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Abstract—In this paper, we propose a new resource allocation
framework for multimedia systems that perform multiple simul-
taneous video decoding tasks. We jointly consider the available
system resources (e.g., processor cycles) and the video decoding
task’s characteristics such as the sequence’s content, the bit-rate,
and the group of pictures (GOP) structure, in order to determine
a fair and optimal resource allocation. To this end, we derive a
quality-complexity model that determines the quality [in terms of
peak signal-to-noise ratio (PSNR)] that a task can achieve given
a certain system resource allocation. We use these quality-com-
plexity models to determine a quality-fair and Pareto-optimal
resource allocation using the Kalai–Smorodinski Bargaining
Solution (KSBS) from axiomatic bargaining theory. The KSBS
explicitly considers the resulting multimedia quality when per-
forming a resource allocation and distributes quality-domain
penalties proportional to the difference between each video de-
coding task’s maximum and minimum quality requirements. We
compare the KSBS with other fairness policies in the literature
and find that, because it explicitly considers multimedia quality,
it provides significantly fairer resource allocations in terms of the
resulting PSNR compared with policies that operate solely in the
resource domain. To weight the quality impact of the resource
allocations to the different decoding tasks depending on applica-
tion-specific requirements or user preferences, we generalize the
existing KSBS solution by introducing bargaining powers based
on each video sequence’s motion and texture characteristics.

Index Terms—Bargaining powers, complexity scalability,
Kalai–Smorodinski bargaining solution, multimedia systems,
quality-complexity models, system resource management, video
decoding complexity.

I. INTRODUCTION

DECODING multiple video streams simultaneously is
necessary in a variety of applications, including multi-

point video conferencing, video surveillance from multiple
cameras, and picture-in-picture. In recent years, such applica-
tions are becoming more and more important across different
platforms such as desktop PCs, laptops, PDAs, cellular phones,
and portable music players. These devices, however, have a
wide range of processing capabilities, and power, energy, and
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resource constraints that are not ideal for latency-sensitive and
computationally intensive video decoding tasks. Compounding
this problem, these applications may require multiple such tasks
to run simultaneously on one resource-constrained processor.
In this scenario, the need for fair system resource allocation
becomes important to ensure that all video decoding tasks attain
reasonable quality. Video decoding applications allow for flex-
ible tradeoffs between output quality and resource usage that
can be exploited in order to meet real-time latency constraints
when resources are scarce (e.g., when many tasks compete for
processor time or when few tasks require a long lifetime on a
battery-powered device). Therefore, as discussed in [1], system
resource allocation for video decoding is not a problem that can
only be addressed at the OS or hardware level. Instead, it is a
cross-layer problem involving the application, operating system
and hardware because it requires joint consideration of available
resources (e.g., processor cycles) and a video decoding task’s
characteristics such as the sequence’s content, the bit-rate, and
the GOP structure, all of which determine different levels of
complexity and, concomitantly, video decoding quality.

In this paper, we jointly consider the system resource con-
straints and the quality–complexity tradeoffs available to each
video decoding task in order to determine a fair and optimal re-
source allocation. Unlike conventional fair resource allocation
schemes, where system resources are distributed based on re-
source-domain metrics, we deploy a bargaining-theoretic policy
that distributes limited resources fairly and optimally with re-
spect to a video quality metric (i.e., PSNR). Specifically, we de-
ploy the Kalai–Smorodinski Bargaining Solution (KSBS) [18],
which distributes penalties proportional to the difference be-
tween a task’s maximum achievable quality and its minimum
required quality. Using a proposed quality-complexity model,
the quality-domain bargaining solution is then converted into
the quality-fair resource allocation.

Our contributions are as follows.
• We propose a new general complexity traffic modeling

framework for multimedia tasks. We characterize the
traffic with five parameters that together we designate as a
task’s complexity specification (CSPEC).

• To enable the complexity scalable admission control,
where multiple video tasks can be admitted simultane-
ously, we introduce complexity strategies that encapsulate
the complexity- and quality-scalable adaptation points that
a video decoding task can select to match its workload
to the available resources. Each complexity strategy has
a corresponding CSPEC, and we label the aggregation of
all CSPEC adaptation points as a task’s scalable CSPEC.
Each task uses its scalable CSPEC to negotiate for its fair
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share of resources with the resource manager. We derive a
model that allows us to determine the quality–complexity
tradeoffs for different video sequences.

• We generalize existing bargaining-theoretic allocation
policies to determine a quality-fair resource allocation for
video decoding tasks sharing a single resource constrained
processor. Additionally, we compare the proposed solution
to other resource allocation solutions in the literature.

The remainder of this paper is organized as follows. In
Section II, we define a task’s CSPEC and scalable CSPEC and
show how various complexity strategies for decoding result in
different complexity levels. In Section III, we introduce some
resource management preliminaries and summarize several
existing fairness policies for resource allocation that are im-
plemented in the resource-domain. In Section IV, we define
the quality–complexity function and illustrate the properties of
the resulting feasible quality sets. We then formulate the bar-
gaining problem and define the KSBS. We then generalize the
KSBS for our problem and we summarize the steps required to
implement the proposed bargaining-based resource allocation
system. In Section V, we present our experimental results, and
we conclude in Section VI.

II. ADAPTIVE WORKLOAD MODELING

A. Complexity Scalability

A majority of state-of-the-art video coders can create bit-
streams that can be decoded at different quality and complexity
levels. In this paper, we focus on MCTF-based temporal layers.
However, our approach is general and not limited by the par-
ticular layering/partitioning choice or video coder, as will be
shown in some of our illustrative examples. An MCTF struc-
ture with a Haar 5/3 temporal decomposition [3] and tem-
poral levels, for example, can be partitioned into layers (i.e.,
we can decode layers). We use the notation
and to indicate the th and frame of temporal level

, respectively, where and . By
convention, we denote the original encoded frames as be-
longing to temporal level . Table I shows the decoding
deadlines for the frames of an MCTF structure with
when it is partitioned into , 2, 3, and 4 temporal layers.
In Table I, denotes the display deadline of the pair of original
frames and the deadline of each subsequent pair is

s after the previous pair’s deadline. The value of depends
on the encoded frame-rate and, for our experiments, is set as

s to correspond to the 30-Hz frame-rate of
the original encoded sequences. We note that the above analysis
is related to the temporal decomposition used (5/3 Haar filter)
and can differ for other temporal decomposition structures [3].

