
IEEE SIGNAL PROCESSING LETTERS, VOL. 16, NO. 8, AUGUST 2009 675
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Abstract—In this letter, we consider peer-to-peer (P2P) net-
works, where multiple peers are interested in sharing their
content. In the considered P2P system, autonomous and self-in-
terested peers use a Markov Decision Process (MDP) framework
to determine their upload bandwidth allocations, which maximize
their individual utilities. This framework enables the peers to
make foresighted decisions on their bandwidth allocations, by
considering the future impact of their decisions. In this letter,
we focus on the impact of the peers’ bounded rationality on
their resource reciprocation strategies and ultimately, on their
achievable utilities. Specifically, we consider peers who have only
a limited ability to model the other peers’ strategies for resource
reciprocation, and study how this impacts their own decisions.

Index Terms—Bounded rationality, peer-to-peer (P2P) net-
works, resource reciprocation.

I. INTRODUCTION

W E consider the resource reciprocation among peers in
data-driven P2P systems such as CoolStreaming [1] or

BitTorrent [2], which adopt pull-based techniques [1]. While
this approach has been successfully deployed in real-time multi-
media streaming or file-sharing applications over P2P networks,
little is known about determining optimal resource reciprocation
strategies among self-interested peers, which aim to maximize
their own utilities (e.g., download rates) based on their hetero-
geneous capabilities, in repeatedly interacting environment.

Several resource reciprocation strategies for self-interested
peers in P2P networks have been proposed in e.g., [2]–[5]. To
provide incentives for the peers that contribute their resources
(e.g., bandwidth, content, etc.), exchange-based incentive
mechanisms including tit-for-tat (TFT) strategies in BitTorrent
systems are proposed [2]–[4]. While these approaches provide
appropriate incentives for peers’ contributions, they are my-
opic, as they do not explicitly consider repeated interactions
among the peers. In order to take into account the repeated
interactions, an evolutionary instantiation of the Generalized
Prisoner’s Dilemma is proposed [5]. However, this work studies
only a simple P2P interaction scenario, where peers have a
limited set of actions—either allowing download or ignoring
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download requests. Hence, this work does not provide solutions
for how to optimally divide each peer’s available resources (i.e.,
determine their level of cooperation). Unlike these approaches,
in [6], foresighted policies based on an MDP framework are
proposed, which enable the peers to determine their resource
allocations in a way that maximizes their long-term utilities.
Thus, the foresighted policies can improve the performance
of the participating peers, compared to existing solutions such
as TFT [2] or BitTyrant [7]. However, this work does not
consider the complexity and memory requirements to find the
foresighted policies, which may become critical for practical
implementation of the MDP-based solutions.

Since peers generally have in practice memory and/or com-
putational constraints, they have limited knowledge of the other
players’ behavior and limited ability to analyze their environ-
ment, i.e., peers are boundedly rational [8]. Hence, in this letter,
we investigate how the computation and memory limitations
of peers (i.e., their bounded rationality) affect their foresighted
policies and the resulting performance. Specifically, we quan-
tify the impact of the bounded rationality on the accuracy of
long-term utilities. This analysis enables each peer to minimize
the complexity and/or memory requirements, while achieving
the desirable accuracy of the utilities.

II. RESOURCE RECIPROCATION BASED ON MDP

A. Resource Reciprocation in Groups

In P2P networks, peers share content with each other in their
groups 1, while negotiating the amount of resources which they
will provide to each other. We denote a group of peers
associated with peer by , i.e., . Note that
peer also has its own group that includes peer . Thus,
peers can belong to multiple groups. For more information about
the problem set-up, the interested reader is referred to [6].

B. MDP Based Resource Reciprocation

A peer determines its resource allocations (i.e., actions) to
the associated peers in . The actions of a peer are deter-
mined using a foresighted policy obtained based on an MDP [6],
which enables the peer to maximize its cumulative discounted
expected rewards (CDERs). Specifically, for a peer in its group

, an MDP is a tuple , where , , , and
denote the state space, the action space, a state transition prob-
ability (STP) function, and a reward function.

1) State Space : A state of peer represents the set of
received resources from the peers in . Let be
a set of resources that peer receives from its associated peers in

, where denotes the resources provided
by peer with its maximum available upload bandwidth

to peer 2. A function of peer maps into one

1For example, a group can be a partnership in [1], or a swarm in [2].
2Equivalently, � represents the download rates of peer � from peer �.
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of discrete values, referred to as state descriptions, and it is
defined as for .
is the segment among segments, and it is denoted by the

state description of peer for peer . We assume that the
available bandwidth is uniformly divided, i.e., represents

. Hence, the state space of peer
can be expressed as

In this letter, the bounded rationality of peer is represented
by the numbers of state descriptions for its associated peer

, which will determine its ability to model the evolution
of its resource reciprocation with peer . We study its impact on
performance in Section III.

