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Towards a General Framework for Cross-Layer
Decision Making in Multimedia Systems

Nicholas Mastronarde and Mihaela van der Schaar

Abstract— In recent years, cross-layer multimedia system de-
sign and optimization has garnered significant attention; however,
there exists no rigorous methodology for optimizing two or more
system layers (e.g., the application, operating system, and hard-
ware layers) jointly while maintaining a separation among the
decision processes, designs, and implementations of each layer.
Moreover, existing work often relies on myopic optimizations,
which ignore the impact of decisions made at the current time
on the system’s future performance. In this paper, we propose a
novel systematic framework for jointly optimizing the different
system layers to improve the performance of one multimedia ap-
plication. In particular, we model the system as a layered Markov
decision process (MDP). The proposed layered MDP framework
enables each layer to make autonomous and foresighted decisions,
which optimize the system’s long-term performance.

Index Terms— Cross-layer multimedia system design, fore-
sighted decision making, layered Markov decision process.

I. INTRODUCTION

CROSS-LAYER adaptation is an increasingly popular
solution for optimizing the performance of complex

real-time multimedia applications implemented on resource-
constrained systems [5]–[8], [12], [13]. This is because system
performance can be significantly improved by jointly optimiz-
ing parameters, configurations, and algorithms across two or
more system layers, rather than optimizing them in isolation.
The system layers that are most frequently included in the
cross-layer optimization are the application (APP), operating
system (OS), and hardware (HW) layers. For example, in
[5], [6], and [13], the APP layer’s configuration (e.g., en-
coding parameters) and the HW layer’s operating frequency
are adapted; meanwhile, in [7], [8], and [12], the resource
allocation and scheduling strategies at the OS layer are
also adapted.

The above-mentioned cross-layer solutions share two impor-
tant shortcomings. First, the formulations and the presented
solutions are all highly dependent on a specific cross-layer
problem, and therefore cannot be easily extended to other joint
APP–OS–HW optimizations. This exposes the need for a rig-
orous and systematic methodology for performing cross-layer
multimedia system optimization. Second, the above-mentioned
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cross-layer solutions result in suboptimal performance for
dynamic multimedia tasks because they are myopic. In other
words, cross-layer decisions are made reactively in order to op-
timize the immediate reward (utility) without considering the
impact of these decisions on the future reward. For example,
even the “oracle” solution in [6], which has exact knowledge
about the consumed energy and required instruction counts
under different APP and HW layer configurations, is not
globally optimal. This is because, “the configuration selected
for each frame affects all future frames” [6]; however, the
oracle only myopically chooses the cross-layer configuration
to optimize its immediate reward. This motivates the use
of foresighted (i.e., long-term) optimization techniques based
on dynamic programming. With foresighted decisions, the
layers no longer reactively adapt to their experienced dy-
namics (e.g., time-varying multimedia source characteristics
at the APP layer or time-varying resource availability at the
OS layer due to resource sharing with other applications);
instead, layers actively select actions to influence and pro-
vision for the system’s future dynamics in order to achieve
optimal performance over time, even if this requires sacrificing
immediate rewards.

In this paper, we take inspiration from work on dynamic
power management at the HW layer [9], [14] and formulate
the cross-layer optimization problem within the framework
of discrete-time Markov decision processes (MDPs) in order
to optimize the system’s long-term performance. We believe
that this paper can be viewed as a nontrivial extension of
the aforementioned work because we investigate previously
unaddressed problems associated with cross-layer system
optimization.

A trivial and ill-advised solution to the cross-layer sys-
tem optimization using MDP is to glue the decision-making
processes of the layers together by performing a centralized
optimization in which a single layer (e.g., the OS), a cen-
tralized optimizer, or middleware layer must know the states,
actions, rewards, and dynamics at every layer. Such a central-
ized solution violates the layered system architecture, thereby
complicating the system’s design, increasing implementation
costs and decreasing interoperability of different applications,
operating systems, and hardware architectures. Respecting the
layered architecture is especially important in situations where
system layers are designed by different companies, which
1) may not want for their layer to relinquish its decision-
making process to a centralized optimizer or middleware layer,
or 2) may not allow access to the underlying implementation of
their layer. Under these constraints, centralized solutions such
as those proposed in [5], [7], [8], [12] are infeasible because
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they require that the designer can augment the implementation
of every layer.

In this paper, we propose an alternative solution to the
cross-layer optimization in which we optimize the system’s
performance without a centralized optimizer. To do this, we
identify the dependencies among the dynamics and decision
processes at the various layers of the multimedia system (i.e.,
APP, OS, and HW) and then factor these dependencies in
order to decompose the centralized optimization into separate
optimizations at each layer.

The remainder of this paper is organized as follows. In
Section II, we define all the parameters and concepts in our
framework and present the objective of the foresighted cross-
layer optimization problem. In Section III, we provide concrete
examples of the abstract concepts introduced in Section II for
an illustrative cross-layer video encoding problem similar to
those explored in [5]–[8]. In Section IV, we describe a cen-
tralized cross-layer optimization framework for maximizing
the objective function introduced in Section II and discuss the
framework’s limitations. In Section V, we propose a layered
optimization framework for maximizing the same objective. In
Section VI, we present our experimental results based on the
example system described in Section III. Finally, we conclude
in Section VII.

II. CROSS-LAYER PROBLEM STATEMENT

In this section, we present the considered system model and
formulate the cross-layer system optimization problem.

A. Layered System Model

The considered system architecture comprises three layers:
the APP, OS, and HW layers. For generality, however, we
assume that there are L layers participating in the cross-layer
optimization. Each layer is indexed l ∈ {1, . . . , L} with layer 1
corresponding to the lowest participating layer (e.g., HW
layer) and layer L corresponding to the highest participating
layer (e.g., APP layer). We note that for a layer to “participate”
in the cross-layer optimization it must be able to adapt one or
more of its parameters, configurations, or algorithms (e.g., the
HW layer can adapt its processor frequency); alternatively, if
a layer does not “participate,” then it is omitted. In all of the
illustrative examples in this paper, we assume that L = 3 and
that the HW, OS, and APP layers correspond to layers 1, 2,
and 3, respectively.

The layered optimization framework proposed in this paper
deals with three types of time-varying dynamics, which im-
pact multimedia system performance but are not simulta-
neously considered in most existing research. In particu-
lar, our framework considers the multimedia application’s
time-varying (probabilistic) rate-distortion behavior, its time-
varying resource requirements, and the system’s time-varying
resource availability due to contention with other applications,
each with their own time-varying requirements. Cross-layer
optimization frameworks that do not explicitly consider these
dynamics are inherently suboptimal.

Fig. 1 illustrates how each system layer can make
autonomous decisions in a layered manner based on their own

Fig. 1. Layered decision-making process illustrating the intra- and inter-layer
dependencies in the system. System layers adapt to different components of
the dynamic environment by deploying different “actions” at each layer.

local information about different components of the dynamic
environment and based on limited information forwarded from
other layers. In our setting, environment refers to anything
that affects the system’s performance but is not control-
lable by the system (e.g., the video source characteristics).
We will frequently refer back to Fig. 1 in order to make
the abstract concepts discussed throughout this section more
concrete.

