
1300 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 18, NO. 9, SEPTEMBER 2008

Compression-Aware Energy Optimization for Video Decoding Systems
With Passive Power

Emrah Akyol and Mihaela van der Schaar

Abstract—The objective of dynamic voltage scaling (DVS) is to
adapt the frequency and voltage for configurable platforms to ob-
tain energy savings. DVS is especially attractive for video decoding
systems due to their time-varying and highly complex workload
and because the utility of decoding a frame is solely depending on
the frame being decoded before its display deadline. Several DVS
algorithms have been proposed for multimedia applications. How-
ever, the prior work did not take into account the video compres-
sion algorithm specifics, such as considering the temporal depen-
dencies among frames and the required display buffer. Moreover,
the effect of the passive (leakage) power when performing DVS for
multimedia systems was not explicitly considered. In this paper, we
determine the optimal scheduling of the active and passive states
to minimize the total energy for video decoding systems. We pose
our problem as a buffer-constrained optimization problem with a
novel, compression-aware definition of processing jobs. We pro-
pose low-complexity algorithms to solve the optimization problem
and show through simulations that significant improvements can
be achieved over state-of-the art DVS algorithms that aim to min-
imize only the active power.

Index Terms—Buffer control, dynamic voltage scaling (DVS),
power optimization for multimedia systems, video compression.

I. INTRODUCTION

R ECENTLY, the area of energy saving in multimedia
applications has gained interest due to high-energy con-

sumption of multimedia applications on devices with limited
power, such as mobile devices [1]–[5]. One method of energy
savings is dynamic voltage scaling (DVS) where the operating
frequency and voltage are dynamically adapted to the work-
load. The main goal of the DVS algorithms is to utilize the
energy–delay tradeoff for tasks whose jobs’ completion times
are immaterial as long as they are completed before their dead-
line [6]. An example of such a task is real-time video decoding,
where early completion of frame decoding does not provide any
benefit as long as the display deadline is met. DVS algorithms
assign the operating level (i.e., power and frequency) for each
job given the estimated cycle requirement (i.e., complexity)
and the completion deadline of the job. Several DVS algo-
rithms have been proposed for delay sensitive applications
such as video decoding [4], [5], [7], [8]. Most DVS algorithms
perform optimization over the current job in a greedy manner

Manuscript received January 18, 2007; revised August 2, 2007. First pub-
lished July 25,2008; current version published October 8, 2008. This paper was
recommended by Associate Editor I. Ahmad.

E. Akyol is with the Electrical and Computer Engineering Department,
University of California, Santa Barbara, CA 93106-9560 USA (e-mail:
eakyol@ece.usb.edu).

M. van der Schaar is with the Electrical Engineering Department, University
of California, Los Angeles, CA 90095-1594 USA (e-mail: mihaela@ee.ucla.
edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2008.928886

considering the worst case complexity estimate [7], [8] or
average complexity estimates [4]. In [7], a state-of-the-art DVS
algorithm for video decoding was presented, where worst case
complexity estimates are generated on the fly, just based on
the complexities of the previous frames with the same frame
type. Then, for each frame, based on the worst case complexity
estimate, frequency is adjusted just to finish the frame decoding
job in time. Subsequently, this algorithm is referred to as
“conventional DVS.” Conventional DVS algorithms aim to
match frequency/voltage to fixed time intervals, e.g., for the
decoding of 30-Hz video, voltage/frequency is controlled such
that each frame is decoded in 1/30 s. Hence, these methods
do not consider the deployed compression structure, which
requires a different number of frames to be decoded at different
time instances depending on the adopted temporal prediction
structure. In [16], we proposed a new method of DVS for
multimedia where accurate complexity modeling is utilized
that considers compression specifications. None of the prior
research, including our prior work, on DVS for multimedia has
explicitly addressed the effect of the passive (leakage) power,
which becomes increasingly important given the recent devel-
opments in decreasing active power. As mentioned in, e.g., [8]
“the static power consumption is comparable to the dynamic
power dissipation and projected to surpass it if measures are
not taken to minimize leakage current.” Hence, in this work, we
consider the effect of passive power for DVS for multimedia
applications.

