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Abstract—In our previous work, we proposed a systematic
cross-layer framework for dynamic multimedia systems, which al-
lows each layer to make autonomous and foresighted decisions that
maximize the system’s long-term performance, while meeting the
application’s real-time delay constraints. The proposed solution
solved the cross-layer optimization offline, under the assumption
that the multimedia system’s probabilistic dynamics were known
a priori, by modeling the system as a layered Markov decision
process. In practice, however, these dynamics are unknown a
priori and, therefore, must be learned online. In this paper, we
address this problem by allowing the multimedia system layers
to learn, through repeated interactions with each other, to au-
tonomously optimize the system’s long-term performance at
run-time. The two key challenges in this layered learning setting
are: (i) each layer’s learning performance is directly impacted
by not only its own dynamics, but also by the learning processes
of the other layers with which it interacts; and (ii) selecting a
learning model that appropriately balances time-complexity (i.e.,
learning speed) with the multimedia system’s limited memory
and the multimedia application’s real-time delay constraints. We
propose two reinforcement learning algorithms for optimizing
the system under different design constraints: the first algorithm
solves the cross-layer optimization in a centralized manner and
the second solves it in a decentralized manner. We analyze both
algorithms in terms of their required computation, memory,
and interlayer communication overheads. After noting that the
proposed reinforcement learning algorithms learn too slowly, we
introduce a complementary accelerated learning algorithm that
exploits partial knowledge about the system’s dynamics in order
to dramatically improve the system’s performance. In our exper-
iments, we demonstrate that decentralized learning can perform
equally as well as centralized learning, while enabling the layers
to act autonomously. Additionally, we show that existing applica-
tion-independent reinforcement learning algorithms, and existing
myopic learning algorithms deployed in multimedia systems,
perform significantly worse than our proposed application-aware
and foresighted learning methods.

Index Terms—Cross-layer multimedia system optimization, lay-
ered Markov decision process, reinforcement learning, resource-

constrained multimedia system.
TATE-of-the-art multimedia technology is poised to en-
able widespread proliferation of a variety of life-enhancing
applications, such as video conferencing, emergency services,
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surveillance, telemedicine, remote teaching and training, aug-
mented reality, and distributed gaming. However, efficiently de-
signing and implementing such delay-sensitive multimedia ap-
plications on resource-constrained, heterogeneous devices and
systems is challenging due to the real-time constraints, high
workload complexity, and the time-varying environmental dy-
namics experienced by the system (e.g., video source character-
istics, user requirements, workload characteristics, number of
running applications, memory/cache behavior etc.).

Cross-layer adaptation is an increasingly popular solution
for addressing these challenges in dynamic multimedia systems
(DMSs) [1]-[8]. This is because the performance of DMSs
(e.g., video rate-distortion costs, delay, and power consumption)
can be significantly improved by jointly optimizing parameters,
configurations, and algorithms across two or more system
layers (i.e., the application, operating system, and hardware
layers), rather than optimizing and adapting them in isolation.
However, existing cross-layer solutions have several important
limitations.

Centralized Cross-Layer Solutions: The majority of these
solutions require a central optimizer to coordinate the applica-
tion, operating system, and hardware adaptations to optimize the
performance of one or multiple multimedia applications sharing
the DMS’s limited resources. To this end, a new interface be-
tween the central optimizer and all of the layers is created, re-
quiring extensive modifications to the operating system [4], [5]
or the introduction of an entirely new middleware layer [1]-[3],
[24], [25]. Unfortunately, these approaches ignore the fact that
the majority of modern system’s are comprised of layers (com-
ponents or modules) that are designed by different manufac-
turers, which makes such tightly integrated designs impractical,
if not impossible [8], [18], [19].

Myopic Cross-Layer Solutions: Another limitation of
many existing cross-layer solutions for DMSs is that they
are myopic. In other words, cross-layer decisions are made
reactively in order to optimize the immediate utility, without
considering the impact of these decisions on the future utility.
However, in DMSs, it is essential to predict the impact of the
current decisions on the long-term utility because the multi-
media source characteristics, workload characteristics, OS and
hardware dynamics are often correlated across time. Moreover,
in DMSs, utility fluctuations across time lead to poor user ex-
perience and bad resource planning leads to inefficient resource
usage and wasted power [26], [27]. In contrast, foresighted (i.e.,
long-term) optimization techniques take into account the im-
pact of immediate cross-layer decisions on the DMS’s expected
future utility. Importantly, foresighted policy optimizations
have been successfully deployed at the hardware layer to solve
the dynamic power management problem [11]-[13]; however,
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with the exception of our prior work [9], they have never been
used for cross-layer DMS optimization, where all the layers
make foresighted decisions.