B. States

In this paper, the state encapsulates all of the information
relevant to making processing decisions. Illustrative examples
of layer states are provided in Section III and are included
in Fig. 1. We assume that the states are Markovian such
that, given the present state, the past and future states are
independent.1 Since each system layer interacts with a dif-
ferent component of the dynamic environment (see Fig. 1),
we define a state sl ∈ S l for each layer l. We denote the
state of the entire system by s ∈ S, with S = ×L

l=1Sl (where
×L

l=1Sl = S1 × · · · × SL is the L-ary Cartesian product). If
the lth layer’s state is constant, then we write |Sl | = 1, where
|S| denotes the cardinality of set S.

C. Actions

The multimedia system takes different processing actions
depending on the state of each layer. The actions at each layer
can be classified into two types [3].

1) External actions impact the state transition of the layer
that takes the external action. (See Sections III.B and
III.C for examples of external actions at the OS and APP
layers, which are also illustrated in Fig. 1.) The external
actions at layer l are denoted by al ∈ Al , where Al

is a finite set of the possible external actions at layer
l. The aggregation of the external actions across all of
the layers is denoted by a ∈ [a1, . . . , aL ] ∈ A, where
A = ×L

l=1Al .
2) Internal actions determine the quality of service (QoS)

provided to the upper layers and the state transition at

1We investigate the validity of this assumption for a realistic multimedia
system in Section VI.C.
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layer L. (See Section II.F for our definition of QoS,
and Section III.A and Fig. 1 for an example of internal
actions at the HW layer.) The internal actions at layer l
are denoted by bl ∈ Bl , where Bl is a finite set of the
possible external actions at layer l. The aggregation of
the internal actions across all of the layers is denoted by
b ∈ [b1, . . . , bL] ∈ B, where B = ×L

l=1Bl .
The action at layer l is the aggregation of the external and

internal actions, denoted by ξl = [al, bl ] ∈ Xl , where Xl =
Al × Bl . Finally, the joint action of the system is denoted by
ξξξ = [ξ1, . . . , ξL ] ∈ X = ×L

l=1Xl .
We note that some layers may have non-adaptive (i.e., fixed)

external and internal actions. If the lth layer’s external or
internal action is non-adaptive, then |Al | = 1 or |Bl | = 1,
respectively. Illustrative examples of external and internal
actions are provided in Section III and in Fig. 1.

D. State Transition Probabilities

We assume that the state transition in each layer is syn-
chronized and operates at the same time scale, such that the
transition can be discretized into stages during which the
multimedia system has constant state and performs a single
joint action. The length of each stage does not need to be
constant. For instance, in our H.264/Advanced Video Coding
(AVC) example, the length of each stage is the duration of time
between encoding successive data units (DUs) such as video
macroblocks or frames. We use a superscript n to denote stage
n (i.e., the stage in which we make the encoding decision for
DU n). For notational simplicity, we omit the superscript n
when no confusion will arise.

In general, because states are Markovian, the state transition
of the system depends only on the current state s, the current
joint action, and the environmental dynamics. The correspond-
ing transition probability is denoted by p(s′|s, ξξξ), where s = sn

and s′ = sn+1 (n ∈ N).
The state transition probability can be factored to reflect the

dependencies in the layered system architecture. First, using
Bayes’ rule, the transition probability can be factored as

p(s′|s, ξξξ) =
L∏

l=1

p(s′
l |s′

1→l−1, s, ξξξ) (1)

where s′
1→l = [

s′
1, . . . , s′

l

]
and s′

1→0 = 0 is an empty state.
In this paper, we assume that the next state of layer l, s′

l ,
is statistically independent of the next state of the lower
layers, s′

1→l−1, conditioned on the current state. Hence, we
can rewrite (1) as

p(s′|s, ξξξ) =
L∏

l=1

p(s′
l |s, ξξξ). (2)

Second, due to the layered architecture and the definitions
of the internal and external actions as illustrated in Fig. 1,
(2) can be factored further as follows:

p(s′|s, ξξξ) = p(s′
L |s, aL , b)

L−1∏
l=1

p(s′
l |sl , al). (3)

We would like to make the following remarks about (3).

1) The term
∏L−1

l=1 p(s′
l |sl , al) in (3) is taken from the first

L − 1 layers in (2). Since the state-transition at layer
l ∈ {1, . . . , L − 1} depends only on its own external
action al and state sl , these replace the joint state s and
joint mixed action ξ in (2). The state transitions at the
HW and OS layers illustrated in Fig. 1 reflect this model.

2) The term p(s′
L |s, aL , b) in (3) is taken from layer L

in (2). The state transition at layer L depends on the
joint state s, its own external action aL , and the joint
internal action b. In other words, the state transition at
the application layer depends on the states and internal
actions of all of the layers, which serve the application at
layer L. This is illustrated in Fig. 1, except that the states
and internal actions at the lower layers are abstracted by
the QoS values, which we discuss in Section II.F.

3) If the lth layer’s state is constant (i.e., |Sl | = 1),
then its state transition probability p(s′

l |sl , al) = 1.
On the other hand, if the lth layer’s external action is
non-adaptive (i.e., |Al | = 1), then its state transition
probability p(s′

l |sl, al) = p(s′
l |sl). This means that the

state transition is governed solely by the environment.

Illustrative examples of state transition probabilities are pro-
vided in Section III.

E. Reward Function and Layer Costs

Performing the external and internal actions at layer l
incurs the costs αl(sl , al) and βl(sl , bl), respectively. We define
example cost functions for each layer in Section III (e.g., the
power consumed at the HW layer and mean squared error at
the APP layer).

We assume that the expected reward for taking joint action
ξξξ in state s is a weighted sum of the costs at each layer plus
an additional gain (we define an example gain function in
Section III), i.e.,

R(s, ξξξ) = g(s,b) −
L∑

l=1

ωa
l αl(sl , al) −

L∑
l=1

ωb
l βl(sl , bl) (4)

where g(s, b) is the expected gain, and ωa
l and ωb

l weight
the external and internal costs at layer l, respectively. We
assume that the weights ωa

l and ωb
l are known and have been

determined based on the desired tradeoff among the various
layer costs. The reward in (4) can be separated into two parts:
one is the internal reward, which depends on the internal
actions, and the other is the external reward, which depends
on the external actions. The internal reward is

Rin(s, b) = g(s, b) −
L∑

l=1

ωb
l βl(sl , bl) (5)

and the external reward is

Rex(s, a) = −
L∑

l=1

ωa
l αl(sl , al). (6)

Hence, the total reward is R(s, ξξξ) = Rin(s, b) + Rex(s, a).
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F. Quality of Service

Definition: Quality of Service (QoS). The QoS at layer l is
defined as a pair Ql = (νl , ηl) comprised of 1) the amount of
reserved resources for the application layer, denoted by νl , and
2) the immediate cost for reserving those resources, denoted
by ηl .

The QoS serves as an abstraction of the states and internal
actions at the lower layers such that they do not have to
directly reveal their parameters and available configurations
to the upper layers. In this paper, νl is the effective service
rate in hertz reserved for the application layer (i.e., layer L)
and ηl = ∑

l′≤l βl′(sl′ , bl′) is the cumulative internal action
cost2 incurred by layers l ′ ∈ {1, . . . , l}. Importantly, the QoS
at layer l can be recursively computed given the QoS at layer
l − 1

Ql =
{

(Fνl
l (sl , bl, Ql−1), Fηl

l (sl , bl, Ql−1)), l = 2, . . . , L

(Fνl
l (sl , bl), Fηl

l (sl , bl)) l = 1

where Fνl
l and Fηl

l are functions, which map the state sl ,
internal action bl , and QoS Ql−1 to the service rate νl and cost
ηl , respectively. Because the QoS can be recursively computed,
at no point do the upper layers require specific information
about the state sets and internal action sets at the lower layers.
For notational simplicity, we will write the recursive QoS
function compactly as Ql = �Fl (sl , bl , Ql−1). In Sections III.A,
III.B, and III.C we define illustrative QoS pairs for the HW,
OS, and APP layers, respectively. These are also illustrated in
Fig. 1.