To illustrate several key properties of the video decoding
workload traffic that make it challenging to characterize and
model, example traffic for a variety of scenarios is shown in
Fig. 1. We will describe each plot in Fig. 1 individually.

To measure the video decoding workload characteristics in a
variety of scenarios, we profiled a C++ implementation of the

MCTF coder in [3] with system calls that query the in-
ternal processor counter to obtain high-resolution timing mea-
surements. All measurements in this paper are obtained from
the decoder implemented in C++ and executed on a Dell Pen-
tium IV system running Microsoft Windows XP safe mode with

TABLE I
DISPLAY DEADLINES FOR DECODING FRAMES PARTITIONED INTO T = 4

TEMPORAL LAYERS USING 5/3 HAAR FILTER. NOTICE THAT DECODING l

LAYERS REQUIRES DECODING THE FRAMES IN COLUMNS 1; . . . ; l � 1 AS

WELL AS THE FRAMES IN COLUMN l

only a command prompt to ensure that context switches and in-
terrupting processes are kept at a minimum. We note that, in
Fig. 1(a)–(c), a data point at time , , represents
the number of normalized processor cycles required during the
interval of time to decode the ap-
propriate set of frames before their decoding/display deadline
at . The next paragraphs illustrate several important
properties of the workload traffic.

• Workload depends on the sequence characteristics: To il-
lustrate the impact of varying video source characteristics1

on the decoding workload across a GOP, Fig. 1(a) and (b)
show the upper and lower bounds on the workload traffic
for GOPs four and five (frames 49–80) of the Silent and
Stefan sequences, respectively, at CIF resolution, encoded
frame-rates of 30 Hz, and with rate kb/s.
Comparing Fig. 1(b) and Fig. 1(a), it is clear that decoding
Stefan is significantly more computationally complex than
decoding Silent for most choices of . This observation
is congruent with the intuition that Stefan’s intense mo-
tion characteristics should generally yield heavier peak
and mean computational workloads at the CPU. Hence,
the complexity depends on a particular video source’s
characteristics .

• Workload is highly time-varying: From Table I, it is clear
that the number of frames that must be decoded at each
deadline is not distributed evenly over the duration of the
GOP. For example, when decoding all the layers, only 3
frames require decoding or reconstruction during the time-
interval while 10 frames are decoded
or reconstructed during the time-interval .
The time-varying workload curves in Fig. 1(a) and (b) re-
flect this unbalanced workload distribution within a GOP.
Fig. 1(c), on the other hand, shows how decoding work-
loads are also typically time-varying across several GOPs.
This is the consequence of changes in motion and texture
characteristics over the duration of the video sequence.

• Workload is rate-dependent: Fig. 1(a) and (b) also illus-
trates how rate affects the decoding complexity. Notice that
adjusting the rate can have a significant impact on the com-
plexity, particularly at the first decoding deadline in a GOP
where the base-layer frames (i.e., , ) containing

1Source characteristics include, e.g., high motion, detailed textures, and ob-
ject occlusion.
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Fig. 1. (a), (b) Typical complexity profile for decoding l = 1, 2, 3, or 4 temporal layers (with T = 4 temporal level MCTF structure) of one GOP of the Silent and
Stefan sequences, respectively. Includes upper and lower bounds on the decoding complexity when decoding l = 1, 2, 3, or 4 layers with rate r 2 [200; 1536] kb/s.
Notice that the y-axis scales are different for each sequence. (c) Typical complexity profile over many GOPs when decoding l = 4 layers of the Silent sequence.

most of the texture information are decoded. For example,
in Fig. 1(a), at the circled complexity measurements at

s (i.e., the first decoding deadline for GOP 5),
adjusting the rate causes the upper-bound
complexity resulting from decoding layers (for ,
2) to be above the lower-bound complexity for decoding

layers. In other cases, when minimal residual texture
information is decoded, rate-independent motion compen-
sation operations dominate the complexity. In these cases,
adjusting insignificantly influences the complexity (see
the circled complexity measurement at s in
Fig. 1(b)). Nevertheless, such significant peak workload
variation induced by adjusting the rate in the former
case illustrates how adapting the rate can increase a task’s
chances for admission into a system with limited resources.

• Decoding different layers leads to complexity scalability:
Fig. 1(a) and (b) also illustrates that significantly reduced
workloads in terms of both peak and mean resource
requirements can be achieved by decoding less layers.
The wide range of complexity scalability enabled by de-
coding various layers is important in an admission control
scenario where a task may not be allocated any processor
resources if it cannot adapt its workload to the resources
available to it.

As mentioned earlier, the workload distribution within a
GOP depends on the video encoding parameters, including the
number of temporal levels and the choice of filter used in
the temporal decomposition. It has been shown [8] that based
on the video source characteristics, , it may be desirable to
chose different encoding parameters that yield different levels
of complexity-scalability. Hence, our choice of the number
of decoded layers and rate are dependent on because,
depending on a task’s video sequence characteristics, different

and pairs may be required to meet the same resource con-
straints. For notational simplicity, we do not explicitly indicate
this dependence.

Based on the above observations pertaining to the
time-varying decoding workloads, a workload traffic model
that captures all of these characteristics and can provide quality
and latency guarantees through an admission control process
is highly desirable. We present such a model in the next sub-
section. Note that, while the above observations were made
for one particular coder, similar observations can be made for

other coders such as H.264/AVC and MPEG-4 using the same
methodology.

B. Characterizing Video Decoding Workload Traffic

In order to capture a video decoding task’s time-varying and
bursty resource requirements (see Section II-A), we model the
decoding workload traffic with a twin leaky bucket. We assume
that the task decodes layers at rate . The important model pa-
rameters are the Peak Workload (cycles/second), Mean
Workload (cycles/second), Maximum Burst Size
(cycles), and Delay (seconds). is set based on the
application requirements or user preferences. The remaining pa-
rameters can be determined using offline modeling, training,
or profiling, followed by real-time classification [2], [7], [9].
We would like to develop a model that considers both the Peak
Workload and the Mean Workload for two reasons. First, con-
sidering just the Peak Workload results in over conser-
vative worst-case complexity estimates that inefficiently use the
CPU bandwidth. Conversely, considering only the Mean Work-
load under allocates CPU bandwidth during time inter-
vals where the workload exceeds the Mean Workload and there-
fore results in missed decoding deadlines and, consequently,
frame drops. By enforcing the (small) Delay on all dis-
play deadlines (i.e., the display deadlines in Table I become

for ) the bursty workload can
be smoothed to reduce the peak computational complexity. This
delay parameter was first introduced in [10] in order to reduce
the peak computational capacity required by a device to decode
a particular bit-stream. In this paper, we expand on the concept
by also exploiting complexity-scalability which, given a fixed
Delay parameter, allows a task to adapt its complexity to match
available resources.

