can be derived for
the R-D-C behavior of a particular system or class of systems
processing a broad category of input sources in function of the
sources’ statistics; see [9], [12], and [13] for such examples
of R-D models and [10], [11], and [14] for complexity mod-
eling using operational source statistics and off-line or on-line
training to estimate (learn) the algorithm and system parameters.
We remark that, although there is a significant volume of work
in modeling of transform-domain statistics [26]–[28] and also in
the efficiency analysis of coding mechanisms [17], there is sig-
nificantly less literature on rate-distortion modeling for state-of-
the-art operational video coders, and (to the best of the authors’
knowledge) scarcely any work exists on complexity modeling
for such systems in function of stochastic source models and al-
gorithm characteristics. We emphasize that, while the derived
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theoretical expressions of such approaches are typically more
complex than the expressions derived from the first category, the
dependencies on the source and system modeling parameters
are explicitly indicated via the derived analytical framework.
This is of great importance to several cross-layer or resource
optimization problems [3], [8], [10] that need to judicially bal-
ance the network or system resources in order to accommodate
the viewer preferences in the most efficient manner. In addi-
tion, the explicit dependency of the derived R-D-C estimation
on source, algorithm and system parameters facilitates the ap-
plication of the derived framework for a variety of input video
source classes. Moreover, various algorithms and systems of in-
terest are accommodated in this way. Finally, a rigorous, analyt-
ical R-D-C formulation methodology can be easily extended to
model properties of various other coding algorithms based on
input source and algorithm parameters. In this way, analytical
comparisons of the R-D-C efficiency for particular algorithms
can accompany experimental testing in order to facilitate system
design decisions and options.

For these reasons, we follow the second category of ap-
proaches and provide a unified R-D-C modeling framework
for motion-compensated temporal filtering (MCTF) based
wavelet video coders [2], [22], [25], [29]. Two aspects are
typically required for unified R-D-C modeling of video coding:
i) modeling of the temporal prediction process [15], [16]; ii)
modeling of the quantization and coding process [9], [12].
Since motion-compensation complexity has been studied in
detail in prior work [7], [11], we focus on the second part
and assume that the transform-domain statistics of the intra
and error frames produced by the temporal decomposition
are available. Unlike existing theoretical work [9], [12], the
proposed R-D-C model is based on a thorough analysis of dif-
ferent coding operations (quadtree, coefficient significance and
refinement) and as a result can encompass many state-of-the-art
wavelet video coders found in the literature. Consequently, this
work extends prior R-D modeling of block-based wavelet video
coders to a broader class of coding mechanisms. Perhaps more
importantly, this work proposes an analytical derivation of
complexity estimates for the entropy decoding and the inverse
spatial transform, thereby complementing our prior work on
complexity estimation [7], [10], [11].

Based on the derived theoretical results and their experi-
mental validation, we explore the R-D-C space of achievable
operational points for state-of-the-art wavelet video coders
and derive several interesting properties for the interrelation of
rate-distortion performance and the associated decoding and
inverse spatial transform complexity.

The paper is organized as follows. Section II introduces
the types of quantization and coding schemes analyzed in
this paper. Some important nomenclature is also provided.
Section III presents the utilized wavelet coefficient models and
derived probability estimates for a variety of coding/decoding
operations. These probabililities will be used to determine
the average rate, distortion and complexity (Sections IV–VI,
respectively) for decoding a video sequence. Section VII dis-
plays theoretical and experimental R-D-C results that validate
the proposed models and discusses several interesting R-D-C
properties of operational video coders. Section VIII concludes
the paper.

II. OVERVIEW OF WAVELET VIDEO CODERS

In this section, we introduce a basic overview of
state-of-the-art wavelet coding schemes analyzed in this
paper. They involve temporal decomposition via MCTF, spatial
discrete wavelet transform (DWT) decomposition, embedded
quantization, and the entropy coding process.

A. Temporal Decomposition

Recent state-of-the-art scalable video coding schemes are
based on motion compensated temporal filtering [2]. During
MCTF, the original video frames are filtered temporally in the
direction of motion [2], [15], prior to performing the spatial
transformation and coding. Video frames are filtered into
(low-frequency or average) and (high-frequency of differ-
ence) frames [2]. The process is applied initially in a group of
pictures (GOP) and also to all the subsequently produced
frames thereby forming a total of temporal levels. After
the temporal decomposition, the derived and temporal
frames are spatially decomposed in a hierarchy of spatiotem-
poral subbands. Quantization and entropy coding are applied
to these subbands to form the final compressed bitstream.

B. Embedded Quantization

An important category of quantizers used in wavelet-based
image and video coding is the family of embedded double-dead-
zone scalar quantizers. For this family, each input wavelet coef-
ficient is quantized to [19]:

if otherwise

(1)
where denotes the integer part of ; is the basic
quantization step size (basic partition cell size) of the quantizer
family; indicates the quantizer level (granularity), with
higher values of indicating coarser quantizers. In general, is
upper bounded by a value , selected to cover the dynamic
range of the input signal. The signal reconstruction is performed
by:

if (2)

where the reconstructed value is placed in the
middle of the corresponding uncertainty interval (partition
cell), and is the partition cell index, which is bounded
by a predefined value for each quantizer level. For example,

, for each , with
and for the case of successive approximation quantiza-
tion (SAQ) [19]. If the least-significant bits of are not
available, one can still dequantize at a lower level of quality
using the inverse quantization formula given in (2). SAQ can
be implemented via thresholding, by applying a monotonically
decreasing set of thresholds of the form , with

and , where is the
highest coefficient magnitude in the input wavelet decomposi-
tion, and is a constant that is taken as . By
using SAQ, the significance of the wavelet coefficients with re-
spect to any threshold is indicated in a corresponding binary
map, called the significance map. Coding of
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Fig. 1. Block diagram of intraband coding process of state-of-the-art wavelet-based coders with quadtree and block coding of the significance maps [19]–[25].