Given the QoS provided by the lower layers, we can rewrite
the Lth layer’s transition probability function p(s′

L |s, aL, b) in
(3) as

p(s′
L |s, aL , b) = p(s′

L |sL , aL, QL ) (7)

and its internal reward function Rin(s, b) in (5) as

Rin(s, b) = Rin(sL , QL ). (8)

In other words, there is a one-to-one correspondence
between the Lth layer’s QoS and the states s1→L−1 =
(s1, . . . , sL−1) and internal actions b1→L = (b1, . . . , bL).
Hence, the Lth layer’s QoS provides all of the information
required for the Lth layer to determine its transition probability
function and internal reward. The relationships in (7) and (8)
are required for the layered optimization solution proposed in
Section V.

G. Foresighted decision making

Unlike traditional cross-layer optimization, which focuses
on the myopic (i.e., immediate) utility, the goal in the proposed
cross-layer framework is to find the optimal actions at each

2We include the internal cost in the QoS because the APP layer’s immediate
reward and state transition depend on the internal actions at the lower layers.
Hence, when the application selects the optimal QoS level, it must consider the
costs incurred by these layers to ensure optimal performance across all layers.
In contrast, the external cost is determined by each individual layer when it
selects its external action, which does not impact the immediate reward at the
APP layer. Therefore, the external costs do not need to be included in the
QoS.

stage that maximize the expected discounted sum of future
rewards, i.e.,

E

{ ∞∑
n=n0

(γ )n−n0 R(sn, ξξξn |sn0)

}
(9)

where the parameter γ (0 ≤ γ < 1) is the “discount factor,”
which defines the relative importance of present and future
rewards, R(sn, ξξξn |sn0) is the reward at stage n conditioned on
the state at stage n0 being sn0 , and the expectation is taken over
the states {sn :n = n0+1, n0+2, . . .}. We refer to decisions that
maximize (9) as foresighted cross-layer decisions because, by
maximizing the cumulative discounted reward, the multimedia
system is able to take into account the impact of the current
actions on the future reward. In Section VI.B, we discuss
the impact of the discount factor on system’s performance.
In Section IV, we describe how to maximize (9) using a
centralized MDP. Then, in Section V, we present an alternative
solution to the same problem based on a layered MDP.

III. ILLUSTRATIVE EXAMPLE

In this section, we provide concrete examples of states,
internal and external actions, state transition probabilities, cost
functions, and QoS pairs. Our examples are organized by layer,
starting with the HW layer and working up to the APP layer.
Throughout the illustrative examples in this paper, we assume
that L = 3 and that the HW, OS, and APP layers correspond to
layers 1, 2, and 3, respectively. To facilitate understanding of
our examples, we will use the subscripts HW, OS, and APP,
instead of only specifying the layers by their indices.

We note that if a layer’s state is constant, then it has a
non-adaptive external action because there is nothing it can
to do adapt its constant state. We also assume that there is
no cost associated with a non-adaptive external action or a
non-adaptive internal action.

A. HW Layer Examples

We assume that the HW layer’s processor can be operated
at different frequency–voltage pairs to make energy–delay
tradeoffs [4].

HW state: In this example, the HW layer has a constant state
(i.e., |SHW| = 1).

HW actions: We let the HW layer’s internal action, bHW ∈
BHW, set the processor to one of X frequencies, i.e., BHW =
{ f1, . . . , fX }. We denote the frequency used for processing the
nth DU as f (n) = bn

HW. This is an internal action because it
determines the HW layer’s QoS, which is defined below.

HW state transition: Since the HW layer has only one state, it
has a deterministic state transition, i.e., p(s′

HW|sHW, aHW) = 1.

HW costs: The HW layer’s internal cost is the amount of
power required for it to run at frequency f = bHW. We define
the HW layer’s internal cost as [5]

βHW(sHW, aHW) = f 3. (10)

HW QoS: We define the QoS that the HW layer provides to
the OS layer as the pair QHW = (νHW, ηHW), where νHW = f
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is the CPU frequency and ηHW = βHW(sHW, aHW) is the HW
layer’s internal cost. The HW layer’s QoS is shown on the
right-hand side of Fig. 1.

B. OS Layer Examples

OS state: We denote the OS state by sOS ∈ SOS. We let
sn

OS = ε(n), where ε(n) ∈ (0, 1] is the CPU time fraction that
the OS reserves for encoding the nth DU (hence, 1 − ε(n) is
reserved for other applications). We assume that the OS can be
in any one of M states such that sOS ∈ SOS = {ε1, . . . , εM }.
OS actions: In this example, the OS has a non-adaptive
internal action (i.e., |BOS| = 1) because we assume that the
OS has no actions that impact the immediate reward (or,
by extension, the immediate QoS) at the APP layer. The
OS layer’s external action at stage n, however, impacts the
amount of resources reserved for the application in stage n+1.
We assume that the weighted max-min fairness (WMM) [7]
resource allocation strategy is used to divide processor time
among the competing applications. Hence, the OS layer’s
external action is a declaration of the application’s weight φ.
We assume that there are W possible external actions: i.e.,
aOS ∈ AOS = {φ1, . . . , φW }.
OS state transition: We model the OS state transition
as a finite-state Markov chain with transition probabilities
p(s′

OS|sOS, aOS), with sOS, s′
OS ∈ SOS and aOS ∈ AOS. This

is similar to the Markov model of the service provider in
[9]. If we assume that the weights of other applications are
unknown when the OS layer’s external action is selected,
then its state transition is non-deterministic; On the other
hand, if the weights of other tasks are known when the OS
layer’s external action is selected, then its state transition is
deterministic, because it can directly calculate its resource
allocation for each weight.

OS costs: We define the external cost associated with the OS
layer as the application’s weight, hence

αOS(sOS, bOS) = bOS = φ.

This cost prevents the application from requesting excessive
resources when it stands to gain very little additional reward
from them.

OS QoS: We define the QoS that the OS layer provides to the
APP layer as the pair QOS = (νOS, ηOS), where νOS = ε f ,
ε is the CPU time fraction allocated to the application, f is
the CPU frequency, and ηOS = ηHW because there are no
internal costs incurred at the OS layer. The OS layer’s QoS is
illustrated on the right-hand side of Fig. 1.

C. APP Layer Examples

APP state: The APP layer’s state at time index n, sn
APP, is

equivalent to the number of DUs ρ(n) ∈ [0, ρmax
]
, ρmax ∈ N

in its post-encoding buffer. The post-encoding buffer is placed
between the encoder and the network (if the encoded video is
to be streamed), or between the encoder and a storage device
(if the encoded video is to be stored for later use). The buffer
allows us to mitigate hard real-time deadlines by introducing

a maximum allowable latency, which is proportional to the
maximum buffer size ρmax. In [10], a similar buffer is used
at the decoder for decoding video frames with high peak
complexity requirements in real-time.