2) Action Space : An action of peer is its resource allo-
cation to the peers in . Hence, the action space

of peer in can be expressed as

where denotes the resources allocated by peer to
peer and . Hence, peer ’s action
to peer becomes peer ’s received resources from peer , i.e.,

. We assume that the available resources (i.e., upload
bandwidth) of peers are decomposed into “units” of bandwidth.

3) State Transition Probability (STP) : An STP
represents the probability that by taking an action, a peer will
transit into a new state, i.e., . Hence,
given a state at time , an action

of peer can lead to another state at
with probability . The STPs can be
efficiently estimated based on past resource reciprocations [6].

4) Reward : A reward of a peer represents the total down-
load rates from . Since the received resources of peer are
represented by its state , the reward from can be ex-
pressed as

where is a random variable representing the download
rates in .

C. Foresighted Resource Reciprocation Policy

A foresighted peer ’s CDERs are expressed as

(1)

where peer is in state at time
given a discount factor . Thus, the peer takes its action
that maximizes in (1), i.e.,

(2)

Solutions to the optimization problem in (2) determine an op-
timal policy , which maps each state to a corre-
sponding optimal action , i.e., ,
where action to peer is denoted by .

Fig. 1. Resource reciprocation of peer � based on the MDP.

can be obtained using well-known methods such as value/policy
iteration [9]. Note that the discount factor in (1) can alterna-
tively represent the belief of the peer about the validity of the
expected future rewards [6]. Thus, we assume that the discount
factor of each peer is determined using its past experiences, rep-
utation of their associated peers [6], or a tolerable accuracy of
CDERs, as will be discussed later.

The resource reciprocation process of peer based on the
MDP is depicted in Fig. 1. In this letter, we focus on how peer

can determine the number of state descriptions for peer ,
while explicitly considering the impact of on the accuracy
of the achieved CDERs. This is highlighted in Fig. 1.

III. BOUNDED RATIONALITY OF PEERS

A. Bounded Rationality: Finite Number of State Descriptions

As discussed in Section II-B, a peer’s received resources from
its associated peers are captured by its state, and the boundedly
rational peers can use only a finite number of state descriptions
for their states. Moreover, a reward from is represented by
a random variable . Since no prior information about the
action of peer is available, we assume that for

is a uniform random variable, where its mean and variance
are given by and

, respectively.
Thus, it is obvious that using more state descriptions (i.e.,

finer states) enables each peer to compute the actual CDERs
more accurately. However, increasing the number of state de-
scriptions also leads to higher computational complexity to find
the optimal policy [9]. Therefore, it is important for each peer
to minimize the number of state descriptions, while achieving
a tolerable accuracy of the actual CDERs. To quantify how ac-
curately the CDERs computed based on a finite number of state
descriptions represent the actual CDERs, we use the variance of
the computed CDERs. We focus on quantifying the impact of
the accuracy improvement on the CDERs by using more state
descriptions.

B. Impact of State Granularity on CDER Accuracy

In this section, we analytically quantify the impact of the state
granularity on CDERs of a peer for peer based on the MDP
described in Section II 3.

Let be an optimal policy of peer with state descriptions
for peer . The corresponding STPs are expressed as an
matrix , where for

and is determined
by . As shown in [6], the CDER of peer from peer in

3For notation simplicity, we omit the subscript of the number of state descrip-
tions of peer � for peer � in the following analysis.
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is denoted by for , and it can be expressed
as

(3)

where denotes a discount factor of peer , and
denotes a reward vector. is a

steady state probability vector of , i.e.,
where . Hence, the CDER of peer from

peer can be computed based on its STP and steady state prob-
ability vector. We assume that the discount factor of peer
for MDP is predetermined.

To study the impact of the bounded rationality of peer on
the accuracy of its CDERs, we consider the case where peer
uses state descriptions for peer . The impact of
the bounded rationality on the accuracy of obtained CDERs are
stated in Proposition 1.

Proposition 1: If each state for a peer is refined using
state descriptions, the accuracy of CDERs is

improved by a factor of at least and at most .
Proof: Let be a state transition probability

matrix obtained by merging state descriptions of

into one state description, i.e.,
for . Hence, given an initial distribution

, where peer is in with probability ,
can be expressed as

(4)

where and each element of is deter-
mined by

(5)

for . The corresponding policy is
for . Thus,

the resulting CDERs from can be expressed as

(6)

Note that peer with state descriptions, however, cannot
achieve in (6), as it cannot discriminate between

, due to its bounded rationality
for describing states. Rather, the peer considers the re-
ward from as , where its mean and variance
are given by and

for . We denote the
steady state probability vector of by . Therefore, the
effect of the bounded rationality on the accuracy of CDERs
can be quantified by comparing the variances of and

.