TABLE I
THE RATIO OF CORRELATION BETWEEN NEIGHBORING COEFFICIENTS TO THE AVERAGE COEFFICIENT VARIANCE FOR THE LL SUBBAND OF L-FRAMES OF

Foreman, Coastguard, Silent, AND Mobile IN 2 TEMPORAL LEVEL-4 SPATIAL LEVEL DECOMPOSITION

significance maps corresponds to coding the
most significant bitplanes of each wavelet coefficient .

C. Coding of the Significance Maps and Coefficients

In all state-of-the-art wavelet coders [19]–[25], the coding
process exploits intraband dependencies following a block-par-
titioning process within each transform subband. This coding
process is performed for every bitplane . As indicated in
Fig. 1, several coding passes that identify coefficient signifi-
cance (“Significance Pass”) or refine coefficients (“Refinement
Pass”) with respect to the current SAQ threshold are performed
either within quadtree coding [22], [23] or within block coding
[19]. Several state-of-the-art embedded image coders invoke
both approaches, i.e., the quadtree coding partitions the input
subbands until a minimum block size, which is then coded with
the block coding module [20], [21].

We analyze such intraband coders that use quadtrees to
decompose subbands into nonoverlapping blocks of dyadically
decreasing sizes followed by block coding for the blocks of the
maximally decomposed quadtree [20], [21]. In particular, the
initial subbands are hierarchically split in quadtree levels
using several coding passes, with blocks at quadtree level
having the smallest size. The significance information (i.e.,
whether the block contains significant coefficients) is encoded
using depth-first-search along the quadtree, where the signifi-
cance of a block at quadtree level is encoded only if its parent
block at quadtree level is significant. For the blocks found
significant at the bottom of the quadtree (level ), the block
coding performs raster scan to obtain the significance of each
coefficient. The coefficients found significant are then placed
in a refinement list to be refined at the next finer quantization
level. The produced symbols from each coding pass, from block
significance information to coefficient significance, refinement,
and sign information, are then encoded using context-based
adaptive arithmetic coding [33], [34]. This technique exploits
the dependencies between the symbols to be encoded and the
neighboring symbols (the context) [33]. Context conditioning
reduces the entropy and improves the coding performance.
An example of context-based entropy coding is to use several
arithmetic coder models with different initial probabilities to
encode coefficients based on the significance of their neighbors,
since a coefficient with significant neighboring coefficients has
a larger probability to be significant than coefficients with

insignificant neighboring coefficients. Using these separate
arithmetic coder models for different “contexts,” context-based
coding schemes achieve better performance than simply com-
pressing all symbols using a single arithmetic coder [33], [34].

In all state-of-the-art wavelet coders [19]–[25], the coding
process exploits intraband dependencies following a block-par-
titioning process within each transform subband. As indicated
Fig. 1, several coding passes that identify coefficient signif-
icance or refine wavelet coefficients with respect to the cur-
rent SAQ threshold are performed either within quadtree coding
[22], [23] or within block coding [19]. Several coders invoke
both approaches, i.e., the quadtree coding partitions the input
subbands to a minimum block size, which is then coded with
the block coding module [20], [21].

III. APPROXIMATION OF BLOCK SIGNIFICANCE PROBABILITIES

IN QUADTREE DECOMPOSITIONS OF THE SIGNIFICANCE MAPS

In this section, we introduce the utilized stochastic source
model for wavelet coefficients. We then derive probabilities of
significance for quadtree decompositions over quantized spa-
tiotemporal subbands. These probabilities form the core of the
rate and complexity estimation derived in the remaining sec-
tions of this paper as they provide the means of establishing the
percentage of blocks that are expected to be coded or decoded
at a given distortion bound, expressed by the terminating SAQ
threshold . In addition, the percentage of significant areas
within the spatiotemporal subbands along with the percentage
of nonzero coefficients are the two features (or “decomposi-
tion functions” [11]) that express the complexity of the inverse
DWT.

A. Source Models for Low and High-Frequency Wavelet
Coefficients

The R-D characteristics of low-frequency wavelet coef-
ficients are typically modeled using the high-rate uniform
quantization assumption [9], [19] for independent zero-mean
Gaussian random variables. This model will be accurate if the
low-frequency coefficients exhibit sufficiently low correlation.
We investigate this in Table I, which displays the ratio of
the average correlation between neighboring coefficients to
the average coefficient variance. In Fig. 2, we validated that
the Gaussian distribution for low-frequency spatiotemporal
subband coefficients was accurate.
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Fig. 2. Examples of the i.i.d. Gaussian distribution for the low-frequency wavelet coefficients of the MCTF-based decomposition (with four spatiotemporal levels)
and indicative experimental data from an example test video sequence.

While low-frequency spatiotemporal subbands account for
a large percentage of the video coding rate [13], the high-fre-
quency spatiotemporal subbands also contribute a significant
amount to the overall coding rate and complexity. Thus, ac-
curate modeling of the high-frequency spatiotemporal subband
statistics is also very important for precise R-D-C modeling of
wavelet video coders. When applied to image or residual frame
data, typical wavelet filters tend to produce decorrelated coeffi-
cients in the high-frequency subbands. However, dependencies
remain among coefficients within the same scale and across dif-
ferent scales [26]. Certain highly popular wavelet filter-banks,
such as the Daubechies 9/7 filter-pair, have further properties
that can reduce most of the interscale dependencies, leaving
only dependencies among neighboring coefficients within the
same subband [26], [27].

