
1000 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 7, JULY 2009

Statistical Framework for Video Decoding
Complexity Modeling and Prediction

Nikolaos Kontorinis, Student Member, IEEE, Yiannis Andreopoulos, Member, IEEE, and
Mihaela van der Schaar, Senior Member, IEEE

Abstract— Video decoding complexity modeling and prediction
is an increasingly important issue for efficient resource utilization
in a variety of applications, including task scheduling, receiver-
driven complexity shaping, and adaptive dynamic voltage scaling.
In this paper we present a novel view of this problem based
on a statistical framework perspective. We explore the statistical
structure (clustering) of the execution time required by each video
decoder module (entropy decoding, motion compensation, etc.) in
conjunction with complexity features that are easily extractable
at encoding time (representing the properties of each module’s
input source data). For this purpose, we employ Gaussian mixture
models (GMMs) and an expectation-maximization algorithm to
estimate the joint execution-time—feature probability density
function (PDF). A training set of typical video sequences is used
for this purpose in an offline estimation process. The obtained
GMM representation is used in conjunction with the complexity
features of new video sequences to predict the execution time
required for the decoding of these sequences. Several prediction
approaches are discussed and compared. The potential mismatch
between the training set and new video content is addressed
by adaptive online joint-PDF re-estimation. An experimental
comparison is performed to evaluate the different approaches and
compare the proposed prediction scheme with related resource
prediction schemes from the literature. The usefulness of the
proposed complexity-prediction approaches is demonstrated in
an application of rate-distortion-complexity optimized decoding.

Index Terms— Clustering methods, complexity modeling,
complexity prediction, parametric density estimation, prediction
theory, statistical analysis, video coding.

I. INTRODUCTION

THE PROLIFERATION of media-enabled portable
devices based on low-cost processors makes resource-

constrained video decoding an important area of research
[12]–[16]. In addition, modern state-of-the-art video coders

tend to be highly content-adaptive [11], [17] in order to
achieve the best compression performance. Therefore, they

Manuscript received October 16, 2006; revised January 23, 2008. First
version published April 7, 2009; current version published July 22, 2009.
This work was supported by the NSF (Grant NSF 0509522). N. Kontorinis
acknowledges the generous support of the Alexander S. Onassis Public Benefit
Foundation. This paper was recommended by Associate Editor Z. He.

N. Kontorinis and M. van der Schaar are with the Department of Electrical
Engineering, University of California, Los Angeles, CA, 90095-1594, USA
(e-mail: nkontor@ee.ucla.edu; mihaela@ee.ucla.edu).

Y. Andreopoulos was with the University of California, Los Angeles.
He is currently with the Department of Electronic and Electrical Engi-
neering, University College London, London, WC1E 7JE, U.K. (e-mail:
iandreop@ee.ucl.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2009.2020256

exhibit a highly variable complexity and rate profile [18].
This makes efficient resource prediction techniques for video
decoding a particularly important and challenging research
topic. As a result, several fine-grain multimedia adaptation
frameworks that combine with power-aware hardware
modules to optimize battery life under quality constraints
have been proposed [16], [19]. In order for the adaptation to
be efficient, much work has recently focused on the video
encoding and decoding complexity prediction [5]–[12], [14],
[18]–[20].

In this paper, following a statistical learning perspective,
we investigate the intrinsic relationship of the execution time
requirements of each decoding module with simple feature
variables representing the source and algorithm characteristics.
We term the per-module execution time as real complexity
metric (RCM) and try to establish whether it can be predicted
from feature variables easily obtainable during encoding time.
We demonstrate the usefulness of predicting module-specific
execution time in scalable video decoders with an application
that performs selective decoding of compressed content based
on complexity-distortion optimization.

Statistical and machine learning techniques have been
widely used in the image and video processing literature [1],
[2]. However, this paper presents the first systematic attempt
to bring these statistical tools in the emerging domain of video
decoding complexity analysis and complexity prediction (a
system overview is given in Section II). Our statistical point
of view in these problems is inspired by the intuition that
similar video sequences (in terms of content characteristics),
when decoded under similar conditions, should produce a
similar decoding complexity profile. The statistical analysis
of our experimental results (Sections III and IV) confirms
our expectation and furthermore provides useful insights into
properties of video decoding complexity. Using these insights
as well as domain-specific knowledge, we modify and properly
extend standard statistical methods and models for the prob-
lem of video decoding resource prediction (Sections V–VII).
Applications of decoder-driven bitstream shaping based on the
derived results are discussed (Section VIII).

II. SYSTEM OVERVIEW AND MODEL DESCRIPTION

The proposed system consists of two main blocks as seen in
Fig. 1: the joint probability density function (PDF) estimation
module for RCM complexity features, which operates during
the offline training; and the online complexity prediction
module. The adaptive PDF re-estimation is an optional

1051-8215/$26.00 © 2009 IEEE

KONTORINIS et al.: STATISTICAL FRAMEWORK FOR VIDEO DECODING COMPLEXITY MODELING AND PREDICTION 1001

Fig. 1. Proposed complexity-driven system architecture.

enhancement module that increases the system prediction
accuracy but also the overhead for online complexity
prediction.

We assume that there is a joint PDF characterizing the
statistical behavior of RCMs kn,G

cm (where cm is the RCM
type) and the complexity features bn,G

cm . For each video frame,
these features can be easily extracted based on the intra
frames, the motion-compensated difference frames, and the
motion vectors produced during encoding time, and can be
stored or transmitted along with the compressed bitstream
with minimal overhead [7]. Unlike the RCMs that depend on
the particular algorithm used to decode and reconstruct the
video data as well as on the implementation platform, these
features depend only on the source properties (frames and
motion vectors). The PDF estimation (Section III) provides
the prediction module with the model parameters (denoted
by �MG). When a more advanced model is used based on
Markov chains (Section V), the prediction module also utilizes
the model’s state transition probabilities. In this case, there is
also feedback from the decoder with the true values of RCMs
of previously decoded frames (kn−1,G

cm in Fig. 1) in order to
assess the prediction performance and recalibrate the model.
The prediction module is provided with the complexity feature
vector bn,G

cm for each unit to be decoded (e.g., a video frame
or a GOP) and, in conjunction with the PDF estimation that
was performed offline, attempts to predict the RCMs of these
units. When the adaptive PDF re-estimation module is present,
it adaptively predicts the RCMs using either the offline-trained
GMM model or the current sequence statistics (Section VI).
A resource management system can utilize the complexity
prediction for quality vs. energy tradeoffs [13], [16], or for
scheduling the execution in multiple threads/processors [8].

A. Module-Specific Execution Times as Real Complexity
Metrics

The decoding part of most modern video coders consists
of an entropy decoding module, an inverse-transform module,
a motion compensation module, and a pixel interpolation
module (for fractional-pixel motion compensation) [3], [5],
[11], [21]. In our recent work [6], [7], we identified an
associated “generic” cost metric for each module. In this paper
we are considering the execution time as the real complexity
metric of each module. Even though execution time measure-
ments are tied to a particular decoder platform, they capture
the “real” complexity of processing (decoding) a particular
compressed bitstream. Hence, they are relevant for a variety
of applications such as operating system task scheduling [13],

adaptive shaping of a compressed bitstream [7], dynamic
voltage scaling methods [19], scheduling in multiple proces-
sors [8], etc. In addition, even though we assume that training
can be performed based on a particular decoder of interest
and by using representative sequences, we remark that, during
online encoding, the required decoding execution time cannot
be measured in most application scenarios, since decoders run
on remote platforms.1

The module-specific breakdown of execution time is per-
formed by partitioning the decoding software into the follow-
ing modules: entropy decoding functions (ED_tics), inverse
transform function (IT_tics), motion compensation (MC_tics),
and fractional-pixel interpolation module (FI_tics).

For single-threaded single-processor execution, the
summation of the execution time for all modules participating
in the reconstruction of a video frame represents the decoding
complexity for the particular frame [9], [11], [12], [15]. All
remaining parts of the decoder cause negligible execution
time overhead in comparison to these modules. A resource
monitor can be implemented at the receiver, which measures
the processor cycles (“tics”) [22] required for the completion
of the operations performed by each module, in order for
them to be used during the training process. In this paper,
we follow the generic approach of assuming that the required
time for the processing of every frame by each module can be
measured in real time. The vast majority of general-purpose
processors or programmable digital signal processors have
built-in registers for this purpose [22]. This process is of very
low complexity and provides accurate measurements, which
can be straightforwardly converted to time measurements
based on the frequency of the underlying processor [22].
Moreover, minimal software instrumentation is required
and this can be done in a similar fashion for a variety of
underlying architectures and software implementations.

For each video frame n, with 1 ≤ n ≤ N and N the total
number of frames in our sample space, we define the following
complexity features:

1) the percentage of decoded nonzero transform coeffi-
cients pT (n);

2) the percentage of decoded nonzero motion vectors
pM (n) (out of the maximum possible motion vectors
per video frame);

3) the percentage of nonzero interpolated fractional-pixel
positions pI (n);

4) the sum of magnitudes of the non-zero coefficients
T nonzero(n);

5) the sum of the run lengths of zero coefficients Trunlen(n).
These features depend only on the input source data

(motion-compensated difference frames and motion vectors).
Hence they can be computed at encoding time and transmitted
to the decoder with the compressed bitstream [6], [7].

