
1352 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 9, SEPTEMBER 2009

Informationally Decentralized System Resource
Management for Multiple Multimedia Tasks

Brian Foo and Mihaela van der Schaar, Senior Member, IEEE

Abstract— An increasing number of networked and battery-
powered devices require the simultaneous processing of multiple
high-complexity dynamic multimedia tasks. Existing resource
allocation solutions include both centralized approaches and dis-
tributed approaches. Centralized approaches typically have two
fundamental limitations. First, multimedia algorithms typically
have a large number of operating points and thus requires
high implementation complexity to optimally allocate resources
across multiple applications, making centralized solutions unsuit-
able for dynamic environments. Second, autonomous multimedia
applications may not be willing to reveal information about
their private utility functions, since such information can be
exploited by other selfish applications to gain an unfair perfor-
mance advantage by strategically misusing the system resources.
On the other hand, existing decentralized solutions typically
solve only resource-constrained utility maximization problems,
without regard to other system platform-dependent costs and
objectives, and without considering application dynamics. To
address these limitations, we present in this paper a decentralized
low-complexity resource management solution that can optimize
a variety of system performance objectives without requiring
applications to provide their utilities. We demonstrate analytically
and experimentally that our algorithms converge quickly to their
respective optimal solutions and are thus practical in dynamic
environments.

Index Terms— Autonomous multimedia applications, decen-
tralized algorithms, information privacy, multitask resource
management, resource-aware, system optimization.

I. INTRODUCTION

W ITH THE ADVENT of web TV, YouTube, peer-to-
peer multimedia streaming, video conferencing, etc.,

multiple autonomous multimedia processing, compression,
transcoding, and streaming tasks need to be executed simul-
taneously on the same system. Because multimedia systems
must readily cope with time-varying resource availabilities
and demands, an automated resource management solution for
gathering on-the-fly application requirements, and reconfigur-
ing the system in a timely manner, is highly desirable [2], [8].
Moreover, multimedia applications are highly resource-aware,

Manuscript received June 18, 2008; revised December 6, 2008. Current
version published September 16, 2009. This work was supported by the Grants
NSF 0509522 and NSF 0541453. This paper was recommended by Associate
Editor J. F. Arnold.

B. Foo was with the Department of Electrical Engineering, University of
California, Los Angeles, CA. He is now with the Advanced Technology
Center, Lockheed Martin Space Systems Company, Sunnyvale, CA, 90095-
1594 USA (e-mail: bkungfoo@ce.ucla.edu).

M. van der Schaar is with the Department of Electrical Engineering,
University of California, Los Angeles, CA, 90095-1594 USA (e-mail: mi-
haela@ee.ucla.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2009.2022794

such that they can achieve different video/audio quality levels
given different amounts of system resources (e.g., processing
power, memory, battery power, bandwidth, etc.) [18], [23].
Hence, the principles and methodology for determining how
to optimally divide limited system resources among multiple
multimedia applications must also be addressed [4].

Various analytical solutions have been proposed for allo-
cating limited system resources to multiple resource-aware
applications [4]–[8]. In these works, the quality of a re-
source allocation scheme is assessed by one of several social
welfare functions, often characterized by a weighted sum
or a weighted product of individual application utilities (or
multimedia qualities) [3], [9], [15]. In [4]–[6], centralized
resource allocation solutions are provided for maximizing
the social welfare of multiple applications that have multiple
quality-of-service dimensions (e.g., error rate, delay, etc.),
and consume multiple types of system resources. In [7], a
centralized solution is provided for maximizing the social
welfare of multiple applications running on a multiprocessor
system. Note that centralized solutions implicitly require a
resource manager (RM) to gather application utility-resource
functions and solve a centralized optimization problem.

On the other hand, a decentralized resource allocation
solution is desirable for three reasons. First, multimedia ap-
plications are diverse, and include algorithms such as coding,
error concealment, resizing, deinterlacing, deblocking, and de-
noising, which can function at a fine-granular set of operating
points based on various modes and parameters [18], [20], [22].
Hence, the RM must be either complex enough to map out
and optimize over a large number of system configurations,
or intelligent enough to choose only a subset of potentially
optimal candidate policies based explicitly on the application’s
algorithm. Unfortunately, the computational overhead asso-
ciated with enumerating possibly hundreds or thousands of
policies, and choosing the optimal policy (through centralized
optimization or decentralized bidding), is unsuitable for multi-
media applications with highly dynamic utility functions, since
the system would need to be reconfigured frequently during
runtime [23]. On the other hand, designing an intelligent
RM that can provide candidate policies based on multimedia
algorithms is an even more daunting task, since the RM
needs to be updated every time a new algorithm is ported
to the system. While the complexity of determining candidate
policies may not be an issue for a system that supports only
one or two types of multimedia algorithms, systems nowadays
need to support many different types of algorithms (e.g.,
see [12] for a list of common video codecs), and hence the
size of the RM would need to be very large.

1051-8215/$26.00 © 2009 IEEE

FOO AND VAN DER SCHAAR: INFORMATIONALLY DECENTRALIZED SYSTEM RESOURCE MANAGEMENT FOR MULTIPLE MULTIMEDIA TASKS 1353

Secondly, and perhaps more importantly, multimedia ap-
plications that share a system are often developed by many
different companies [12]. In many cases, these competing com-
panies may have incentives to develop products that can ex-
ploit information from other applications in order to “selfishly”
improve their own performances at the cost of social welfare.
Hence, multimedia applications often require autonomy over
the distribution of private information, such as details about
their coding algorithms and utilities, in order to protect them-
selves from selfish applications (and a potentially exploitative
system). Unfortunately, the algorithms proposed in [4]–[7]
require multimedia applications to submit their utility-resource
functions to the RM. Likewise, CARISMA’s auction-based
protocol requires each application to bid according to its utility
for each candidate policy, such that each application would be
required to report its utility to the middleware for possibly
many different system configurations [8]. In summary, these
works do not offer informationally decentralized solutions that
can protect the private information of autonomous multimedia
applications.

Finally, multimedia applications are often networked, and
hence information such as rate–distortion (R–D) tradeoffs [10],
[11], as well as complexity–distortion tradeoffs [18], [23], are
known only at the source. Various informationally decentral-
ized optimization solutions have been proposed for networked
applications [8]–[11] which maximize the sum of applica-
tions’ utilities in a decentralized manner. These decomposition
approaches enable remote video encoders to make coding
decisions in order to satisfy a decoding system’s bandwidth
constraint or computational resource bounds.1 However, most
of these works address only a single problem: maximizing the
sum of utilities for multiple applications under shared resource
constraints.

In this paper, we investigate how a system RM with lit-
tle information about multimedia applications can arbitrate
resource divisions to achieve a variety of application and
system objectives, under application dynamics. Our main
contributions are summarized below.

1) We introduce a general analytical framework for the
exchange of demands and costs between applications
and the RM, which we denote the message exchange
protocol (MEP). Rather than focusing on a single decen-
tralized solution that maximizes the sum of application
utilities (as in prior works), we demonstrate how to
use the MEP to implement decentralized algorithms
that achieve a wide gamut of system objectives, such
as minimizing system energy consumption, performing
workload balancing over multiple processing elements,
and performing joint power scheduling for interdepen-
dent multimedia jobs.

2) In contrast to prior approaches where decentralized
optimization is carried over static utility functions, we

1Note that while the utility maximization framework involves a continuous
representation of system resources, a continuous quality-complexity function
is a good approximation for fine-grained scalable multimedia applications.
Furthermore, while each application is required to perform individual utility
optimizations, many multimedia applications already have features built in to
maximize their qualities subject to resource constraints [23].

also consider application-specific dynamic utility func-
tions. By modeling temporal correlations in the quality-
resource functions for various video sequences, we de-
termine how the system can improve the rate of adapta-
tion for MEP-based decentralized algorithms, and how
the information exchange overhead of the MEP-based
algorithms can be reduced. We show experimentally
that our proposed algorithms converge quickly to their
respective optimal solutions and are therefore ideal for
resource adaptation in dynamic environments.