Based on a twin leaky bucket analysis, the CPU Bandwidth
Demand for decoding layers at rate with Delay is

(1)

Together, the token bucket parameters and the CPU
Bandwidth Demand determine the task’s Complexity
Specification (CSPEC) denoted as the set
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Fig. 2. (a) Twin leaky bucket modeling of workload traffic. (b) Arrival curve
for one GOP of the Silent sequence for decoding l = 3 layers with T = 4 and
calculation of CPU Bandwidth Demand.

, where the Maximum Burst
Size is omitted because it can be determined as

cycles (2)

Intuitively, can be expressed as in (2) because it cor-
responds to the maximum processor workload during any
second time interval. We note that the CPU Bandwidth Demand

in (1), corresponding to the smoothed workload, is the
parameter we use for resource allocation and admission control
because it resolves the aforementioned issues with the Peak and
Mean Workloads. Fig. 2(a) illustrates how the first and second
token buckets regulate the arrival of workload traffic to the de-
coding buffer. Fig. 2(b) details how the various CSPEC parame-
ters are determined using the cumulative workload traffic arrival
curve . Note that, in Fig. 2(b), , , and are the slopes of
the respective lines.

Example values for , , and for the work-
load traffic of the first 16 GOPs of the Silent sequence are
shown in Fig. 3 for 13 rates between 200 kb/s and 1.5 Mb/s,

, and Delay . Using the data in Fig. 3, the
Maximum Burst Size can be determined using (2). The thin ver-
tical rectangle labeled “CSPEC parameters” in Fig. 3 is used to
emphasize that the enclosed parameters constitute the CSPEC

associated with a particular vector kb/s ,
in Fig. 3(a)]. Importantly, this CSPEC definition can be used
to characterize the decoding workloads of other coders. For
example, Fig. 3(b) shows the CSPEC parameters for the Silent
sequence determined using an H.264/AVC-based coder [2] with
quantization parameters between 22 and 40 and with Delay

. The CSPEC can also be adapted to characterize
video encoding workloads.

C. Complexity Strategies and the Scalable Complexity
Specification

Depending on the sequence characteristics, , task
might deploy different decoding strategies in order to adapt
its CSPEC and negotiate with the Resource Manager for
its fair share of resources. Note that each video coder and
task can implement its own decoding strategy set. Here,
for illustration purposes, we define ,

as a complexity strategy vector in the
feasible set of complexity strategies for task , where

and

and denote the decoding strategy

Fig. 3. (a) CSPEC parameters for MCTF based decoder: 16 GOP normalized
computation workload for decoding l = 4 layers of the Silent sequence at 13
rates between 200 kb/s and 1.5 Mb/s with Delay d(l; r) = 2�. (b) CSPEC pa-
rameters for H.264–based decoder: 128 frame normalized computation work-
load for decoding all layers of the Silent sequence with quantization param-
eters between 22 and 40 with Delay d(l; r) = 0:5�. GOP structure used
for H.264–based measurements has one I-frame for every 3 P-frames, and 3
B-frames for each I/P-frame.

spaces enabling spatio-temporal decoding tradeoffs and bit-rate
adaptations (corresponding to the SNR scalability), respec-
tively. We denote the cardinalities of the strategy spaces as

and . Note that the
feasible complexity strategies and decoding strategy spaces for
the th task depend on its video source characteristics, , for
the reasons described in Section II-A. For notational simplicity,
we do not explicitly indicate this dependence. By selecting the
complexity strategy vector , a task operates at
one of the feasible complexity
levels that define its Scalable CSPEC. Formally, we define the
th task’s Scalable CSPEC as the set

(3)

where , rewritten using the complexity strategy notation,
is determined by (1) using the corresponding Peak Workload

, Mean Workload , Maximum Burst Size
determined by (2), and the Delay , which relaxes the de-
coding/display deadlines.

Fig. 4(a) and (b) illustrates example Scalable CSPEC statis-
tics for the first 256 frames of the Silent and Stefan sequences,
respectively (CIF resolution, 30-Hz encoded frame-rate). The
Delay is set to . The example operating points,

, from which the statistics are gathered are
defined by the complexity strategies
with the vector components and in their respective strategy
spaces

(4)

kb/s

(5)

The solid bars in Fig. 4(a) and (b) are the averaged value of
the corresponding parameter (i.e., , , or over
13 measurements taken for bit-rates between 200 kb/s and
1.5 Mb/s. The error bars show the maximum and minimum
value of the corresponding parameter for the 13 measurements.

The solid bars in Fig. 4(a) and (b) illustrate that, by selecting
as defined in (4), a task’s CPU Bandwidth

Demand can be scaled to below half of its maximum.
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Fig. 4. CSPEC parameter statistics for various complexity strategies based on
16 GOP normalized computation workload with Delay d(l; r) = 2�, Peak
CPU Bandwidth P (l; r), Mean CPU Bandwidth �(l; r), and CPU Bandwidth
Demand g(l; r) for decoding l = 1, 2, 3, or 4 layers. The solid bars are the
averaged value of the corresponding parameter over 13 measurements taken for
bit-rates between 200 kb/s and 1.5 Mb/s. The error bars show the maximum
and minimum value of the corresponding parameter for the 13 measurements.
(a) Silent sequence. (b) Stefan sequence.

Additionally, observing the error bars, it is clear that adjusting
as defined in (5) yields finer complexity scalability

by approximately 10%–40% (depending on the sequence) of
the maximum CPU Bandwidth Demand for a fixed value of

. Clearly, the feasible set of complexity strategies defines a
wide range of complexity scalability. Therefore, complexity
strategies are essential when tasks negotiate for limited system
resources with the resource manager. Moreover, the Delay

significantly reduces the processing rate required
to meet all decoding and display deadlines. Specifically, com-
pared with the Peak CPU Bandwidth that is required to
meet all task deadlines when , the CPU Bandwidth
Demand for is lower by 30% on average
and at most by nearly 40%. In scenarios where a device’s
limited processing capacity preclude the admission of one or
more tasks with high peak requirements, even small delays can
dramatically improve the number of admitted tasks and each
task’s quality. We note that the Delay can be increased
further to achieve greater reduction in the CPU Bandwidth
Demand, however, this requires larger memory buffers [10].