B. Model Variables and Notation

The elementary complexity that we model and predict in
this paper is the sum of the module-specific RCMs over the

1In video streaming applications, encoding is typically performed in a
powerful server workstation while decoding may occur in personal computers,
laptops, portable video players, cell-phones, etc.

1002 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 7, JULY 2009

same-type frames in a GOP. Following terminology used in
open-loop video coding [17], [21], our adaptation unit (AU)
will be each temporal level in every GOP. Notice that the
temporal levels can be seen as categories of frame types within
each GOP [21]. In our experiments, we have grouped together
temporal level 5 and 4 (corresponding to intra frames (I) and
uni-directionally predicted (P) frames, respectively) since they
consist of one frame per GOP. Temporal levels 1–3 correspond
to hierarchies of bi-directionally predicted (B) frames using
variable block-size motion estimation and compensation (sim-
ilar to the hierarchical B pictures of H.264/AVC [11], [21]).
Finally, temporal level 0 corresponds to the output (recon-
structed) video frames. Hence, the theory and methods of this
paper can be applied for complexity modeling in conventional
I-, P-, and hierarchical B-frames of hybrid coders [3], [21]
(e.g., in H.264/AVC [11]).

In order to segment all the available frames of each temporal
level (frame type) into uniquely identifiable subsets, we define
the parameter index set G = (R, tlev; SEQ, GOP). The
parameters R, tlev, SEQ, and GOP refer respectively to the
streaming bit rate, the temporal level, and the specific video
sequence and GOP-number within the video sequence that the
sample adaptation unit belongs to. Moreover, in our notation
we use the semicolon (;) to separate the leftmost parameters
that remain constant from the rightmost parameters that are
the indices to our sample subset.

For the adaptation unit n that is characterized by the
parameter index2 G = (R, tlev, SEQ, GOP), we denote the
numerical value of RCM cm (where cm∈{ED_tics, IT_tics,
MC_tics, FI_tics}) by kn,G

cm . Additionally, using the above
notation, let bn,G

cm denote the (s − 1)th dimensional3 feature
vector associated with the RCM cm of the AU n indexed by
the parameter index set G. Notice that the value for (s − 1)
as well as the identity of the relevant features to each RCM
varies and will be determined later with a pruning process. In
the most general case, if we consider all the (not evidently
correlated) features, we have

bn,G
cm =

[
pT (n) Tnonzero(n) Trunlen(n) pM (n) pI (n)

]
. (1)

By joining kn,G
cm and bn,G

cm , we define the s-dimensional
sample vector xn,G

cm = [kn,G
cm bn,G

cm]. Using the corresponding
Greek letters for random variables, we define the random vari-
able κG

cm for the RCM cm in the parameter set indexed by G,
the feature vector random variable βG

cm, and the vector random
variable χG

cm = [κG
cm βG

cm]. We will refer to χG
cm as a “target

complexity multivariable” and denote its s-dimensional joint
probability density function as Pcm(χG

cm). We will estimate
this joint density function using the training dataset X G

cm =
{x1

cm, x2
cm, . . . , xN

cm}, where N is the total number of AUs in
the parameter set G. Then, we will use this density estimate,
in conjunction with other statistical information, to predict the
RCMs from instantiations of the complexity features.

2When no semicolon is used, all the parameters are constant and the index
set reduces to a single index.

3Note that we use s − 1 dimensions to simplify notation, so that our target
variable has s dimensions.

C. Problem Description

In typical resource prediction problems we are concerned
with the mean absolute error. In this paper, however, we
use the least mean-square error (LMSE) criterion to quantify
the accuracy of the prediction. Optimal complexity predictors
in the LSME sense can be expressed analytically and also
require little computational effort during the online prediction.
Moreover, LSME-based predictors tend to produce individual
errors of smaller magnitude [23] by penalizing large errors
more heavily than e.g., the L1-norm criterion.

Let κ̂nonline,G
cm denote the estimator of the RCM value

knonline,G
cm of the sample set G that was used to train the

estimator. Here nonline denotes the current AU index inside
the video sequence that is being predicted. The minimization
problem we solve, according to the least mean square error
criterion, is

min
κ̂

nonline,G
cm

E

((
κ̂nonline,G

cm − knonline,G
cm

)2
)

(2)

where the expectation is over all the adaptation parameters
(e.g., temporal levels), all the AU indices (e.g., all the GOP),
and all the RCMs cm. The above problem assumes knowl-
edge of the joint RCM feature probability density functions
Pcm(χG

cm) defined in the previous section. To obtain Pcm(χG
cm)

from our training data, we need to address the probability
density estimation problem. As explained and justified next,
we employ a GMM for the PDF and use the EM algorithm to
perform parametric density estimation.

III. GAUSSIAN MIXTURE MODELING OF

RCMS—COMPLEXITY FEATURES OF JOINT PDFS

In this section we introduce the Gaussian mixture model
for the RCM complexity features statistical modeling. In
order to tie our statistical analysis with prediction results,
we next present our baseline prediction algorithm that is an
LMSE-optimal predictor naturally customized for the GMM
formulation. Indicative results for both the statistical properties
and the prediction performance are presented, and certain
interesting dimensions of decoding complexity are highlighted.

A. Gaussian Mixture Model for PDF Estimation of RCM
Complexity Features

For illustrational purposes, we display our approach for the
complexity of entropy decoding (i.e., RCM ED_tics) and using
our domain knowledge, we consider the three complexity
features that are intuitively more related to ED_tics. Thus,
our complexity target variable χG

cm =
[
κG

cm bG
cm

]
will be

χG
ED_tics =

[
κG

ED_tics T G
nonzero T G

runlen pG
T

]
for some sample set indexed by G. Of course, with the appro-
priate selection of features and modifications in the dimensions
of the variables and the model, the approach generalizes to any
subset of complexity features.

Let P̂ED_tics(χ
G
ED_tics) denote the density estimate of the

four-dimensional entropy decoding complexity target variable

χG
ED_tics =

[
κG

ED_tics T G
nonzero T G

runlen pG
T

]
.

KONTORINIS et al.: STATISTICAL FRAMEWORK FOR VIDEO DECODING COMPLEXITY MODELING AND PREDICTION 1003

The Gaussian mixture model assumes that the density estimate
can be written as a mixture of Gaussian components

P̂ED_tics

(
χG

ED_tics

)
=

MG∑
m=1

wG
ED_tics,mφG

θm

(
χG

ED_tics

)
(3)

where MG (number of components) is determined through
information-theoretic criteria as described in Section IV-B.
Here, φG

θm
(χG

ED_tics) denotes a 4-D Gaussian distribution
N (mG

ED_tics,m, CG
ED_tics,m) with parameters θm = (mG

ED_tics,m,

CG
ED_tics,m), where mG

ED_tics,m is the mean vector

mG
ED_tics,m =

[
μκG

ED_tics,m
μT G

nonzero,m
μT G

runlen,m
μpG

T ,m

]
(4)

and CG
ED_tics,m is the 4 × 4 positive definite (symmetric)

covariance matrix, compactly written as

CG
ED_tics,m =

⎡
⎢⎣ CG

κG
ED_tics,

m CG
κG

ED_ticsbG
ED_tics,

m

CG
bG

ED_ticsκ
G
ED_tics,

m CG
bG

ED_tics,
m

⎤
⎥⎦ (5)

where CG
κG

ED_tics,
m ,CG

κG
ED_ticsbG

cm,m , and CG
bG

cm,m are the RCM, RCM

feature, and the feature covariance matrices, respectively.
The parameters wG

ED_tics,m are the mixing (weight) coeffi-
cients, which denote the relative importance of each Gaussian
in the total distribution. They satisfy the normalization
condition

MG∑
m=1

wG
ED_tics,m = 1. (6)

For brevity, we will refer to each of the components as
Gaussian component θm and to a specific Gaussian mixture
with parameters {θm |1 ≤ m ≤ MG} as the mixture �MG .

Domain knowledge suggests that these features should be
highly correlated. To determine the extent of their inter-
dependence, we computed the cross-correlation of Tnonzero
and each of Trunlen and pT , for all the temporal levels of
nine representative video sequences and several decoding
bitrates. With the exception of the “Sailormen” sequence that
had weaker correlation coefficients ρTnonzeroTrunlen ≈ −0.9 and
ρTnonzero pT

≈ 0.85, all the rest of the sequences had coefficients
below −0.98 and above 0.97, respectively, which confirms
our intuition. The strong dependence of the three features
in our coder implementation indicates that using all of them
is redundant. Hence, we performed dimensionality reduction
of our sample space and kept only one of the three features
(Tnonzero) for our statistical analysis. Experiments with various
subsets of the features in a scalable coder [17] yielded no
tangible improvement in prediction results as compared to the
cases when only Tnonzero was used (we omit these experiments
here for brevity of description). Still, the more generic model
description is useful for other coding frameworks, where usage
of several features may lead to better prediction results.

B. Online Prediction Based on Complexity Features and
Offline Training

Let θ̂m, 1 ≤ m ≤ MG denote the mth Gaussian com-
ponent estimated through expectation maximization (EM)

in Section IV. The probability of a certain (s-dimensional)
RCM cm and its feature pair (κG

cm, βG
cm) given θ̂m is

P
(
κG

cm, βG
cm

∣∣ θ̂m

)
= 1

(2π)s/2
√∣∣CG

m

∣∣
× exp

⎡
⎣−1

2

([
κG

cm

(βG
cm)T

]
−

[
μκG

cm,m

(μβG
cm,m)T

])T

× (CG
m)−1

([
κG

cm

(βG
cm)T

]
−

[
μκG

cm,m

(μβG
cm,m)T

])]
.