Although one goal of our illustrative cross-layer optimiza-
tion problem is to minimize costs (e.g., power consumption at
the HW layer), a competing goal is to avoid buffer underflow
(caused by DUs missing their delay deadlines) and to avoid
buffer overflow (caused by DUs being encoded too quickly)
[10], [11]. Hence, the goal of the cross-layer optimization is
for all layers to cooperatively adapt in order to achieve the
optimal balance between the costs incurred at each layer and
the buffer occupancy. We note that an alternative buffer model
(referred to as a service queue model) is presented in [9].

APP actions: We assume that the APP layer has a non-
adaptive internal action (i.e., |BAPP| = 1) but that it has
external actions aAPP ∈ AAPP.3 In a typical video encoder,
for example, application configurations can include the choice
of quantization parameter, the motion vector search range, etc.
The application’s configuration affects the nth DUs encoding
complexity c(n, aAPP), which is an instance of the random
variable C with distribution

C ∼ paAPP(c) = p(c|aAPP) (11)

APP state transition: We define the actual post-encoding
buffer occupancy recursively as

ρ(n + 1) = min{max{ρ(n) + 1

− 	t (n, sOS, aAPP, b) · v
, 0}, ρmax}
ρ(0) = ρinitial (12)

where

t (n, sOS, aAPP, b) = c(n, aAPP)

ε(n) f (n)
(seconds) (13)

is the nth DUs processing delay, which depends on the
processor frequency f (n) and the fraction of time, sn

OS = ε(n),
allocated to the application at stage n. In (12), the 1 indicates
that DU(n) is added into the post-encoding buffer after the
processing delay t (n, sOS, aAPP, b); 	X
 takes the integer part
of X ; v is the average number of DUs that must be processed
per second (for example, if DUs are frames, then the service
rate required for real-time encoding is typically v = 30 frames
per second); and, ρinitial is the initial post-encoding buffer
occupancy, which we set to ρinitial = ρmax/2 so that we do
not initially bias the buffer toward overflow or underflow.

As described before, the DUs encoding complexity is a
random variable, which depends on the application’s external
action (i.e., encoding parameter selection). This causes uncer-
tainty in the buffer state transition. This state transition also
depends on the states and internal actions at the lower layers
(since they affect the CPU frequency f and the CPU time
fraction ε reserved for the application). Hence, the APP state

3We know from (3) that, unlike the other layers, the APP layer’s state
transition depends on its external and internal actions. For our application,
this makes the distinction between the two types of actions at the APP layer
largely inconsequential.
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transition probability is given by p(s′
APP|s, aAPP, b), which is

congruent with the first term on the right-hand side of (3).
Given the processor frequency f from the HW layer and

the time fraction ε from the OS layer, the nth DUs processing
delay t is an instance of the random variable T = C/ε f (s)
with distribution T ∼ paAPP(t) = ε f · paAPP(ε f · c). Finally, we
let T̃ = v ·T with distribution T̃ ∼ paAPP(t̃) = 1/v · paAPP(t/v).
Using T̃ , the APP state transition probability can be written
as

p(s′
APP = ρ′|s, aAPP, b)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

paAPP{t̃ ≥ ρ + 1}, ρ ∈ {0, . . . , ρmax}, ρ′= 0

paAPP{0 ≤ t̃ < 2}, ρ = ρ′ = ρmax

paAPP{ρ − ρ′ + 1 ≤ t̃

< ρ − ρ′ + 2}, otherwise
(14)

APP costs: We penalize the APPs external action by em-
ploying the Lagrangian cost measure used in the H.264/AVC
reference encoder for making rate-distortion optimal mode
decisions. Formally, we define this cost as

αAPP(sAPP, aAPP) = d(aAPP) + λrdr(aAPP) (15)

where d(aAPP) and r(aAPP) are the distortion (mean squared
error) and compression rate (bits/DU), respectively, incurred
by the application’s external action, and λrd ∈ [0,∞ ) is used
to weight the relative importance of the distortion d and the
rate r in the overall cost.

APP QoS: We define the QoS at the APP layer as the pair
QAPP = (νAPP, ηAPP), where νAPP = νOS and ηAPP = ηOS
because there are no internal costs incurred at the APP layer.
Hence, in this example, QAPP = QOS. The APP layer’s QoS
is illustrated on the right-hand side of Fig. 1.

D. The System Reward

Recall that the reward defined in (4) can be expressed
as R(s, ξξξ) = Rin(s, b) + Rex(s, a). Given the system state
s = (sHW, sOS, sAPP) and the joint action ξξξ = (a,b), where
a = (aHW, aOS, aAPP) and b = (bHW, bOS, bAPP), the internal
reward defined in (5) can be written as

Rin(s, b) = g(s, b) − ωb
HW βHW(sHW, aHW)︸ ︷︷ ︸

f 3

. (16)

In this paper, we define the expected gain g(s, b) as a
penalty for buffer underflow and buffer overflow. The gain is
a component of the reward that is designed to keep the buffer
state away from overflow and underflow. Formally, we define
the expected gain as

g(s, b) =
∑

s ′
APP∈S

g(sAPP, b, s′
APP)p(s′

APP|s, aAPP, b) (17)

where we let

g(sAPP, b, s′
APP) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩


, if � ≤ s′
APP≤ρmax−�

s′
APP

�

, if s′

APP < �

ρmax − s′
APP

�

, otherwise

(18)

with 
 > 0 and 0 ≤ � < ρmax/2. This is a good metric
to include in the reward because it is indicative of the quality
degradation experienced by the application when encoded DUs
are lost (due to buffer overflow) or when they miss their
deadlines (due to buffer underflow).

Lastly, the external reward defined in (6) can be written as

Rex(s, a) = −ωa
APP αAPP(sAPP, aAPP)︸ ︷︷ ︸

d+λrdr

− ωa
OS αOS(sOS, aOS)︸ ︷︷ ︸

φ

.

(19)

IV. CENTRALIZED CROSS-LAYER OPTIMIZATION

Some existing cross-layer optimization frameworks for sys-
tems [7], [8], [12] assume that there is a centralized coor-
dinator to determine the actions taken by each layer. This
coordinator usually resides at the OS layer or a middleware
layer.

In this section, we describe how to maximize (9) using a
centralized MDP. Then, in Section V, we present an alternative
solution to the same problem based on a layered MDP.

A. Centralized Foresighted Decision Making Using a Markov
Decision Process

We model the foresighted centralized cross-layer optimiza-
tion problem as an MDP with the objective of maximizing the
discounted sum of future rewards defined in (9). In this way,
we are able to consider the impact of the current actions on
the future rewards in a rigorous and systematic manner. An
MDP is defined as follows.

Definition: Markov decision process (MDP). An MDP is a
tuple (S,X , p, R, γ ) where S is the joint state-space, X is
the joint action-space, p is a transition probability function
p:S×X ×S �→ [0, 1], R is a reward function R:S×X �→ R,
and γ is a discount factor.

In the context of our layered system architecture, S =
×L

l=1Sl , X = ×L
l=1Xl , the transition probability is given

by (3), and the reward is given by (4). The solutions to the
centralized MDP described below and the layered solution
described in Section V are implemented offline, prior to the
execution of the application. Additionally, the two solutions
assume that S, X , p, and R are all known a priori and that
they do not change during the execution of the application.
In Section VI.C, we discuss the impact of an inaccurate
probability transition model p on the system’s performance.