In a scenario where task is given a static resource allocation
(in processor cycles), we wish to determine the optimal com-

plexity strategy that maximizes the task’s quality under the com-
plexity constraint. Formally, the optimal complexity strategy is
determined as

(6)

where is the th task’s quality that we will define in (17) in
Section IV-A and is the duration of time during which task
may consume resources .

The strategy spaces defined in (4) and (5) serve only as ex-
amples. Another layer partitioning may have more or less layer
strategies in which enable finer or coarser complexity
scalability. Similarly, more or less rates can be included in

. Importantly, this methodology can be applied to other
coders such as H.264/AVC and MPEG-4. Notice that, unlike in
a bandwidth-constrained network scenario where is chosen
to match the channel bandwidth, we adjust as a dimension
of our complexity strategy framework because it influences
the resources required for decoding [2]. A joint rate-distor-
tion-complexity framework, however, can be used to adapt to
both network bandwidth constraints as well as system resource
constraints [7], [9], but this is beyond the scope of this paper.

III. FAIR ALLOCATION IN THE RESOURCE DOMAIN

A. Resource Management Preliminaries

We consider real-time video decoding tasks that are to be
allocated resources on a single CPU. These tasks are competing
for the available CPU resources , which in our system is the
amount of processor cycles that can be allocated to the tasks

. We assume that a Resource Manager (RM) is in
place to divide the available resources among the different tasks
by using a fairness policy denoted by . Possible implementa-
tions of the RM can be found in [1]. The resources are allocated
by the RM for time intervals with a granularity specified by the
service interval and a parameter , which we describe
later. During one service interval, each admitted task is guaran-
teed CPU time. In general, the service interval depends on
the GOP structure and the delay deadlines of the various tasks.

can be calculated as in [11].
In general, due to overheads, resources cannot be reallocated

every seconds (for the proposed bargaining-based resource
allocation system, we describe the resource allocation over-
heads in Section IV-G). The aforementioned parameter is
introduced to ameliorate this problem by allowing us to de-
crease the frequency of the resource allocation. Specifically, we
define the super service interval which determines
the global resource allocation frequency. Depending on the
available resources , the number of active tasks , and
the video sequence characteristics , a task
can deploy a different complexity strategy for every .

To enable resource allocation for the upcoming super ser-
vice interval with duration seconds, the tasks need to pro-
vide the RM their external information which depends on
the deployed resource allocation scheme and may include in-
formation about the task’s feasible complexity strategies, scal-
able CSPEC, decoding deadlines, or quality. Denoting the pos-
sible external information as the set , the RM will decide in
real-time the nonnegative allocation using
fairness policy as

(7)

Depending on whether the fairness policy is implemented in
the resource domain or the quality domain, the allocation point

will take on a different meaning, specifically

if the policy is implemented
in the resource domain

if the policy is implemented
in the utility domain.

(8)

and ) is
the resource-domain allocation where is the number of pro-
cessor cycles allocated to task for the super service interval

. ( , ) is the
quality-domain solution where is the th task’s quality (see
Section IV-A for the definition of quality and Section IV-D for
how the quality-domain solution is converted to the resource al-
location). Given the resource allocations for the
super service interval, each task selects the optimal complexity
strategy defined in (6). Finally, the super service interval
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Fig. 5. Relation between global resource allocation per super service interval
t , resource allocation per service interval t and real-time scheduling.

is partitioned into service intervals with duration during
which each task is allocated resources .

Fig. 5 illustrates the relationship between the global resource
allocation for the super service interval , the
available resources during each service interval , and
real-time system scheduling for the video tasks. System
scheduling is not the focus of the paper, however, any existing
real-time scheduling disciplines such as rate-monotonic, dead-
line-monotonic, earliest deadline first, and least slack [4], [5],
[12]–[14] can be applied within each .

B. Existing Fairness Policies

Here, using the framework introduced in Section III-A, we
describe a few existing fairness policies for system resource
management as benchmarks against which the quality-domain
system resource management policy proposed in Section IV can
be compared. In general, the resource-domain fairness policies
attempt to allocate resources equitably to each task.

1) Generalized Processor Sharing (GPS): The conventional
GPS fairness strategy allocates resources proportionally to a
task’s required resources [15]. In our resource allocation sce-
nario, processor resources can be allocated proportionally to
each task’s maximum CPU Bandwidth Demand, . The re-
source allocations must meet the following condition:

(9)

with and
.

In order for the RM to apply this resource management
scheme, it must gather from each task its external information

. Hence, the resource allocation by the GPS
policy is expressed as

(10)

where the resource allocation must satisfy (9).
2) Equal Resource Allocation (ERA): Using the ERA fair-

ness policy, processor resources are allocated equally to each
task. Hence, the ERA policy can be written as

(11)

where for all because the RM requires no information
from the tasks to determine the ERA.

3) Weighted Max-Min (WMM): In [1], a WMM fairness
policy is used to fairly allocate resources to multiple video
decoding tasks. The th task’s CPU utilization in terms of the
resource allocation is defined as [1]

subject to (12)

The minimum CPU utilization is defined as

and (13)

and the maximum CPU utilization as

and (14)

Given the user-defined weights , the WMM resource alloca-
tion algorithm is as follows [1].

1) The resource manager allocates to each task
its minimum CPU utilization , i.e., .

If , then task is made an element of the
unsatisfied task set and .

2) For each task , increment the CPU utilization by
. If , set

and remove task from .
3) Repeat step 2) if and . Otherwise,

allocate resources to each task .
Hence, the WMM policy can be written as

(15)

where is the th task’s CPU utilization determined
by the WMM resource allocation algorithm and

.

IV. FAIR RESOURCE ALLOCATION SOLUTION IN

THE QUALITY DOMAIN

The fairness policies described in Section III-B allocate CPU
resources without considering the quality impact. For multi-
media applications, however, explicitly considering the video
quality is essential because when a solution is fair in the re-
source domain it does not guarantee a quality-fair solution. To
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overcome the shortcomings of the resource-domain resource al-
location policies for multimedia applications, we propose using
a bargaining-theoretic approach based on the KSBS for fair and
optimal (in a Pareto sense) resource allocation in the quality do-
main. To determine the KSBS, we must first define a quality-
complexity model to relate a task’s resource consumption to its
achieved video quality. We propose such a model in the fol-
lowing subsection.