(7)

The Gaussian form of the above joint conditional probability
yields analytic solutions for the optimal LMSE estimator [23],
which, given bn,g

cm and θ̂m , is

κ̂G
cm,m = E

[
κG

cm

∣∣ bn,g
cm , θ̂m

]
= μκG

cm,m + CG
κG

cmbG
cm,m

(
CG

bG
cm,m

)−1 (
bn,g

cm − μβG
cm,m

)
.

(8)

The last equation gives an explicit estimator for the instan-
tiation of each RCM cm using the available online complex-
ity feature vector bn,G

cm and the parameters of the Gaussian
component θ̂m . Since the parameter training is performed
offline, as described in Section III, the matrix inversion and
multiplication in (8) are pre-computed; thus only one matrix-
vector multiplication and vector subtraction are performed
online. Notice that the derived expectations of (8) are mixed
according to the mixing coefficients wG

m in (3), i.e., the
probability that θ̂m is responsible for χG

cm, prior to observing
bn,G

cm . The conditional expectation κ̂G
cm for the whole GMM

�MG given the observed complexity feature bn,G
cm is thus

κ̂G
cm =

MG∑
m=1

wG
m · κ̂G

cm,m (9)

which, given the derived estimators of (8) and the mixing
coefficients wG

m , is computationally inexpensive in comparison
to the complexity of video decoding. We remark that the online
model execution complexity was negligible in comparison to
the video decoding complexity (less that 2% in all cases).

C. Statistical Analysis of RCMs Using the Proposed Scheme
and Observations

Our proposal to predict complexity through offline PDF
training on the RCM feature space and LMSE prediction
using the current feature value is based on the assumption
that similar (in the complexity sense) sequences mostly lie
on the same regions of the RCM feature space. Thus, when
these regions do not overlap excessively across the feature
direction, features can efficiently discriminate and predict the
RCM values.

In the following figures and tables we show indicative
and motivating results from a representative set of standard
CIF test video sequences. The spatial domain version of the
video coder [17] used in our experiments encoded the first
256 frames of nine sequences: “Stefan,” “Silence,” “Sailor-
men,” “City,” “Raven,” “Football,” “Coastguard,” “Paris,”

1004 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 7, JULY 2009

FI_tics per pixel, rate=1536000,
tlev=2, rel_error=5.22%

IT_tics per pixel, rate=1536000,
tlev=5-4, rel_error=3.84%

ED_tics per pixel, rate=1536000,
tlev=5-4, rel_error=12.55%

MC_tics per pixel, rate=1536000,
tlev=2, rel_error=7.47%

0.4 0.5 0.6 0.7 0.8

5

10

15

20

25

pM(x100%)

(a) (b) (c) (d)

M
C

_t
ic

s
(p

ro
ce

ss
or

 ti
cs

)

0 0.25 0.5 0.75
0

2

4

6

8

10

12

14

pI(x100%)

FI
_t

ic
s

(p
ro

ce
ss

or
 ti

cs
)

5 5.2 5.4 5.6 5.8 6 6.2 6.4

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7

T
nonzerot

E
D

_t
ic

s
(p

ro
ce

ss
or

 ti
cs

)

5 5.2 5.4 5.6 5.8 6 6.2 6.4

1.5

1.6

1.7

1.8

1.9

2

T
nonzero

IT
_t

ic
s

stefan, silence, sailormen, city, raven, football, coastguard, paris, harbour

Fig. 2. Examples of GMM fittings and LMSE prediction results for (a) motion compensation, (b) fractional interpolation RCMs, (c) ED_tics, and (d) IT_tics.
Each experimental point corresponds to one GOP and the results are presented in average number of processor tics per pixel of each GOP.

and “Harbour” using multiframe variable blocksize motion-
compensated prediction and update steps within multiple
decomposition (temporal) levels. For each GOP, the total
number of temporal levels4 was set to four (i.e., three sets
of hierarchical B-frames and one P-frame). Each GOP had
16 frames. In all figures and tables, we show results from
prediction with GOP granularity (i.e., the sum of the RCMs
and features in each temporal level for each GOP were
calculated leading to Nseq = 16 points per sequence) and
prediction with temporal level granularity. The results are
normalized to indicate the average number of processor cycles
(“tics”) per pixel (computed across temporal levels and GOP).

We start by presenting an indicative example for the com-
plexity measurements of the motion compensation (using pM

as complexity feature) and the fractional-pixel interpolation
module (using pI as feature). For each case we present results
corresponding to an indicative temporal level (prediction hier-
archy). Apart from the data points, we also depict the fitted
Gaussian mixture model. Fig. 2(a)–(b) presents the related
results. The corresponding prediction results shown in the titles
are presented in more detail in Table I and will be discussed
separately.

The first thing to notice in Fig. 2(a)–(b) is the self-clustering
of most sequences’ GOP in the RCM complexity feature space.
We observed similar results across temporal levels and bitrates.
This “self-clustering” property will be further discussed and
exploited for increased complexity prediction accuracy in
Section V. There are, however, some notable exceptions,
such as the sports sequence “Football” and the sequence
“Raven” that have irregular motion of multiple objects and
also camera motion. Moreover, in the case of FI_tics, on top
of the self-clustering behavior we note a strong linearity in
the RCM complexity feature space, which could potentially
lead to a simpler model. Overall there also appears to be some
“cross-clustering” among different sequences that indicates the
similarity of sequences in a decoding complexity sense. For
instance, notice that GOP from “Paris” and “Silence” cluster

4In a four-temporal-level video coder, entropy decoding is performed in
levels 4 through 1 (nothing is transmitted for level 0—which corresponds to
the output frames of the reconstructed video sequence) and for the intra-frames
of the additional fifth level. Reconstructed frames via motion compensation are
created in levels 3 through 0 (no frames are created via motion compensation
in temporal level 4 and 5).

TABLE I

MEAN RELATIVE PREDICTION ERROR [PERCENTAGE—AS DEFINED

IN (10)] PER SEQUENCE FOR THE MOTION COMPENSATION AND

FRACTIONAL-PIXEL INTERPOLATION RCMS. THE MEAN PREDICTION

ERROR IS THE AVERAGE OF THE PREDICTION ERROR FOR EACH

TEMPORAL LEVEL OF EACH GOP OF EACH SEQUENCE

MC_tics FI_tics MC_tics FI_tics

Stefan 10.69 4.17 Football 6.09 3.21

Silence 37.84 16.43 Coastguard 11.21 7.74

Sailormen 22.46 3.23 Paris 38.62 25.17

City 13.95 2.94 Harbour 28.25 20.05

Raven 11.12 3.58

together and this behavior was consistent across most rates
and temporal levels. Although the cross-clustering is quite
weak in general compared to the self-clustering, it can play
a complementary role to the latter and enhance prediction
during changes in video content. We also remark that the
cases without clustering that are present in the results of
Fig. 2(a)–(b) will be handled based on techniques that improve
the prediction based on feedback from the decoder RCM
measurements (introduced in a later section).

In Table I we present the corresponding prediction errors by
predicting the measurements of the training set via the optimal
estimator of (8). The errors are calculated as the mean relative
error5 (in percentages) per temporal level of each GOP and
each sequence

mean_rel_err(tlev, GOP, SEQ) =
∑Nmax

n=1

∣∣∣kn,G
cm − k̂n,G

cm

∣∣∣∑Nmax
n=1 kn,G

cm

· 100%

(10)
where the index n is over all the GOP in that particular
temporal level (frame type) for one sequence and Nmax =
Nseq · 25−tlev based on the properties of temporal levels in the
coder used in our experiments [17]. The cases that exhibit
large prediction error will be handled with approaches based
on online measurement feedback, as explained later.

For the entropy decoding and the inverse transform RCMs,
i.e., ED_tics and IT_tics, we present an indicative example at

5Even though the natural error criterion to report for LMSE estimation and
prediction would be SNR, in order to adhere to the relevant resource prediction
literature [12]–[16], we report the error based on (10).

KONTORINIS et al.: STATISTICAL FRAMEWORK FOR VIDEO DECODING COMPLEXITY MODELING AND PREDICTION 1005

high bit rate, where the complexity measurements are more
prominent and exhibit higher variability across the different
video sequences. We are using T G

nonzero as feature, based on the
dimensionality reduction proposed previously (Section III-A).
Fig. 2(c)–(d) and Tables II and III contain indicative results.
The scaling of the measurements is normalized relative to the
average value of all RCMs present in our experimental pool,
in order to show that these metrics have low importance in
the overall decoding execution time. Notice that this is true
even for the presented case of tlev = 5, which corresponds
to intra frames.

Overall, similar remarks to the motion compensation and
interpolation cases regarding the self- and cross-clustering
apply here as well. The provided prediction examples for
IT_tics (Table II) demonstrate that the vast majority of the
mean relative prediction errors are below 10% and actually
in quite a few cases they are below 5%. On the other hand,
worse prediction performance is obtained for the ED_tics
(Table III). However, this large error is not expected to affect
the overall complexity prediction significantly, since ED_tics
and IT_tics do not contribute much to the overall complexity.
Since the prediction is performed per GOP, the errors in each
temporal level can partially cancel out. Thus, the relative
errors per temporal level serve as indicators of how well the
prediction is done per temporal level, but their average is
generally more than the actual mean total error per GOP for
a particular sequence. The later is given under the “Total1”
column in Tables II and III.