Idle (sleep) states are especially important when the idle state
can consume nearly as much power as the active state [8]–[11],
which necessitates the joint optimization of the idle-state sched-
uling and DVS. Note that, while idle-state scheduling for sensor
networks [9], [11] and leakage-aware (i.e., passive power aware)
DVS for real-time applications [8] were separately considered
in prior research, their joint optimization in the context of DVS
for the video decoding applications becomes important due to
the dynamic behavior and relatively high complexity of these
applications.

In this paper, we explicitly consider the video compression
specifics to redefine conventionally used job definitions for
video decoding and provide a solution for energy minimization
(that takes into account the effect of leakage power) by jointly
considering DVS and idle-state scheduling. We also utilize
a postdecoding buffer to mitigate the highly varying com-
plexity profile of video decoding, not only to be able to decode
high-complexity frames [12], but also to perform efficient DVS
by relaxing the hard job deadlines to soft buffer overflow/un-
derflow constraints. A postdecoding buffer is crucial for video
decoding applications since bursts of frames should be jointly
decoded until a given deadline. Hence, we investigate the op-
timal scheduling of active and passive states together with the
optimal frequency assignment using a buffer-controlled DVS
framework for video decoding systems. The letter is organized

1051-8215/$25.00 © 2008 IEEE

AKYOL AND VAN DER SCHAAR: COMPRESSION-AWARE ENERGY OPTIMIZATION FOR VIDEO DECODING SYSTEMS WITH PASSIVE POWER 1301

Fig. 1. DVS strategies. (1) No DVS (top panel). (2) conventional DVS [2]
(middle panel). (3) Proposed DVS with sleep states (bottom panel).

as follows. Section II describes the effects of passive power on
DVS algorithms and presents the novel job definitions specific
to video decoding. The extension of buffered DVS for systems
with passive power and low complexity suboptimal solutions
are presented in Section III. Comparative results are presented
in Sections IV and V concludes the paper.

II. DVS WITH PASSIVE POWER

A. Effect of Passive Power on DVS

In the following, we illustrate the various DVS methods and
the effect of passive power using a simple example, shown in
Fig. 1. Let us assume we have jobs with complexities

, , . From now
on, we use the term complexity to represent the number of exe-
cution cycles. The top panel in Fig. 1 illustrates a no-DVS sce-
nario: the processing is performed at the maximum frequency
available and the corresponding (maximum active
power) for each job. When the job finishes, the processor goes
into an idle state. For conventional DVS, as shown in the middle
panel of Fig. 1, the frequencies are adjusted to finish each job
“just-in-time” prior to its delay deadline, i.e., ,

, . In this case, the remaining
idle times are neglected. Let us assume an active power-fre-
quency relationship of [1], [7]. Then, the active power
will be , , .
The total “active” energy spent on the group of jobs can be found
as

(1)

Hence, the total active energy spent for the no-DVS case is
and for the conventional DVS

, where . As can be seen from
this simple example, if we neglect the effect of passive power,
the conventional DVS algorithm decreases the energy consump-
tion significantly. However, in the cases of nonnegligible pas-
sive power, we should consider the total energy, i.e.,

. The passive energy can be written as

(2)

where is the passive power, is the power in idle
(sleep) mode, is the idle (sleep) time, and is the tran-
sition energy [8], [11]. The transition energy is the energy spent
by going into the active state from the idle state. When the idle
time is zero, there is no transition energy, captured with the
sign function in (2). We assume that the passive power is in-
dependent of frequency/voltage changes throughout the paper
and there is no transition cost and no power dissipation in idle
state for this simple example, i.e., . Then,
if we assume (which is typical for several de-
vices [8], [11]), the total energies corresponding to no-DVS and
conventional DVS are and .
DVS algorithms that merely minimize “active” energy spent are
suboptimal when passive power is significant. As can be seen
from this example, while conventional DVS decreases active
energy, total energy spent in conventional DVS may be even
higher than no-DVS scenario since processing time, thus pas-
sive energy spent, also increases in conventional DVS.