Single-layer Learning Solutions: The various multimedia
system layers must be able to adapt at run-time to their expe-
rienced dynamics. Most existing learning solutions for multi-
media systems are concerned with modeling the unknown and
potentially time-varying environment experienced by a single
layer. A broad range of single-layer learning techniques have
been deployed in multimedia (and general purpose) systems in
recent years, which include estimation techniques such as max-
imum likelihood estimation [4], [5], [10], [12], [13], statistical
fitting [7], regression methods [28], adaptive linear prediction
[29], and ad-hoc estimation heuristics [3]. However, these solu-
tions ignore the fact that DMSs do not only experience dynamics
at a single layer (e.g., time-varying workload), but at multiple
(possibly all) layers, which interact with each other. Hence, it
is necessary to enable the layers to learn at run-time how to au-
tonomously and asynchronously adapt their processing strate-
gies based on forecasts about (i) their future dynamics and, im-
portantly, (ii) how they impact and are impacted by the other
layers.

In summary, while significant contributions have been made
to enhance the performance of DMSs using cross-layer design
techniques, no systematic cross-layer framework exists that ex-
plicitly considers: (i) the design and implementation constraints
imposed by a layered DMS architecture; (ii) the ability of the
various layers to autonomously make foresighted decisions in
order to jointly maximize the DMS’s utility; and, most impor-
tantly, (iii) how layers can learn their unknown environmental
dynamics and determine how they impact and are impacted by
the other layers.

In this paper, similar to [6]—[8], we consider a multimedia
system in which (i) a video encoder at the application layer
makes rate-distortion-complexity tradeoffs by adapting its con-
figuration and (ii) the operating system layer makes energy-
delay tradeoffs by adapting the hardware layer’s operating fre-
quency. Our contributions are as follows.

* We propose a centralized reinforcement learning algorithm
for online cross-layer DMS optimization based on the well-
known Q-learning algorithm. This centralized solution can
be easily implemented if a single manufacturer designs all
of the layers in the multimedia system.

e We propose a novel layered Q-learning algorithm, which
allows the loosely-coupled multimedia system layers to
autonomously learn their optimal foresighted policies on-
line, through repeated interactions with each other. This
decentralized solution can be implemented if the layers
are designed by different manufacturers. We show exper-
imentally that the proposed layered learning algorithm,
which adheres to the layered system architecture, performs
equally as well as a traditional centralized learning algo-
rithm, which does not.

* We propose a reinforcement learning technique that ex-
ploits partial a priori knowledge about the system’s dy-
namics in order to accelerate the rate of learning and im-
prove overall learning performance. Unlike existing rein-
forcement learning techniques [14], [15], which can only

learn about previously visited state-action pairs, the pro-
posed algorithm exploits our partial knowledge about the
system’s dynamics in order to learn about multiple state-
action pairs even before they have been visited. Impor-
tantly, the accelerated learning algorithm can be imple-
mented in both the centralized and layered scenarios.

The remainder of this paper is organized as follows. In Sec-
tion II, we present the system model. In Section III, we for-
mulate the cross-layer problem as a layered Markov decision
process (MDP). In Section IV, we propose a centralized and
layered (decentralized) Q-learning algorithm for run-time cross-
layer optimization. In Section V, we propose a technique to ac-
celerate the rate of learning by exploiting partial a priori knowl-
edge that we have about the system’s dynamics. In Section VI,
we present our experimental results and we conclude the paper
in Section VIIL.

II. SYSTEM SPECIFICATION

In this section, we model a system in which a video encoding
application makes rate-distortion-complexity tradeoffs by
adapting its configuration and the operating system makes en-
ergy-delay tradeoffs by dynamically adapting the DVS-enabled
(dynamic voltage scaling) hardware’s operating frequency. In
Section III, we map this illustrative system into the proposed
layered MDP model.

As in [21], we model the video source as a sequence of video
data units (for example, video macroblocks, groups of mac-
roblocks, or pictures), which arrive at a constant rate into the
application’s pre-encoding buffer. Similar to [11], we assume
that the system operates over discrete time slots. Additionally,
we assume that the time slots have variable length, such that one
data unit is encoded in each time slot. We interchangeably refer
to the time slot during which the nth data unit is encoded as the
nth “time slot” or “stage,” where n € N.