In order to capture the experimentally observed heavy-tailed
non-Gaussian distribution of wavelet coefficients within each
subband, in this paper high-frequency wavelet coefficients are
modeled as a doubly stochastic process, i.e., a Gaussian distri-
bution parameterized by , which is exponentially distributed
with parameter :

(3)

In this case, each high-frequency wavelet coefficients can
be modeled by a random variable with marginally Laplacian
distribution and variance [36]

(4)

Fig. 3 demonstrates the accuracy of the doubly stochastic
model of (4) for different spatiotemporal high-frequency sub-
bands. In addition, Table II presents the change in the subband
statistics for different spatiotemporal levels across the MCTF

decomposition and the corresponding rate for terminating the
coding of the wavelet coefficients of each spatiotemporal level
at several bitplanes. The coder of [29] was used for the exam-
ples of this section. Based on the results of Table II we con-
clude that there is significant variation in the rate associated with
each spatiotemporal level, ranging from 0 bpp to almost 1 bpp
for low-rate coding ( in Table II) and from 0.15 bpp
to almost 5 bpp for medium and high rate coding (
in Table II). Furthermore, the higher (coarser) spatiotemporal
high-frequency subbands exhibit significant variance and the
correlation of the subband statistics (parameter ) varies signif-
icantly as well. Consequently, there is a significant portion of
the coding rate attributed to them for a variety of quantization
thresholds; thus, accurate modeling of the rate-distortion-com-
plexity characteristics of high-frequency spatiotemporal sub-
bands is important for predicting the overall R-D-C behavior.
Finally, although the results of Table II reveal certain trends be-
tween the spatiotemporal subband rate and the model parame-
ters ( and ), the overall rate contribution of each subband
depends not only on the statistics of the input but also on the
details of the invoked coding algorithm. Hence, a detailed the-
oretical analysis of the coding operations as a function of the
source model is of paramount importance for precise R-D-C es-
timations and intuitive models based on the source statistics and
experimental observations do not suffice.

We denote the minimum decoded bitplane threshold level as
. In addition, we define the following parameters

for all bitplanes :

(5)

(6)

where describes the ratio of the threshold of bitplane to the
variance of each wavelet coefficient and is the probability of
significance of a wavelet coefficient under a certain under the
model of (4).
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Fig. 3. The DWT of an H frame of temporal level two (top left) and plots of the doubly stochastic (Laplacian) model and simulation data for several H frames
of different spatiotemporal resolutions.

TABLE II
EXAMPLES OF SUBBAND VARIANCES AS WELL AS THE VARIANCE OF THE CORRELATION � (FOR A BLOCK OF 4 � 4) FORMED ACROSS THE SPATIOTEMPORAL

MCTF DECOMPOSITION OF SEQUENCE FOREMAN, ALONG WITH THE CORRESPONDING BITRATES FOR SEVERAL VALUES OF B

B. Probability of Block Significance at Bitplane

We begin this section by introducing some notation. We de-
fine the significance test of a block of coefficients with respect
to a threshold as , where
if at least one coefficient within the block is found significant
with respect to the threshold , and otherwise.
We also define the newly significance test as

, which returns one if the block was found to be sig-
nificant at bitplane and insignificant at bitplane , i.e.,

and . For notational abbre-
viation, the probability of a block being significant or newly
significant at bitplane is indicated by and , respec-
tively, with indicating the frequency sub-
band that the block belongs to. Note that these metrics depend on

, which is a function of the bitplane as well as the variance of
subband coefficients, . Let us first consider a high-frequency
spatiotemporal subband, which may be any subband of an error

frame, or any high-frequency subband of an frame. The
probability that a block of wavelet coefficients is found signif-
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Fig. 4. Plot of: erf(x) versus erf(x)=erf(2x) (left), and [erf(x)] versus [erf(x)=erf(2x)] (right).

icant during (or before) the significance pass at bitplane , ,
is no more than the probability that at least one coefficient in the
block is found significant when compared to . Thus, we
have

(7)

where is a length- random vector of all the coefficient
random variables of a block, and is the

norm. Considering that block sizes are generally small
enough to capture local variances, we follow the doubly sto-
chastic model in (3). Given , the conditional joint distribution
of is then a uncorrelated Gaussian random vector. Given that
the variance of the subband coefficients is , the probability
density function of is

(8)

where is a vector of coefficient values,
and is the n-dimensional PDF of .

Proposition 1: The probability that a block of size is sig-
nificant compared to threshold can be approximated by

(9)
Proof: See Appendix A.

For low-frequency subbands, assuming sufficiently decorre-
lated Gaussian distributed coefficients, the probability of block
significance is simply the -dimensional Gaussian tail proba-
bility along one of the orthogonal axes

(10)

where , and can be
piecewise approximated by (11)

(11)

to avoid numerical integrations during the model calculation.

C. Probability a Block is Newly Significant at Bitplane

In order to model the number of operations performed during
the significance pass at each bitplane, it is necessary to derive
the probability that a block is found significant at bitplane , but
not at any higher bitplanes. This is due to the fact that in all
coding algorithms using quadtrees of wavelet coefficients, once
a block is found significant at bitplane , it is moved into the
refinement list and its significance is not encoded at the subse-
quent bitplanes .

Proposition 2: The probability that a block of coefficients
in a high-frequency subband is found significant at bitplane ,
but it is insignificant at bitplane is

(12)

Proof: See Appendix B.
We note that our proof only specifies the existence of a large

enough for the approximation above, but it does not give
the exact lower bound for . To verify the accuracy of this
estimate for typical blocks during the quadtree significance
passes, we did a qualitative comparison of plotted curves for

raised to various powers. For the minimum
block size used in practical coders [20], [24], [25] the
match is approximately equal (Fig. 4). The fit only improves
for a larger .

For low-frequency subbands, we will assume decorrelated co-
efficients. Our result is given below.
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Fig. 5. Simulation and model prediction of significance and newly significance of 4 � 4 blocks in various high-frequency spatiotemporal subbands.

Fig. 6. Simulation and model prediction of significance and newly significance of 4 � 4 blocks in LL subbands of L frames.

Proposition 3: The probability that a block of coefficients
in a low-frequency subband is found significant at bitplane ,
but it is insignificant at bitplane is

(13)

Proof: The approximation of is a straightforward result of
Lemma 3 in Appendix B.