Although we made observations about clustering that are
behind the proposed algorithms and the prediction results of
Tables I and III, the target of this paper is complexity prediction
and not the clustering itself. Weaker clustering may still lead
to good prediction and vice versa. Moreover, the results in
this section do not contain all the improvements we propose
in our framework (such as adaptive prediction based on online
measurement feedback) and they are provided in this section
as an initial motivation.

IV. OFFLINE TRAINING FOR THE GMM PARAMETER

ESTIMATION

To learn the parameters of the GMM we employ an EM
algorithm that is biased toward our goal for reduced complex-
ity prediction error. The following section introduces the basic
EM scheme for our problem while Section IV-B discusses the
appropriate selection of the GMM components based on an
information-theoretic criterion.

A. Parameter Estimation With the Standard Expectation-
Maximization Algorithm

To specify a d-dimensional Gaussian function one needs d
coordinates for the mean and(

d + 1

2

)
= 1

2
d(d + 1)

elements for the covariance matrix (the rest are given from
the symmetry). For a GMM �MG with MG Gaussian compo-
nents, MG − 1 mixing coefficients (due to the normalization

condition) are required. Thus, in the general case, the number
a(MG) of parameters one needs to specify in (3) is

a(MG) = MG ·
(

1

2
d(d + 1)+ d + 1

)
− 1. (11)

For our specific example with the four-dimensional entropy
decoding complexity target variable [see (4), (5)] we would
need a(MG) = 15 · MG − 1 parameters. However, under the
dimensionality reduction imposed on the problem, this number
decreases significantly to a(MG) = 6 · MG − 1.

The estimation of the GMM parameters is performed
through the EM algorithm [24], [25]. EM is an iterative opti-
mization procedure that attempts to maximize the likelihood
function of the data

L
(
�MG ;X G

cm

)
=

N∏
n=1

(
P̂cm,�MG

(
xn,G

cm

))
(12)

or equivalently the more convenient log-likelihood function of
the data

l
(
�MG ;X G

cm

)
=

N∑
n=1

log
(

P̂cm,�MG

(
xn,G

cm

))
(13)

over all the models �MG . Here, P̂cm,�MG
(xn,G

cm) denotes the

probability of the sample xn,G
cm under the model �MG .

In the case of Gaussian mixture models, EM alternatively
computes the expected values of the mixing coefficients per
sample, also called responsibilities of each Gaussian compo-
nent for each sample, given the current model parameters and
data and then updates the model parameters given the new
responsibilities and the data.

In the expectation step, the responsibility of all components
θ̂m, 1 ≤ m ≤ MG , for all data samples xn,G

cm , 1 ≤ n ≤ N , is
computed using

γ̂n,m = wG
cm,m · φG

θm

(
xn,G

cm

)/⎡
⎣ MG∑

m=1

wG
cm,m · φG

θm

(
xn,G

cm

)⎤
⎦.

(14)
In the maximization step, EM computes the weighted means

and covariances

μG
cm,m(i) =

N∑
n=1

γ̂n,m · xn,G
cm (i)

/
N∑

n=1

γ̂n,m (15)

CG
cm,m(i, j) =

∑N
n=1

[
γ̂n,m ·

(
xn,G

cm (i)− μG
cm,m(i)

)
·
(

xn,G
cm (j)− μG

cm,m(j)
)]

∑N
n=1 γ̂n,m

(16)

as well as the updated mixing coefficients

wG
cm,m =

N∑
n=1

γ̂n,m

/
N . (17)

At the start of the algorithm the parameters of the GMM are
picked randomly. In addition, a good way to construct initial
guesses for the means is to pick any MG samples at random.
To initialize the covariance matrices, one can use the total

1006 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 7, JULY 2009

TABLE II

MEAN RELATIVE PREDICTION ERROR [PERCENTAGE—AS DEFINED IN (10)] PER TEMPORAL LEVEL AND SEQUENCE FOR IT_tics,

GIVEN T G
nonzero AND THE FITTED GAUSSIAN MIXTURE FROM THE OFFLINE TRAINING

IT_tics
Rate===384 kbps Rate===1536 kbps

tlev===5, 4 tlev===3 tlev===2 tlev===1 Total1 tlev===5, 4 tlev===3 tlev===2 tlev===1 Total1

Stefan 3.01 9.81 5.47 4.42 3.33 9.53 6.31 21.35 2.05 5.02
Silence 2.93 7.61 7.55 6.29 4.58 1.20 6.34 7.33 2.20 3.29

Sailor-men 3.70 4.69 5.00 2.98 2.71 1.28 6.59 9.50 3.63 4.06
City 1.39 4.21 5.36 6.91 4.48 1.37 4.06 6.25 2.74 3.08

Raven 2.04 8.46 5.39 2.46 2.40 3.78 4.02 12.19 4.05 4.62
Football 4.47 12.23 7.50 6.45 4.81 6.24 5.96 43.04 3.14 12.65

Coast-guard 2.16 5.38 9.22 8.83 6.67 5.59 6.80 15.49 5.11 5.41
Paris 1.21 3.23 7.51 5.83 4.62 0.93 6.26 8.41 2.56 3.89

Harbour 1.26 7.90 6.35 9.13 5.69 4.59 6.52 20.97 10.76 9.54

Total2 2.46 7.06 6.60 5.92 4.37 3.84 5.87 16.06 4.03 5.73

covariance of the data, while the initial mixing coefficients
are usually considered all equal to 1/MG .

The algorithm is assumed to have converged when the
log-likelihood function l(�(j)

MG
;X G

cm) in the j th iteration dif-

fers from l(�(j−1)
MG
;X G

cm) by less than the machine precision
threshold ε.

Although the EM algorithm is well suited for GMM estima-
tion, there are two potential problems with its practical applica-
tion. Firstly, there are potential convergence problems. Like all
the stochastic optimization procedures, EM can be trapped in
local maxima of the log-likelihood and thus yield suboptimal
results, or suffer from the singularity matrix problem that will
prohibit the algorithm from converging to a solution. These
problems are ameliorated when a large enough number of
random starting points (model parameters) are used during the
training and then the best solutions are chosen.

The second problem involves the selection of the appropri-
ate complexity of the model in order to capture the true under-
lying probability distribution without overfitting the training
data. Our approach to handle this is discussed in the next
section.

B. Selection of Appropriate GMM Complexity—Number of
GMM Clusters to Use

There are several criteria that penalize higher model com-
plexity. One of the most often used in conjunction with GMMs
is the Bayesian information criterion (BIC)

BIC(MG) =− 2 · loglik(MG)+ a(MG) · log N (18)

where loglik(MG) is the maximized log-likelihood function
(the log-likelihood function for the best GMM �∗MG

with MG

Gaussian components)

loglik(MG) = max
(

l
(
�MG ;X G

cm

))
=

Nmax∑
n=1

log P
(
xn,g

cm |�∗MG

)
.

(19)
In this paper, we use BIC to determine the appropriate

GMM complexity. Following [26], we select the number MG

that gives rise to the first decisive local minimum for BIC, i.e.,

M∗G = min
{

MG : (BIC(MG − 1) > BIC(MG))

∧ (BIC(MG) < BIC(MG + 1))
}
. (20)

In order to justify the usage of BIC in the domain of
video decoding resource modeling and prediction (since BIC
is a general model selection criterion), we compared the
performance for values of MG within a distance of 3 from
the optimal M∗G according to the BIC, and picked the one that
produced the best prediction results. Thus, even though the
GMM was trained with the log-likelihood as cost function,
among those optimal models close to the best BIC value,
we selected the one that minimized our average prediction
error per temporal level in our training set. This alternative
method of model complexity selection yielded on average only
marginally better prediction results (in most cases less than
3% improvement). Since the BIC also yielded less complex
models (all of them containing less than seven Gaussian
components), its use in our application domain is justified.

V. ADAPTIVE ONLINE COMPLEXITY PREDICTION

THROUGH A MARKOV CHAIN MODEL OF DOMINANT

GAUSSIAN COMPONENTS

The baseline prediction presented earlier builds upon the
cross-clustering of similar sequences and thus is useful during
scene changes or when no decoding complexity measurement
feedback is provided. However, video source characteristics
exhibit, in general, strong short-term autocorrelation that is
exploited in state-of-the-art video coders. This autocorrelation
manifests itself also in decoding complexity characteristics,
as was shown by various authors through autoregressive and
adaptive linear models of complexity [7], [16] and was further
confirmed through the strong self-clustering behavior observed
in Section III-C. Here, we seek to take advantage of the
strong short-term autocorrelation in our statistical modeling
and prediction approach using Markov-chain models.

A. Model Description and Intuition

We model the sequence of Gaussian components θm that are
expected to be responsible6 for the sequence of observations
of the complexity target random variable χG

cm as a Markov
chain. We call these Gaussian components dominant.

6Since our model is probabilistic, any Gaussian component can be respon-
sible for a particular complexity variable instantiation, albeit with different—
often very small—probability.