The bottom panel of Fig. 1 shows the proposed joint optimiza-
tion of DVS and sleep states. If the frequency is kept constant at

, then the total energy equals
, which is significantly less than con-

ventional DVS approaches. The effect of the transitions is ne-
glected for the simplicity of the example, but significant savings
can be obtained by optimizing idle states with respect to buffer
sizes, as will be shown later in the paper. Most processors have
different idle states with different power consumption and
transition energy levels. For example, there are three dif-
ferent idle states in most processors such as “shut down,” where

but the transition energy is high, the “idle”
state where but is high, and the “stand-by”
state that has nonzero power consumption and transition energy
[11]. In Section III, we analyze the optimal choice of idle state
in addition to optimal DVS and idle state scheduling.

B. Video-Compression-Specific DVS

In the current highly adaptive video compression algorithms,
the current frame is predicted from both past and future frames.
Some reference frames should be decoded before their display
deadline to be used as reference. The frames that are jointly
encoded share the same decoding deadline. Hence, unlike pre-
vious work on multimedia DVS [7] which assumes a job as de-
coding a single frame, we combine the frames with the same
decoding deadline and define decoding this collection of de-
pendent frames as one job of the decoding task. The proposed
new job definition is especially important for new video coding
methods, where multiple frames are jointly filtered temporally.
In general, we define every job with three parameters as follows:

job: deadline, complexity, size

deadline decoding deadline of the job , ;

complexity estimated number of cycles that job
consumes on a specific platform, ; these
estimates can be achieved with several
methods, see, e.g., [13];

size number of decoded original frames by the
job , .

1302 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 18, NO. 9, SEPTEMBER 2008

Fig. 2. DAGs and job definitions for (a) conventional I-B1-B2-P1-B3-B4-P2
frames and (b) hierarchical B pictures, I-B1-B2-B3-P.

In predictive coding, frames are encoded with interdependen-
cies that can be represented by a directed acyclic dependence
graph (DAG). Examples are shown in Fig. 2 for two different
GOP structures: the conventional I-B-B-P-B-B-P GOP struc-
ture and hierarchical B pictures. DAGs can represent the dis-
tinction of a job and frame decoding clearly, for this example;
decoding frame I and decoding frames P1 and B1 represent dif-
ferent jobs as shown in Fig. 2. Hierarchical B pictures struc-
ture, which is based on flexible reference frame selection in
the latest compression standard H.264/AVC, is more interesting
in terms of jobs with varying sizes, complexities, and dead-
lines. The first job is decoding frame I

, where the second job is decoding frames P, B1, and B2
, and the last job is decoding frame

B3 . Also, note that the first job, de-
coding the I-frame, is composed of only the texture related com-
plexities (i.e., entropy coding and inverse transform), whereas
the second job includes several bi-directional motion compen-
sation operations, thereby showing that not only the complexity
is varying per job, but also the type of the complexity (entropy
coding, inverse transform, motion compensation, or interpola-
tion) is changing. Thus, while decoding two B-frames is the
same from a high-level perspective, the job parameters are sub-
stantially different showing the superiority of the delay-aware
job definitions over conventional job definition. The proposed
job definitions do not require any complexity overhead as they
can be readily deduced from the encoding structure (see the il-
lustrative examples given above).

III. PROPOSED DVS ALGORITHM

Let us first formally define the general DVS problem. Assume
that there is a discrete set of operating levels with corresponding
frequency and power levels, which can be used for voltage/fre-
quency adaptation .