To verify the accuracy of the proposed model of (9) and (12),
Fig. 5 demonstrates the model prediction of the probability of
block significance and newly significance (with ) for
several high-frequency subbands belonging to various temporal
levels in MCTF-decomposed frames of video sequences. Simi-
larly, we plot several examples that validate the proposed model
of (10) and (13) (low-frequency spatiotemporal subbands) in
Fig. 6. The experimentally derived significance and newly sig-
nificance for low and high-frequency spatiotemporal subbands
are in agreement with the theoretical derivations for a large
variety of cases, as shown by these experiments. In addition, the
model validation reveals several interesting properties. Firstly,
the approximation (13) for the significance probability of
blocks in the low-frequency spatiotemporal subbands suggests
that most of the blocks within the subband will be found newly
significant at the same bitplane, or at most at two consecutive
bitplanes. This observation can be intuitively explained due
to the removal of high-frequency (detail) information based
on the repetitive application of the low-pass analysis filter.

Experimental validation is given in Fig. 6, where most of
the blocks become significant within bitplanes .
Second, the high-frequency spatiotemporal subbands exhibit
a heavy-tail distribution based on the doubly stochastic model
of (4) and therefore the probability of significance (and newly
significance) is more skewed, as seen in Fig. 5.

IV. RATE APPROXIMATION OF INTRABAND EMBEDDED CODING

In this section, we derive rate estimations for an embedded
coding scheme using a quadtree decomposition structure fol-
lowed by block-coding for the maximum depth of the quadtree.
This follows the system model outlined in Fig. 1. Using the high-
frequency and low-frequency wavelet coefficient modeling of
Section III, as well as the previously derived probability esti-
mates of Proposition 1–Proposition 3 in Section IV, we derive
the rate of quadtree coding, block coding, and coefficient refine-
ment coding. The derived rate estimates can be modified to fit a
variety of wavelet coding schemes consisting of subsets of the
general structure of Fig. 1, i.e., quadtree-based coders [22], [23],
and block-based coders [19], [24], [25].

A. Rate of Quadtree Significance-Map Coding for
High-Frequency Spatiotemporal Subbands

In most video frames, the probability of block significances at
various levels in the quadtree varies considerably depending on
the spatiotemporal subband statistics and the block size, since
small blocks encapsulate small areas while large blocks repre-
sent large areas within each subband. For most practical wavelet
video coders, we can simplify our analysis by assuming that
the significance map encoding of quadtree structures remains
virtually uncompressed. An example that strongly suggests this
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TABLE III
THE NUMBER OF 8 � 8 BLOCKS ENCODED AT EACH BITPLANE (SYMBOLS) AND THE AVERAGE RATE OF ENCODING EACH BLOCK SIGNIFICANCE

(RATE—IN BITS-PER-SYMBOL), USING THE CODER OF [29]. NOTE THAT THE RATE PER SYMBOL INCREASES AS THE

BITPLANE DECREASES AND APPROACHES ONE. A VARIETY OF CONTENT WAS USED

property is given in Table III, where operational measurements
from the coder of [29] were used for a variety of input video se-
quences. Note that while the rate is not identically 1 per quadtree
symbol encoded, the difference in size between quadtrees leads
to a distribution that cannot be well compressed, especially for
lower bitplanes. In the remainder of this paper, we assume that
the rate of significance-map coding for blocks in the quadtree
structure is approximately equal to the number of times signif-
icance-map symbols are encoded. We additionally assume that
coefficients in blocks of all sizes are sufficiently correlated so
that the i.i.d. joint Gaussian distribution with a fixed local vari-
ance can be used to model them.

The significance of a block in the quadtree decomposition
may be encoded in two cases: i) If the block is found newly
significant at bitplane , its significance will be encoded at that
moment and it will never be encoded again; ii) if the block’s
parent is found to be significant at bitplane even though the
block itself is nonsignificant, it will be coded continuously until
it is found newly significant. Notice that condition ii) is added
in most state-of-the-art coders to exploit intraband spatial cor-
relation of wavelet coefficients.

Under the aforementioned two conditions, we now derive the
probability of block significance, which corresponds to the rate
of block significance coding. In general, if a block at quadtree
level , , has coefficients, its parent block at level

has coefficients.1 The number of symbols (or rate) used
to encode the significance of a block of size found significant
at bitplane depends on the probability that its parent is found
significant at higher bitplanes , (which means that the
block significance will be coded a total of times). Given
the subband variance , this can be formulated as:

(14)

Averaging the rates over all bitplanes , we get
the following rate estimate:

(15)

1In the subsequent derivations of this paper, whenever blocks of size n and
4n appear in the same expression, it is implied that the first is the child block at
quadtree level k while the second is the parent block at quadtree level k � 1.

where depending on the type of frequency
subband we are interested in. The second probability on the
right-hand side (RHS) can be estimated by obtaining the local
distribution of parameter given the newly significant child
block at bitplane , and then determining the probability of a
significant coefficient (in the other 3 child blocks) at bitplane

, thereby deriving the conditional probability of signifi-
cance for the parent block of coefficients

(16)

where

(17)

Thus, (16) becomes:

(18)

Similar to the derivation used in Appendix A, can
be seen as an indicator function. Hence, we approximate the
integral of (18) by treating the two multiplicative terms as
an indicator and a step function using the approximation of (50)
with the parameter estimated by (54) (see the full derivation
in the proof given in Appendix A):

(19)

(20)

where I is the indicator function. Based on (19) and (20), we
can approximate (18) by (21), shown at the bottom of the next
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page. Combining (15), (19)–(21) together, we obtain the final
expression

(22)

The average rate per coefficient is . If we let
be the smallest block size, then we must sum up the rates for
levels of the quadtree decomposition in the subbands of each

spatial resolution to obtain the total rate for quadtree encoding

(23)

B. Estimation of Block-Coding and Coefficient
Refinement-Coding Rate in High-Frequency
Spatiotemporal Subbands

In this subsection, we estimate the rate of encoding both the
significance and the refinement of coefficients based on the
quantization level (or minimum bitplane level) .