KONTORINIS et al.: STATISTICAL FRAMEWORK FOR VIDEO DECODING COMPLEXITY MODELING AND PREDICTION 1007

TABLE III

MEAN RELATIVE PREDICTION ERROR [PERCENTAGE—AS DEFINED IN (10)] PER TEMPORAL LEVEL AND SEQUENCE FOR ED_tics,

GIVEN T G
nonzero AND THE FITTED GAUSSIAN MIXTURE FROM THE OFFLINE TRAINING

ED_tics
Rate===384 kbps Rate===1536 kbps

tlev===5, 4 tlev===3 tlev===2 tlev===1 Total1 tlev===5, 4 tlev===3 tlev===2 tlev===1 Total1

Stefan 31.19 47.95 26.73 50.26 40.33 19.00 13.68 14.02 20.08 14.00
Silence 24.73 14.26 14.42 12.41 8.16 10.25 13.02 17.87 13.98 13.88

Sailor-men 16.35 14.42 11.00 10.84 4.19 11.93 9.28 7.25 14.17 4.51
City 18.07 9.99 6.65 12.56 9.62 2.93 4.40 7.38 7.42 5.30

Raven 9.70 12.90 11.54 26.83 14.45 9.46 6.57 9.40 9.22 6.56
Football 39.20 67.42 36.73 104.81 70.33 30.08 9.76 14.02 9.50 10.15

Coast-guard 5.16 18.45 19.95 11.85 9.12 9.39 5.70 5.29 7.32 3.82
Paris 27.25 11.08 15.07 17.73 17.97 10.34 13.72 21.36 19.61 17.44

Harbour 4.16 23.78 16.40 16.76 12.87 9.56 7.97 9.86 12.89 7.28

Total2 19.54 24.47 17.61 29.34 20.78 12.55 9.34 11.83 12.69 9.21

Although we performed experiments with a variety of
Markov-chain orders for our model, it appears that the majority
of gain in the complexity-prediction results appears already
from an order-1 model (“Markov-1”). Hence, we focus our
analysis on this case for the remainder of the paper. A detailed
study on whether higher order models are truly beneficial for
some complexity-prediction applications under the proposed
framework is left as a future topic.

Let θn
m denote the Gaussian components that produce

the complexity target variable instantiations xn,G
cm , n ∈

{1, . . . , Nonline} and θn−1
i the Gaussian component that pro-

duces the complexity target variable instantiation xn−1,G
cm , for

a particular video sequence and in a particular measurement
set G, where Nonline is the total number of AUs in the currently
decoded video sequence. In most of the cases, and provided
that the motion compensation part of the coder is successful
enough in capturing the intrinsic scene motion, we expect
the complexity in the entropy decoding xn,G

cm (and similarly
in the inverse filtering) to lie close to the complexity xn−1,G

cm
of the previous AU. Intuitively, this complexity “inertia” is
expected much more in the low temporal levels (i.e., prediction
among frames that are closer to each other in time [27]) than
in the high ones that are noisier and less correlated. In the
case of shot changes, we expect jumps to different regions
of the complexity sample space. Similar behavior is expected
for the complexity of motion compensation and interpolation
modules.

Knowing θn−1
i therefore provides valuable information for

the probability to have the next dominant Gaussian component
θn

m . This information is captured in our model through the state
transition probabilities Pθ (i, j) = P(θn

i | θn−1
j) that are trained

offline from our training dataset as follows.
We calculate for all training sequences and all the temporal

levels the state transition probabilities Pθ (i, j) = P(θn
i | θn−1

j)
of the dominant Gaussian components using the conditional
occurrence frequencies from our training set. The identification
of the dominant Gaussian components is done with compar-
ison of the Gaussian component likelihoods for the observed
complexity data xn,g

cm . The transition probability matrices are
at most 6× 6 since all our Gaussian mixtures contain at most
six Gaussian components (see Section III). Typical transition

probability matrices are illustrated in Table IV. We used
the ED_tics results for temporal levels 5 and 4 at 512 and
1024 kbps with the optimum number of Gaussian components
MG = 4 and MG = 3, respectively. The probability concen-
tration in the diagonal agrees with the self-clustering property.

To further motivate the importance of the correct identifica-
tion of the dominant Gaussian component for the prediction
accuracy, we present next an oracle prediction scheme that
assumes this information is a-priori available.

B. Selection of Appropriate GMM Complexity—Number of
GMM Clusters to Use

This section presents the results for an oracle algorithm that
predicts the RCM given the complexity feature and under the
assumption we know the dominant Gaussian component the
current sample belongs to. This component can be trivially
determined a posteriori by finding the Gaussian component
that yields the largest probability for the observed complexity
metric-feature pair after decoding. However, this component
cannot be determined a priori in a completely reliable manner,
since this essentially assumes that the RCM that we want
to predict is known, which is true only after the decoding
is completed. In this sense, the oracle algorithm is useful
as an upper bound on the prediction accuracy that practical
algorithms can achieve within our statistical framework.

The results of Table V for ED_tics are significantly better
than our baseline algorithm and remain quite good even for
low bit rates, where prediction tends to be more unstable.
Similar improvements were observed for IT_tics, MC_tics,
and FI_tics with the average prediction error reducing to 3,
7.5, and 2.5% respectively. Due to space limitations, these
results are omitted. Thus, it becomes clear that the correct
identification of the dominant Gaussian component can play
a major role in the prediction accuracy results. In conjunction
with the strong self-clustering property (see Section III) and
through the transition probabilities of Table IV, we expect that
the introduction of memory in our prediction scheme should
provide significant improvements in the proposed framework’s
prediction performance. In other words, finding a posteriori
the dominant Gaussian component for the previous measure-
ment will help us improve our prediction for the current

1008 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 7, JULY 2009

TABLE IV

EXAMPLES OF TRANSITION PROBABILITY MATRICES. THE j TH ELEMENT

OF EACH ROW IN THE TABLES INDICATES THE PROBABILITY OF

TRANSITION FROM THE DOMINANT GAUSSIAN COMPONENT i TO

DOMINANT GAUSSIAN COMPONENT j

Gaussian
component t

number
j = 1 j = 2 j = 3 j = 4

i = 1 0.93 0.00 0.07 0.00

i = 2 0.00 0.76 0.22 0.02

i = 3 0.05 0.28 0.67 0.00

i = 4 0.00 0.08 0.00 0.92

Gaussian
component t

number
j = 1 j = 2 j = 3

i = 1 0.94 0.00 0.06

i = 2 0.00 1.00 0.00

i = 3 0.10 0.00 0.90

measurement. An algorithm to accomplish this is described
next.

C. Online Prediction with Additional Online Measurement
Feedback

Assuming that after the offline training we have reliable esti-
mates for the transition probabilities Pθ (i, j) = P(θn

i | θn−1
j)

as well as the observation probabilities P(bn,g
cm | θn

i) with
i, j ∈ {1, . . . , MG}, we propose the following extension to
the prediction approach.

Instead of using the (stationary) mixing coefficients wG
m

obtained from the EM training of the offline data, we update
the mixing coefficients at each prediction step to obtain a
sequence w̃n

m . The update is done in two phases. We denote
with w̃n

m = P̃(θn
m) the current weight estimate that was used

in the prediction of k̂n
cm. Once the decoding is done, we get

the actual value kn
cm as feedback from the decoder. Now, for

all m ∈ {1, . . . , MG} we calculate (using Bayes’ law) the
posterior probability of having the mth Gaussian component
produce the current complexity observation

P(θn
m | kn

cm, bn,G
cm) =

P
(

kn
cm, bn,G

cm | θn
m

)
· P̃

(
θn

m

)
∑MG

i=1 P
(

kn
cm, bn,G

cm |θn
i

)
· P̃

(
θn

i

) . (21)

We update the current probabilities for the Gaussian compo-
nents by setting P̃(θn

m)← P(θn
m | kn

cm, bn,G
cm). Then, we obtain

the probability to get each Gaussian component in the next
AU using the state transition probabilities

P̃
(
θn+1

m

)
=

MG∑
i=1

P
(
θn+1

m |θn
i

)
· P̃

(
θn

i

)
. (22)

The updated probabilities constitute the mixing coefficients
w̃n+1

m for the next AU complexity prediction. The rest of the
prediction proceeds as in the static LMSE prediction case, with
the only difference that we use w̃n+1

m in (9).

VI. VARIANTS OF RCM PREDICTION

In the next sections we will consider alternative prediction
schemes that can reduce in some cases either the prediction
error or the prediction overhead. We will also show a way to
adaptively enhance the trained PDF when “atypical” sequences
(in complexity terms) are encountered.