A. Quality Definition and Model

In previous sections, we have described that a quality–com-
plexity tradeoff is made when choosing one complexity
strategy instead of another. In order to quantify this tradeoff,
we introduce our quality-complexity model in this section. In
multimedia applications, the video quality depends on the video
sequence characteristics, encoding parameters, and deployed
multimedia algorithms (e.g., H.264/AVC or MPEG-2) and can
be expressed as a function of complexity. The quality-com-
plexity (QC) model introduced in this paper is denoted as

, where is the CSPEC and is the PSNR which is a
frequently used measure of video quality. Given a set of com-
plexity strategies and the corresponding scalable CSPEC

, we define the th task’s operational quality set as

(16)

where is the measured or estimated average PSNR
(i.e., quality) that user achieves when deploying complexity
strategy with the corresponding CSPEC . In other
words, contains all of the quality points achievable
by task given its set of complexity strategies . Similar
to conventional operational rate-distortion models, we fit the
QC model to the convex hull of the operational quality set
because we assume that is monotonically increasing
with increased resource consumption (i.e., for a fixed delay

, if increases, then the quality also increases).
This assumption is reasonable because we would not waste re-
sources by allocating them to a task that will gain nothing from
them in terms of quality. may also be interpreted as the
quality corresponding to the achievable minimum distortion
defined in [19].

Usinganempiricalcurvefittingapproach, similar tosuccessful
approaches used in rate-distortion theory for modeling the av-
erage distortion-rate performance of video coders, we found that
a good QCmodel for the version of the MCTF video coder
in [3] is

(17)
where and are the QC model parame-
ters that depend on the sequence characteristics , the Scalable
CSPEC , and the operational quality set .
Additionally, and are the minimum and maximum
required resources to decode a scalable bit-stream, respectively,
and is the PSNR of the luminance channel. Example QC
model parameters for the Stefan, Silent, Foreman, and Coast-
guard sequences at CIF resolution, determined using least-mean
square fitting techniques and the measured PSNR of the se-
quence’s luminance components, are shown in Table II along
with the corresponding mean square error (MSE) of the model fit.

TABLE II
QUALITY-COMPLEXITY MODEL PARAMETERS [SEE (17)] AND MSE OF THE

MODEL FIT FOR THE Silent, Stefan, Coastguard, AND Foreman SEQUENCES AT

CIF RESOLUTION AND WITH A 30-Hz ENCODED FRAME-RATE

Fig. 6. Nonconvex feasible quality set for two decoding tasks: Foreman (task
1) and Coastguard (task 2).

Note that (17) is just one example of a QC model. Other
coders may use different QC models. Additionally, the QC
model could be based on the Mean CPU Bandwidth require-
ment or the Peak CPU Bandwidth requirement or a
statistical model [1], [6] depending on the application require-
ments. Importantly, if a complexity-scalable coder is used, we
can construct a set of feasible complexity strategies such
that any point on is achievable.

B. Feasible Quality Set

The feasible quality set for tasks contains all of the
achievable quality points in given the total system resource
constraint . Formally, the feasible quality set is defined
as follows.

Definition 1: Feasible Quality Set:

(18)

The feasible quality set’s properties constrain the set of so-
lutions that we may apply to determine a quality-fair resource
allocation. Observing Fig. 6, it is clear that the feasible quality
set (the shaded region in the figure) is nonconvex. The non-
convexity of the feasible quality set is a result of the expo-
nential form of each task’s QC function [see (17)]. Due to the
nonconvexity of , conventional Lagrangian optimization tech-
niques which require convexity are not applicable because using
convex relaxation of the original feasible quality set may result
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in video quality degradation, especially in cases where opera-
tional QC points are sparse. Moreover, the solutions are often
very complex [1].

The feasible quality set , however, is -comprehensive,
which is a requirement of the KSBS [18]. In the following
definition, we let denote component-wise inequality for
vector comparison.

Definition 2: -Comprehensive: A -comprehensive set
is one for which given a point , if and

, then .
Clearly, is -comprehensive because (17) is a monotoni-

cally increasing function of the resource allocation.

C. Problem Formulation

Here, we describe the objective and constraints of the quality-
fair resource allocation.

System Resource Constraint: The CPU has a total resource
constraint . The resource considered is in units of processor
cycles. Each application is allocated resources

such that

(19)

Application Quality Constraint: Application
requires at least a minimum quality denoted by

. Additionally, application has a maximum (best)
achievable quality that corresponds to deploying the
complexity strategy that requires the most resources. In this
paper, quality is defined as the average decoded PSNR. Note
that if the application quality constraint cannot be met for a
particular application (i.e., the achievable quality is not higher
than its minimum required quality), then that application will
not be included in the resource allocation and the task will not
be performed. In summary, letting denote the quality
achieved by the th application when it is allocated resources

, the application quality constraint can be written as

(20)

Fairness Criterion: We define fairness for autonomous ap-
plications sharing the same CPU resources to be a proportional
drop in quality for all applications. Formally, such a fair alloca-
tion satisfies the following fairness criterion:

(21)
Problem Formulation: We desire to divide the CPU resources
among the applications such that the fairness criterion

is satisfied, the application quality constraint is met, and the
system resource constraint is met with equality such that no
system resources are left unused. The quality-fair resource al-
location problem is formulated as follows:

find

(22)

We note that the solution to the above problem is unique be-
cause the feasible quality set is -comprehensive. In this paper,
in order to solve (22), we deploy the KSBS from axiomatic bar-
gaining theory. The KSBS formulates and solves the resource
allocation problem in (22) in the quality domain by explicitly
considering the quality impact on the various applications
sharing the same system resources.

D. KSBS: A Fair Scheduling Solution in the Quality Domain

Using the KSBS, the resource manager tries to determine the
resource allocation by first selecting a fair and optimal quality-
domain solution and then mapping this solution into the re-
source domain solution described in (22). Here, we describe the
concept of a bargaining problem and then present the six axioms
that comprise the KSBS. Subsequently, in the following subsec-
tion, we describe how the quality-domain bargaining solution is
mapped back into the resource domain.

The bargaining problem is expressed as a pair . repre-
sents the feasible quality set defined in (18) and is a disagree-
ment point corresponding to the minimum acceptable qualities
of all the tasks. is formally defined below in definition 3. Since
the resource manager tries to allocate the resources in an optimal
manner, the selected quality point needs to be in the Pareto Op-
timal quality set (Pareto optimality is defined below in Defini-
tion 5). Note that, in this section, the notation represents the
th task’s quality and is used interchangeably with .

Definition 3: Disagreement Point: The point
is the disagreement point if

[18].