First, we consider the significance rate. In block-based coders
like JPEG2000 [19] or ESCOT [25] (i.e., intraband coders that
do not employ quadtree decompositions), a subband is divided
into blocks, which are then coded independently. In these al-
gorithms, the significance of each coefficient within the block
is encoded. If a coefficient is significant, then its refinement bits
are also encoded. The significance of a coefficient relative to the
threshold is a binary value. Hence, the rate from indepen-
dently encoding the significance of each coefficient can be ex-
pressed by the binary entropy function , where
is the probability that the coefficient is significant compared to

. However, when context-based entropy decoding is em-
ployed, dependencies between neighboring coefficients can be
exploited, such that the rate (based on the doubly stochastic
model) is [9]

(24)

A common weakness of using only block-coding methods
without quadtree coding [19], [24], [25] is that the spatial distri-
bution of local variances in the spatiotemporal subbands is not
exploited since the same context-conditioning scheme is utilized
for all blocks. Coders combining quadtree coding and block-
coding techniques [20], [21] exploit the spatial correlation of
local variances by using the quadtree decomposition which in-
herently assigns less symbols to the insignificant areas: if all
coefficients within a certain block are insignificant, quadtree-

based coders return a single “0” for that block and do not en-
code the coefficients within that block. However, for blocks that
are significant, context coding is used for the coefficients in
the block. Hence, the effective significance coding rate for the
blocks resulting at the maximum quadtree depth depends on the
probability of the smallest block being significant, and the con-
text coding rate conditioned on the block being significant

(25)

where indicates the significance test at bitplane
for an individual coefficient within a wavelet subband. The

probability of coefficient significance given block significance
and local variance can be solved using Bayes rule

(26)

The resulting expression is

(27)

Notice that the expression is parametrical to the number of coef-
ficients per smallest block, . A minimum block size of approx-
imately has been shown to achieve the most savings
over pure context-based coding.

Consider now the rate of refinement-coding for significant
coefficients. For a given error subband, the rate of quantizing a
significant coefficient based on its neighborhood information

can be estimated as [9]

(28)

otherwise.
(21)



806 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 2, FEBRUARY 2008

Therefore, the total coding rate can be estimated as

(29)

C. Coding Rate of Low-Frequency Spatiotemporal Subbands

Following the independent Gaussian model assumption for
the low-frequency subbands of frames, we derived the fol-
lowing rate estimate for the coding of low-frequency wavelet
coefficients.

Proposition 4: The rate of encoding a low-frequency coeffi-
cient can be approximated as follows:

(30)

Proof: We use the estimation method in Mallat and Falzon
[28] for the rate in the low-rate (high distortion) region

(31)

For significant coefficients, we use the high-resolution hy-
pothesis from [19], which is

(32)

This gives us

(33)

The proof follows from substituting (33) into (31).
In order to avoid integrations in (30), we use the approxima-

tion for given in (11).
Notice that, for high-rate (low distortion) regions where the

variance of each coefficient is significantly larger than the quan-
tization stepsize (i.e., is small), ,
and the rate estimate of (30) becomes the well-known high-rate
approximation [19]

(34)

Table IV gives an example of the accuracy of (30) as a func-
tion of quantization step. We also present the results with the
more conventional model of (34) used in prior work [9] in order
to indicate the superior approximation achieved with the pro-
posed estimation of (30). Notice from Table IV that, although
the proposed model still remains relatively inaccurate when only
the highest 2–3 bitplanes are decoded, it becomes increasingly
accurate as the number of decoded bitplanes increase.

Based on the derived estimations of (29) and (34), the average
coding rate per pixel over all subbands of MCTF-based wavelet
video coding is

(35)

where indicates which model
is used to determine the rate of the subband

of the th orientation in the th scale of the wavelet frame
decomposition, with indicating the finest resolution, and

indicating the coarsest resolution (lowest frequency).
indicates the coarsest subband.

V. DISTORTION ESTIMATION OF COMBINED QUADTREE AND

BLOCK CODING FOLLOWED BY MCTF RECONSTRUCTION

In this section we determine the distortion of the various
coding passes aforementioned for the different subbands, and a
general formulation of the average distortion for the combined
decoding followed by MCTF reconstruction is derived.

A. Distortion of Combined Decoding Followed by Inverse
Spatial DWT

As mentioned in Section II, SAQ followed by the accumula-
tion of all coding passes up to any bitplane corresponds
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TABLE IV
EXAMPLE COMPARISON BETWEEN THE ACTUAL ENCODED RATE (“ENCODED SIZE” USING THE CODER OF [29]), THE CONVENTIONAL APPROXIMATION

FROM PRIOR WORK, AND THE PROPOSED APPROXIMATION OF FOR AN 44 � 38 LL SUBBAND OF AN L-FRAME IN THE “FOREMAN” SEQUENCE

to a double-deadzone uniform quantization of wavelet coeffi-
cients. In other words, once the produced bitstream is truncated
at bitplane , we have a quantizer of the form given in (1)
with . The average distortion of a high-fre-
quency subband when a uniform quantizer with this deadzone
is applied is

(36)

where is the variance of the Laplacian-distributed coeffi-
cients. We now derive the distortion of the low-frequency sub-
band of an frame.

Proposition 5: The estimated distortion for the low-rate re-
gion of a low-frequency spatiotemporal subband is

(37)

Proof: We separate the distortion calculation into the
distortion of nonsignificant coefficients, and the distortion of
significant coefficients. The distortion in the zero-bin is the
variance of a truncated Gaussian at . In addition, for
significant coefficients, we may use the high-rate assumption
(according to [28])

(38)

Adding the two distortion metrics together gives us the overall
expected distortion of the subband.

Notice that, similar to the corresponding rate estimation of
(30), for low-distortion (high-rate) regions where the variance
of each coefficient is significantly larger than the quantization
stepsize (i.e., is small), , and the
distortion estimate of (37) converges to the well-known high-
rate approximation of (38).

For all the different subbands at all scales of the DWT, we get
an average distortion:

(39)

where is the synthesis gain of the wavelet filter at
the th scale level, and is the expected distor-
tion of the th type subband at the th scale level, with

.

B. Distortion for MCTF Reconstruction

For generalized MCTF filtering, distortion takes on a linear
combination of each and frame produced by the decompo-
sition [9], [30]

(40)

The last derivation of (40) is valid because the weight of each
-frame at each temporal level is a function of only the average

number of connected pixels in the GOP. However, we note that
this approximation can also be applied across several GOPs if
the motion between GOPs is similar. In our experiments, linear
minimum mean square error (MMSE) fitting is used to deter-
mine the weights of -frames and -frames and predict the dis-
tortion associated with the sequence.