A. Alternative Prediction Scheme: Maximum-Likelihood (ML)
Prediction

In this section we use again the LMSE estimator given
bn,G

cm and θ̂m , as described in (8), but instead of mixing the
estimators for all the Gaussian components as in (9) we only
consider the most likely Gaussian component θ̂m∗ for the
observed feature value bn,G

cm

m∗ = arg max
m

P
(

bn,g
cm | θ̂m

)
. (23)

Once we obtain the solution of the optimization in (23) through
MG probability evaluations and MG − 1 comparisons, we use
the modified LMSE estimator with one Gaussian component

κ̂G
cm,m∗ = E

[
κG

cm | bn,G
cm , θ̂m∗

]
= μκG

cm,m∗ + CG
κG

cmbG
cm,m∗

(
CG

bG
cm,m∗

)−1

×
(

bn,G
cm − μβG

cm,m∗
)

. (24)

The intuition is that, provided the components are not sub-
stantially overlapping in the feature subspace, the most likely
Gaussian component will be (most probably) the correct one
and the related RCM value κ̂G

cm,m∗ will be closer to the
true one, thus reducing the noise from other components. As
discussed in Section III-C, the condition of less overlapping
is better satisfied in higher rates and temporal levels, where
the ML estimator performs better than the LMSE estimator.
Moreover, for the motion-estimation-related RCMs, the ML
estimator should also work better. However, whenever there is
significant Gaussian component overlapping and the sequence
being currently decoded is similar to the Gaussian that is less
densely populated in the training set (i.e., has smaller a priori
probability), then all the predictions may differ considerably
from the true RCMs. In this case, the averaging of the
LMSE estimator will yield better results. At this point, it is
interesting to note the similarity of the ML prediction to the
local linear regression model approach used in [6] and [7].
ML prediction disregards less significant components (which
are more distant in the Mahalanobis sense), thus essentially
performing a prediction using a more localized region of the
RCM feature space. In this sense, it is quite similar to the local
regression scheme of [6] and [7], albeit the different sampling
conditions prevent us from expecting similar prediction results.

B. Adaptive Online Density Re-Estimation

Since video statistics can be extremely diverse, we examine
the possibility of enhancing the prediction accuracy of the pro-
posed complexity prediction system by adaptively switching
between the offline GMM and the re-estimation of the joint
RCM complexity feature PDF. This would be very useful for

KONTORINIS et al.: STATISTICAL FRAMEWORK FOR VIDEO DECODING COMPLEXITY MODELING AND PREDICTION 1009

TABLE V

RESULTS FROM ORACLE PREDICTION: MEAN RELATIVE PREDICTION ERROR [PERCENTAGE—AS DEFINED IN (10)] PER TEMPORAL LEVEL

AND SEQUENCE FOR ED_tics

ED_tics
Rate===384 kbps Rate===1536 kbps

tlev===5, 4 tlev===3 tlev===2 tlev===1 Total1 tlev===5, 4 tlev===3 tlev===2 tlev===1 Total1

Stefan 6.81 11.36 9.06 7.55 6.40 12.36 14.77 16.07 19.66 13.37
Silence 2.50 5.92 5.90 7.28 4.35 1.03 9.39 4.13 12.09 6.20

Sailor-men 4.27 7.91 8.00 5.89 2.97 4.15 11.85 7.25 16.20 6.85
City 3.75 4.62 7.51 4.91 2.93 4.57 5.07 5.47 5.01 3.07

Raven 9.94 10.07 7.06 7.33 3.78 8.81 5.71 8.24 9.08 6.60
Football 11.98 10.20 8.71 7.77 6.17 19.15 9.66 8.78 8.56 8.11

Coast-guard 4.48 7.53 6.70 6.23 3.95 5.07 6.59 5.94 9.42 4.21
Paris 2.63 3.80 11.37 7.20 5.74 0.91 8.44 2.34 17.28 8.77

Harbour 3.91 4.61 5.71 5.31 2.18 6.23 5.83 8.51 13.20 6.81

Total2 5.59 7.34 7.78 6.61 4.27 6.92 8.59 7.41 12.28 7.11

sequences that predominantly fail to fit in the existing training
set, i.e., are “atypical.”

For each GOP n, with n > 1, we perform this process
as follows. For every new RCM measurement that comes
from the decoder, we update the RCM feature mean and
covariance matrices estimated from the current video sequence
in all temporal levels (online Gaussian component estimation).
Let θ̂n−1

online denote the Gaussian component corresponding to
the online mean and covariance matrices calculated from
GOP 1, . . . , n − 1. In parallel with the prediction procedures
described above, we perform LMSE prediction of the current
GOP RCMs using only θ̂n−1

online and the current GOP complexity
feature bn,G

cm . After we receive the decoder’s feedback, we
compare the prediction error between the “online mode” and
the “Offline-trained GMM mode.” Based on the comparison,
we select the way to determine which mode—online or
GMM—we will use for the next prediction

{active_mode}n+1 = arg min
mode

(
errn

mode

)
mode ∈ {online, offline-GMM} .

(25)

In order to discourage frequent mode switching due to small
noisy variations of the prediction error, we include a “bias”
scaling factor to the error of the active prediction mode, i.e.,

errn
mode = xmode ·

(
kn,G

cm −
{

k̂n,G
cm

}
mode

)2
(26)

with xmode = 1.0 if mode �= {active_mode}n and 0.0 <
x{active_mode}n < 1.0. After defining the “bias” scaling factor
x{active_mode}n empirically based on preliminary simulation
results, it was kept constant during our experimentation with
the proposed approach.

VII. SUMMARY OF PROPOSED PREDICTION ALGORITHMS

In Fig. 3 we show the pseudo-code for the combined
Markov-1–re-estimation algorithm, which is the most
extended version of the algorithms we propose. The rest
of the algorithms can be derived as follows. For Markov-1:
Skip step 6 and 8b. Also skip the error calculation and
the complexity prediction using the Re-estimation part.
For LMSE: As above, plus skip the GMM model online
measurement and update altogether (steps 4 and 8). Without

online model updates Markov-1 becomes LMSE and can be
used when no online feedback is available. For Max-likelihood
variants: In any of the previous variants, substituting (24)
for (8) in the complexity prediction (step 7) yields the
corresponding ML variants. Experiments are detailed in the
following section, where we examine the prediction accuracy
based on the adaptive re-estimation of the PDF model versus
the offline-GMM based prediction.

VIII. EXPERIMENTAL VALIDATION

We utilized a scalable video coder [17] that incorporates a
variety of advanced motion prediction tools found in state-of-
the-art standardized video coders. The decoding algorithm was
implemented in platform-independent optimized C code and
executed in an Intel Core Duo processor within the Windows
XP operating system. Profiling of the execution time for each
module was done using the built-in processor counters [22].

The utilized sequences for our experiments were all Com-
mon Interchange Format (CIF) resolution video clips with
30 frames/s replay rate. With all the advanced coding
options enabled (long temporal filters, multihypothesis motion-
compensated prediction and update, etc.), real-time decoding
was not possible without platform-dependent software opti-
mization. Hence, similar to prior work [9], [11], [12], [18],
we resorted to simulation-based results.

A. Impact of Module-Specific RCMs in the Overall Decoding
Complexity

Table VI shows the percentile of the execution time of each
module for reconstructing four typical video sequences used
in our experiments. Results for three indicative bit rates are
provided. The results indicate that the importance of each
module in the resulting execution time varies depending on
the decoding bit rate and the sequence used. Clearly, motion
compensation and fractional-pixel interpolation appear to be
the dominant components in the decoder’s complexity.

B. Comparisons of Proposed Prediction Schemes

In this section we are comparing the proposed methods
among each other, and also with respect to the results obtained

1010 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 7, JULY 2009

TABLE VI

PERCENTILE OF THE EXECUTION TIME ATTRIBUTED TO EACH MODULE FOR DECODING FOUR INDICATIVE VIDEO SEQUENCES. THE MOTION

COMPENSATION AND FRACTIONAL PIXEL INTERPOLATION WHERE AVERAGED OVER ALL BIT RATES SINCE THEY DO NOT VARY WITH THE

DECODING BIT RATE (∼ 1% VARIATION)

Bit rate
(kbps)

Tempete Foreman Mobile News
Entropy
decoding

Inverse
transform

Entropy
decoding

Inverse
transform

Entropy
decoding

Inverse
transform

Entropy
decoding

Inverse
transform

384 2.17 3.58 2.14 3.42 1.67 2.99 7.26 11.40

1024 3.08 3.54 3.71 3.52 2.62 3.01 10.68 10.51

1536 3.88 3.56 3.72 3.52 3.15 3.09 12.05 10.52

Average: 3.04 3.56 3.19 3.49 2.48 3.03 10.00 10.81

Motion
parameters

Motion
compensation

Fract.-pixel
interpolation

Motion
compensation

Fract.-pixel
interpolation

Motion
compensation

Fract.-pixel
interpolation

Motion
compensation

Fract.-pixel
interpolation

60.99 32.41 60.63 32.69 61.81 32.68 52.26 26.93

1. While (∃ more frames to decode)–Iteration m

2. ∀ module cm ∈ {ED_tics, IT_tics, MC_tics, FI_tics}
3. ∀ tlev

4. Measurement: Get the decoding measurement km−1
cm from the previous prediction unit (frame m − 1).

5. Error calculation: Calculate with (26) the weighted errors between the previous frame measurement and the
predictions from Markov-1 and Re-estimation algorithms

6. Algorithm selection: Determine which algorithm/model to use for current frame prediction using (25).

7. Complexity prediction: Calculate the new complexity estimate k̂m
cm using the LMSE predictor (24) for both

models (GMM updated with “Markov-1” and single Gaussian updated with “Re-estimation”). Output the value
for the selected model to the resource management system.

8. Models updates: Using measurement km−1
cm :

8a. a) Markov-1 update: update the Gaussian component probabilities (mixing coefficients of the GMM) for the
next prediction cycle using (21) and (22),

8b. b) Adaptive PDF re-estimation: update the current sequence mean and covariance.