Fig. 3. Buffer-constrained DVS scheme.

Each level has a different power consumption and different
frequency,

, where the power is an increasing func-
tion of the frequency. Assume that there are a total of
jobs with complexity estimates , dead-
lines , and sizes

. Assume job has a processing time,
which can be simply found by , and total
energy consumption . Then, the DVS problem attempts
to find the set of operating level (frequency and thus power)
for each job that minimizes
the total energy. Thus, the general DVS optimization can be
formulated as shown in (3) at the bottom of the page [7], [8].

Another video compression-specific feature of the proposed
DVS framework is the usage of a postdecoding (display) buffer
between the display device and the decoding platform. This
postdecoding buffer helps to mitigate complexity estimate mis-
matches and converts hard job deadlines to soft buffer under-
flow/overflow constrains. Note that, in the formulation above,
there are distinct constraints for the processing times. By uti-
lizing this buffer, these constraints are converted to buffer over-
flow/underflow constraints.

Fig. 3 shows the general setup for the buffer-controlled DVS
for video decoding. Frequency for job is determined by con-
sidering the parameters of total jobs, buffer occupancy ,
and passive power . For each job, complexity estimates are
updated, the buffer occupancy is checked, and the frequency for
the job is assigned. The DVS optimization problem described
below is aimed at minimizing the total energy by adapting the
frequency/voltage level over time, based on the complexity of
the tasks, such that the buffer overflow/underflow constraints
are fulfilled at all times. Note that, in the proposed optimization,
all jobs are completed before their decoding deadline and hence
there is no video distortion incurred due to DVS. Throughout
the paper, we assume the passive power is independent of
the frequency [1], [7]. We neglect the overhead of buffer man-
agement energy cost throughout the paper, and we assume that

(3)

AKYOL AND VAN DER SCHAAR: COMPRESSION-AWARE ENERGY OPTIMIZATION FOR VIDEO DECODING SYSTEMS WITH PASSIVE POWER 1303

the entire encoded bitstream is available before decoding. See
(4), shown at the bottom of the page.

In the optimization above, we define the buffer occupancy for
job as based on the following recursion:

(5)

where denotes the frame rate and is the initial state
of the buffer that depends on the initial playback delay (which
may be zero if any delay is not tolerable). is defined in
terms of number of frames.

The optimal frequency is defined as

(6)

where

(7)

can be determined by solving the differential equation

(8)

By replacing (5) and substituting (7) into (8), we obtain the
optimal frequency as the frequency that satisfies the differential
equation

(9)

The optimization strategy depends on the value of the set of
operating frequencies with respect to . As can be seen from
(9), the optimal frequency does not depend on the job
index, i.e., irrespective of the complexity of the job, the optimal
frequency is identical and only depends on the power-frequency
relationship. Hence, we drop in the following derivations. Let

be the minimum frequency that the processor can operate
at, while satisfying buffer underflow constraints. Note that
depends on both the processor’s frequency-power relationships
and the novel job definitions. Depending on the temporal en-
coding structure, can take different values. Let us define
two distinct cases: 1) (case-1) and 2)
(case-2). In our subsequent derivations, we assume a power-fre-
quency function as in [1] and [7]: with .
Based on this, we can determine the optimal solutions for dif-
ferent frequency regions.

Proposition: If (i.e., case-2), then the total energy
is a convex function of frequency for all greater or equal to

.
Proof: To prove that the energy is convex increasing in the

frequency, it suffices to show that the first and second derivatives
are both positive as

(10)

(11)

From (9), we obtain that the optimal frequency is

(12)

From (12), indicates for
which makes for .

, for when since both terms (
and) are positive in (11). Hence,

and , showing that is convex for
.