VI. COMPLEXITY OF ENTROPY DECODING AND IDWT

We model the complexity of decoding in terms of the number
of symbols read from the entropy decoder (Section VI-B) since
predicting the symbol encoding/decoding operations captures
the complexity of entropy coding implementations in real pro-
cessor-based designs in an accurate manner [11]. Similarly, the
complexity of inverse spatial DWT is modeled as a decompo-
sition to a pair of functions relating to the sparsity of each sub-
band’s decoded wavelet coefficients (Section VI-C).

A. Generic Complexity Modeling for Video Decoding

Since many multimedia decoders today typically reside
in a variety of handheld (Video iPod, 3G cellphones, etc.)
and portable devices (notebooks, PDAs) that have stringent
power and processing constraints, they are in general more
resource-constrained than encoders. Hence, while a similar
complexity estimation framework can be likewise derived for
the encoder, we opt to focus on the decoding complexity in this
paper. A second (and more algorithm-related) reason is that the
encoding complexity is strongly dominated by the motion es-
timation complexity rather than the coding operations. Hence,
accurate modeling of embedded encoding per se is of a lesser
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importance for the R-D-C analysis of the encoder, as it is for
the decoder.

In order to represent different decoder (receiver) architectures
in a generic manner at the encoder (server) side, in our recent
work [10], [11] we have deployed a concept that has been suc-
cessful in the area of computer systems, namely, a virtual ma-
chine. The key idea of the proposed paradigm is that the same
bitstream will require/involve different resources/complexities
on various decoders. We adopt a generic complexity model that
captures the abstract/generic complexity metrics (GCMs) of the
employed decoding or streaming algorithm depending on the
content characteristics and transmission bitrate. GCMs are de-
rived by computing or estimating the average number of times
the different operations are executed, such as the number of read
symbols during entropy decoding, the number of multiply ac-
cumulate operations performed during inverse transform, the
number of motion compensation operations per pixel or co-
efficient, and the frequency of invocation of fractional pixel
interpolation. The value of each GCM may be determined at
encoding time for each adaptation unit (e.g., the th video
frame, or the th macroblock) following experimental or mod-
eling approaches [10]. Our previous work demonstrated that
the mapping of the derived GCMs to execution time provides
a very accurate and straightforward manner of predicting the
real (system-specific) complexity [35]. The added advantage of
GCMs however is that they are not system-specific and they
are also not restricted to a particular coding structure (predic-
tive or MCTF-based). This makes them applicable for a broad
class of motion-compensated video decoders. In this paper, un-
like our previous work [10], [11], we focus on the derivation
of entropy decoding and inverse transform GCMs based on sto-
chastic models that analytically express the dependencies on the
source characteristics and the algorithm operations.

B. Entropy Decoding Complexity

The complexity of decoding the quadtree significance at bit-
plane depends on the size of the quadtree before the signif-
icance pass. Since the quadtree is virtually uncompressed for
the vast majority of cases, the complexity is of the order of the
quadtree significance map encoding rate

(41)

with given by (23) based on Proposition
1–Proposition 3. This includes both the number of read sym-
bols (RS) associated with quadtree coding, and writing the sig-
nificances into the quadtree structure.

Concerning block coding, we group together the number of
symbols read from significance coding and refinement. Note
that as long as the coefficient is in a significant block at bitplane

or higher, its significance will be coded of it will be refined
at bitplane . Summing up all symbols read in the passes until
bitplane we have:

(42)

where is the number of coefficients in the subband. Notice
that the combination of (41) and (42) predicts the number of

RS operations during entropy coding/decoding of a low or
high-frequency spatiotemporal subband to a certain bitplane

. Since each subband is encoded independently, the com-
plexity metrics must first be estimated for each subband and
then summed in the same weighted fashion as the rate calcula-
tion. In other words, for a given frame , , we have

(43)

where and is
the quadtree and block coding complexity for each sub-
band at spatial resolution . Having obtained the RS es-
timates for quadtree and block coding, the expression

derives
an estimate of the real complexity for frame , where is an
approximate algorithmic (and platform dependent) complexity
associated with each symbol used to perform operation op.
See our recent work [35] for extended examples of adaptive
generation of weighting factors for mapping GCM estimates to
platform-specific complexity.

C. Complexity of the Inverse Spatial DWT

The complexity of the inverse DWT depends on the number
of taps of the filter used as well as on the implementation method
(convolution or lifting). In our prior work [11], we have mod-
eled the transform-related complexity of a coding system that
processes video frames by expressing it as a decomposition
into two functions relating to: i) the percentage of nonzero co-
efficients for a given SAQ threshold (function ); ii)
the sum of run-lengths of zero wavelet coefficients (function

). The motivation behind (i) is that in an input-adaptive
implementation, the number of nonzero multiply accumulate
(MAC) operations in the synthesis filter-bank is directly propor-
tional to the percentage of nonzero coefficients. Moreover, the
distribution of the zeros within the transform subbands (as ex-
pressed by the sum of run-lengths) affects the number of consec-
utive filtering operations that can be avoided altogether. Once an
estimate of and is derived, the complexity of the
inverse spatial DWT (nonzero MAC operations) is formulated
as [11]:

(44)
with and the -element vectors of the cor-
responding functions and the parameter vectors and

can be estimated based on linear regression and off-
line training [11]. In our current work, two main differences
exist in the derivation of the nonzero MAC operations of the
IDWT. First, linear MMSE fitting is used to determine ,

and predict the number of nonzero MAC operations as-
sociated with the sequence. This is an equivalent to the process
performed for the derivation of the final MCTF distortion in (40)
(Section V-B). More importantly, in this paper, we present an
analytical calculation of the decomposition functions aforemen-
tioned, where for the high-frequency spatiotemporal
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Fig. 7. Rate-distortion plots for different configurations of the spatiotemporal decomposition parameters.