In this paper, the goal of the MDP is to find a Markov
policy π , which maximizes the discounted sum of future
rewards. A Markov policy π ∈ � is a mapping from a state to
an action, i.e., π :S �→ X . � is the Markov policy space. The
policy can be decomposed into external and internal policies,
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i.e., πa :S �→ A and πb:S �→ B, respectively, and further
decomposed into layered external and internal policies, i.e.,
πa

l :S �→ Al and πb
l :S �→ Bl , respectively. We assume that

the Markov policy is stationary; hence the mapping of state
to action does not depend on the stage index n.

A commonly used metric for evaluating a policy π is the
state-value function V π [2], where

V π(s) = R(s, π(s))︸ ︷︷ ︸
current expected reward

+ γ
∑
s ′∈S

p(s′|s, π(s))V π (s′)

︸ ︷︷ ︸
expected future rewards

.

(20)
In words, V π (s) is equal to the current expected reward plus

the expected future rewards, which is calculated by assuming
that the policy π is followed until stage n → ∞.

Our objective is to determine the optimal policy π∗ that
maximizes (20) for all s (or, equivalently, maximizes (9) for
all sn0). The optimal state-value function is defined as

V ∗(s) = max
π∈�

{
V π (s)

}
, ∀s ∈ S (21)

and the optimal policy π∗ is defined as

π∗(s) = arg max
π∈�

{
V π (s)

}
, ∀s ∈ S. (22)

The optimal value function V ∗ and the corresponding opti-
mal policy π∗ can be iteratively computed using a technique
called value iteration (VI) [2] as follows:

V ∗
k (s) = max

ξ∈X

{
R(s, ξξξ) + γ

∑
s ′∈S

p(s′|s, ξξξ)V ∗
k−1(s

′)
}

(23)

where k is the iteration number and V ∗
0 (s) is an arbitrary initial

estimate of the state-value function. The optimal stationary
policy π∗ defined in (22) is obtained by iterating until k → ∞.
In practice, VI requires only a few iterations before converging
to a near optimal state-value function and policy. Importantly,
V ∗ and π∗ are computed offline; then, at run time, all that is
required to perform optimally is to follow the optimal state-to-
action mappings π∗ stored in a simple lookup table of size |S|.

B. Centralized Cross-Layer System

The centralized foresighted framework introduced in the
previous section requires each layer to convey the following
information tuples to the centralized optimizer

Il =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈SL ,XL , p(s′
L |, s, aL , b), αL (sL , aL), βL(sL , bL)

〉
,

for layer L〈Sl ,Xl , p(s′
l |, sl , al), αl (sl , al), βl(sl , bl)

〉
,

for layers l < L .

Fig. 2 summarizes the centralized foresighted cross-layer
framework.

There are several limitations to this centralized framework,
which we have already described in the introduction (Sec-
tion I). In summary, these limitations stem from steps 1 and 2
of the procedure described above because these steps require
the layers to expose their parameters and algorithms, and to
relinquish their decision-making processes, to a centralized
entity, thereby violating the layered system architecture.

Fig. 2. Centralized cross-layer system optimization framework. The portions
of the figure that are in bold comprise the centralized information exchange
process. If the dynamics are stationary, then steps 1 and 2 only need to happen
once.

Fig. 3. Layered cross-layer system optimization framework with message
exchanges.

V. LAYERED OPTIMIZATION

To overcome the shortcomings of the centralized solution,
we propose a layered optimization framework for maximizing
the same objective function [i.e., the discounted sum of future
rewards in (9)]. The proposed layered framework allows layers
to make optimal autonomous decisions with only a small
overhead for exchanging messages between them. Importantly,
the format of these messages is independent of the parameters,
configurations, and algorithms at each layer, which makes the
framework adaptable to different applications, operating sys-
tems, and hardware architectures. Fig. 3 illustrates the layered
framework. The flow of information in Fig. 3 is the same as
in Fig. 2 except that steps 1 and 2 are replaced by the layered
optimizer, which we describe in detail in Section V.B, and the
states and internal actions at the lower layers determine the
QoS to the upper layers as we described in Section II.F.

A. Layered MDP for Cross-Layer Decision Making

Definition: Layered MDP [3]. The layered MDP
model is defined by the tuple 〈L,S,X , {�l,l+1}L−1

l=1 ,
{�l,l−1}L

l=2, p, R, γ 〉, where L = {1, . . . , L} is a set of
L layers; S is a finite set of states with elements s =
(s1, . . . , sL) ∈ S; X is a finite action space with elements
ξξξ = (ξ1, . . . , ξL ) ∈ X , where ξl = (al, bl) contains the lth
layer’s external action al and internal action bl ; �l,l+1 is a set
of “upward messages,” which layer l can send to layer l + 1
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Fig. 4. Layered VI with upward and downward messages. (a) During an
initial QoS generation period, upward messages are used to tell the application
layer which QoS levels are supported in each system state. The set of QoS
levels at layer L is required to perform layered VI. (b) Downward messages
are generated in every iteration of the layered VI algorithm.

(l ∈ {1, . . . , L − 1}), and θl,l+1 ∈ �l,l+1 is one such message;
�l,l−1 is a set of “downward messages,” which layer l can
send to layer l − 1 (l ∈ {2, . . . , L}), and θl,l−1 ∈ �l,l−1
is one such message; p is a transition probability function
p:S×X ×S �→ [0, 1]; R is a reward function R:S×X �→ R;
and γ is the discount factor.

B. Layered Value Iteration

In this section, we describe the proposed offline algorithm
for evaluating the optimal state-value function V ∗ [see (21)]
and the corresponding optimal policy π∗ [see (22)] without a
centralized optimizer. This is done using an algorithm called
layered value iteration (layered VI) [3], which is illustrated
in Fig. 4.

Before layered VI can be performed, layer L needs to know
which QoS levels are supported by the lower layers for all
system states s ∈ S. This is achieved through a message
exchange process in which upward messages θl,l+1 ∈ �l,l+1
are sent from layer l to layer l+1 for all l ∈ {1, . . . , L−1}. The
contents of these upward messages are QoS sets defined as

Ql(s) = {Ql |Ql = �Fl (sl , bl , Ql−1), . . . , Q1

= �F1(s1, b1),∀bl ∈ Bl , . . . ,∀b1 ∈ B1}, ∀s ∈ S

V ∗
k (s) = max

a1→L ∈A1→L ,
QL ∈QL (s)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Rin(sL , QL −
L∑

l=1

wa
l αl(sl , al)

+γ
∑

s ′
1→L∈S1→L

L−1∏
l=1

p(s′
l |sl , al)p(s′

L |sL , aL, QL )V ∗
k−1(s

′)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(25)

V ∗
k (s) = max

a1→L−1∈A1→L−1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
L−1∑
l=1

ωa
l αl(sl , al)

+
∑

s ′
1→L−1∈S1→L−1

L−1∏
l=1

p(s′
l |sl , al) max

aL ∈AL ,
QL ∈QL

⎧⎨
⎩

Rin(sL , QL) − ωa
LαL(sL , aL)

+ γ
∑

s ′
L∈SL

p(s′
L |sL, aL , QL)V ∗

k−1(s
′)

⎫⎬
⎭

︸ ︷︷ ︸
Sub-value iteration at layer L

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(26)

where the QoS Ql and the QoS mapping function
�Fl(sl , bl , Ql−1) are defined in Section II.F. Fig. 4(a) illus-

trates the QoS generation period that immediately precedes
layered VI. During this period, each layer l ∈ {1, . . . , L − 1},
starting from layer l = 1, generates its QoS set for all s ∈ S
and sends its upward messages θl,l+1 = {Ql(s)} to layer l + 1
(e.g., the HW layer tells the OS layer its available frequency
and power combinations). We let the notation {Ql(s)} denote
the set of QoS values for all s ∈ S. After the Lth layer’s set
of QoS levels QL(s) is generated, the layered VI algorithm
illustrated in Fig. 4(b) begins.