1) Case-1 : The optimum frequency is in the
range of operating frequencies of the processor; hence, this fre-
quency (which does not depend on the complexity) can be ap-
plied to all jobs. However, this assignment may not guarantee to
satisfy the buffer overflow constraint. Since is not convex
in that region, slope-based (i.e., Lagrangian optimization type)
techniques cannot be applied [14]. Also, the processor can go
into different type of idle (sleep) states, such as sleep-1 that
consumes negligible power at idle state but results in
a significant energy consumption in state transitions
and sleep-2 that costs significant power at idle states but has
less transition cost. Let us assume that sleep-1 has energy tran-
sition cost , but no steady state cost. Sleep-2 has tran-
sition cost and idle state cost ,
where . Let be the time that the pro-
cessor sleeps after job . Then, we need to minimize the energy
by determining the joint optimal scheduling of the sleep states
and sleep times in addition to the optimal frequency selection,
as formulated in the optimization problem given in (13), shown
at the bottom of the next page.

In the above formulation, , , and are
vectors that represent the optimal operating level (frequency/
power), optimal idle time and idle state type (sleep-1 or sleep-2)
for jobs.

(4)

1304 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 18, NO. 9, SEPTEMBER 2008

The optimal solution to these types of constrained problems
can be found by deploying deterministic dynamic program-
ming-based algorithms such as the Viterbi algorithm for which,
given the initial conditions, the best solution resulting to each
possible states are found. Note that, in our problem, there is a
limited number of states (due to the limited buffer size), hence,
we can use a dynamic programming algorithm. Basically, we
can create a trellis to represent all viable parameters (state
type, idle time, and operating level) at each instant, and then,
given the buffer constraints, we can prune out the branches that
fail to satisfy the buffer constraints. Also, for the same buffer
occupancy, only the branch that has the lowest total energy
is kept while others are pruned out. Here, buffer constraints
are considered relying on the complexity estimates, hence we
inherently assume complexity estimates are accurate enough
such that, when the estimates satisfies/violates the buffer con-
straints, the real complexity values should also satisfy/violate
the buffer constraints. Then, each surviving branch generates
a path (feasible parameter choice) with an associated energy
cost. Finally, the path with minimum total energy cost is chosen
as the optimal parameter choice for jobs. The complexity
of this optimal solution increases linearly with the number of
operating levels , number of jobs , and the possible
choices for idle time. The possible choice for idle time is
limited by the finite size of the buffer . Hence, the order
of the worst case complexity of the dynamic programming
based solution is about . Since the dynamic
programming-based optimization can be impractical due to
its high complexity, we propose a suboptimal low-complexity
algorithm to solve this problem. The solution is based on
aggregating the jobs (i.e., decoded frames) until the buffer is
close to overflow and going into the sleep state
to avoid overflow and stay in the sleep state until the buffer
is close to underflow . The thresholds and
can be determined using complexity estimates or can be set
heuristically, depending on the buffer size [14]. Idle (sleep)
state type (sleep-1 or sleep-2) is determined according to the
buffer occupancy and complexities of the jobs. The worst
case complexity of this suboptimal fast algorithm is very low

, since the operating level (i.e., voltage and frequency)
is set just once, before all of the jobs are processed, and the
idle time is chosen as the depletion time of the buffer when it is
full. The performance degradation, compared with the optimal
high-complexity algorithm, of this suboptimal low-complexity
algorithm is experimentally shown in the Section IV.

To determine the sleep-state type, we need to compare
the expected energy consumption at the sleep state for one
buffer depletion time. The total energies spent in the idle
state-1 and idle state-2 (transition energy passive energy in

idle state) for one buffer depletion time are
and ,

respectively. The optimal sleep-state type depends on the
buffer size (and) and transition and idle energy
spent. Sleep-1 should be preferred when , i.e.,

. Sleep-2
should be chosen when

.
To find the operating frequency, we modify the optimal fre-

quency found in (10), considering the power in sleep mode and
transition energy. We note that the sum of idle and active time,
i.e., total time is constant for jobs corresponding to a total of

frames

(14)