A. Dynamic Voltage Scaling Model

The nth data unit is processed at the current operating fre-
quency, which is a member of the state set Sy = {f; : i =
1,...,Ny}. The operating frequency can be adapted from one
time slot to the next by asserting a command in the action set
A, = {u:u € 8}. Similar to [11], we assume that there is a
nondeterministic delay associated with the operating frequency
transition such that

Y A
1= B, it frtt=fr £ un
1, if frtl = fm ="
0, otherwise

pr (FPTH " u") = (1)

where {f"*1 : n € N} is the sequence of operating frequen-
ciesand 3 € (0,1] (1 — f3) is the probability of a successful
(an unsuccessful) operating frequency transition. In Fig. 1, this
transition is illustrated by a temporal dependency between the
frequency command (action) and operating frequency (state) in
the joint OS/HW layer. Note that, regardless of the frequency
command u", the nth data unit is processed at the operating
frequency f* € Sy. We define the cost Jog(f™) = P(f")
(watts) as the power dissipated at operating frequency f € Sy,
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Fig. 1. System diagram showing the states, actions, and environment at each
layer.

where P () is the system’s power-frequency function (see, for
example, [5] and [7]).

B. Application Model

The nth data unit can be classified as being one of N, types
in the state set S, = {z;:i=1,...,N.}. The set of states
S depends on the specific video coder being used at the APP
layer. For illustration, we assume that N, = 3 because video
streams are typically compressed into group of pictures struc-
tures containing intrapredicted (I), interpredicted (P), and bi-di-
rectionally predicted (B) data units (e.g., MPEG-2, MPEG-4,
and H.264/AVC); however, the set of data unit types can be fur-
ther refined based on, for example, each frame’s activity level
[7], [20]. It has been shown that transitions among data unit
types and frame activity levels in an (adaptive) group of pic-
tures structure can be modeled as a stationary Markov process
[71, [20], [30]: i.e.,
zn+1 | Zn)

P ( 2)

where {z" : n € N)} is the sequence of data unit types. We
assume that the choice of data unit type is governed by an al-
gorithm similar to the one in [20]; therefore, the probabilities
in (2) depend on the desired ratio of I, P, and B data units (e.g.,
IBBP...), the source characteristics (i.e., the APP layer’s en-
vironment illustrated in Fig. 1), and the condition used to de-
cide when to code an I frame [20]. Modeling how the multi-
media data evolves over time enables us to utilize the system’s
resources more efficiently, while still ensuring continuity of the
multimedia stream’s quality over time.

The nth data unit can be coded using any one of Nj, encoding
parameter configurations in the action set A, = {h; :
1,..., N} (for example, to support its real-time requirements,
a video encoder can adapt its choice of quantization param-
eter, macroblock partition size, deblocking filter, entropy coding
scheme, sub-pixel motion accuracy, motion-vector search range,
and motion estimation search algorithm). Given the data unit
type z" € &, each configuration h” € A;, achieves dif-
ferent operating points in the rate-distortion-complexity space
[6]. Weletb™ (2™, h™),d"™ (2™, h™),and ¢" (2™, h™) represent the
encoded bit-rate (bits per data unit), encoded distortion (mean
square error), and encoding complexity (cycles), respectively.
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IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 2, FEBRUARY 2010

We assume that b™ (2™, h™), d" (2", h™), and ¢"(z™, h™) are in-
stances of the i.i.d. random variables B(z", h"), D(2", h"),
and C'(z", h™), respectively. Note that, in the proposed learning
framework, we do not need to know the distributions of these
random variables (see Section IV).

We penalize the application configuration by em-
ploying the Lagrangian cost measure Japp(2™,h")=
d™(z™,h"™) + Apgb™ (2™, h™) used in the H.264/AVC reference
encoder for making rate-distortion optimal mode decisions,
where .4 € [0,00) is a Lagrangian multiplier, which can be
set based on the rate-constraints.

At stage n, the application’s pre-encoding buffer contains
" €S8, = {qi:i=0,...,N,} data units, where N, is the
maximum number of data units that can be stored in the buffer.
In this paper, we assume that N, is not limited by the available
memory, but instead it is determined by the specific applica-
tion’s delay-constraints [21]. We assume that data units arrive
in the pre-encoding buffer at ) data units per second based on a
deterministic arrival process from the video capture device (for
example, if data units are frames, then n will typically be 15,
24, or 30 frames per second). If the buffer is full when a data
unit arrives, then that data unit is discarded. In the following
paragraphs, we discuss the buffer model in detail because the
accelerated learning algorithm proposed in Section V exploits
its structure.

The pre-encoding buffer’s state at stage n + 1 can be ex-
pressed recursively based on its state at stage n: i.e.,

qn+1 — min {[qn + Ltn(zn,hn,fn) ,nJ — 1]+ ,Nq}
¢° = Ginit )

where

(2™ h™)

n ( “)
is the nth data unit’s processing delay (in Fig. 1, the coupling
between the operating frequency and processing delay is rep-
resented by the interlayer dependency arrow); |z] is the in-
teger part of z; and [2]T = max{z,0}. Note that ¢" (2", h™)
is an instance of the random variable C(z", h™) with distribu-
tion C'(2", h™) ~ pc (¢™|z™, h™).