The organization of our paper is as follows. Section II
provides an overview of the MEP, and demonstrates how
conventional dual decomposition fits within the framework. In
Section II, we provide MEP-based algorithms for jointly max-
imizing social welfare and minimizing energy consumption.
Section III provides MEP-based algorithms for achieving sev-
eral other miscellaneous objectives. Section IV analyzes how
parameters in the MEP can be tuned to adapt quickly to time-
varying, but temporally-correlated video quality functions.
Section V provides simulations that compare the performances
of the algorithms, and Section VI concludes our paper.

II. MESSAGE EXCHANGE PROTOCOL

In this section, we introduce the analytical framework for
the MEP that is used to communicate information between
applications and the system, as illustrated in Fig. 1. As an
illustrative example, we demonstrate how the social welfare
maximization problem [9] can be solved using the proposed
MEP.

A. Message Exchange Protocol

The focus of our paper is to design a resource manage-
ment solution that can provide optimal resource allocation
schemes for multiple multimedia applications in an informa-
tionally decentralized environment. We consider an RM that
can accurately monitor resource utilization across possibly
multiple processors or machines.2 Moreover, the RM can
collect statistics about the computational requirements from
various tasks. However, the RM is not given each applications’
internal utility functions, since such information is part of
the companies’ intellectual property, and can possibly be
exploited by other competing applications. Hence, the RM
cannot schedule resources in a centralized manner to maximize
objectives that include social welfare-related metrics (e.g., sum
of application utilities).

While the RM does not have knowledge of application
utilities, it makes use of a continuous model of system
resources to intelligently effect various resource allocation
solutions by charging applications various costs for consuming
system resources. The RM generates costs in the form of
tax functions, messages that capture the congestion levels or
consumption rates of various utilized system resources (e.g.,
CPU utilization, communications bandwidth, energy availabil-
ity, etc.). Based on the tax functions provided by the RM,

2For example, in a multiple processor system, the RM can be located in the
OS kernel, which handles scheduling and resource allocation.

1354 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 9, SEPTEMBER 2009

multimedia applications can factor the costs into their utilities,
reconfigure their algorithms, and update their resource require-
ments, which effectively leads to a new system configuration.
The message exchange protocol (MEP) is presented formally
as follows:

Stage 1: Initialization.
The RM provides each task i , i ∈ {1, 2, . . . , I }, with a para-

metrized tax function ti (xi , m−i), where xi is a vector of task
i’s resource demands, and m−i is a parameter (or message)
that is transmitted and updated by the RM.3 The message can
be used to communicate the system resource condition, such
as CPU utilization, system energy consumption, bandwidth
availability, etc. Upon initialization, the RM also transmits an
initial message m(0)

−i .

Stage 2: Message Exchange.
During the message exchange phase, the RM and the tasks

will iteratively perform optimizations and message exchanges
(as shown below) until the resource allocation scheme con-
verges. x Tasks to RM: During iteration n, each task i solves
the following local optimization problem:

x(n)
i = arg max

xi

{
Qi (xi) − ti

(
xi , m(n−1)

−i

)}
(1)

where the net utility function of task i is the task quality
function Qi (x) minus the tax ti

(
xi , m(n−1)

−i

)
that the system

charges to the task. After computing its new resource demand
vector x(n)

i , it submits x(n)
i to the RM.

RM to Tasks: Based on the resource demands from all tasks,
the RM relays messages m(n)

−i = fi

(
x(n)
−i , γ

(n)
)

back to each

task i , where x(n)
−i is a vector of the resource demands from

all other tasks during iteration n, γ (n) is a step size parameter
that affects the value of the message at every iteration, and fi

is a function that is designed in a way to provide sufficient
information to each task while minimizing the amount of
information exchanged (i.e., the RM may not need to transmit
the entire demand vector x(n)

−i and parameter γ (n) to each task
i). Minimizing the message size can be beneficial both in
terms of reducing the informational overhead, as well as better
protecting information about individual applications’ resource
demands. An example of messages m(n)

−i will be given in the
next subsection.

Stage 3: Task Resource Allocation.
For static environments, convergence of the MEP to an

optimal resource allocation solution x∗ =
[
x∗

1
T , . . . , x∗

I
T
]T

is highly desirable. Formally, convergence can be defined as
follows: For any ε > 0, there exists an integer N such that
the resource allocation vector at any iteration n ≥ N , given by
x(n), satisfies the property

∥∥x∗ − x(n)
∥∥

2 < ε [19]. In practice,
an approximate convergence point can be chosen for any given
ε by terminating the algorithm when the change in the resource
demand vector is less than ε, i.e.,

∥∥x(n) − x(n−1)
∥∥

2 < ε. After

terminating the MEP, each task i is allocated x(n)
i resources.

3The tax charged to each task may be in the form of real money or tokens
for future system usage. As such, it makes sense to define ti

(
0, m−i

) = 0,
such that a task does not pay if it chooses not to utilize system resources.

For dynamic environments on the other hand, a highly
desired objective is minimizing the adaptation time. The
adaptation time can be defined as the number of iterations
for the algorithm to provide a solution within ε of the optimal
resource allocation, given that the application utility functions
are time-varying. Importantly, unlike the convergence time in
a static environment, the algorithm must constantly adapt to
different application utility functions over time. However, the
RM can also take advantage of temporal correlations in the
utility functions to reduce the adaptation time (discussed in
more detail in Section V).

We note that, in general, MEP-based algorithms will require
multiple iterations to converge due to a lack of centralized
utility information. Furthermore, after each iteration, the re-
source allocations may change, such that resulting resource
allocations may become temporarily infeasible [25]. However,
feasibility can be achieved by projecting the solution onto
the feasible set (e.g., scaling down the resource allocations
proportionally), although the resulting allocation will often
be suboptimal. A more viable solution would be to perform
iterations of the MEP prior to the transmission of a video
scene or group of frames (GOP), where the MEP can be run
in the background during transmission of the prior scene/GOP
and allowed to converge. (This will be discussed in more
detail in the simulations section.) Finally, note that the MEP
requires the quality-resource function of each application to be
concave. Concavity can always be guaranteed for multimedia
applications, since each application can generate a piecewise
linear convex hull using Pareto optimal quality-resource oper-
ating points, as shown in [20], [21]. Based on the concavity of
quality-resource functions, each iteration of the MEP requires
each multimedia application to solve only a low-complexity
convex optimization problem [19].

B. Illustrative Example of MEP Implementation: Dual
Decomposition

We now demonstrate that dual decomposition falls within
our MEP framework. Consider an objective function that is the
sum of the video dB PSNR qualities Qi (xi) [8], [15], [16]

U (x) =
I∑

i=1

Qi (xi) (2)

where vector xi indicates the amount of resources (bandwidth,
computational resources, etc.) used by task i . The social
welfare maximization (SWM) problem can be given by

max
I∑

i=1

Qi (xi)

s.t. g j (x) ≤ R j , j = 1, . . . , J ,

xi ≥ 0 ∀i ∈ I

(3)

where each g j (x1, . . . , xI) ≤ R j is a (convex) system con-
straint. For example, in multiuser video transmission, xi is a
scalar that expresses the rate of user i , and a single bandwidth
constraint g(x) = ∑I

i=1 xi ≤ R is used [11]. A similar
formulation can be used for computational resource constraints
on a shared system [7]. The tax function in the MEP protocol

FOO AND VAN DER SCHAAR: INFORMATIONALLY DECENTRALIZED SYSTEM RESOURCE MANAGEMENT FOR MULTIPLE MULTIMEDIA TASKS 1355

RM

App 1

Message
generator

U1 (x1,m–1)

U1 (x1,m–I)
App I

Message
generator

m–1 = f1 (x–1, γ)

m–I = f–I (x–I, γ)

Cost /
Tax function
construction

xI

x1

Tasks

System

Upon
convergence

to x*

…

…

Energy
minimization,
workload
balancing,
etc.