Since we keep the frequency constant for all jobs, we can
write

(15)

(16)

The number of transitions is identical to the number of buffer
depletions, which is . Hence, the
total energy can be written as shown in (17) at the bottom of the
next page. Similar to (9), the operating frequency can be
found as the frequency that satisfies the differential equation

(18)

As can be seen, the operating frequency depends on the ac-
tive power-frequency function, which characterizes the video
decoding device , passive power , power in sleep (idle)
mode , and the transition energy from idle state to
active state. It also depends on the buffer size , since,
as the buffer size increases, the number of transitions decreases.
Note that the operating frequency does not depend on the buffer
occupancy or the complexity of the job, such that evaluating
this frequency takes place only once for the process, hence the
proposed algorithm has very low complexity overhead. Also
note that, since there is a limited number of discrete frequen-
cies available, the available frequency closest to the optimal fre-
quency is selected. The algorithm is given in Table I.

(13)

AKYOL AND VAN DER SCHAAR: COMPRESSION-AWARE ENERGY OPTIMIZATION FOR VIDEO DECODING SYSTEMS WITH PASSIVE POWER 1305

TABLE I
PROPOSED LOW-COMPLEXITY SUBOPTIMAL ALGORITHM

Fig. 4. Buffer fullness example for one realization of the proposed algorithm.

Fig. 4 illustrates the buffer-level variation for one realization.
The buffer level increases as the jobs are processed faster than
the required display speed until the buffer is close to overflow
(i.e.,). Subsequently, the processor goes in the sleep
mode until the buffer level decreases to .

2) Case-2 : Since all of the frequencies are in
the convex region, there should be no sleep states and the pro-
cessor should operate at the minimum frequency that satisfies
buffer (delay) constraints. The new job definitions are especially
important for this case where the optimization should take the
complexities of each job into account. This problem is analo-
gous to the conventional rate control problem with buffer con-
straints in video coding (see, e.g., [14]). Hence, the interested
reader is referred to existing literature [14], [17] for details on
finding the solution of this problem.

IV. RESULTS

Here, we compare the proposed DVS methods with the con-
ventional DVS method for platforms with significant power. In
our experiments we used four different test sequences, foreman,

TABLE II
FREQUENCY POWER VALUES OF STRONG-ARM PROCESSOR ANALYZED IN [16]

mobile, coastguard, and silence, at CIF resolution and at a frame
rate of 30 fps. We used a wavelet video coder [18] that utilizes
motion-compensated temporal filtering with four-level temporal
and five-level spatial decompositions. We generated two sets of
decoded video with high and low complexity at two rates, 512
and 1024 kbps. High-complexity compression includes adap-
tive update and quarter-pixel motion compensation whereas the
update step is skipped and only a half-pixel MC is used for the
low-complexity case. To obtain statistically meaningful results,
we concatenated the resulting 16 videos in 12 different orders,
resulting in a set of 12 long videos with 3072 frames each. We
present the average results of 12 videos with different decoding
traces. The complexity values are obtained from actual mea-
surements whereas the power and frequency values that we used
are shown in Table II, and they are reported for the Intel Strong
ARM processor [15] in [16].

We assume different values for the passive power and two
sleep states to obtain meaningful results for a broad class
of video decoding systems. We assume a passive power

or and two sleep (idle) states.
Sleep (idle) state-1 has the transition energy
and idle power , while sleep (idle) state-2 has

and [11]. Hence, we have four
different passive power–sleep state combinations. and
can be set heuristically as a linear function of the maximum
buffer size as done in the solution of the well known rate
control problem in [9]. Alternatively, they can be determined
based on the complexity estimates and the expected error in
complexity estimates, such as done in our previous work [17].
For the experiments, we fix the buffer size and

, heuristically. The comparative
results are presented in the following.