In (3), the —1 indicates that the nth data unit de-
parts the pre-encoding buffer after the nondeterministic
encoding delay T(f™,z",h") = C(z",h™)/f™ (sec-
onds). Meanwhile, the number of data units that ar-
rive in the pre-encoding buffer during the nth time slot,
(2" B, ) = (2", h™, f) - 7, is an instance of the
random variable T(f™, 2™, h"™) = nC(z", h™)/f" (data units)
with distribution

(", A" ") = seconds)

T(fn7zn7h'n) NpT(iann,znhn)
e (£ )
n n

Based on (3) and (5), the pre-encoding buffer’s state transition
can be modeled as a controllable Markov chain with transition

)
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probabilities [see equation (6), shown at the bottom of the page],
where Q = ¢"*! — ¢" + 1 and {¢" : n € N} is the sequence of
buffer states. Note that, from (3), anr1 —q" > —1, with equality
when there are no data unit arrivals, i.e., £* = 0.

We define a utility gain function to nonlinearly reward the
system for maintaining queuing delays less than the maximum
tolerable delay, thereby protecting against overflows that may
result from a sudden increase in encoding delay. Formally, we
define the utility gain at stage n as

gaprp([f",q", 2"],h")
- 2

Ny
which is near its maximum when the buffer is empty (corre-
sponding to zero queuing delay) and is minimized when the
buffer is full. In the Appendix, we discuss in detail why (7) is a
good definition for the utility gain.

III. FORMULATION AS A LAYERED MDP

In Section III-A, we formulate the cross-layer problem as a
layered MDP and map the system described in Section II to
the proposed layered MDP model. Then, in Section III-B, we
present the system optimization objective.

A. Layered MDP Model

A layered MDP is a tuple (£,.A, S, p, R), as follows.

« L ={1,...,L} is a set of L autonomous layers, which
participate in the cross-layer optimization.! Each layer is
indexed ! € {1,..., L} with layer 1 corresponding to the
lowest participating layer (e.g., the HW layer) and layer L
corresponding to the highest participating layer (e.g., the
APP layer).

» A s the global action set A = X,;c..A;,2 where A is the
[th layer’s local action set.

e &S is the global state set S = XleLSl’ where S; is the [th
layer’s local state set.

* p is the joint transition probability function mapping the
global state, global action, and global next-state to a value
in[0,1],ie,p: S X Ax S+ [0,1].

'We note that for a layer to “participate” in the cross-layer optimization, it
must be able to adapt one or more of its parameters, configurations, or algorithms
(e.g., the APP layer can adapt its source coding parameters); alternatively, if a
layer does not “participate”, then it is omitted

2X,ec Al = Ay X -+ X Ay is the L-ary Cartesian product.

* R is the expected reward function, which maps the global
state and global action to a real number representing the
system’s expected reward, i.e., R : S x A+— R.

* 7 €[0,1) is a discount factor, defined below.

We now map the system described in Section II to the lay-
ered MDP model. We consider a system in which two layers
participate in the cross-layer optimization (i.e., £ = {1,2}). In
particular, the application layer (APP, [ = 2) makes rate-dis-
tortion-complexity tradeoffs by adapting its configuration and
the operating system layer (OS, [ = 1) makes energy-delay
tradeoffs by adapting the hardware layer’s (HW) operating fre-
quency (using, for example, the platform independent open stan-
dard known as the Advanced Configuration and Power Interface
[11]). Due to the fact that the OS layer controls the HW layer,
we combine them into a single decision making layer, which we
call the joint OS/HW layer.

Table I summarizes the mapping between the system defined
in Section II and the layered MDP model. Since f, ¢, and z are
Markovian, the transition of the global state s is Markovian with
transition probability

p(s'15,a) = ps (11 0)p (¢ g, /2, ) p-(2)2). - ®)

7\

~
pi(sy|s1,a1) p2(sh|8,a2)

Last, the reward function is defined as
R(s,a) = gapp (s,a) —wappJaprp(z, h) — wosJos(f) (9)

where wa pp and wog are positive weights that are assumed to be
given. The forms of the factored transition probability function
and the additively decomposed reward function are exploited in
Section IV-C to derive the proposed layered learning algorithm.