Fig. 8. Entropy decoding complexity versus distortion plots for different spatiotemporal decomposition parameters, where “S” and “T” indicate the number of
spatial and temporal levels, respectively.

subbands is derived by (6), while for the low-frequency spa-
tiotemporal subbands it is derived by

(45)

with approximated as in (11). In addition,
is derived by the percentage of nonsignificant blocks

for a certain SAQ threshold , expressed by

(46)

with estimated by (9) for the high-frequency temporal
subbands and by (10) for the subband of the frames. Fol-
lowing the lifting dependencies of popular wavelet filter-pairs,
we set an average of since a window of 7 7 coefficients
and 9 9 coefficients is used in the lifting steps of the inverse
DWT for the low and high-frequency subbands [19]. Addition-
ally, note that the number of taps also affects memory usage
in the system. While memory usage is another concern in bat-
tery-limited devices, in this work we are primarily concerned
with time-based complexity, as this more greatly affects the per-
formance of delay-sensitive applications.

VII. SIMULATION RESULTS

In this section we validate the derived analytical R-D-C
expressions of this paper by presenting experiments with
three common interchange format (CIF) resolution sequences
(“Coastguard,” “Foreman,” “Silent”) that encapsulate a va-

riety of motion and texture characteristics. Apart from the
validation of the theoretical modeling of rate-distortion and
complexity-distortion, the interplay of rate and complexity
for achieving the same video quality under different coding
structures is discussed.

For validation purposes, we utilize the spatial-domain MCTF
version of the coder of [29] that performs multihypothesis
MCTF decomposition with a variety of temporal filters, in-
traband quadtree-based coding of the significance maps, and
block-based intraband coding of coefficients after a block size
of 4 4 coefficients is reached in the quadtree decomposition.
Fig. 7–9 present our results for a variety of spatial (S) and
temporal (T) decomposition levels. Distortion, as estimated by
(36)–(40) in Section V, is converted into peak signal-to-noise
ratio (PSNR). The entropy-decoding complexity is quantified
by the number of read symbols per second. For the inverse
transform, we plot the number of nonzero MAC operations
per second (FC/s). The results demonstrate that the proposed
R-D-C modeling predicts the experimental behavior of the ad-
vanced MCTF-based wavelet video coder accurately for all the
different cases under investigation. Different choices for MCTF
(temporal) decomposition levels and spatial decomposition
levels lead to different tradeoffs in rate and complexity for the
same distortion in the decoded video.

Since the proposed models of Sections III–VI enable accurate
estimation of rate and complexity for a variety of decoding dis-
tortion, the derived framework can be used in a variety of appli-
cations where rate or complexity tradeoffs are of paramount im-
portance (see [3], [7], [8], [10]). For example, the R-C curve may
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Fig. 9. IDWT complexity versus distortion plots for different spatiotemporal decomposition parameters, where “S” and “T” indicate the number of spatial and
temporal levels, respectively.

Fig. 10. Rate and entropy decoding complexity curves for 720 � 480 Mobile sequence. The cases of four and two temporal decomposition levels are presented.
Both encodings use three spatial decomposition levels.

be used to optimize post-encoding bitstream shaping, where an
encoded bitstream may be truncated and transmitted at a lower
rate based on decoder-specified complexity bounds.

There are several interesting aspects to note from our re-
sults. For example, for good quality video decoding (PSNR
range of 32–40 dB) there is typically an overhead of about
300–500 kbps when one uses two temporal levels instead of
four and an overhead of about 600–900 kbps when one uses two
temporal and two spatial levels. Notice that the exact overhead
is both sequence and bitrate dependent and the proposed theo-
retical modeling captures this behavior accurately. Apart from
the rate overhead, there is also an increase in the number of
entropy decoding operations by about
and for the “2T-4S” and “2T-2S” cases,
respectively, in comparison to the “4T-4S” case. However,
concerning the IDWT complexity, Fig. 9 demonstrates that the
case of “2T-2S” is the best in terms of operations per second,
followed by the “4T-4S” case and then by the “2T-4S” case.
Two interesting observations stemming from Fig. 9 concern:
i) the large variation in the performance of the different ap-
proaches depending on the sequence and bitrate region, and
ii) the fact that the “2T-4S” case appears to be worse than

the “4T-4S” case. Concerning the second observation, this
can be explained by the increase in the nonzero coefficients
due to the fact that the “2T” cases include four times more
frames as compared to the “4T” case, and frames contain
a higher percentage of nonzero coefficients in comparison to

frames (for the same quantization parameters). It is also
interesting to notice that, for the low to medium rate coding of
the “Coastguard” sequence, the “4T-4S” case appears to be the
most efficient both in terms of R-D and C-D performance. The
proposed modeling approach appears to predict this behavior
in a precise manner, a fact that validates the importance of
analytical R-D-C modeling methods that adapt based on both
source and algorithm statistics.

It is also interesting to note that, if one ignores the coding
bit-rate and focuses on the complexity-distortion tradeoffs,
Fig. 8 and Fig. 9 reveal that, for the same number of entropy
decoding operations, the “4T-4S” case can provide gains of 2
to 8 dB in comparison to the other alternatives. On the other
hand, the “2T-2S” case may outperform the other decomposi-
tions by 2.5 to 10 dB for the same number of nonzero MAC
operations during the IDWT. On different platforms where
each entropy decoding operation and IDWT MAC operation
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may have different respective computational workloads and/or
energy consumption levels, the significant tradeoffs between
the different types of decoding complexities can be exploited
to optimally configure coder parameters to run on a specific
system.

Finally, it is interesting to investigate how rate and com-
plexity change for different coding parameters for a higher res-
olution video, e.g., in sequences of Standard Definition (SD)
format. The entropy decoding results for the 720 480 Mo-
bile sequence (30 frames/s) are presented in Fig. 10. As seen
in the figure, our theoretical approximations are fairly accurate
in predicting the large performance gain of 4 temporal levels
over 2 temporal levels of decomposition. Interestingly, this gain
is not so prominent for CIF sequences, as indicated by Fig. 7
and Fig. 8. One reason is that the MCTF process can better
exploit the correlation between neighboring pixels and coeffi-
cients in SD sequences due to the decrease of spatiotemporal
aliasing in comparison to CIF sequences. Hence, the percentage
of nonzero coefficients in the high-frequency subbands is de-
creased, and consequently the number of read symbols (i.e., en-
tropy decoding complexity) and the bit-rate required to encode
H-frames is reduced when using more temporal levels.