Fig. 3. Pseudo-code for the complete set of proposed prediction algorithms.

from a state-of-the-art approach for video decoding complexity
prediction based on linear regression, that was proposed in
the relevant literature [16], [19]. The comparison includes
our main proposals, i.e., the LMSE-based prediction with and
without feedback and the adaptive PDF re-estimation.7

We present experimental prediction results for the various
RCMs using the schemes proposed in this paper. We denote
as “LMSE” the baseline LMSE estimation algorithm [i.e.,
using (8), (9) and only offline training] and as “Markov-1” the
Markov-enhanced LMSE estimation that adapts the weights of
the mixture model used in the predictor based on the feedback
received from the decoder (Section V-C). Finally, we denote
as “Re-est” the method that performs PDF re-estimation
based on online feedback from the decoder (Section VI-B).

7The proposed ML approach of Section VI-A produced similar results to
the module-specific linear regression approach (adapted from [16]) and hence
its results are omitted for brevity of description. However, Section VI-A is
relevant to the overall scope of our work and shows how different variants of
the proposed approach can derive similar schemes to other methods proposed
in the literature.

The results are given in Tables VII–IX. The set of video
sequences mentioned in Section V-C was used as the training
set for our offline GMM and state transition probabilities,
while the sequences “Tempete,” “Foreman,” “Mobile,” and
“News” comprised the test set.

Starting with the most-important part, i.e., MC_tics, notice
that the offline “LMSE” method performs surprisingly well
in comparison to the other approaches that require online
feedback from the decoder, with the exception of the “News”
sequence. The complexity prediction for the fractional-pixel
interpolation FI_tics is also quite accurate in the “LMSE”
method, but the “Re-est” method performs better in general.
Regarding the entropy decoding and inverse transform com-
plexities, i.e., ED_tics and IT_tics, the “Re-est” method is
again a superior predictor. This indicates that a combination of
the different approaches could be beneficial, and it would also
not require online feedback for all the RCMs of the previously
decoded GOP.

We also compare against the regression-based approach
proposed in previous work [16], [19], which was shown to

KONTORINIS et al.: STATISTICAL FRAMEWORK FOR VIDEO DECODING COMPLEXITY MODELING AND PREDICTION 1011

TABLE VII

AVERAGE RELATIVE PREDICTION ERROR OF THE “LMSE” ALGORITHM (PERCENTAGE)

Bit rate
(kbps)

Tempete Foreman Mobile News
ED_tics IT_tics ED_tics IT_tics ED_tics IT_tics ED_tics IT_tics

384 24.89 6.29 11.32 3.93 10.12 2.14 25.44 7.58

512 24.27 4.53 7.13 4.92 4.75 3.20 18.49 2.66

896 5.42 2.98 11.60 2.44 13.56 2.45 19.30 1.86

1024 5.95 2.76 22.93 4.07 4.47 3.61 13.41 1.99

1280 5.34 3.85 7.46 2.48 4.43 3.37 17.97 3.22

1536 10.52 4.95 7.57 3.56 6.09 3.56 18.33 5.00

Average: 12.73 4.23 11.34 3.57 7.24 3.06 18.82 3.72

Motion
parameters

MC_tics FI_tics MC_tics FI_tics MC_tics FI_tics MC_tics FI_tics

3.38 10.90 6.67 4.36 12.52 1.63 28.57 19.40

TABLE VIII

AVERAGE RELATIVE PREDICTION ERROR OF THE MARKOV-1 PREDICTION ALGORITHM (PERCENTAGE)

Bit rate
(kbps)

Tempete Foreman Mobile News
ED_tics IT_tics ED_tics IT_tics ED_tics IT_tics ED_tics IT_tics

384 13.46 5.12 10.96 2.90 4.07 2.31 15.46 7.20

512 10.70 3.80 12.36 4.37 3.58 1.42 12.52 3.59

896 7.85 2.32 11.63 3.58 8.72 2.60 5.75 1.66

1024 6.37 3.55 23.02 4.74 7.20 3.62 5.88 1.28

1280 8.20 4.00 13.29 2.68 6.61 3.46 11.35 2.71

1536 10.77 4.23 10.87 2.53 6.62 3.64 10.11 3.22

Average: 9.56 3.84 13.69 3.47 6.13 2.84 10.18 3.28

Motion
parameters

MC_tics FI_tics MC_tics FI_tics MC_tics FI_tics MC_tics FI_tics

11.21 2.61 10.37 4.76 12.65 1.43 15.96 6.90

outperform other related methods. The results can be found
in Table X. This approach adapts the coefficients of a linear
predictor based on linear regression with previously obtained
decoding RCMs (per module). We experimented with various
predictor lengths for each module of the decoder and selected
(per module) the one that provided the best results on average.
It can be seen that the combination of the best choices from the
proposed methods systematically outperforms the regression-
based approach proposed in [16] and [19], with only a few
exceptions. Finally, we remark that, on condition of the GMM
accuracy on RCM feature modeling, the proposed methods
consist of the optimal predictor in the MSE sense. This is in
contrast to previously proposed schemes [7], [13], [19] that
perform complexity prediction based on heuristic predictors
without any guarantee of optimality.

C. Selective Bit Stream Decoding Based On Complexity
Estimates

We conclude our experimental investigations by demon-
strating an application of the proposed complexity modeling
and estimation. One missing aspect of conventional rate-
distortion modeling for video coders is a model estimating
the complexity associated with processing of a certain com-
ponent of a compressed bit stream. Our approach consists
of such a framework since it provides reliable estimates of
the associated cost of decoding a certain component of the

compressed bit stream. As such, the streaming server of a
video session may selectively decide to omit certain parts
of the compressed stream from the transmission in order to
satisfy real-time constraints of a certain decoder, or simply to
reduce the transmission overhead, since the complexity model
predicts that the decoder will exceed the real-time decoding
constraints if these parts are used. This was initially termed
“complexity-constrained bitstream shaping” in our previous
work [7]. Notice that our approach that provides module-by-
module real complexity metrics is very suitable for this task. In
addition, the use of a scalable bitstream ensures that decoding
occurs even if certain texture or motion (motion vectors or
interpolation information) is omitted.

We set two upper bounds on the processing cycles
(expressed in tics/pixel) permissible for the video decoding
of each GOP (which corresponds to approximately 0.53 s
under the utilized settings) and two corresponding upper
bounds on the average bit rate per GOP. Then, based on
the proposed LMSE prediction algorithm we estimate the
decoding time per temporal level and per module. We couple
these measurements with a distortion model for the impact
of each component of each temporal level [6]. Then, based
on the rate-distortion complexity optimization algorithm of
our previous work (Fig. 3 of [6]) we selectively drop certain
substreams for each temporal level in order to satisfy the
total constraints set for each GOP (rate and complexity). For
each texture or motion vector bitstream corresponding to each

1012 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 7, JULY 2009

TABLE IX

AVERAGE RELATIVE PREDICTION ERROR OF THE “RE-EST” ALGORITHM USING ADAPTIVE ONLINE PDF RE-ESTIMATION (PERCENTAGE)

Bit rate
(kbps)

Tempete Foreman Mobile News
ED_tics IT_tics ED_tics IT_tics ED_tics IT_tics ED_tics IT_tics

384 8.51 5.22 8.30 5.86 3.92 3.56 11.56 8.53

512 7.56 5.33 6.88 5.97 3.45 4.25 9.81 4.11

896 5.19 2.69 5.24 4.03 5.06 3.70 6.65 3.39

1024 4.31 3.98 12.60 4.87 4.77 4.31 7.96 2.57

1280 4.41 4.21 3.82 3.07 4.29 2.76 8.33 3.58

1536 5.27 5.14 2.97 2.46 4.19 4.49 7.69 4.70

Average: 4.24 2.81 6.04 3.27 3.24 3.47 5.00 3.09

Motion
parameters

MC_tics FI_tics MC_tics FI_tics MC_tics FI_tics MC_tics FI_tics

6.16 2.36 7.20 3.98 11.27 2.42 10.51 6.61

TABLE X

AVERAGE PREDICTION ERROR OF THE LINEAR REGRESSION METHOD USED IN PREVIOUS WORK ON DECODING COMPLEXITY PREDICTION [16], [19]

Bit rate
(kbps)

Tempete Foreman Mobile News
ED_tics IT_tics ED_tics IT_tics ED_tics IT_tics ED_tics IT_tics

384 6.44 5.60 7.48 6.24 4.99 7.07 16.87 24.91

512 5.15 3.47 7.80 7.16 5.68 8.73 8.12 5.90

896 5.01 1.05 4.36 3.49 6.34 4.41 8.97 4.05

1024 5.06 4.28 22.93 5.10 6.68 6.60 10.25 4.56

1280 3.72 2.47 3.51 3.37 7.05 5.69 9.63 3.81

1536 4.06 5.17 2.58 2.23 6.27 5.46 5.59 5.27

Average: 4.91 3.67 8.11 4.60 6.17 6.33 9.91 8.08

Motion
parameters

MC_tics FI_tics MC_tics FI_tics MC_tics FI_tics MC_tics FI_tics

12.41 2.88 10.03 3.57 15.23 3.13 12.16 6.12

0 2 4 6 8 10 12 14 16

27

28

29

30

31

32

33

34

35

36

PS
N

R
 (

dB
)

26

Tempete

interval (GOP) number (x0.53sec)

PS
N

R
 (

dB
)

Bounds per GOP: 25 tics/pixel, 1536 kbps
Bounds per GOP: 12 tics/pixel, 512 kbps
With proposed complexity prediction
With prediction using linear regression [16] [19]
Unlimited complexity (rate constraint only)

0 2 4 6 8 10 12 14 16
29
30
31
32
33
34
35
36
37
38
39
40

interval (GOP) number (x0.53sec)

PS
N

R
 (

dB
)

Foreman

Bounds per GOP: 25 tics/pixel, 1536 kbps
Bounds per GOP: 12 tics/pixel, 512 kbps
With proposed complexity prediction
With prediction using linear regression [16] [19]
Unlimited complexity (rate constraint only)

Fig. 4. Rate-distortion complexity optimized decoding. Two complexity and rate upper bounds were set for each GOP (interval of 0.53 s). In all cases we
use the model-derived estimates for the expected number of cycles of each operational setting.

video frame, the scalable bitstream parser can select from
the truncation points corresponding to the bitrates reported in
Tables VII–X (if under the constraint set per GOP). From the
obtained complexity-distortion set of points, we select the one
closest to the complexity constraint that has the highest PSNR
estimate (based on the distortion model).