The coordinates of the disagreement point,
, are the qualities obtained when the resource man-

ager assigns task resources
, i.e., .

can be defined by the task prior to revealing its external in-
formation to the RM. may also be interpreted as the
minimum quality expected by task for collaborating in the
resource allocation or, as the quality the task expects to gain if
it does not collaborate at all (i.e., does not want to participate
in the resource allocation and wants only to receive best-effort
service).

Definition 4: Ideal Point: The point
is the ideal point if

[18],

that is, the ideal point is the point where every task achieves
its maximum quality. In general, the ideal point cannot be
achieved because there are not enough resources to allocate to
each task in order for them to all obtain their maximum quality.

Definition 5: Pareto Optimality: The quality point
is Pareto optimal if for each

and ,
then [18].

Pareto optimality in the quality domain implies that
the resource-domain allocation satisfies the condition

. This is highly desirable because no re-
sources are wasted and no task can increase its quality without
decreasing the quality of another task. If some resources are
left unused, however, then one or more tasks can increase their
resource allocation (and quality) without decreasing any other
task’s resource allocation (and quality).
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Generally, a bargaining solution is a function
with the property that . The KSBS gives a

unique and fair Pareto optimal solution that fulfills the following
axioms. In the following, we let denote component-wise
inequality for vector comparison.

Definition 6: KSBS: is said to be a KSBS in
for the disagreement point , if the following six axioms are

satisfied [18]:
1) Individual Rationality: .
2) Feasibility: .
3) Pareto Optimality: is Pareto optimal.

Axioms 1)–3) define the bargaining set
, which is the set of all individually rational and

Pareto-optimal quality points. Thus, the KSBS is located in the
bargaining set. Note that the bargaining set contains all of the
quality points that correspond to the set of resource allocations

defined in (22).
4) Individual Monotonicity: Given another feasible quality

set , if , , and

, , then

.
Axiom 4) states that increasing the bargaining set size in a di-
rection favorable to task always benefits task . In other words,
Axiom 4) provides incentive for a task to deploy the optimal
complexity strategy in (6) so that the resources allocated to the
task by the RM are optimally used to maximize the tasks quality.

To illustrate how the feasible quality set changes when one
task deploys a subset of its available complexity strategies, con-
sider the two user example in Fig. 7(a) and (b) where task 1 con-
sists of decoding Silent and task 2 consists of decoding Stefan.
Fig. 7(a) shows the feasible quality set in a scenario where both
tasks deploy the complexity strategy set corresponding to the
cross-product of (4) and (5). Fig. 7(b) shows the feasible quality
set in a scenario where task 1 deploys at random only one quarter
of its complexity strategy set while task 2 deploys the same
strategy set as in the former scenario. In both cases, task 2
has a maximum achievable quality dB; hence,
its maximum achievable quality is not penalized or rewarded
by the complexity strategies that task 1 chooses to reveal to
the RM. Task 1, however, loses 4 dB in maximum achiev-
able quality in the second scenario compared to the first be-
cause it does not deploy the optimal complexity strategy given
the available resources [see (b)]. Moreover, the KSBS results
in task 1 achieving 2 dB less in the second scenario (i.e.,

dB) compared with the first (i.e., dB).
Note that the low quality ( 30 dB) achieved by task 2 in both
scenarios may be caused by decoding at a low temporal reso-
lution and not necessarily by poor image quality. Using (23)
(defined below in Section IV-E) to determine the resource al-
location corresponding to the quality point , we determine
that both scenarios yield nearly the same resource allocation
despite the significantly different qualities. Specifically, in sce-
nario 1, 31.38% and 68.62% of the available resources are allo-
cated to task 1 and task 2, respectively; in scenario 2, 30.81%
and 69.19% of the available resources are allocated to task 1 and

2, respectively. Hence, because the task’s complexity strategies
directly impact how much quality the task can derive from the
available resources, each task has incentive to deploy its optimal
complexity strategy[(see (6)] to maximize its quality.

5) Independence of Linear Transformations: For any linear
scale transformation , .

Axiom 5) states that the bargaining solution does not change
if the quality function and disagreement point are scaled by a
linear transformation.

6) Symmetry: If is invariant under all exchanges of tasks,
for all possible tasks .

Finally, Axiom 6) is a special case of the equal penalty drop fair-
ness criteria imposed by the KSBS. It implies that if tasks have
the same disagreement points and the same maximum achiev-
able quality, then they will have the same quality allocation and
therefore incur equal drops in quality. Together, axioms 4, 5,
and 6 are called “axioms of fairness.”

E. Resource Allocation Using the KSBS

Let be the KSBS defined by the six axioms described in
Section IV-D and let be a set of
quality functions. We can express the system resource alloca-
tion as

(23)

where a composite function of and is denoted as
and . Note that

, defined in (22), is the subset of for which there is equality
in the system resource constraint [see (19)]. The KSBS requires
that the resource manager gathers the external information

from each task (i.e., each task’s
QC model and minimum required quality).

Given a set of resource allocations and the received ex-
ternal information defining the QC models, (23) first forms the
bargaining problem pair and then finds the KSBS

. Finally, (23) determines the fair and Pareto-optimal re-
source allocation using the inverse of the quality
function (i.e., the inverse of (17)). In the next subsection, we de-
scribe how to determine the KSBS .

F. Generalized KSBS

The conventional KSBS for tasks satisfies

(24)

where . Hence, the

conventional KSBS is the intersection between the bargaining
set and the line joining the disagreement point and the
ideal point defined by

(25)

Note that the constraint that is a consequence of the
translated disagreement point being the origin of the quality
space (i.e., ). A generalization of the KSBS can be en-
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Fig. 7. Examples of achievable quality sets and the associated KSBS for two decoding tasks. Task 1 and task 2 decode CIF video sequences Silent and Stefan,
respectively, under a resource constraint. The x-axis of both plots is the quality (PSNR in dB) of task 1, and the y-axis of both plots is the quality of task 2.
(a) Scenario where both tasks deploy all of their complexity strategies. (b) Scenario where task 1 deploys at random one quarter of its complexity strategies and
task 2, again, deploys all of its complexity strategies.

visaged by assigning each task different bargaining powers,
, which scale the ideal point and lead to unique weighted

bargaining solutions in the Pareto optimal bargaining set .
The generalized KSBS, however, requires that the disagreement
point coincides with the origin of the quality space (i.e., ).
Therefore, to determine the generalized KSBS, we have to first
translate the feasible quality set to the set such
that the translated disagreement point coincides
with the origin of the quality space. Similarly, the ideal point
is translated to . We then form the line
joining the translated disagreement point and the translated and
scaled ideal point defined by

(26)

where denotes the th task’s bargaining power. When
, the generalized KSBS becomes the conventional

KSBS. As in (25), the constraint that is due to the fact
that . The translated generalized KSBS
is the intersection of with the translated Pareto-optimal bar-
gaining set .