PE 1

PE 2

PE J

Fig. 1. Message exchange protocol for resource allocation.

can be given by ti
(

xi , m(n−1)
−i

)
= (

p(n−1)
)T

xi , where p(n−1)

is a cost vector per unit resource (e.g., cost per CPU cycle, unit
bandwidth, etc.) charged to each task. During each iteration n,
each task i ∈ {1, 2, . . . , I } calculates its new resource demand
x(n)

i based on

x(n)
i = arg max

xi ≥0

{
Qi (xi) −

(
p(n−1)

)T
xi

}
(4)

and submits it to the RM. The RM then updates the cost vector
p(n) by

p(n) = p(n−1) +
(

g
(

x(n)
)

− R
) /

γ (n) + χ+
(

x(n), γ (n)
)

(5)

where g (x) = [g1 (x) , . . . , gJ (x)]T , γ (n) is the step size
parameter that affects the change in the cost at each iteration,
and χ+

(
x(n), γ (n)

) = max
(
0,

(
g
(
x(n)

) − R
)
/γ (n)

)
is a metric

to force the cost to be nonzero if the cost is initialized at zero,
and resource demands are infeasible [25]. The RM submits
messages m(n)

−i = p(n) back to each task i ∈ {1, . . . , I }.
After the messages have been exchanged repeatedly, and the

resource demands converge to a feasible vector x∗, each task i
is then allocated resource quantity x∗

i . It has been shown that
convergence can be guaranteed if the value of γ (n) is picked
at every stage of the process from an increasing sequence, as
long as the sum of the sequence generated by 1/γ (n) is infinite
(e.g., γ (n) = n) [24], [25].

III. MEP-BASED ALGORITHMS FOR ENERGY

MINIMIZATION

A. Energy Minimization for an Always Active System

Now that we have shown that the dual decomposition
method falls within our MEP framework, in the following
sections we demonstrate how the MEP framework can be
utilized by the system RM to compel applications to demand
resources in a manner that converges to other system objec-
tives. In this section, we propose an MEP-based algorithm
to simultaneously maximize the social welfare of applications
while minimizing energy consumption for dynamic voltage
scalable (DVS) systems. A DVS-enabled processor can change
its operating frequency by adjusting its voltage level, which
affects its energy consumption rate. The active energy con-
sumed by a DVS-enabled processor can be modeled as a
convex increasing function of the processor workload [13],

[14], [17]. The total energy consumption can be modeled as
a convex function of the total workload across the system.4

The multiobjective optimization problem can be given by

Social Welfare-Max. Energy-Min (SWMEM) Problem

max
xi

∑I
i=1 Qi (xi) − λEact

tot

(∑I
i=1 xi

)
s.t. xi ≥ 0

(6)

where xi denotes the total computational resources allocated
to task i , Eact

tot (R) is the minimum active energy of a mul-
tiprocessor system given the total computational resources
allocated R, and λ > 0 is a weighting factor that determines
the relative importance of system energy to social welfare.
Note that the passive energy is assumed to be constant and
therefore not considered in the equation. However, the passive
energy becomes important for multiprocessor systems where
each of the multiple processing elements (PEs) can enter sleep
mode, as discussed in the next section. The MEP tax function
that achieves the optimal solution to (6) is

Excess Energy Minimizing (EEM) Tax Function

ti (xi) = λEact
tot (xi + di) − λEact

tot (di) (7)

where xi is task i’s total computational resource demand,
and di is task i’s “perceived” total computational resource
demand from all other tasks (which will be discussed later).
The EEM tax function has the following interpretation: The
system charges each task the amount of energy the system
consumes when the task runs on the system, minus the amount
of energy the system consumes if the task does not run on
the system. Note that the second term in the tax function,
λEact

tot (di), does not depend on xi , but is there to ensure
that each task i is not taxed if it does not consume system
resources, i.e., ti (0, m−i) = 0.

As in the SWM algorithm, the RM can introduce a step
size γ (n) to ensure convergence of the EEM algorithm. In this
case, assuming that x (n−1)

i is the computational demand from
each task i during the previous iteration, and x (n)

i the demand
during the current iteration, the RM submits the following
message to task i to update the tax function:

di = m(n)
−i =

∑
l �=i

(
x (n−1)

l

)
+ 1

γ (n)

∑
l �=i

(
x (n)

l − x (n−1)
l

)
(8)

such that the “change in demand” seen by each task is scaled
down by γ (n). The step size parameter γ (n) can be chosen
from an increasing sequence to guarantee convergence. We
omit a rigorous proof of convergence here, as a similar proof
can be found in [15], but we will prove that for strictly concave
task quality functions (in terms of xi) and convex energy
functions, the EEM tax function generates an optimal solution
for the SWMEM objective upon convergence. This is an im-
portant result for multimedia applications, where the quality-
complexity functions are concave [18]. The convergence time
will be further analyzed in (Section VI).

4We note that this is an incomplete model, since the energy function may not
be purely convex, or purely a function of the total workload across multiple
cores. Future work can explicitly address overheads associated with processor
sharing and memory access.

1356 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 9, SEPTEMBER 2009

Proposition 1: For strictly concave quality functions and
convex energy functions, the EEM tax function generates an
optimal solution to the SWMEM upon convergence.

Proof: See Appendix. We note that the proof provides us
with an additional guideline for designing tax functions that
achieve globally optimal solutions, i.e., tax functions must be
designed such that at equilibrium, the Karush–Kuhn–Tucker
(KKT) conditions are uniquely and simultaneously met for
each task’s local optimization problem as well as the system’s
global optimization problem.

B. Energy-constrained SWM for Multiprocessor Systems With
Sleep Modes

In this section, we consider a social welfare-maximizing
solution for a multiprocessor system with PEs that are DVS-
enabled and can switch between active and sleep modes. We
assume that a PE can go to sleep during a control interval of
length T and consume negligible energy if it is not assigned
any jobs to process. However, a PE cannot be both active
and sleeping within the same control interval. For an active
DVS-enabled PE j , it is shown that, given a total computation
requirement (e.g., cycles) r j during an interval of length T , the
PE should run at a constant frequency f j = r j/T throughout
the interval in order to minimize energy consumption [17].
Thus, the sleep mode-enabled energy function for each PE j
can be given by

E j

(
r j

)
=

⎧⎨
⎩

0, r j = 0

TPpass
j + α j TPact

j

(r j

T

)
, r j > 0

(9)

where the passive power for PE j , Ppass
j , is constant, and the

active power Pact
j

(
f j

)
is a convex function of the operating

frequency f j [13], [14].5

Note that the energy function for each PE is no longer
convex due to the discontinuity at r j = 0 in (9). However,
because the function is piecewise convex, we can still identify
all the local minima in the multiprocessor energy function,
and search through them in a combinatorial fashion to find
the globally optimal point. Prior to running the SWM, we
determine, for a given energy constraint, the subset of PEs
to turn on in order to maximize the available computational
resources. The optimal configuration is the one with the
loosest computational resource constraint. The algorithm is
summarized in Table I.