Table III shows the results for the case where
and sleep (idle) state -1, i.e., the transition energy is assumed as

and there is no idle power . No
DVS, as illustrated in the top panel of Fig. 1, denotes the case
where there is no change in frequency and the processor is run
at the highest maximum power/frequency (,) until
the job is finished. Then, it goes into idle (sleep) state until the
next job. The active energy spent in this case is assumed as the
unit energy and all other energies are scaled according to

. Since , the passive energy in the no-DVS sce-
nario is also . There is no idle energy in every scenario since

. There is transition at the end of every job, resulting
in the highest transition energy. The conventional DVS scenario

(17)

1306 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 18, NO. 9, SEPTEMBER 2008

TABLE III
COMPARATIVE (SCALED) RESULTS ON ACTIVE, PASSIVE, AND TOTAL ENERGY

CONSUMPTION, THE CASE WHERE P = P AND SLEEP (IDLE) STATE-1

TABLE IV
COMPARATIVE RESULTS ON ACTIVE, PASSIVE, AND TOTAL ENERGY

CONSUMPTION, THE CASE WHERE P = P =2 AND

SLEEP (IDLE) STATE-1

TABLE V
COMPARATIVE RESULTS ON ACTIVE, PASSIVE, AND TOTAL ENERGY

CONSUMPTION, THE CASE WHERE P = P AND SLEEP (IDLE) STATE-2

does not take the passive power into account or the buffer utiliza-
tion. It just considers the convex power-frequency relationship
and it runs at the smallest frequency/power level that satisfies
the job deadlines. This results in the lowest active energy con-
sumption but since the passive power is significant, conventional
DVS has the highest passive energy among all others. For con-
ventional DVS, the exact real complexities are assumed to be
known beforehand and the jobs are assumed to be finished just
in time. Hence, there is not transition to sleep state and hence
no transition energy or sleep (idle) energy in conventional DVS
scenario. The optimal DVS is, as explained in Section III, based
on the dynamic programming solution.

Table IV shows the results for the case where
and sleep (idle) state -1, i.e., the transition energy is

assumed as and there is no idle power
. There is no change in the operation of the conven-

tional DVS and the no-DVS scenario, since they do not adapt to
the passive power. However, the proposed method changes the
operating frequency and, hence, active and passive time spent.

Table V shows the results for the case where
and sleep (idle) state -2, i.e., the transition energy is assumed as

and there is no idle power . There
is no transition energy in any case.

Table VI shows the results for the case where
and sleep (idle) state -2, i.e., the transition energy

is assumed as and there is no idle power,
.

Our results show the superiority of the proposed DVS method
over other methods when passive power is significant for dif-
ferent video decoding system specifications, i.e., different pas-
sive power and sleep (idle) state cases. The buffer size is set to
20 frames for all of the experiments, which is a reasonable for
most devices with power and storage constraints such as mobile
devices. Increasing the buffer size only decreases the total tran-
sition energy in the proposed method, since the frequency of the
transitions decrease with the buffer size.

TABLE VI
COMPARATIVE RESULTS ON ACTIVE, PASSIVE, AND TOTAL ENERGY

CONSUMPTION, THE CASE WHERE P = P =2 AND

SLEEP (IDLE) STATE-2

V. CONCLUSION

We proposed a novel state/frequency scheduling method for
video decoding systems with significant passive power. The pro-
posed method utilizes video encoding-specific job definitions
and a postdecoding buffer, as the video compression specifica-
tions. The optimal solution and the suboptimal low-complexity
heuristics are proposed to solve the DVS problem with pas-
sive power. We experimentally show the benefit of the proposed
method in systems where passive power is significant compared
with active power, with several passive power and sleep (idle)
state levels.

REFERENCES

[1] Z. He, Y. Liang, L. Chen, I. Ahmad, and D. Wu, “Power-rate-distortion
analysis for wireless video communication under energy constraint,”
IEEE Trans. Circuits Syst. Video Technol., vol. 15, no. 5, pp. 645–658,
May 2005.