We solve for using a low-complexity numerical method
based on a bisection search with a predetermined tolerance ,
which can be adjusted to limit the overall complexity of the
resource allocation. The complexity of this search is on the order
of . Finally, the generalized KSBS is determined
as . Fig. 7(a) and (b) illustrates how the line

, determined by the disagreement point and the
ideal point , intersects the bargaining set to
obtain the KSBS for two different two task scenarios.

We note that the bargaining powers provide a flexible re-
source management tool for making quality tradeoffs between

different tasks. This is particularly important for multimedia ap-
plications because the priorities of different tasks may change
over time depending on the sequence’s content characteristics
[16]. Examples of the affect of bargaining powers are given in
Section V.

G. Proposed Bargaining-Based Resource Allocation System

Here, we describe the steps that comprise our bargaining-
based resource allocation system and discuss the complexity
overheads associated with each step. All of the following steps
for determining the KSBS are illustrated in Fig. 8.
Step 1) Session initialization stage: The RM determines the

available system resources for the current
super service interval and conveys this infor-
mation to tasks . This step is per-
formed online, however, it incurs negligible com-
plexity overhead.

Step 2) Determine the Scalable CSPEC: Given the sets
of complexity strategies , , we
determine the Scalable CSPEC defined in
(3). The Scalable CSPEC can be determined using
offline modeling, training, or profiling, followed
by real-time classification [2], [7], [9]. The offline
methods incur no overheads during the resource
allocation. Only a small overhead is incurred by
real-time classification.

Step 3) Determine the quality-complexity models/ex-
ternal information: The QC models

defined in (17) are determined
offline (similar to [7]) as described in Section IV-A.
Therefore, no overhead is incurred during the on-
line resource allocation. These QC models comprise
each task’s external information that must be re-
vealed to the RM.

Step 4) Determine the KSBS: For the set of tasks, we find
the quality-domain allocation
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Fig. 8. Resource allocation system diagram showing the exchange of information between the M video tasks and the RM which determines a fair resource
allocation based on the imposed fairness policy.

determined by the KSBS (see (24)). The KSBS is
solved online using a low-complexity numerical
method based on a bisection search with a predeter-
mined tolerance , which can be adjusted to limit
the overall complexity of the resource allocation.
The complexity of this search is .

Step 5) Determine the quality-fair resource allocation: The
quality-domain allocation
determined by the KSBS is then converted to the
quality-fair resource allocation
using (23). The step incurs negligible computational
overhead since it only requires calculating the in-
verse of (17) for each of the tasks.

Step 6) Select the optimal complexity strategy: Given
the quality-fair resource allocations

each task selects its optimal com-
plexity strategy defined in (6). This step is
performed online, however, if we assume that each
task’s complexity strategies are sorted (offline)
in descending or ascending order of complexity,
the optimal complexity strategy can be deter-
mined using a low complexity binary search. For
a set of tasks that each have complexity
strategies, the complexity of the binary search is

. This complexity is limited for
a relatively small number of tasks and complexity
strategies. However, if a system designer wants
to limit the complexity of this step, a maximum
number of complexity strategies per task can be
imposed. The number of these strategies can be

the same for all tasks, or can be larger for more
important tasks/users or tasks that require a large
complexity for their execution.

Step 7) Real-time scheduling: Each task is scheduled
using any real-time scheduling policy in the
literature [4], [5], [12]–[14], consumes re-
sources , and achieves quality

.

V. EXPERIMENTS

Here, we first evaluate the CSPEC as an admission control
tool for multimedia systems and, specifically, video decoding.
We then compare the performance of the KSBS against other
system resource allocation fairness policies. Finally, we give
examples of the effect of motion and texture based bargaining
powers on the KSBS.

A. Evaluation of the CSPEC as an Admission Control Tool

In Section II-C, we illustrated how adding the delay param-
eter to a task’s deadlines significantly reduced the task’s
CPU bandwidth requirement. Here, we evaluate the use of
the CSPEC’s CPU bandwidth demand parameter (defined
in Section II-B), used for admission control and complexity
prediction, against an existing solution in the literature [1], [6]
and also against the mean bandwidth requirement.

Let any frames belonging to the equivalent display deadlines
within each GOP belong to a particular deadline/priority class

. For example, if is the first deadline of the -th GOP, then
all frames with their deadlines at , for
(as in Table I) belong to the th deadline/priority class. Smaller
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TABLE III
DEADLINE MISS PERCENTAGE FOR DIFFERENT DEADLINE/PRIORITY CLASSES FOR TWO BANDWIDTH ALLOCATION STRATEGIES BASED ON EITHER MEETING 95%
OF ALL DEADLINES OR ONLY PROVIDING THE MEAN CPU BANDWIDTH REQUIRED BY A TASK. COMPARISON OF PSNRS FOR DIFFERENT RESOURCE ALLOCATIONS

TABLE IV
COMPARISON OF DIFFERENT FAIRNESS POLICIES. A NEGATIVE “QUALITY INCREASE FACTOR” MEANS THAT THE TASK ACHIEVES LESS QUALITY

THAN THE MINIMUM QUALITY THAT IT DEMANDS WHEN THE KSBS IS DEPLOYED AS THE FAIRNESS POLICY

values of correspond to frames of higher priority because fu-
ture frames depend on them. In an H.264/AVC-based coder, for
example, I-frames can be classified as having , P-frames

, and B-frames . Table III illustrates the distri-
bution of missed deadlines in a priority class for two cases.
first, the CPU bandwidth assigned is statistically determined in
order to meet 95% of the video decoding task’s deadlines [1],
[6]. Second, the CPU bandwidth is assigned as the task’s Mean
Bandwidth requirement . In the latter case, many deadlines
are missed across several classes. The mean bandwidth only
ensures that over the duration of the super service interval
the task receives enough CPU cycles to complete, however, this
does not guarantee that the instantaneous deadline-to-deadline
bandwidth requirements are satisfied. The former case has many
less missed deadlines, however, they all occur in the highest
priority class which can adversely affect the quality of subse-
quent frames. The bottom half of Table III shows the quality
impact of the Mean Bandwidth (labeled “Mean”), 95% dead-
line (labeled “95%”), and CPU Bandwidth Demand based (la-
beled “Proposed”) resource allocations. Based on the PSNRs in
Table III, it is clear that allocating resources to meet an arbitrary
percent (e.g., 95%) of a task’s deadlines significantly impacts
the PSNR. In the top half of Table III, we do not include the case
when the CPU bandwidth demand is assigned to a task, and
each priority class’s deadlines are increased to , be-
cause no deadlines are missed. This additional delay, however,
incurs a small penalty in memory requirements due to increased
buffering. An analysis of the buffering overheads and peak CPU
bandwidth savings when using the CPU bandwidth demand
can be found in [10].