Without loss of generality, we can compare the two quantities
and . Based on (3) and (6),

Since can be assumed to be independent and identically
distributed (i.i.d.), we have

(7)

where and .
Alternatively, can be obtained by

. Using (5), can be rewritten
as , where and

. Hence, can be expressed as

since . Note that and
are non-negative. Thus,

Moreover, Cauchy–Schwarz inequality gives

Therefore, we have

(8)
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TABLE I
PERFORMANCES ACHIEVED BASED ON MYOPIC (TFT) AND

FORESIGHTED RESOURCE RECIPROCATION STRATEGIES

Proposition 1 implies that, in general, if more state descrip-
tions are used, more accurate CDERs can be computed. Specif-
ically, it provides upper and lower bounds for the accuracy im-
provement. This result can also be used to determine the min-
imum number of state descriptions required to achieve a toler-
able CDER accuracy , as presented in Corollary 2.

Corollary 2: Suppose that a peer with state descriptions
currently achieves a CDER accuracy by modeling the re-
source reciprocation of peer . Then, a tolerable CDER accu-
racy for peer can be achieved using at least
state descriptions.

Proof: In (8), by setting

and , it can be directly shown that

, which implies that the minimum number of
state descriptions required to achieve is .

Therefore, from Corollary 2, we can conclude that a peer that
achieves a CDER accuracy using state descriptions for its
resourcereciprocationstrategyshoulduseatleast
state descriptions to improve its CDER accuracy to .

IV. SIMULATION RESULTS

First, we quantify how much the proposed foresighted
resource reciprocation strategies improve each peer’s perfor-
mance by comparing it with existing solutions such as TFT
strategy in BitTorrent. The simulation results presented in
Table I show the average time required for a peer to complete
its downloads (a general file with size of 5 Mbytes) and the
quality measured in Peak Signal to Noise Ratio (PSNR) that
a peer achieves by downloading Foreman sequences based on
myopic (i.e., TFT) and the foresighted strategies. The sequence
is at CIF (352 288) resolution, 30 frames/s, and encoded
using the H.264/AVC encoder. The maximum available upload
bandwidth of associated peer is 250 Kbps. As
discussed in Section II, the foresighted resource reciprocation
strategies maximize the CDERs of peers. This eventually leads
the peers to download a file in a shorter average time or to
achieve better video quality, as shown in Table I.

Since the peerscan determine the numberof their state descrip-
tions by considering the accuracy of the CDERs, we next focus on
quantifyingtheaccuracyofCDERsbasedondifferentnumbersof
state descriptions. Simulation results are presented in Fig. 2. Note
thattheCDERofapeerintheresultsrepresentsthecumulativedis-
countedexpected downloadrates fromitsassociatedpeer, and the
CDER accuracy implies a range of download rate variation. In
thisillustrativeexample, theavailablebandwidth ofassociated
peer is300Kbps.Fig.2clearlyshowsthattheaccuracyofCDERs
improves as the number of state descriptions increases, which is
discussed in Proposition 1. Moreover, given a number of state de-
scriptions, it is observed that a higher , which considers longer
future rewardsas shownin (1), inducesahigher , implyingan in-
accurately computed CDER. Therefore, it can be generally con-
cludedthatapeer withahigher requiresmorestatedescriptions
thanapeer witha lower toachievea tolerableCDERaccuracy
.Forexample, inFig.2,apeerwith and0.9

Fig. 2. CDER accuracy for different numbers of state descriptions and � .

requires more than 4, 8, 8, and 16 state descriptions, respectively,
to achieve in this resource reciprocation. Inversely,
if the number of state descriptions is fixed, value of can be de-
terminedsuch that it satisfiesa tolerable CDER accuracy . In this
example, if the number of state descriptions is fixed as 8,
needs to be selected, to achieve .

We can also verify the result presented in Corollary 2. As an il-
lustration, we consider a peer with and 2 state descrip-
tions,whichachieves asshowninFig.2.Toachieve

, theminimumnumberofrequiredstatedescriptions
can be analytically computed based on the result in Corollary 2,
which is . Thus, using at least 4 state descriptions, the
peer can achieve , which can be verified in Fig. 2.

V. CONCLUSION

We analyze and quantify how the bounded rationality of peers
affects their long-termutilityandbehavior.Weanalyticallyquan-
tify how the number of state descriptions affects their complexity,
memory requirements and ability to model the resource recipro-
cation of other peers, and, in turn, their own performance.
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