VIII. CONCLUSION

This paper presents an analytical modeling framework that
derives rate, distortion and (decoding) complexity predictions
for wavelet-based video coders. Our analysis encapsulates a
broad variety of coding techniques found in state-of-the-art
coding schemes. By analytically deriving probabilities for
block and coefficient significance according to the quantization
threshold (for both low and high-frequency temporal subbands),
we are able to establish analytical R-D-C models that approx-
imate well the R-D-C behavior of a modern wavelet-based
video coder. In this way, this work complements prior work
on operational rate-distortion modeling for video coders by
extending its applicability to a broader coding paradigm. At the
same time, it complements complexity modeling frameworks
proposed in earlier work by deriving analytically the input
statistics used in these approaches. As such, this work bridges
the gap between the operational measurements used in prior
complexity modeling work and information-theoretic estimates
common in rate-distortion modeling work.

The theoretical R-D-C analysis presented in this paper may
guide the construction of more efficient intraband coding mech-
anisms targeting error frames in particular. An open question
concerns the efficiency of quadtree coding versus block coding
mechanisms, and what is the optimal setting (e.g., minimum
block size or combination of coding passes) for a coder that en-
codes error frames using both schemes in succession. Perhaps
more importantly, the proposed R-D-C analysis allows the ef-
ficient exploration of complexity versus rate tradeoffs for the
same video quality. In this respect, the motion displacement-
error modeling in conjunction with the resulting probability dis-
tribution of the residual data (error frames) could be studied in

future work in order to augment the derived complexity esti-
mates with motion-compensation complexity.

APPENDIX A
DERIVATION OF PROBABILITY OF A SIGNIFICANT BLOCK IN A

HIGH-FREQUENCY SUBBAND

Proof of Proposition 1: First, let us consider the probability
that a block with coefficients is insignificant to a threshold

. According to (8), we are integrating over each (Gaussian
distributed) component of vector from to . Hence, we
want to find the following probability:

(47)

where the final result of (47) is reached by rearranging integrals,
and by the fact that the resulting integrals are equal.

Now, recall the definition of the erf function
. Using substitution of variables, we get the

following expression:

(48)

Hence, substituting (48) into (47) gives us

(49)
Unfortunately, the integral of (49) has no explicit form. Thus,
we replaced with an indicator function

(50)

Or, for our case

(51)
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Fig. 11. Left two plots: The integrated value of (47) versus the approximation in (53) for different block sizes. Right plot: The variance  in terms of the number
of coefficients in the block.

Here, is an estimate for where the step occurs, given the
power . Substituting (51) into (49) gives us the following
approximation:

(52)

where . This suggests that the approximation of (51)
is accurate for the approximate computation of the integral of
(52). Since (52) approximates the probability that the block is
not significant, the probability that the block is significant is of
the form

(53)

In the left two plots of Fig. 11, and its ap-
proximation are plotted over various and block sizes
and , which are typical minimum block sizes in quadtree-
based coders [20]. As can be seen, an approximation of the form
in (53) is highly accurate. In order to determine a good estimate
for , is fitted for blocks of coefficients for which block sig-
nificance makes a significant contribution to rate or complexity
(e.g., ). By estimating the mean squared value of

from , is found to increase mono-
tonically with the dimension of , i.e., an approximation of the
form is appropriate. We fitted for by finding the best MSE
match that returns a linear plot for in terms of . The ob-
tained approximation was

(54)

The explicit derivation of given in then follows from with
the approximation of given in (54). The estimate versus the
value of computed with numerical methods is shown in the
right plots of Fig. 11.

APPENDIX B
DERIVATION OF PROBABILITY OF A

NEWLY SIGNIFICANT BLOCK

Lemma 1: For all real numbers ,

(55)

Proof: Rearranging the inequalities, we get
. These inequalities

can be proven by expanding the binomials [31].
Lemma 2: Let and . There exists , such that

for all integers and , if then
.

Proof: We prove the existence of the lower bound
under the equivalent condition: if then

. For , we first bound by the following
inequality:

(56)

Let , satisfying . Choose , such that
for

(57)

Combining (56) and (57), we have

(58)

Now, choose such that . Setting
. Applying Lemma 1 and the fact that for any

, , we have the following two inequalities:

(59)
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(60)

Now, let . Notice that since
, and is monotonically increasing. Thus,

. Combining (56), (57), (59),
and (60), we get the following:

(61)

Thus, . The proof follows for any
by the fact that is an increasing function.

Lemma 3: There exists , , such that for all

(62)

Proof: Let , and choose a corresponding such
that Lemma 2 holds, i.e., for , we have the
following relations:

(63)

(64)

For all , we have

(65)

Letting and applying the squeezing theorem [32], (62)
holds for above the threshold value.

For the case, we first note that
approaches 0 as

. In order to show that for
all , we need only show that is
monotonically increasing for all . This corresponds to a
nonnegative derivative for

(66)

The rewritten inequality can be easily verified, as shown

(67)

Thus, for all ,
, and applying the squeezing

theorem [32] once again gives us the desired approximation.
Proof of Proposition 2: Consider a block that is insignificant

in comparison to threshold . The conditional probability
that the block is also insignificant compared to threshold is
then of the form

(68)

where is derived in a similar
manner as in Appendix A, and represents the probability that,
within a block of Gaussian-distributed coefficients with vari-
ances (doubly stochastic model), all coefficients will be in-
significant compared to , given that they were insignificant
compared to . The probability that a coefficient is found
newly significant is then

(69)

For the first multiplicative term in (69), we use the approxima-
tion of (52). For the second multiplicative term, we use Lemma
3 under the assumption of appropriately large , and then apply
the approximation of (52). The final estimate for (69) is

(70)
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