B. Simulation Setup

Experiments are done via simulation. The Scalable CSPEC
data for the Stefan, Silent, Coastguard, and Foreman sequences
(CIF resolution, 30-Hz encoded frame-rate) is collected offline.
We extract the CSPEC data to correspond to frames 1–256 for
each sequence (i.e., the Peak workload, Mean workload, Delay,
and CPU Bandwidth Demand are constant for the 256 frames).
Additionally, each sequence’s QC model parameters shown in
Table II are determined. Lastly, we assume that each task is able
to choose the optimal complexity strategy given its resource al-
location [the optimal strategy is defined in (6)].

C. Comparison of the KSBS With Other Fairness Policies

Here, we compare the KSBS from Section IV-D with the re-
source allocation policies in Section III-B. We perform the re-
source allocation for all four experimental sequences. Table IV
illustrates the resulting quality and resource allocation for each
fairness policy, the coordinates of the disagreement point and
the ideal point , and the Quality Increase Factor (QIF) de-
fined relative to and as follows:

(27)

For the KSBS,
, as required by the

fairness criterion defined in (21).
We use the metric in (27) to compare the different resource al-

location policies because it captures the quality requirements for
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TABLE V
EXAMPLE BARGAINING POWERS

TABLE VI
KSBS WITH BARGAINING POWERS

each task. Specifically, a QIF of 0 indicates that a task achieves
its minimum desired quality; higher (positive) values of the QIF
indicate that the task achieves a higher quality. A QIF of 100
indicates that a task achieves its maximum desired quality, and
a negative QIF indicates that a task achieves below its minimum
required quality.

Table IV clearly illustrates how the resource domain fairness
policies fail to provide quality-fair resource allocations:

The results for the ERA policy demonstrate how an equal
resource allocation does not guarantee equal qualities in the
quality domain. For example, Silent receives 25% of the re-
sources which corresponds to an imperceptibly distorted 45.0
dB PSNR, however, the 25% resource allocation to Stefan
achieves only a 22.1 dB PSNR which is well below the task’s
minimum acceptable quality when using the KSBS (hence the
negative QIF), and is intolerably distorted.

The GPS policy has significant variation in the quality degra-
dation for each task. Most notably, Silent has a QIF of 59.08
while Stefan has a QIF of 23.40, which is negative because
the resource domain fairness policies cannot guarantee a min-
imum quality.

The WMM policy (with equal weights) provides fairly
equitable resource allocations to each task and, out of the
GPS, WMM, and KSBS policies, has the maximum minimum
resource allocation. The consequence of this, however, is that
the task that required the least resources (Silent) received an
unnecessary boost in quality to 41.7 dB. This large windfall
for the Silent sequence, in turn, penalized Stefan significantly
by starving it of necessary resources and decreasing its QIF to

33.64% corresponding to an achieved PSNR of 22.6 dB.
Finally, the KSBS provides almost equitable QIFs as it is de-

signed to do based on the fairness criterion in (21). In fact, the
QIFs for the KSBS only differ because of the nonzero tolerance
used in the numerical bisection search for the Pareto optimal and
fair quality allocation. Since the KSBS operates in the quality
domain, it allocates significantly less resources to Silent com-
pared to other fairness policies. Consequently, the resources that
aren’t allocated to Silent can be allocated to Stefan, which re-
quires the most resources to achieve a fixed quality. The KSBS
is effective because it explicitly considers the quality impact of
the resource allocations.

D. Effect of Bargaining Powers

Here, we illustrate how bargaining powers change the KSBS.
Table V shows example bargaining power values for each of the
four experimental sequences based on the motion vector (MV)
bit-rates (which are proportional to the average number of mo-
tion vectors per pixel ) and [2], [7], [9] which is the
fraction of nonzero transform coefficients (taken from the se-
quences decoded at 384 kb/s). Table VI illustrates the KSBS
resulting from these sets of bargaining powers. We make the
following observations.

• Motion-related bargaining powers: When the bargaining
powers are proportional to the KSBS favors
the tasks with high motion characteristics. In this case,
Stefan is favored and it achieves a 33.28 dB PSNR.
Since the bargaining powers are widely varying among
the four experimental sequences, the quality allocation
is also widely varying. Notably, the Silent sequence,
which always achieved the highest PSNR in the KSBS
without bargaining powers, now achieves the lowest PSNR
(28.32 dB).

• Texture-related bargaining powers: When the bargaining
powers are proportional to the KSBS favors the
tasks with more nonzero transform coefficients. Since

is proportional to the average video bit-rate [17],
these bargaining powers are similar for our set of test
sequences, however, the high frequency textures of the
crowd in the background of Stefan result in it having a
higher bargaining power than the other sequences. Silent,
on the other hand, has comparatively lower frequency
textures (particularly in the residual error frames) and
has a correspondingly lower bargaining power. Hence,
compared to the KSBS without bargaining powers, Stefan
improves by almost 1 dB while Silent drops over 1 dB.

We note that many other bargaining powers based on the se-
quence’s content characteristics can be deployed [16].

VI. CONCLUSION

In this paper, we propose a new system resource allocation
framework for multimedia systems that perform multiple simul-
taneous video decoding tasks. We jointly consider the available
system resources (e.g., processor cycles) and a video decoding
task’s characteristics such as the sequence’s content, the bit-
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rate, and the GOP structure, in order to determine a quality-fair
and Pareto optimal resource allocation using the KSBS from ax-
iomatic bargaining theory. To drive the resource allocation, we
characterize the video decoding workload using a twin leaky
bucket traffic model from which we determine the task’s CPU
bandwidth demand given its latency/delay constraints. Using the
CPU bandwidth demand and offline measurements, we derive a
quality-complexity model that quantifies the tradeoffs between
the video quality and the actual system complexity (e.g., pro-
cessing time on a specific processor). We compare the KSBS to
other fairness policies in the literature and find that because it
explicitly considers multimedia quality it provides significantly
fairer resource allocations than the other policies that operate
solely in the resource domain.
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