IV. MEP-BASED ALGORITHMS FOR MISCELLANEOUS

SYSTEM OBJECTIVES

A. Assigning Tasks to PEs Using Tax Functions

A practical concern for multiprocessor systems is how to
assign tasks to different PEs in order to minimize energy
consumption. Many multicore systems provide software pro-
grammers with the flexibility to choose system configurations

5Note that when there are finitely many voltage levels for a PE, the power
as a function of CPU requirements is piecewise continuous and increasing.
Since energy consumption is the integral of power with respect to time, it
follows that energy is a piecewise linear (and convex) function due to the
power being a nondecreasing function.

TABLE I

SLEEP MODE INITIALIZATION FOR SWM

1. // Initialize before runtime.

2. Fix total energy constraint Etot.

3. Set S = {1, 2, . . . , J } to be the set of PEs.

4. Construct the power set (set of all possible subsets) of PEs, 2S .

5. For each subset of PEs N ∈ 2S

6. Calculate the active energy constraint: Eact
tot = Etot −∑

j∈N E N
pass.

7. Determine the computational resource constraint ϒN =
RN

(
Eact

tot , N
)

by using the inverse of the energy model Eact
tot,N (R)

for only the PEs in N .
8. End For

9. Turn on the PEs corresponding to the N with the largest ϒN .

10. // During runtime.

11. Run SWM with complexity constraint ϒN .

that can better exploit thread-level parallelisms in their ap-
plications [1], [2]. While this can improve the performance
of individual parallelizable applications when resource avail-
ability is high, arbitrary resource usage can hurt the overall
performance of an energy-constrained system, since many
applications might compete over the same set of over-utilized
PEs. One possible solution is to remove this programming
flexibility and allow the RM to centrally schedule applications
across the PEs. However, we propose an alternative idea which
keeps the flexible programming feature, but introduces tax
functions to compel applications to run on PEs that are either
underutilized, or have lower energy consumption rates. We
note that determining this optimal assignment of PEs is beyond
the scope of the paper. The main purpose of this section is to
provide an alternative practical method for the RM to assign
applications to PEs, given that an efficient assignment has
already been computed.

To provide an illustration of our algorithm, we choose a tax
function that compels individual tasks to run on individually
assigned PEs. If a task is assigned to a particular PE, it is
taxed on the amount of energy consumed as if no other tasks
were running on the PE. However, if a task is not assigned to
a particular PE, it must pay a penalty equal to the total energy
increase it causes to all other tasks sharing that PE. Without
loss of generality, we assign task i to a PE j = i , where we
have assumed that I ≤ J , such that every task has a uniquely
assigned PE. If task i makes resource demands across J PEs
given by ri = (

ri,1, ri,2, . . . , ri,J
)
, its quality is modeled by a

concave increasing function Qi

(∑I
j=1 ri, j

)
. Using an appro-

priate step size γ (n), the RM sends the following messages to
each task i during each iteration n:

m(n)
−i = (

di,1, di,2, . . . , di,i−1, di,i+1, . . . , di,J
)

where di. j =
∑
l �=i

(
r (n−1)

l. j

)
+ 1

γ (n)

∑
l �=i

(
r (n)

l, j − r (n−1)
l, j

)
(10)

where r (n)
i, j is task i’s resource demand on processor j during

iteration n. The application then maximizes its utility based

FOO AND VAN DER SCHAAR: INFORMATIONALLY DECENTRALIZED SYSTEM RESOURCE MANAGEMENT FOR MULTIPLE MULTIMEDIA TASKS 1357

20 25 30 35 40
0

0.5

1

1.5

2
Variances and covariances

PSNR

pa
ra

m
et

er
s

coa covariance

mob covariance
for covariance

coa variance
mob variance

for variance

22 24 26 28 30 32 34 36 38
0

0.2

0.4

0.6

0.8

1
autocorrelation coefficient

PSNR

rh
o

coastguard

mobile
foreman

27 27.5 28 28.5 29 29.5 30 30.5 31
0

10

20

30

40

50

60

70

80
Mobile-9.5e9 cycles per GOP

PSNR

G

O
Ps

33 34 35 36 37 38
0

10

20

30

40

50

60

70
Coastguard-7.5e9 cycles per GOP

PSNR

G

O
Ps

Fig. 2. (a) Variances and covariances and (b) autocorrelation coefficient ρ
for quality perturbations in the Coastguard, Mobile, and Foreman sequences.
(c–d) Gaussian fits to the PSNR distributions (in dB) for Mobile and
Coastguard when operating at particular complexity levels. The complexity
is the number of entropy decoding and inverse transform cycles per GOP.

on the following tax function:

The PE Assigning Tax Function (PA):

tPA
i

(
ri , m(n)

−i

)
= αi Eact

i

(
ri,i

) +
∑
j �=i

Eact
j

(
ri, j + di, j

)

−
∑
j �=i

Eact
j

(
di, j

)
. (11)

Here, task i’s perceived total resource demand on PE j by all
other tasks is given by di, j . Similar to the EEM tax function,
the perceived change in demand is scaled by step size 1/γ (n).

The PA algorithm satisfies the condition where a task does
not have to pay taxes for any processor that it does not use. It
can also be shown that the decentralized PA algorithm often
converges to a solution where a task will rarely run on another
task’s assigned processor, unless the derived benefit is very
large. (The proof is similar to the Appendix and is therefore
omitted.) Note that while we have constructed a tax function to
assign a single processor to each task in this section, a similar
tax function exists for assigning multiple processors to each
task. This can be identically achieved by using the same type
of reduced taxation for a set of dedicated processors.

B. Power Scheduling for Interdependent Multimedia Jobs

In this section, we propose a power scheduling solution for
maximizing the social welfare of multiple applications with
interdependent jobs. For example, in MPEG, if an I-frame is
decoded at a lower resolution using less resources, the follow-
ing P-frames and B-frames will also be decoded under extra
distortion regardless of the amount of resources allocated to
them, since they depend on the distorted I-frame to reproduce
their respective video frames. Hence, proper power scheduling
is an important issue for optimizing the performance of real-
time multimedia systems where jobs do not only have stringent
delay deadlines, but the contribution of jobs to the overall
quality may also be highly interdependent.

We formulate the scheduling problem as follows. Define a
super-interval TS as consisting of NS time intervals of size T ,

where T is the time between successive video frames, and
NS is the size of an interdependent group of frames/pictures
(GOP). For the mth time interval in super-interval TS , a
corresponding quantity of computational resources xi,m is
allocated to task i . The resulting quality function with NS

time intervals per super-interval is

Qi (xi) = Qi
(
xi,1, xi,2, . . . , xi,NS

)
(12)

where xi = [
xi,1, xi,2, . . . , xi,NS

]T. For simplicity, we allow
only the time interval [(m − 1) T, mT) in the super-interval
for decoding the mth job in the GOP.

The system objective is then to simultaneously maximize the
sum of task qualities while saving energy by jointly allocating
resource shares to each task, and adjusting the operating
level of the DVS-enabled processor for each time slot. The
optimization function is as follows:

Joint SWMEM and Scheduling Optimization Problem
(SWMEM-S):

max
xi

I∑
i=1

Ui (xi , λ) = max
xi

I∑
i=1

Qi (xi)

− λ

NS∑
m=1

Eact
tot

(
I∑

i=1

xi,m

)
(13)

s.t. xi ≥ 0.

Since SWMEM-S is simply the multidimensional version of
the SWMEM, by a proof similar to Proposition 1, we can
show that the MEP tax function which achieves this global
objective function is the corresponding multidimensional
version of the EEM.

Joint EEM and Scheduling Tax Function (EEM-S):

tEEM−S
i

(
xi,m, di,m

) = λ

NS∑
m=1

[
E∗ (

xi,m + di,m
) − E∗ (

di,m
)]

(14)
where di,m = ∑

l �=i

(
x (n−1)

i,m

)
+(

1/γ (n)
) ∑

l �=i

(
x (n)

i,m − x (n−1)
i,m

)
is computed by the RM from the resource demands x (n)

i,m for
each interval m during algorithm iteration n.