B. System Optimization Objective

Unlike existing cross-layer optimization solutions, which
focus on optimizing the myopic (i.e., immediate) utility, the
goal in the proposed cross-layer framework is to find the op-
timal actions at each stage n € N that maximize the discounted
sum of future rewards [9], [11], [14], [15], i.e.,

Z (V)" R (s, a"|30)

n=0

(10)

where the parameter v (0 < v < 1) is the “discount factor,”
which defines the relative importance of present and future re-
wards, and s° is the initial state. We refer to the Markov decision
policy 7* : & — A, which maximizes the discounted sum of
future rewards from each initial state s° € &, as the optimal

Do (g, £, 2" b

Py {f < 2|f"72"7h"} ;

. {Tqu—q+1|f",z",h"}, "t = N, 6)
Pi {Q <T<O+ 1|f",z”7h”} , otherwise
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TABLE 1
ABBREVIATED LIST OF NOTATION

f Operating frequency U Frequency command
z Data unit type h Encoding parameter configuration
q Buffer occupancy G = aps = U Joint OS/HW layer action

st =805 = f Joint OS/HW layer state ag = appp = h | APP layer action

S9 = sapp = (2,q) | APP layer state a = (a,a9) Global action
s =1(5,5) Global state 92(8,a2) Utility gain
pi(st | s1,01), Trans_ition probabil'ity Ji(s1) Cost functions for the joint
, functions for the joint OS/HW and APP lavers
Pa(s2 | 8,02) OS/HW and APP layers Jo(82,02) y

foresighted policy. We use a discounted sum of rewards instead
of, for example, the average reward, because: (i) typical video
sources have temporally correlated statistics over short time in-
tervals such that the future environmental dynamics cannot be
easily predicted without error [7], and, therefore, the system
may benefit by weighting its immediate reward more heavily
than future rewards; and, (ii) The multimedia session’s lifetime
is not known a priori (i.e., the session may end unexpectedly),
and, therefore, rewards should be maximized sooner rather than
later.

Throughout this paper, we will find it convenient to work with
the optimal action-value function Q* : S x A — R [15], which
satisfies the following Bellman optimality equation:

Q*(s,a) = R(s,a) +7 Y _ p(s'|s,a)V" (s)
s'eS

where V* (s) = max Q* (s,a),V s € S, is the optimal state-

(1)

value function [15]. In words, Q*(s, a) is the expected sum of
discounted rewards achieved by taking action a in state s and
then following the optimal policy 7* : S — A thereafter, where

7*(s) = argmax Q*(s,a), Vs€S. (12)
a

IV. LEARNING THE OPTIMAL DECISION POLICY

A. Selecting a Learning Model

As we mentioned before, the multimedia system’s dynamics
(i.e., R(s,a) and p(s'|s, a)) are unknown, and, therefore, the op-
timal action-value function Q* and the optimal policy 7* must
be learned online, based on experience. However, it remains to
explain how we can learn the optimal policy online despite these
unknown quantities.

One option is to directly estimate the reward and transition
probability function and then to perform value iteration [15]
to determine the optimal policy; however, this solution is too
complex because each iteration of the algorithm has complexity
0 (|S K |.A|) and the number of iterations required to converge
to the optimal policy is polynomial in the discount factor .3

3Policy iteration or linear programming could also be used, but these solutions
are also too complex.

Additionally, storing the estimated transition probability func-
tion incurs a memory overhead of O (|S K |.A|), which for a
large number of states is unacceptably large (e.g., our exper-
imental test-bed in Section VI uses 765 states and 15 actions
and, therefore, requires over 33 MBs of memory to directly
store the transition probability function using 32 bit single-pre-
cision floating point numbers). A second option, proposed in
[12], avoids the complex value iteration algorithm, but incurs
even greater memory overheads by requiring a large number of
policies to be computed and stored offline to facilitate the online
decision making process.

Clearly, given the multimedia system’s limited memory
and the multimedia application’s real-time delay constraints,
neither of the above solutions is practical. Thus, in our re-
source-constrained cross-layer setting with many states and
actions (and many unknown parameters), we adopt a model-free
reinforcement learning solution, which can be used to learn
the optimal action-value function @Q* and optimal policy 7*
online, without estimating the reward and transition probability
functions. Specifically, we adopt a low complexity algorithm
called Q-learning, which also has limited memory requirements
(see Table II in Section IV-D). To the best of our knowledge,
Q-learning has never been deployed in a multimedia system,
let alone for cross-layer optimization.