Representative average peak-signal-to-noise (PSNR) results
are presented in Fig. 4 for the different bounds set for
the processing cycles. As a reference, we also include the
corresponding results when using the linear regression method

for complexity estimation [16], [19] (corresponding prediction
results can be found in Table X). In addition, the results
when complexity is unconstrained are included in the figure
to provide an upper bound. Overall, there is a progressive
decrease in quality when selective components are removed
based on the distortion-complexity estimates. The results of
Fig. 4 demonstrate that the proposed complexity prediction
approach enables higher PSNR under the complexity bounds
than the case where linear regression is used, since, on average,
operating points that are closer to the bound are selected. This

KONTORINIS et al.: STATISTICAL FRAMEWORK FOR VIDEO DECODING COMPLEXITY MODELING AND PREDICTION 1013

brings the results of the proposed approach closer to the upper
bound that performs only rate-distortion optimization without
complexity constraints. We observed similar improvements
offered by the proposed approach when the Re_est complexity
prediction algorithm was used.

IX. CONCLUSION

In this paper, we have proposed and discussed several
statistical modeling and prediction schemes for video decod-
ing complexity based on module-specific execution times
(which we term as real complexity metrics—RCMs) and easily
extractable complexity features. We have shown that there
is significant self- and cross-clustering in the temporal-level
partitioned RCM complexity feature domain for many video
sequences (Fig. 2). The clustering is highly correlated to the
content of the video sequences and can be successfully used
to engineer optimal and effective prediction algorithms.

REFERENCES

[1] D. Zhong, H. J. Zhang, and S.-F. Chang, “Clustering methods for video
browsing and annotation,” in Proc. SPIE Storage and Retrieval for Image
and Video Databases, vol. 2670. 1996, pp. 239–246.

[2] Y. Xu, E. Saber, and A. M. Tekalp, “Object segmentation and labeling
by learning from examples,” IEEE Trans. Image Process., vol. 12, no. 6,
pp. 627–638, Jun. 2003.

[3] F. Wu, S. Li, R. Yaw, X. Sun, and Y.-Q. Zhang, “Efficient and universal
scalable video coding,” in Proc. IEEE Int. Conf. Image Process., (ICIP),
vol. 2. 2002, pp. 37–40.

[4] Q. Zhang, et al., “Power-minimized bit allocation for video communica-
tion over wireless channels,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 12, no. 6, pp. 398–410, Jun. 2002.

[5] Z. He, Y. Liang, L. Chen, I. Ahmad, and D. Wu, “Power-rate-distortion
analysis for wireless video communication under energy constraints,”
IEEE Trans. Circuits Syst. Video Technol., vol. 15, no. 5, pp. 645–658,
May 2005.

[6] M. van der Schaar and Y. Andreopoulos, “Rate-distortion-complexity
modeling for network and receiver aware adaptation,” IEEE Trans.
Multimedia, vol. 7, no. 3, pp. 471–479, Jun. 2005.

[7] Y. Andreopoulos and M. van der Schaar, “Complexity-constrained
video bitstream shaping,” IEEE Trans. Signal Process., vol. 55, no. 5,
pp. 1967–1974, May 2007.

[8] I. Ahmad, S. M. Akramullah, M. L. Liu, and M. Kafil, “A scalable off-
line MPEG-2 video encoding scheme using a multiprocessor system,”
Elsevier Parallel Computing, vol. 27, no. 6, pp. 823–846, May 2001.

[9] J. Valentim, et al., “Evaluating MPEG-4 video decoding complexity for
an alternative video complexity verifier model,” IEEE Trans. Circuits
Syst. Video Technol., vol. 12, no. 11, pp. 1034–1044, Nov. 2002.

[10] S. Saponara, C. Blanch, K. Denolf, and J. Bormans, “The JVT advanced
video coding standard: Complexity and performance analysis on a tool-
by-tool basis,” in Proc. Packet Video Workshop (PVC), Apr. 2003.

[11] J. Ostermann, et al., “Video coding with H.264/AVC: Tools, perfor-
mance, complexity,” IEEE Circ. Syst. Mag., vol. 4, no. 1, pp. 7–28, Jan.
2004.

[12] S. Regunathan, et al., “A generalized video complexity verifier for
flexible decoding,” in Proc. IEEE Int. Conf. Image Process. (ICIP),
vol. 3. Sep. 2003, pp. 289–292.

[13] J. Liang, et al., “Adaptive multi-resource prediction in distributed
resource sharing environment,” in Proc. IEEE Int. Symp. Cluster Com-
put. Grid, (CCGrid-04), Apr. 2004, pp. 293–300.

[14] H. J. Stolberg, et al., “A platform-independent methodology for perfor-
mance estimation of multimedia signal processing applications,” J. VLSI
Signal Process., vol. 41, no. 2, pp. 139–151, 2005.

[15] M. Ravasi and M. Mattavelli, “High-abstraction level complexity analy-
sis and memory architecture simulations of multimedia algorithms,”
IEEE Trans. Circuits Syst. Video Technol., vol. 15, no. 5, pp. 673–684,
May 2005.

[16] W. Yuan, K. Nahrstedt, S. V. Adve, D. L. Jones, and R. H. Kravets,
“GRACE-1: Cross-layer adaptation for multimedia quality and battery
life,” IEEE Trans. Mobile Comput., vol. 5, no. 7, pp. 799–815, Jul. 2006.

[17] Y. Andreopoulos, A. Munteanu, J. Barbarien, M. van der Schaar,
J. Cornelis, and P. Schelkens, “In-band motion compensated temporal
filtering,” Signal Process.: Image Commun., vol. 19, no. 7, pp. 653–673,
Aug. 2004.

[18] M. Horowitz, et al., “H.264/AVC baseline profile decoder complexity
analysis,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 7,
pp. 704–716, Jul. 2003.

[19] W. Yuan and K. Nahrstedt, “Energy-efficient CPU scheduling for multi-
media applications,” ACM Trans. Comput. Syst., vol. 24, no. 3, pp. 292–
331, Aug. 2006.

[20] D. Turaga, et al., “Complexity scalable motion compensated wavelet
video encoding,” IEEE Trans. Circ. Syst. Video Technol., vol. 15, no. 8,
pp. 982–993, Aug. 2005.

[21] J. R. Ohm, Multimedia communication technology, in Series: Signals
and Commun. Technol., 1st ed. New York: Springer-Verlag, 2004.

[22] Intel Corp. Intel VTune® data collector enabling kit for I/O
Processors. Application Note 273892-001 [Online]. Available:
http://developer.intel.com/design/iio/applnots/27389201.pdf accessed
June 2009.

[23] A. H. Sayed, Fundamentals of Adaptive Filtering. New York: Wiley,
2003.

[24] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis,
New York: Wiley, 1973.

[25] T. Hastie, “The elements of statistical learning,” in Series: Statistics,
New York: Springer-Verlag, 2001.

[26] C. Fraley and A. E. Raftery, “How many clusters? Which clustering
method? Answers via model-based cluster analysis,” Comput. J., vol. 41,
no. 8, pp. 578–588, 1998.

Nikolaos Kontorinis (S’03) received the Diploma in
electrical engineering from the University of Patras,
Greece, in 2002, and the M.Sc. degree in signal
processing from the University of California, Los
Angeles (UCLA), in 2004. He is currently working
toward the Ph.D. degree in the Department of Elec-
trical Engineering, UCLA.

His research interests include statistical modeling
for power-aware video coding systems, machine
learning techniques for video applications, and finan-
cial models in networked video transceivers.

Mr. Kontorinis was a recipient of the Alexander S. Onassis Public Benefit
Foundation Scholarship for Greeks studying abroad in 2004–2006.

Yiannis Andreopoulos (S’01–M’04) received the
Ph.D. degree in applied sciences from the Vrije
Universiteit Brussel, Brussels, Belgium, in 2005,
as well as the M.Sc. degree in signal and image
processing systems and the Electrical Engineering
Diploma, both from the University of Patras, Patras,
Greece.

He is presently Lecturer at the Department of
Electronic and Electrical Engineering, University
College London, London, U.K. His research interests
are in the domain of multimedia signal processing.

Mihaela van der Schaar (SM’04) received the
M.Sc. and Ph.D. degrees in electrical engineering
from Eindhoven University of Technology, Eind-
hoven, the Netherlands.

He is currently an Associate Professor in the
Department of Electrical Engineering, University of
California, Los Angeles (UCLA), where she leads
the Multimedia Communications and Systems Lab-
oratory.