C. Summary of MEP Algorithm Design Requirements

The examples in Sections III and IV were provided to illus-
trate a formal method for decentralized algorithm design via
tax functions. To clarify our approach, three main requirements
are summarized below.

First, an analytical optimization problem must be defined.
Are we maximizing the social welfare or minimizing system
resource usage (energy, workload on specific PEs, etc.)? What
are the resource constraints? Secondly, a proper step size
sequence γ (n) must be chosen to guarantee convergence in
static environments [24]. However, as will be discussed in
the next section, different choices of γ (n) can also affect
the adaptation time of decentralized algorithms in dynamic
environments. Finally, the KKT conditions must be simulta-
neously and uniquely met for the system objective function
and each task’s local optimization function (e.g., tax function)
to guarantee optimality.

1358 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 9, SEPTEMBER 2009

V. EFFICIENT RESOURCE ALLOCATION FOR TEMPORALLY

CORRELATED QUALITY FUNCTIONS

In this section, we propose adaptive resource allocation
solutions that explicitly take advantage of the temporal correla-
tions exhibited by the time-varying quality-resource functions
of multimedia applications. For illustration purposes, we focus
on the MEP-based SWM algorithm for video decoding appli-
cations. First, we propose a Markov model for video decoding
quality functions based on the collected statistics from various
video sequences (Section V-A). We then discuss the informa-
tion required by the RM to minimize the adaptation time, and
we present how to choose statistically optimal step sizes for
the SWM algorithm based on information known about the
dynamics of the video quality functions (Section V-B). Finally
a simple algorithm with very low informational overhead
is proposed (Section V-C), which fixes the cost function
during intervals where video quality functions do not vary
significantly.

A. Modeling the Quality Functions for Dynamic Video
Applications

Video sequences exhibit highly time-correlated character-
istics, and are often encoded using similar GOP structures
over time. Hence, we can model video decoding quality-
resource functions as discrete time Markov random processes
Yi (xi , n), where each index n corresponds to the GOP number
in the sequence, and the computational resource demand xi

in each period n corresponds to the complexity of decoding
the entire GOP. (Note that we use n to index each GOP
here, while it was previously used as the iteration number
in our MEP framework. We will show through simulations
that, in fact, these two are equivalent indices, since, only a
single iteration is required between adjacent GOPs to achieve
near-optimal performance!) The characteristics of the Markov
process, such as its distribution, mean, or variance, can be
obtained by each application using a sliding window, or can
be estimated by looking up a table of classified sequences
for the specific coder. For example, the distribution of video
decoding quality for several video sequences are given in
Fig. 2 using the coder in [18]. We found that the Gaussian
distribution approximates well the PSNR statistics (in dB)
of each sequence for fixed complexity levels [Fig. 2(c) and
(d)]. Hence, we model the video decoding quality function
for each task i as a Gaussian Markov chain. The Gaussian
Markov chain can be perfectly described by the mean quality
function Qi (xi), the perturbation variance σ 2

i (xi), and the
autocorrelation coefficient ρi between adjacent GOPs in the
sequence [See Fig. 2(a) and (b).], i.e.,

Yi (xi , n) = Qi (xi) + √
ρi (Yi (xi , n − 1) − Qi (xi))

+ √
1 − ρi Wi (xi)

= (
1 − √

ρi
)

Qi (xi) + √
ρi Yi (xi , n − 1)

+ √
1 − ρi Wi (xi) (15)

where Wi ∼ N
(
0, σ 2

i (xi)
)

is a white Gaussian vector with
variance σ 2

i (xi). Note that according to our measured statistics
[Fig. 2(a) and (b)], ρi depends little on xi , and can therefore be

modeled as a constant rather than a function of the complexity.
Hence, based on any complexity level xi , ρi can be estimated
by

ρi = E [(Yi (xi , n) − Qi (xi)) (Yi (xi , n − 1) − Qi (xi))]

σ 2
i (xi)

.

(16)
The quality function Yi (xi , n) will change its shape based

on the first derivative of σi (xi). We approximate this pertur-
bation variance using the following linear model

σi (xi) = ai xi + bi . (17)

Hence, the change in the first derivative of the quality function
from the previous time interval is

ςi (n) = dYi (xi , n)

dxi
− dYi (xi , n − 1)

dxi
(18)

where ςi (n) is a Gaussian random variable with standard
deviation on the order of

√
ρai , which is independent of xi

based on the model in (17). Note that for the SWM algorithm,
the larger the variance of ςi (n), the more suboptimal the
allocation will be if the cost per unit resource p is not
accurately updated.

B. Informational Requirement for Single Iteration Adaptation,
and Optimal SWM Step Sizes

In general, if the RM knows the second derivative Q′′
i (xi)

of each task’s quality function, the optimal solution can be
determined by the following two steps. First, the RM can
project a cost per unit resource for the tasks, and each task’s
response x̂i can be used to reconstruct the first derivative
function given Q′

i

(
x̂i

) = p. Once Q′
i (xi) is known, the

optimal cost can be obtained, and a centralized solution can
be used for resource allocation. Hence, the second derivative
provides the RM with sufficient information to optimally
update the resource allocation in a single iteration.

However, Q′′
i (xi) is generally not known by the RM. Nev-

ertheless, if some information about Q′′
i (xi) can be gathered

by the RM, better convergence time can be guaranteed for
the SWM by dynamically adjusting the step size parameter γ
(Note that the step size is no longer chosen from a predeter-
mined increasing sequence γ (n), but is updated based on the
behavior of the video quality functions.) To demonstrate our
approach, we propose the following modification to the SWM
algorithm:

SWM for Updating Resource Allocations (SWM-U): Based on
the model in (15) and (18), we have the following task level
optimization function for time interval n:

max
xi ,pi

Yi (xi , n) − ti

= max
xi ,pi

Yi (xi , n − 1) + ςi (n) xi − ti (xi , m−i)

= max
xi ,pi

Y (xi , n − 1) + ςi (n) xi − pxi . (19)

Since the costs are already assumed to be nonzero in the
previous iteration, we exclude the last term χ(·) from (5). As
can be seen, the random quality perturbation function Wi (xi)
causes the equilibrium point to shift, as the perturbations now

FOO AND VAN DER SCHAAR: INFORMATIONALLY DECENTRALIZED SYSTEM RESOURCE MANAGEMENT FOR MULTIPLE MULTIMEDIA TASKS 1359

-5 0 5 10 15 20
26

28

30

32

34

36

38

40

42

SWM-U Quality

iteration

P
S

N
R

foreman cent
coastguard cent

mobile cent

foreman SWM

coastguard SWM
mobile SWM

(a)

-5 0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SWM-U Fraction of Resources Allocated

iteration

fr
ac

tio
n

of
 r

es
ou

rc
es

 a
llo

ca
te

d

foreman cent
coastguard cent

mobile cent

foreman SWM

coastguard SWM
mobile SWM

(b)

-5 0 5 10 15 20
5

10

15

20

25

30

SWM-U Cost

iteration

Pr
ic

e
pe

r
un

it
co

m
pl

ex
ity

(c)

-10 -5 0 5 10 15 20
26

28

30

32

34

36

38

40

42

FCA Quality

iteration

PS
N

R

foreman cent

coastguard cent

mobile cent
foreman FPA

coastguard FPA

mobile FPA

(d)

-10 -5 0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FCA Fraction of Resources Allocated

iteration

fr
ac

tio
n

of
 a

llo
ca

te
d

re
so

ur
ce

s
foreman cent
coastguard cent

mobile cent

foreman FPA

coastguard FPA
mobile FPA

(e)

-10 -5 0 5 10 15 20
5

10

15

20

25

30

FCA Cost

iteration

C
os

t

(f)

Fig. 3. (a) Convergence of decentralized allocation qualities to centralized solutions, (b) corresponding fraction of resources allocated to each task, and
(c) costs are shown for SWM-U. (d–f) Corresponding plots for the fixed-cost algorithm (FCA).

affects each task’s perceived cost per unit resource to be
p−ςi . To construct a single iteration algorithm that accurately
updates resource allocation, a good choice of γ is needed. The
following toy example provides insight on how to determine
the best choice for γ .