B. Proposed Centralized (Q-Learning

Central to the conventional centralized Q-learning algorithm
is a simple update step performed at the end of each time slot
based on the experience tuple (ET) (s”, a”,r", s""'l)

0" = |r"™ + v max Q"(sn+1,a')
ac

_ Qn(sn7an)
Qn+1<sn7an> - Qn(sn7an) + anén

(13)
(14)

where s", a”, and 7" = g} — ), wJ]" are the state, per-
formed action, and corresponding reward in time slot n, respec-
tively; st is the resulting state in time slot n + 1; a’ is the
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TABLE II
COMPARISON OF COMPUTATION, MEMORY, AND COMMUNICATION OVERHEADS (PER TIME SLOT)
Centralized Layered
Q-learning Q-learning
Computation Action Selection: Action Selection:
overheads O(l-A]) O(lA[+18 x A)
Update: Update:
O(Al) O(|A])
Memory 0(S x A|) O(|SxA|+|8x A x§])
overheads
Communication 0
1) (8 messages O (1) (7 messages
overheads (1) ( ges) (1) ( ges)
greedy action® in state s”T1; 6™ is the so-called temporal-differ- APP
. n . . . . @ [ Perform a, ]
ence (TD) error [14]; and, o™ € [0, 1] is a time-varying learning Layer
rate parameter. We note that the action-value function can be ini- 8 a ; g— iy
o . . 2 2 g — Wad;
tialized arbitrarily at time n = 0. 2 2
' ¥t is Well. known tha.t if (i) tl'l.e rewards and trans.ition proba- sl ©.(Q,s) {03 o i Update Q (s,a)
bility functions are stationary, (ii) all of the state-action pairs are K
visited infinitely often, and (iii) o™ satisfies the stochastic ap- 1 a s Fwdy
proximation conditions ¥ (™) = oo and Y22 (a™)® < e
0o, then  converges with probability 1 to Q* [16]. Subse- st [ Peforma | L

quently, the optimal policy can be found using (12).

During the learning process, it is not obvious what the best
action is to take in each state. On the one hand, the optimal ac-
tion-value function can be learned by randomly exploring the
available actions in each state. Unfortunately, unguided ran-
domized exploration cannot guarantee acceptable performance
during the learning process. On the other hand, taking greedy
actions, which exploit the available information in the action-
value function (s, a), can guarantee a certain level of perfor-
mance. Unfortunately, exploiting what is already known about
the system prevents the discovery of new, better, actions. To
judiciously trade off exploration and exploitation, we use the
so-called e-greedy action selection method [14]:

e-greedy action selection: With probability 1 — ¢, take the
greedy action that maximizes the action-value function, i.e.,

*

a* = argmax {Q (s,a)}; and, with probability e, take an ac-
a

tion randomly and uniformly over the action set.

We write a = @, (Q, 8) to show that a is an e-greedy joint-ac-
tion. Note that, if the e-greedy action is taken from the optimal
state-value function QQ*, then actions corresponding to the op-
timal policy will only be taken with probability 1 — ¢; therefore,
if € does not decay to 0, then optimal performance will not be
achieved.

Fig. 2 illustrates the information exchanges required to
deploy the centralized Q-learning algorithm in a two layer
multimedia system during one time slot. In Fig. 2, the top
and bottom blocks represent the APP layer and joint OS/HW
layer, respectively. The center block represents the centralized
optimizer, which selects both layers’ actions and updates the
system’s global action-value function (). As we mentioned be-

4A greedy action a* is one that maximizes the current estimate of the action-

value function, i.e., a* = argmax{Q (s,a)}.
a
SFor example, o™ = 1/(n + 1) satisfies the stochastic approximation con-
ditions.

Centralized decisions

and updates Information exchanges

Fig. 2. Information exchanges required to deploy the centralized Q-learning
update step in one time slot.

fore, the centralized optimizer may be located at either the APP
layer, the joint OS/HW layer, or a separate middleware layer.
To best highlight the information exchanges, we illustrate the
centralized optimizer as a separate middleware layer. Although
we do not explicitly indicate this in Fig. 2, the ET (s,a,r,s’)
is used by the block labeled “Update Q(s, a),” which performs
the update step defined in (14).

C. Proposed Layered Q-Learning

Thus far, we have discussed how the traditional Q-learning
algorithm can be implemented by a centralized optimizer. As
we discussed in the introduction, this centralized solution is
most appropriate when a single manufacturer designs all of the
system’s layers. However, we are also interested in developing
learning solutions that allow layers designed by different man-
ufactures to act autonomously, but still cooperatively optimize
the system’s performance. This is a challenging problem in our
cross-layer setting because the dynamics experienced at each
layer may depend on the learning processes of the other layers.
Hence, a key challenge is determining how to coordinate the
autonomous learning processes of the various layers to enable
them to successfully learn. In this section, we propose a layered
Q-learning algorithm, which we derive by exploiting the struc-
ture of the transition probability and reward functions in order
to decompose the global action-value function into local action-
value functions at each layer. Then, in Section IV-D, we com-
pare the computation, communication, and memory overheads
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incurred by the centralized and the proposed layered learning
algorithms.