[2] X. Lu, E. Erkip, Y. Wang, and D. G. Goodman, “Power-efficient mul-
timedia communication over wireless channels,” IEEE J. Sel. Areas
Commun., vol. 21, no. 10, Dec. 2003.

[3] Y. Liang, I. Ahmad, and X. Wei, “Adaptive techniques for simultaneous
optimization of visual quality and battery power in video encoding sen-
sors,” in Proc. Int. Conf. Image Process., Atlanta, GA, Oct. 2006, pp.
2477–2480.

[4] K. Choi, K. Dantu, W. Cheng, and M. Pedram, “Frame-based dynamic
voltage and frequency scaling for a MPEG decoder,” in Proc. ICCAD,
2002, pp. 732–737.

[5] M. Mesarina and Y. Turner, “Reduced energy decoding of MPEG
streams,” Multimedia Syst., vol. 9, no. 2, pp. 202–213, 2003.

[6] L. Benini and G. De Micheli, Dynamic Power Management: Design
Techniques and CAD Tools. Norwell, MA: Kluwer, 1997.

[7] W. Yuan, K. Nahrstedt, S. Adve, D. Jones, and R. Kravets, “GRACE:
Cross-layer adaptation for multimedia quality and battery energy,”
IEEE Trans. Mobile Computing, vol. 5, no. 7, pp. 799–815, Jul. 2006.

[8] R. Jejurikar, C. Pereira, and R. Gupta, “Leakage aware dynamic voltage
scaling for real-time embedded systems,” in Proc. Conf. Design Au-
tomation, 2004, pp. 275–280.

[9] R. Min, M. Bhardwaj, S. Cho, N. Ickes, E. Shih, A. Sinha, A. Wang, and
A. P. Chandrakasan, “Energy-centric enabling technologies for wire-
less sensor networks,” IEEE Commun. Mag., vol. 40, no. 8, pp. 28–39,
Aug. 2002.

[10] A. Naveh et al., “Power and thermal management in Intel core-duo
processor,” Intel Technol. J., vol. 10, no. 2, pp. 109–122, 2006.

[11] T. Simunic, “Energy efficient system design and utilization,” Ph.D. dis-
sertation, Elect. Eng. Dept., Stanford Univ., Stanford, CA, 2001.

[12] S. Regunathan, P. A. Chou, and J. Ribas-Corbera, “A generalized video
complexity verifier for flexible decoding,” in Proc. IEEE Int. Conf.
Image Process., Sep. 2003, vol. 3, pp. 289–292.

[13] M. van der Schaar and Y. Andreopoulos, “Rate-distortion-complexity
modeling for network and receiver aware adaptation,” IEEE Trans.
Multimedia, vol. 7, no. 3, pp. 471–479, Jun. 2005.

[14] A. Ortega, K. Ramchandran, and M. Vetterli, “Optimal trellis-based
buffered compression and fast approximations,” IEEE Trans. Image
Process., vol. 3, no. 1, pp. 26–40, Jan. 1994.

[15] Intel StrongARM Processors Intel Inc [Online]. Available: http://devel-
oper.intel.com/ design/strong/

[16] A. Sinha and A. P. Chandrakasan, “Jouletrack: A web based tool
for software energy profiling,” in Proc. IEEE/ACM DAC, 2001, pp.
220–225.

[17] E. Akyol and M. van der Schaar, “Complexity model based proac-
tive dynamic voltage scaling for video decoding systems,” IEEE Trans.
Multimedia, vol. 9, no. , pp. 1475–1492, Nov. 2007.

[18] Y. Andreopoulos, A. Munteanu, J. Barbarien, M. van der Schaar,
J. Cornelius, and P. Schelkens, “In-band motion compensated tem-
poral filtering,” Signal Process.: Image Commun., vol. 19, no. 7, pp.
653–673, Aug. 2004.