We derive the layered VI algorithm by substituting the
factored transition probability function and the factored re-
ward function defined in (3) and (4), respectively, into the
centralized VI algorithm defined in (23): i.e.,

V ∗
k (s) = max

ξξξ∈X

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g(s, b) −
L∑

l=1

ωa
l αl(sl , al) −

L∑
l=1

ωb
l βl(sl , bl)

+γ
∑
s′∈S

p(s′
L |s, aL, b)

L−1∏
l=1

p(s′
l |sl , al)V ∗

k−1(s
′)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

(24)
Recall from (7) and (8) in Section II.F that the internal
reward and the transition probability function at layer L can
be expressed using the QoS from the lower layers, which
is known by layer L because of the upward messages. The
QoS-based expressions allow us to change the optimization
variables in (24) from the joint actions ξ ∈ X to a ∈ A
and QL ∈ QL(s). Hence, we can rewrite (24) as (25), where
we have written the next-state vector s′ ∈ S as s′

1→L =
(s′

1, . . . , s′
L) ∈ S1→L and the joint external action vector a ∈ A

as a1→L= (a1, . . . , aL) ∈ A1→L .
We observe that Rin(sL , QL) − ωa

LαL(sL , aL) is in-
dependent of the next-states s′

1→L−1 ∈ S1→L−1 and
that

∑
s ′

1→L−1∈S1→L−1

∏L−1
l=1 p(s′

l |sl , al) = 1, therefore, we can
move Rin(sL , QL ) − ωa

LαL(sL , aL) into the product term as
shown in (26), where we have also moved the maximization
over the external action set and QoS set at layer L inside
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the product term because the other terms are independent of
these parameters. The right-hand term of (26) is the sub-value
iteration (sub-VI) at layer L, the result of which we denote
by V ∗

k−1(s
′
1→L−1) for all s′

1→L−1 ∈ S1→L−1.

Sub-value iteration at layer L:

V ∗
k−1(s

′
1→L−1) = max

aL ∈AL ,
QL ∈QL

⎧⎨
⎩

Rin(sL , QL ) − ωa
LαL (sL , aL)

+γ
∑

s ′
L∈SL

p(s′
L |sL , aL, QL )V ∗

k−1(s
′)

⎫⎬
⎭.

(27)
The sub-VI at layer L determines the optimal internal actions
at every layer (by selecting the optimal QoS). The external
actions, however, are determined by each individual layer
based on local models of their dynamics (i.e., transition
probability functions and reward functions).

We observe that −ωa
l αl (sl , al) is independent of the

next states s′
1→l−1 ∈ S1→l−1 and that

∑
(s′1→l−1)∈S1→l−1∏l−1

l=1 p(s′
l |sl, al) = 1. Hence, similar to how we obtained (27)

from (25), the sub-VI at layers l = 2, . . . , L − 1 for all
s′

1→l−1 ∈ S1→l−1 can be performed as follows.

Sub-value iteration at layer l = 2, . . . , L − 1:

V ∗
k−1(s

′
1→l−1) = max

al∈Al

⎧⎨
⎩

−ωa
l αl(sl , al)

+γ
∑

s ′
l∈Sl

p(s′
l |sl , al)V ∗

k−1(s
′
1→l)

⎫⎬
⎭
(28)

where V ∗
k−1(s

′
1→l) (on the right-hand side) is the result of the

sub-VI at layer l + 1 for all s′
1→l ∈ S1→l , which is sent as a

downward message from layer l + 1 to layer l, i.e., θl+1,l ={
V ∗

k−1(s
′
1→l)

}
.

Finally, the sub-VI at layer l = 1 is performed as follows.

Sub-value iteration at layer 1:

V ∗
k (s) = max

a1∈A1

⎧⎨
⎩−ωa

1α1(s1, a1) + γ
∑

s ′
1∈S1

p(s′
1|s1, a1)V ∗

k−1(s
′
1)

⎫⎬
⎭

(29)
where θ2,1 = {V ∗

k−1(s
′
1)
}

and V ∗
k (s) becomes the input to the

sub-VI at layer L during iteration k + 1.
We note that performing L sub-VIs (i.e., one for each

layer) during one iteration of layered VI is equivalent to one
iteration of centralized VI. After performing layered VI, we
obtain the state-value function V ∗

k , which will converge to the
optimal state-value function V ∗ as k → ∞. Subsequently, the
optimal layered external and internal policies (i.e., πa∗

l and
πb∗

l , respectively) can be found using (22), and can be stored
in a lookup table at each layer to determine the optimal state-
to-action mappings at run time.

C. Complexity of Layered Value Iteration

It is well known that one iteration of the centralized VI algo-
rithm has complexity O(|S|2|X |). In our layered setting, S =
×L

l=1Sl is the state set and X = ×L
l=1Xl = ×L

l=1(Al × Bl)
is the action set, which is comprised of external and internal
action sets at each layer. Based on these definitions, |S| =∏L

l=1 |Sl | and |X | =∏L
l=1 |Xl | =∏L

l=1 (|Al | × |Bl |).

In order to evaluate the complexity of the layered-value
iteration procedure, we must first look at the complexity of
each sub-VI.

The sub-VI at layer L defined in (27) has complexity

CompL = O

(
|S||SL |

L−1∏
l′=1

|Sl′ ||AL ||QL |
)

= O

⎛
⎜⎜⎜⎜⎜⎝|S|2|AL |

|QL |︷ ︸︸ ︷
L−1∏
l′=1

|Bl′ |

⎞
⎟⎟⎟⎟⎟⎠ . (30)

The sub-VIs at layers l ∈ {2, . . . , L − 1} defined in (28) have
complexity

Compl = O

(
|S||Sl |

l−1∏
l′=1

|Sl′ ||Al |
)

. (31)

Finally, the sub-VI at layer 1 defined in (29) has complexity

Comp1 = O(|S||S1||A1|). (32)

Hence, the total complexity of one iteration of the layered VI
algorithm can be expressed as

Comp =
L∑

l=1

Compl . (33)

We compare the centralized VI and layered VI complexities
in Table I assuming that states and actions are as defined in
Table II.

VI. RESULTS

In this section, we test the performance of the proposed
framework using the illustrative cross-layer system described
in Section III. Table II details the parameters used at each layer
in our simulator, which we implemented in MATLAB. In our
simulations, we use actual video encoder trace data, which
we obtained by profiling the H.264 JM Reference Encoder
(version 13.2) on a Dell Pentium IV computer. Our traces
comprise measurements of the encoded bit rate (bits/MB),
reconstructed distortion (MSE), and encoding complexity (cy-
cles) for each video MB of the Foreman sequence (30 Hz, CIF
resolution, quantization parameter 24) under three different en-
coding configurations. We let one DU comprise 11 aggregated
MBs, and we let each simulation comprise encoding 20 000
such DUs. Since real-time encoding is not possible with the
selected encoding parameters, we set the buffer drain rate to
v = 32/11 (DUs/s).