In this subsection, we first show how the action-value func-
tion can be decomposed by exploiting the structure of the con-
sidered cross-layer problem. Subsequently, we show how this
decomposition leads to a layered Q-learning algorithm, which
solves the cross-layer optimization online, in a decentralized
manner, when the transition probability and reward functions
are unknown a priori. For notational simplicity, we drop the
time slot index n, and denote the next-state ™! using s’.

1) Action-Value Function Decomposition: The proposed de-
composition assumes that (i) each layer has access to the global
state s in each time slot; (ii) the APP layer knows the number
of states at the joint OS/HW layer, i.e., |Sos|; and, (iii) the joint
OS/HW layer knows the number of states and actions at the APP
layer, i.e., |8App| and |-AAPP|'

Given the additive reward function defined in (9) and the
factored transition probability function defined in (8), we can
rewrite the optimal action-value function defined in (11), as fol-
lows:

Q*(s,a) = g2(s,a2) — w1J1(s1,a1) — waJa(s2,a2)

+v > pulsilsia)pa(shls, as)V* (s)
5’1681,5'2682

(15)

where V* (s') = max,, . 4 Q*(s',a’) is the optimal state-value
for state s’ = (s/, s5) (refer to Table I for a review of the nota-
tion).

Observing that g2(s, az) — waJa(s2,az) is independent of
s} and that Zs’lesl p1(si]s1,a1) =1, we may rewrite the
Bellman optimality equation in (15) as follows:

Q*(s,a1,a2) = —w1J1(51,01)

>

5/1681

p1(3’1|517a1)

92(s, a2) — waJa(s2, a2)+
X (7 > P2(5'z|37a2)V*(5'1»8/2)>]-(16)

S'QESQ

Given the global state s = (s1, $2) and the optimal state-value
function V*, the APP layer’s action-value function can be ex-
pressed using the inner Bellman optimality equation:

g2(8,a2) — waJa(s2,a2)+

v 2 pa(sals,a2)V* (s7,85)
S/2€82

Yas € As anst'l €S

Qx{ (57 az, sll) =

a7)

which is independent of the immediate action at the
joint OS/HW layer (i.e., a;), but depends on the joint
OS/HW layer’s potential next-state sj. For each global
state 8 = (s1,82), the APP layer must compute the set
{Q7 (s,a2,8)) : az € Ay, s) € 81} using (17). Then, given
this set from the APP layer, the joint OS/HW layer’s action
value function can be expressed using the outer Bellman
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optimality equation in (16): i.e.,

Q" (s,a1,a9) = ( Z}g p1(si]s1,a1)Q7 (s, a9,s])
s1€O01

Ya, G.Al and VYV as E.Az

—wiJ1(s1,01)+ )

(18)

Intuitively, Q7 (s,a2,s]) can be interpreted as the APP
layer’s estimate of the expected discounted future rewards; how-
ever, there are two important differences between Q7 (s, a2, s})
and the centralized action-value function Q* (s,a). First,
Q7 (s, az2,s)) does not include the immediate reward at the
joint OS/HW layer (i.e., —w1 J1(s1,a1)) because it is unknown
to the APP layer; and, second, Q7 (s, az,s}) depends on the
joint OS/HW layer’s next-state s (instead of the expectation
over of the next-states as it does in the centralized case) because
the APP layer does not know the joint OS/HW layer’s transition
probability function. After receiving Q7 (s, aq,s}) from the
APP layer, the joint OS/HW layer is able to “fill in” this missing
information. Clearly, from the derivation, Q* (s, ay, az) at the
joint OS/HW layer is equivalent to the centralized action-value
function Q*(s, a).

For more information about this decomposition, we refer the
interested reader to our prior work [9], in which we use a similar
decomposition to solve the cross-layer optimization offline, in a
decentralized manner, under the assumption that the transition
probability and reward functions are known a priori.

2) Layered Q-Learning: Recall that the centralized
Q-learning algorithm described in Section IV-B requires a
centralized manager to select actions for both of the layers.
In contrast, the layered Q-learning algorithm that we propose
in this subsection—made possible by the action-value func-
tion decomposition described above—enables each layer to
autonomously select its own actions and to update its own
action-value function. In the following, we discuss the local
information requirements for each layer, how each layer se-
lects its local actions, and how each layer updates its local
action-value function.

Local information: The proposed layered Q-learning algo-
rithm requires that the APP layer maintains an estimate of the
action-value function on the left-hand side of (17): i.e.,

{Q1 (s,a2,51) : 5 €S, a2 € Ay, 51 € S1}

and that the joint OS/HW layer maintains an estimate of the
action-value function on the left-hand side of (18):i.e.,

{Q(s,a1,a2) : s €8, (a1,a2) € A}.