Consider the case when all tasks have identical quality
functions Q(x), with initially balanced resource allocations
x . At the next time interval, each task identically updates his
function to Qnew(x) = Q(x)+ςx +ξ , where ς, ξ ∈ R. Hence,
the new derivative can be written as

Q′
new(x) = Q′(x) + ς. (20)

Based on this new function and the old cost p = Q′(x), a
task will update its resource demand to x ′, where Q′

new

(
x ′) =

Q′ (x ′) + ς = Q′(x). Each task now has an identical excess
demand of �x = x ′ − x . The second derivative of Q (x) can
be approximated between the points x and x ′ as

Q′′(x) ≈ Q′ (x + �x) − Q′(x)

�x
= Q′ (x ′) − Q′(x)

x ′ − x
= −ς

�x
.

(21)
Based on the modified SWM-U tax form (19), setting γ =
−ς/�x is the optimal choice for that time interval. Note that
γ depends on ς and the excess demand; hence if ς is known
for every interval, γ can be chosen close to optimal. For the
general case with many tasks and different quality-resource
functions, γ can be set to the average value of all individually
calculated γi ’s.

TABLE II

SWM-U ALGORITHM

1. Set initial step size 1/γ .

2. Run SWM using an initial price p per unit resource.

3. Obtain resource demands for all tasks x1, . . . , xI .

4. While tasks are running
5. Run SWM with updated price p using step size 1/γ .

6. System RM calculates |�xi | for all tasks (using sliding window,
discounted average, etc.).

7. Applications calculate average ςi over prior intervals. Transmits
the parameter to the RM.

8. RM finds optimal step size γ ≈ E
[
ςi /�xi

]
i=1,...,I .

9. End While

Because the ς parameter depends on changes in the utility-
complexity function, it is often known only at the source.
Nevertheless, the source can still obtain an estimate of the
quality perturbation autocorrelation coefficient ρ and variance
σ over several prior time intervals, and use this distribution
to determine the mean value of ς . By estimating the excess
demand �x over several intervals, a statistically optimal γ ≈
E [ς/�x] can be obtained. The algorithm for the SWM-U is
listed in Table II.

1360 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 9, SEPTEMBER 2009

0 1 2 3 4 5 6 7 8 9 10
18

20

22

24

26

28

30

32

34

36
Quality of each task

iteration

qu
al

it
y

ob
ta

in
ed

 (
P

S
N

R
)

Coastguard 1
Coastguard 2
Foreman 1
Foreman 2
Mobile

(a)

0 1 2 3 4 5 6 7 8 9 10

iteration

0

1

2

3

4

5

6

7
x 105

Resource allocated to each task

re
so

ur
ce

 a
llo

ca
te

d
(c

yc
le

s)

Coastguard 1
Coastguard 2
Foreman 1
Foreman 2
Mobile

(b)

Fig. 4. (a–b) Convergence of quality and computational resource allocation of EEM with energy function E ∝ x2.

0.5 1 1.5 2

26

28

30

32

34

36

38

System energy-task quality curves

Normalized system energy expended

A
ve

ra
ge

 P
S

N
R

Foreman EEM

Coastguard EEM

Mobile EEM

Foreman fair

Coastguard fair

Mobile fair

(a)

0.05 0.1 0.15 0.2 0.25
125

130

135

140

145

150

155

160

System energy-social welfare curve

Normalized system energy expended

T
ot

al
 P

SN
R

EEM
Fair Share

(b)

Fig. 5. (a) Energy–quality curves for video sequences in the EEM algorithm compared against the fair share scheduling algorithm. (b) Plot of the sum of
qualities (social welfare).

C. Fixed Cost Algorithm

Finally, we propose a low-complexity fixed cost algo-
rithm (FCA), which updates resource allocations without any
communications overhead aside from determining an initial
cost per unit resource p. The assumption is that when ς
is small, the cost of the SWM-U remains approximately
fixed. Hence, the only overhead associated with this algorithm
occurs when source characteristics change significantly, and
a new cost needs to be determined using a few iterations
of the SWM. Otherwise, each task can run the FCA in
isolation.

In the FCA, based on the initial cost p obtained by the SWM
at the beginning of a video scene, tasks simply determine their
demand for each time interval n using the cost p without
communicating with the RM, i.e.,

xdemand
i (n) = arg max

xi

Y (xi , n) − xi p. (22)

Notice from Fig. 2(b) that the perturbation variance is fairly
constant across different complexities for each sequence,

which means slope parameter ai is small. Even for sequences
such as Mobile, the perturbation parameter ai is about 10%
the slope of its quality function. Moreover, the high correlation
coefficient ρ further reduces the effect on the cost change be-
tween adjacent intervals, such that the perturbation-to-quality
ratio is

√
ρσi (xi) /Qi (xi). Hence, as long as the initial cost

converges, the FCA cost function should be approximately
identical to SWM-U, leading to near-identical resource allo-
cations, as verified in the next section.

VI. SIMULATIONS AND RESULTS

To measure the performance of our resource management
algorithms, we used the video coder from [18] in our sim-
ulations to encode various sequences at different bit rates,
and we gathered the number of cycles for each decoding
job on a Pentium IV processor. We note that while we have
chosen a specific coder, our methodology can just as easily
apply to any other quality-resource scalable video coding
algorithms (e.g., encoding with different macroblock sizes

FOO AND VAN DER SCHAAR: INFORMATIONALLY DECENTRALIZED SYSTEM RESOURCE MANAGEMENT FOR MULTIPLE MULTIMEDIA TASKS 1361

TABLE III

AVERAGE NUMBER OF CYCLES PER FRAME FOR TASK TO PE ALLOCATIONS AFTER FOUR ITERATIONS OF THE PA ALGORITHM

Task/Processor PE 1 PE 2 PE 3 PE 4 PE 5

Foreman 1 267982 3564 4333 4333 4019

Foreman 2 3564 267982 4334 4333 4019

Coastguard 1 3237 3237 299839 3885 3571

Coastguard 2 3237 3237 3884 299842 3571

Mobile 1 3310 3310 4077 4078 289221

and prediction modes in H.264). In order to verify that our
algorithms are suitable for DVS-enabled PEs, we used the
StrongARM processor profile [26].

A. SWM/FCA Behavior for Dynamic Video Quality Functions

In Fig. 3, the iterations of the SWM for computational
resource allocations are plotted for two Foreman, two Coast-
guard, and one Mobile sequences sharing the same system.
Note that only one curve for the Foreman and Coastguard
sequences are plotted, since resource allocations are identical
for the same sequences. Negative indices refer to iterations for
global adaptation (via the SWM-based algorithm), such that
the allocations can converge before the video starts playing
at iteration/time 0. The MEP iterations for the SWM-U and
FCA are then synchronized with the video sequence during
runtime, such that one iteration of the MEP is performed
between each GOP. (The video quality function changes after
each GOP.) Note that we purposely ran eight iterations of
the SWM algorithm during global adaptation before running
the FCA to allow the cost to converge. On the other hand,
four iterations were sufficient for SWM global adaptation
before running SWM-U, since the SWM-U continued to adapt
its cost metric and resource allocations accurately during
runtime under very low complexity (i.e., only a single MEP
iteration is required for accurately updating the resource
allocation between each GOP!). Moreover, because the cost
fluctuates little upon convergence [Fig. 3(c) and (f)], the
FCA, which requires no communications overhead except
at the beginning of the video sequence, performs almost
equally to the SWM-U. Importantly, the SWM-U required
only an adaptation time of a single interval to be within
3% of the optimal resource allocation, while the FCA main-
tained a 5% deviation from the optimal resource allocation
throughout.