We note that the illustrative results presented here depend
heavily on the simulation parameters defined in Table II.
Nevertheless, our most important observations are about the
fundamental properties of the proposed framework, which are
independent of the chosen example.
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TABLE I

COMPLEXITY OF CENTRALIZED VALUE ITERATION AND LAYERED VALUE ITERATION

Layer No. states No. external actions No. internal actions
1 (Hardware) 1 1 3
2 (Operating system) 3 2 1
3 (Application) 29 3 1

Centralized VI
complexity

O

(
|S|2|X |︸ ︷︷ ︸

(29·3)2 ·(3·3·2)

)
= 136242

Layered VI complexity
O

⎛
⎜⎝|S||S1||A1|︸ ︷︷ ︸

(29·3)·1·1

⎞
⎟⎠+ O

⎛
⎜⎝|S||S2||S1||A2 |︸ ︷︷ ︸

(29·3)·3·1·2

⎞
⎟⎠+ O

⎛
⎜⎜⎜⎜⎜⎜⎝|S|2|A3|

|Q3 |︷ ︸︸ ︷
2∏

l′=1

|Bl′ |
︸ ︷︷ ︸

(29·3)2·3·3·1

⎞
⎟⎟⎟⎟⎟⎟⎠ = 87 + 522 + 68121

= 68730

TABLE II

SIMULATION PARAMETERS USED FOR EACH LAYER

Layer Parameter Value
Buffer state SAPP = {0, . . . , ρmax}, ρmax = 28 (DUs)

Parameter configuration AAPP = {1, 2, 3}
aAPP = 1: Quarter-pel MV, 8 × 8 block ME

aAPP = 2: Full-pel MV, 8 × 8 block ME
aAPP = 3: Full-pel MV, 16 × 16 block ME

Application layer (APP) Gain parameters 
 = 40, � = 4
External cost weight ωa

APP = 1
Rate-distortion Lagrangian λrd = 1/128

Buffer drain rate v = 32/11 (DUs/s)
DU size 11 Macroblocks

Resource allocation state SOS = {0.80, 0.55, 0.35}
Operating system layer (OS) Resource allocation weight AOS = {1, 3}

External cost weight ωa
OS = 1

State Constant
Hardware layer (HW) Processor frequency actions AHW = {200, 600, 1000} MHz

Internal cost weight ωb
HW = 9 × 10−27
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Fig. 5. State-value function obtained from centralized VI and layered VI
(γ = 0.9).

A. Equivalence of Centralized and Layered Value Iteration

Fig. 5 illustrates the state-value function obtained using
layered and centralized VI with a discount factor of γ = 0.9.
Both VI algorithms yield the same state-value function, so we
only show one state-value function here.

B. Impact of the Discount Factor

The discount factor γ impacts the average system perfor-
mance and also the number of iterations required for the
centralized and layered VI algorithms to converge. Table III
illustrates the impact of the discount factor on the average
reward [defined as the sum of (16) and (19)] achieved over
five simulations of the centralized system and five simulations
of the layered system. (Because the reward is very abstract, in
Section VI.E we provide more detailed simulation results in
a variety of simulation scenarios.) As expected, the results
in Table III show that the centralized system and the layered
system perform nearly identically. The small differences in
the actual measured performance are due to random dynamics
over the finite simulations (i.e., random resource allocations
at the OS layer). We also observe that larger values of the
discount factor improve the system’s performance; however,
larger values also increase the number of iterations (centralized
or layered) required to find the optimal foresighted decision
policy.

C. Impact of Model Inaccuracy on the System’s Performance

Using the centralized MDP or the layered MDP requires
good prediction of future events in order to predict the future
performance of the system. In this paper, we have assumed:
1) we know the expected reward for every possible state
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TABLE III

IMPACT OF THE DISCOUNT FACTOR ON THE AVERAGE SYSTEM REWARD

Discount Number Avg. Avg.
Factor of reward reward

(γ ) iterations (centralized) (layered)
0.00 2 1.67 1.35
0.15 15 1.66 1.76
0.30 23 6.24 6.50
0.45 33 16.95 16.97
0.60 51 17.63 17.60
0.75 87 17.83 17.78
0.90 227 17.93 17.92

and action; 2) the probability transition functions can be
characterized by stationary controlled Markov chains; and (iii)
the stochastic matrices describing the probability transitions
are known perfectly such that the optimal policy to the MDP
can be computed offline. If we relax these assumptions, it
becomes necessary to analyze the effect of model inaccuracy
on the overall performance. In the following analysis, we
assume that model inaccuracy is due to the fact that the
system’s dynamics are not actually stationary and Markov.

If the state transitions in the system are not truly station-
ary and Markov, then the expected reward predicted by the
stationary Markov model will differ from the average reward
that is actually achieved. We can quantify this model error as
follows. We let μπ(s) denote the steady-state probability of
being in state s when following policy π . Using μπ(s), we
can compute the expected rewards that should be achieved if
the system’s dynamics are truly stationary and Markov

R̄π =
∑
s∈S

μπ(s)R(s, π(s)). (34)

Now, consider an N-stage simulation of the system
(N � 0), which traverses the sequence of states s0, s1, . . . , sN

when following policy π . The average reward obtained over
this simulation can be written as

R̄π(N) = 1

N

N−1∑
n=0

R(sn, π(sn)). (35)

The absolute difference between the expected rewards and
the N-stage average reward, |R̄π − R̄π (N)|, indicates how
accurate the stationary Markov model is for the actual system.
Large values of |R̄π − R̄π (N)| indicate that the stationary
Markov model is inaccurate.

Consider the following example in which we measure the
impact of the model’s inaccuracy on the system’s performance.
Fig. 6 illustrates the actual encoding complexity trace (for
a fixed action) and the corresponding trace generated by a
stationary model of the complexity trace. Clearly, the actual
encoding complexity is not perfectly represented by the sta-
tionary model defined in (11). Because the actual complexity
traffic is not stationary, the buffer transition model in (14)
is not accurately represented as a stationary Markov chain.
Nevertheless, the data in Table IV shows us that the predicted
reward (based on the stationary Markov model of the buffer)
does not differ significantly from the actual reward that is
achieved when simulating the system over N = 20 000 stages.

TABLE IV

SIMULATED (N = 20 000 STAGES) VERSUS PREDICTED REWARD, PSNR,

POWER, AND RESOURCE ALLOCATION COST

Avg. Avg. Avg. Avg.
reward PSNR power rsrc. alloc.

(dB) (W) cost
Simulated 17.93 38.35 2.90 2.69
Predicted 18.91 38.40 2.44 2.98

Prediction error 0.98 0.05 0.46 0.29
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Fig. 6. Actual complexity trace (top) vs. trace generated by a stationary
model (bottom). The stationary model’s parameters are trained based on the
actual complexity trace.

D. Myopic and Foresighted Simulation Trace Comparison

Fig. 7 shows the detailed simulation traces of the APP
actions, OS actions, HW actions, APP states, and OS states
over time when a myopic decision policy is used (γ = 0)
and when a foresighted decision policy is used (γ = 0.9).
From these traces, it is clear why the myopic decision policy
performs worse than the foresighted policy. We note that these
traces are representative of the simulations with rewards shown
in the first and the last row of Table III.

First, under the myopic policy, the application receives
a smaller CPU time fraction on average. This is because
the immediate reward is always maximized when the OS
selects the lower resource allocation weight (i.e., φ = 1);
therefore, the OS layer will never use a higher weight to
reserve increased CPU time in the future. Meanwhile, the
foresighted policy is able to see that it is less costly to request
a higher future CPU time fraction than it is to immediately
increase the processor frequency.