B. EEM Convergence and Tradeoff Parameter λ

The convergence of the decentralized EEM algorithm to
the optimal SWMEM solution is shown in Fig. 4, based
on the StrongARM energy model [26], where the voltage
V is proportional to the frequency f , and hence the energy
E ∝ V 2 ∝ f 2. The same five video tasks above were also
used for this experiment. The step size parameter is fixed at
γ = 1, such that the real resource demand is projected for
each application [see (8)], and the energy weight is set to

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

22

24

26

28

30

32

34

36

EEM energy-quality curve

Normalized system energy expended

A
ve

ra
ge

 P
SN

R

Foreman EEM

Coastguard EEM

Mobile EEM

Foreman fair

Coastguard fair

Mobile fair

Fig. 6. Energy–quality curves for video sequences using Nash product
fairness, compared against the fair share scheduling algorithm.

λ = 2×10−3PSNR/J. The EEM converges quickly (after only
five iterations) and is therefore ideal for resource allocation in
dynamic environments.

In Fig. 5, we plotted the video qualities and the energy
consumed for different values of λ in the SWMEM/EEM, and
compared it against a complexity fair scheduling scheme. Note
that the EEM allocates more resources to the Mobile sequence
since its performance increases drastically with increased
resources. On the other hand, Coastguard, which benefits less
from increased resources, receives less total resources and
therefore has lower quality. Overall, the sum of PSNRs for all
tasks, shown in Fig. 5b, is 5–10 dB higher for the EEM than
for fair share resource allocation at low-power regions, which
translates to a significantly higher average video quality per
task (1–2 dB PSNR). We also compared the complexity-fair
scheduling scheme against the Nash product social welfare
objective (a utility fair scheme), given by the product of
application utilities (Fig. 6) [3]. This can be achieved by
requiring each task to use a utility function that is the log of its
quality function, i.e., ln (Qi (xi)). Note that the Nash product-
based EEM algorithm is a fairer allocation of resources, since
the quality of the Mobile sequence, which requires far more
computational resources than the Foreman and Coastguard
sequences, is greatly increased.

1362 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 9, SEPTEMBER 2009

(a)

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

Processor #

Pe
rc

en
t o

f
re

so
ur

ce
 a

llo
ca

te
d

to
 p

ro
ce

ss
or

Processor allocations

Task 1
Task 2
Task 3
Task 4
Task 5

 (b)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

28

30

32

34

36

38

40

PAA energy-quality curve

Normalized units of energy expended

A
ve

ra
ge

 P
SN

R

Foreman PA
Coastguard PA
Mobile PA
Foreman opt
Coastguard opt
Mobile opt

Fig. 7. (a) Bar graph of the resulting processor resource distribution after four iterations of the PA algorithm. Tasks 1, 2 are Foreman, 3, 4 are Coastguard,
and 5 is Mobile. (b) The energy–quality curves for the PA algorithm and the optimal SWMEM solution.

TABLE IV

COMPARISON OF SWMEM-S AND RATE MONOTONIC (NORMALIZED) COMPLEXITY ALLOCATION FOR VARIOUS TIME INTERVALS, AND RESULTING

(NORMALIZED) ENERGY AND QUALITIES UNDER FIXED ENERGY CONSUMPTION. THE SAME SETS OF TASKS WERE USED AS IN THE

PREVIOUS SUBSECTIONS

Rate monotonic SWMEM-S/EEM-S

Time interval/priority 1 2 3 1 2 3

Task 1 75.0 60.0 120.4 108.2 74.0 43.9

Task 2 75.0 60.0 120.4 108.2 74.0 43.9

Task 3 200.0 190.2 154.8 201.6 161.1 128.7

Task 4 200.0 190.2 154.8 201.6 161.1 128.7

Task 5 200.0 249.7 199.7 199.3 160.5 129.0

Total complexity 750.0 750.0 750.0 818.9 630.7 474.1

Total energy 12.66E 9.07E

Average PSNR 29.75 dB 29.80 dB

C. Allocation Behavior for the Processor Assigning Algorithm

We simulated the performance of the PA algorithm by
assigning the five video decoding tasks to five separate,
identical DVS-enabled processors. Note that from Table III
and Fig. 7a, for five tasks and five processors, the final
resource distribution allocates most of each task’s complex-
ity to its assigned processor after only four iterations of
the PA algorithm, which demonstrates that using tax func-
tions can compel tasks to run mostly on their assigned
processors.

We also performed simulations to compare the PA algo-
rithm with the ideal SWMEM solution when tasks can be
arbitrarily parallelized across all PEs (See Fig. 7b). Note
that for very small λ, or high energy availability regions,
the processor dedicating algorithm achieves approximately the
same performance as the SWMEM. This may be explained
by the fact that when energy is cheap, the video qualities
achieved are near maximum and increase very little per unit
energy allocated. Consequently, resource allocation is not an

important issue when resources are highly available. However,
the PA algorithm yields considerably less quality than the ideal
SWMEM solution when the cost per unit energy λ is high,
since the slope of video quality functions are much steeper
and differ much more between sequences at low energy/quality
levels. Indeed, the poor performance of the PA algorithm is
largely a result of poor PE-to-task assignment, which indicates
that smartly assigning/sharing processors is very important
when energy is scarce.

D. Joint SWMEM and Scheduling Simulation

The SWMEM-S simulations were performed for a three-
level hierarchy of frames, and the quality-resource curves
were used for the different bitplane-truncation points for each
frame. Note that if a base layer frame is decoded down to
a certain bitplane, decoding the second and third layers to
a finer quantization level does not contribute much to the
overall quality, since the distortion created by the base layer
frame still exists. Hence, the quality of the decoded frames

FOO AND VAN DER SCHAAR: INFORMATIONALLY DECENTRALIZED SYSTEM RESOURCE MANAGEMENT FOR MULTIPLE MULTIMEDIA TASKS 1363

are interdependent. As shown in Table IV, by decoding the
different priority frames during different time intervals and
adapting the processor frequency in every interval based on ap-
plication job dependencies, we can achieve better performance
than rate-monotonic DVS, which is the optimal application-
agnostic policy for saving energy given hard deadlines. Using
the same five video decoding tasks as above, we showed that
the SWMEM-S achieved approximately the same video quality
as rate-monotonic DVS while providing over 28% in energy
savings.

VII. CONCLUSION

In this paper, we presented a low-complexity information-
ally decentralized resource management solution for multiple
multimedia applications sharing a resource-constrained sys-
tem. We verified that our solution can be used to optimally
achieve various objectives, such as maximizing the social wel-
fare of applications, minimizing system energy consumption,
assigning processors to applications, and efficiently updating
the resource allocation in dynamic environments. Importantly,
these solutions can be achieved even when applications are
unwilling to reveal private information about their utilities.
An avenue for future work is to construct and evaluate
informationally decentralized algorithms based on more so-
phisticated (and possibly non-convex) resource models that
deal explicitly with various elements and features that can
exist within a heterogeneous system (e.g., shared memory
and caches between PEs, special-function processors, voltage
islands, etc.).

APPENDIX

PROOF OF PROPOSITION 1

Proof: To show that the decentralized task objective func-
tions are at equilibrium at the optimal point of the SWMEM
objective function (6), and that the equilibrium point is unique,
we use the KKT conditions for optimality. Since the SWMEM
function is concave, the KKT conditions for optimality exist
at a unique point, where for some μ = (μ1, μ2, . . . , μI) ≥ 0,
the following conditions hold:

∇
(

I∑
i=1

Qi (xi) − E∗
(

I∑
i=1

xi

))
− μ = 0

μi r
(i) = 0, i = 1, . . . , I .

(23)

The KKT conditions for the task-level optimization using the
EEM tax function are

d

dxi
Qi (xi) − d

dxi
E∗

(
I∑

i=1

(xi + di)

)
− μi = 0

μi xi = 0.

(24)

For all users to be at an equilibrium point for the decentralized
algorithm, the change in demand for each user should be 0,
and thus based on (8), the excess demand di = ∑

l �=i xl . It
can be seen that at equilibrium, the equation involving the i th

component of the gradient in (23) is identical to the expression
in (24), i.e.,

∇i

(
I∑

i=1

Qi (xi) − E∗
(

I∑
i=1

xi

))
− μi

= ∂

∂xi
Qi (xi) − ∂

∂xi
E∗

(
I∑

i=1

xi

)
− μi

= d

dxi
Qi (xi) − d

dxi
E∗ (xi + di) − μi . (25)

Since the intersection of all KKT conditions for all task-
level objective functions to be in equilibrium is precisely the
condition for system global optimality, convergence of the
decentralized algorithm (EEM) guarantees an efficient solution
to the global objective function (SWMEM).

REFERENCES

[1] Intel Inc. Intel Multi-Core Processors: Leading the
Next Digital Revolution. [Online]. Available: http://www.
intel.com/technology/magazine/computing/multicore-0905.pdf

[2] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste, “Project aura:
Toward distraction-free pervasive computing,” IEEE Pervasive Comput.,
vol. 21, no. 2, pp. 22–31, Apr.–Jun. 2002.

[3] Y. Chevaleyre, P. E. Dunne, U. Endriss, J. Lang, M. Lematre,
N. Maudete, J. Padget, S. Phelps, J. A. Rodrguez-Aguilar, and
P. Sousa. Issues in multiagent resource allocation [Online]. Available:
http://www.doc.ic.ac.uk/.ue/MARA/mara-may-2005.pdf

[4] V. Poladian, J. P. Sousa, D. Garlan, and M. Shaw, “Dynamic configura-
tion of resource-aware services,” in Proc. 26th ICSE, 2004, pp. 604–613.

[5] V. Poladian, J. Sousa, F. Padberg, and M. Shaw, “Anticipatory config-
uration of resource-aware applications,” ACM SIGSOFT Software Eng.
Notes, vol. 30, no. 4, pp. 1–4, Jul. 2005.

[6] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek, “A resource
allocation model for QoS management,” in Proc. IEEE Real-Time Syst.
Symp., San Francisco, CA, 1997, pp. 298–307.

[7] S. Ghosh, R. R. Rajkumar, J. Hansen, and J. Lehoczky, “Scalable
resource allocation for multi-processor QoS optimization,” in Proc. 23rd
IEEE Int. Conf. Distributed Comput. Syst. (ICDCS ’03), May 2003,
pp. 174–183.

[8] L. Capra, W. Emmerich, and C. Mascolo, “CARISMA: Contextaware
reflective middleware system for mobile applications,” IEEE Trans.
Software Eng., vol. 29, no. 10, pp. 929–945, Oct. 2003.

[9] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering
as optimization decomposition: A mathematical theory of network
architectures,” Proc. IEEE, vol. 95, no. 1, pp. 255–312, Jan. 2006.

[10] J. Chakareski and P. Frossard, “Rate-distortion optimized distributed
packet scheduling of multiple video streams over shared communica-
tion resources,” IEEE Trans. Multimedia, vol. 8, no. 2, pp. 207–218,
Apr. 2006.

[11] J. Huang, Z. Li, M. Chiang, and A. K. Katsaggelos, “Joint source
adaptation and resource pricing for multi-user wireless video streaming,”
IEEE Trans. Circuits Syst. Video Tech., vol. 18, no. 5, pp. 582–595,
May 2008.

[12] List of Video Codecs [Online]. Available: http://www.fourcc.org/
codecs.php

[13] L. Benini and G. De Micheli, Dynamic Power Management: Design
Techniques and CAD Tools. Norwell, MA: Kluwer, 1997.

[14] W. Yuan, K. Nahrstedt, S. Adve, D. Jones, and R. Kravets, “GRACE-1:
Cross-layer adaptation for multimedia quality and battery energy,” IEEE
Trans. Mobile Comput., vol. 5, no. 7, pp. 799–815, Jul. 2006.

[15] T. Stoenescu and J. Ledyard, “A pricing mechanism which implements
a network rate allocation problem in nash equilibria,” IEEE/ACM Trans.
Netw., to be published.

[16] X. Lin, N. Shroff, and R. Srikant, “A tutorial on cross-layer optimization
in wireless networks,” IEEE JSAC, vol. 24, no. 8, pp. 1452–1463,
Aug. 2006.

[17] T. Ishihara and H. Yasuura, “Voltage scheduling problem for dy-
namically variablevoltage processors,” in Proc. ACM ISLPED, 1998,
pp. 197–202.

1364 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 9, SEPTEMBER 2009

[18] B. Foo, Y. Andreopoulos, and M. van der Schaar, “Analytical complexity
modeling of wavelet-based video coders,” in Proc. ICASSP 2007, vol. 3.
Honolulu, HI, pp. 789–792.

[19] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Univ. Press, 2004.

[20] N. Mastronarde and M. van der Schaar, “A bargaining theoretic approach
to quality-fair system resource allocation for multiple decoding tasks,”
IEEE Trans. Circuits Syst. Video Technol. (TCSVT), vol. 18, no. 4,
pp. 453–466, Apr. 2008.

[21] E. Akyol and M. van der Schaar, “Complexity model based proactive
dynamic voltage scaling for video decoding systems,” IEEE Trans.
Multimedia, vol. 9, no. 7, pp. 1475–1492, Nov. 2007.

[22] Z. Yu and J. Zhang, “Video deblocking with fine-grained scalable
complexity for embedded mobile computing,” in Proc. 7th Int. Conf.
Signal Process. 2004 (ICSP ’04), Aug. 2004, pp. 1173–1178.

[23] M. van der Schaar and Y. Andreopoulos, “Rate-distortion-complexity
modeling for network and receiver aware adaptation,” IEEE Trans.
Multimedia, vol. 7, no. 3, pp. 471–479, Jun. 2005.

[24] N. A. Lynch, Distributed Algorithms. San Mateo, CA: Morgan
Kaufmann, 1996, pp. 51–80.

[25] D. Bertsekas, Nonlinear Programming. New York: Palgrave Macmillan,
1997.

[26] A. Sinha and A. P. Chandrakasan, “Jouletrack: A web based tool for soft-
ware energy profiling,” in Proc. IEEE/ACM DAC, 2001, pp. 220–225.

Brian Foo obtained the Ph.D. degree in 2008 in elec-
trical engineering from the University of California,
Los Angeles, under the supervision of Prof. Mihaela
van der Schaar.

He is currently at the Advanced Technology
Center, Lockheed Martin Space Systems Company,
Sunnyvale, CA, as a Research Scientist.

Mihaela van der Schaar (SM’04) is an Associate
Professor in the Department of Electrical Engineer-
ing, University of California, Los Angeles.

She holds 30 granted U.S. patents and three ISO
awards. She received the NSF Career Award in 2004,
the Best Paper Award from IEEE Transactions on
Circuits and Systems for Video Technology in 2005,
the Okawa Foundation Award in 2006, the IBM
Faculty Award in 2005, 2007, and 2008, and the
Most Cited Paper Award from EURASIP: Image
Communications journal, in 2006.