Second, because the application receives a low fraction of
the CPU time on average, the myopic policy selects the least
complex, lowest quality action (i.e., aAPP = 3) and the highest
processor speed (i.e., f = 1000 MHz) much more frequently
than in the foresighted case. In addition, despite reducing the
encoding complexity and boosting the processor speed, the
APP buffer repeatedly underflows. All of these factors result
in the myopic policy incurring excessive costs compared to
the foresighted policy.
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Fig. 7. Simulation traces from stage 1200 to 1400. (a) Simulation with
myopic cross-layer optimization (γ = 0). (b) Simulation with foresighted
cross-layer optimization (γ = 0.9).

Fig. 8. Comparison of the performance of different system configurations.

E. Performance of Simplifications of the Proposed Framework

In Fig. 8, we illustrate the scalability of the proposed cross-
layer framework by comparing the performance of the full
cross-layer design to several simplified system configurations,
which are similar to those that have been proposed in prior
research. In this way, we also show that our proposed frame-
work is a superset of existing work. Detailed information about
the average peak-signal-to-noise ratio (PSNR in dB), average
power consumption, average resource allocation cost, and the
average number of buffer overflows and underflows for each
bar in Fig. 8 is shown in Table V.

In the following paragraphs we describe each system con-
figuration used to obtain the results in Fig. 8 and Table V.
For each of these configurations, the cross-layer system’s
parameters are defined as in Table II except where specified.

Configuration 1: ALL-adapt. Similar to [7], [8], every
layer can adapt its action. As expected, this configuration
achieves the highest reward out of all configurations when
using a foresighted decision policy. Its myopic performance,
however, is worse than several of the other configurations,
which have the HW action fixed at f = 1000 MHz. This
initially seems counterintuitive because we would expect it
to perform better given that it has more options available;
however, this is true only if the best decisions are made given
the additional options, which is not the case with the myopic
policy. Instead, the myopic policy frequently selects the lowest
processor frequency in order to save on the immediate power
costs; consequently, it is forced to aggressively encode at the
highest processor frequency to avoid continually underflowing
the application buffer. Due to the convexity of the power–
frequency function (i.e., the HW internal cost), the average
power consumed is higher than if it had just used the middle
processor frequency more frequently (like the foresighted
policy chooses to do).

Configuration 2: OS-APP-adapt. Under this configuration,
the OS and APP layers can adapt their actions, but the
HW layer’s action is fixed at f = 1000 MHz. We observe
from Fig. 8 that this configuration’s myopic policy performs
nearly as good as its foresighted policy. This is because
the fixed high processor frequency provides the application
with enough resources to meet most of its delay constraints
(i.e., avoid buffer underflows). This configuration’s foresighted
performance, however, is worse than that of the ALL-adapt
configuration because a lot of power is wasted by using
the high processor frequency throughout the duration of the
simulation.

Configuration 3: HW-APP-adapt. Similar to [5], [6], the
HW and APP layers can adapt their actions, but the OS
layer’s action is fixed at φ = 1. The foresighted performance
of this configuration is better than the myopic performance
of the ALL-adapt configuration, even though both configu-
rations have a static resource allocation weight at the OS
layer (i.e., φ = 1). This is because the foresighted policies
modestly increase the processor’s frequency and reduce the
APP complexity before the buffer underflows. Meanwhile, the
foresighted performance of this configuration is worse than
that of the ALL-adapt configuration because it must use higher
processor speeds (and therefore more power) to compensate
for having a lower fraction of the CPU time on average.

Configuration 4: HW-OS-adapt.. Under this configuration,
the HW and OS layers can adapt their actions, but the APP
layer’s action is fixed at aAPP = 2. This configuration’s myopic
policy frequently selects the lowest processor frequency in
order to save on the immediate power costs. This causes
a huge number of buffer overflows, which severely degrade
its performance. We note that this configuration’s foresighted
performance is better than that of the HW-APP-adapt and
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TABLE V

DETAILED SIMULATION RESULTS FOR EACH CONFIGURATION. IN EACH COLUMN OF THE TABLE, THE VALUE OBTAINED IN THE FORESIGHTED CASE

IS ON THE LEFT AND THE VALUE OBTAINED IN THE MYOPIC CASE IS ON THE RIGHT

Avg. Avg. Avg. Resource Avg. Avg.
Configuration PSNR (dB) power (W) allocation Cost no. underflows no. overflows

ALL-adapt 38.35 31.27 2.90 3.67 2.69 1.00 0 5516 0 0
OS-APP-adapt 36.30 36.29 9.00 9.00 1.07 1.00 0 0 810 813
HW-APP-adapt 38.16 31.13 5.36 3.60 1.00 1.00 4 5467 0 0
HW-OS-adapt 38.10 28.14 3.95 2.00 2.42 1.00 6 12874 0 0

APP-adapt 36.31 36.29 9.00 9.00 1.00 1.00 0 0 800 803
OS-adapt 34.05 32.85 9.00 9.00 1.09 1.00 2 1323 2201 2069
HW-adapt 31.40 28.15 6.52 1.99 1.00 1.00 5359 12848 0 0

OS-APP-adapt configurations only because of the particular
cost-weights chosen for our simulations (i.e., ωa

l and ωb
l , ∀l ∈

{1, . . . , L}), which heavily penalize high CPU frequencies. In
other words, different cost-weights would change the relative
performance of the various configurations with two adaptive
layers.

Configuration 5: APP-adapt. The APP layer can adapt its
action, but the HW layer’s action is fixed at f = 1000 MHz
and the OS layer’s action is fixed at φ = 1. For the same reason
as in the OS-APP-adapt configuration, this configuration’s
myopic performance is nearly the same as its foresighted
performance.

Configuration 6: OS-adapt. Similar to [1], the OS layer can
adapt its action, but the HW layer’s action is fixed at f =
1000 MHz and the APP layer’s action is fixed at aAPP =
2. There are many overflows in this case because there are
more resources allocated to the encoder than it requires, which
results in DUs being encoded too quickly.

Configuration 7: HW-adapt. Similar to [9], the HW layer can
adapt its action, but the OS layer’s action is fixed at φ = 1
and the APP layer’s action is fixed at aAPP = 2.

We make two final observations regarding the above re-
sults. First, we note the HW-adapt and HW-OS-adapt, APP-
adapt and OS-APP-adapt, and the HW-APP-adapt and ALL-
adapt configuration pairs perform nearly the same way under
their respective myopic policies. This is because the OS
action is fixed under all myopic configurations (as we first
illustrated in Fig. 7). Second, we note that buffer overflows
can be avoided by increasing the size of the post-encoding
buffer or by increasing the range of actions available at
each layer.

VII. CONCLUSION

We have proposed a novel and general formulation of the
cross-layer decision-making problem in real-time multimedia
systems. In particular, we modeled the problem as a layered
Markov decision process, which enabled us to jointly opti-
mize each layer’s parameters, configurations, and algorithms
while maintaining a separation between the decision processes
and the design of each layer. Unlike existing work, which
focuses on myopically maximizing the immediate rewards, we
focus on foresighted cross-layer decisions. In our experimental
results, we verified that our layered solution achieves the

same performance as the centralized solution, which violates
the layered architecture. Additionally, we demonstrated that
our proposed framework can be interpreted as a superset
of existing suboptimal multimedia system designs with one
or more adaptive layers. Finally, we showed that dramatic
performance gains are achievable when using foresighted
optimization compared to myopic optimization.
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