At time slot n = 0, these tables can be initialized to O, i.e.,
QY (s,a2,51) = 0 and Q° (s,a1,as) = 0. Thus, at initializa-
tion, the only information required by the APP layer about the
joint OS/HW layer is the number of states at the joint OS/HW
layer, i.e., |Sos|; and, the only information required by the joint
OS/HW layer about the APP layer is the number of states and
actions at the APP layer, i.e., |Sapp| and | Aapp|.

Local action selection: At run-time, given the current global
state s = (s1,$2), the APP layer selects an e-greedy action
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as € As as described in Section IV-B, but with the greedy
action selected as follows:

{Q1 (3702,5/1)}

max

(19)
as €A27511 ESl

(a3, 1) = arg

and the joint OS/HW layer selects its e-greedy action a1 € Ay,
but with the greedy action selected as follows:

{Q(s,a1,a2)}.

max

ay E.A-1,112€A2

Note that the APP layer selects action a3 under the assumption
that the joint OS/HW layer will select its action aj to tran-
sition to the next-state §}, which maximizes the APP layer’s
estimated discounted future rewards Q (s, as, s}). Similarly,
the joint OS/HW layer selects action a] under the assumption
that the APP layer will select action a», which maximizes
the joint OS/HW layer’s estimated discounted future rewards
Q (s, a1, a2). The message exchanges during the local learning
update procedures (described immediately below) serve to
“teach” each layer how they impact and are impacted by the
other layer. Thus, through the learning process, the layers
improve their assumptions about each other, which enables
them to improve their greedy actions.

Local learning updates: After executing the e-greedy ac-
tion a” = (af,a}) in state 8™ = (s7,sh), the system ob-
tains the reward " = g3y — wi1J]' — w2 J3 and transitions
to state s"*! = (s, s57"). Based on the experience tuple
(s", a”,r", s"“) , each layer updates its action-value function
as follows. First, the joint OS/HW layer must forward the scalar
Ve (st syt )= max, (4w ed, @ (71857l ab)
to the APP layer. Using this forwarded information, the APP
layer can perform its action-value function update based on the
form of (17): i.e.,

(a],a2) = arg (20)

=[98 —wady + AV (spT S5
- Q7 (s",a?,s?“) 21
QU (" af, s1H) < QF (87,0l 57T) +aBsy. (22)

Then, given the scalar Q7+ (s", ay, s?"'l) from the APP layer
and the APP layer’s selected action a, the joint OS/HW layer
can perform its action-value function update based on the form
of (18) as follows:

U= [rwdt QT (87,03, 57
- Qn <3n7 0?7 a;) (23)
Q" (s" 0}, a5) — Q" (8", a7 a3) + a7 67 24)
Note that, by using the layered Q-learning algorithm, the
layers do not need to directly share their local rewards (i.e.,
the local learning updates only require the APP layer to know
its local reward g5 — wyJ3' and for the joint OS/HW layer to
know its local cost w1 J7"). This is because of the coordinating
message exchanges during the local learning update process
(e, V™ (s7T1,s571) is forwarded from the joint OS/HW
layer to the APP layer and Q7™ (s",aj, s7 ™) is forwarded
from the APP layer to the joint OS/HW layer).
Fig. 3 illustrates the information exchanges required to
deploy the layered Q-learning algorithm in a two layer mul-

APP Layer

Perft )
@,@{q}e( -

51

Update
[ N J ________

S V(s{,s-ﬁ),sll

o) (37 (1'2$51,) > G2

52
3
- ’[5 Perform Y Calculate Update
) )* o (0.8) ’@’{ V(sl,s}) Q(s,a1,05)

OS/HW L
ayer o Information

exchanges

Decentralized decisions
and updates

Fig.3. Information exchanges required to deploy the layered Q-learning update
step in one time slot.

timedia system during one time slot. Although we do not
explicitly indicate this in Fig. 3, the ETs (s, a2, g2 — waJ2, 87)
and (s, a1, —w1J1, 81) are used by the blocks labeled “Update
Q1 (s,a2,s])” at the APP layer and “Update Q (s,a1,a2)” at
the joint OS/HW layer, respectively.

D. Computation, Communication, and Memory Overheads

In this subsection, we compare the computation, communica-
tion, and memory overheads associated with the centralized and
layered Q-learning algorithms. Figs. 2 and 3 illustrate the exact
information exchanges required for each algorithm and Table II
lists the per time slot computation, communication, and memory
overheads associated with each algorithm.

Interestingly, the layered Q-learning algorithm is more
complex and requires more memory than the centralized al-
gorithm. Note that, in our setting, |S1| = |A;[; hence, the
layered Q-learning algorithm incurs approximately twice the
computational and memory overheads as the centralized algo-
rithm. The increased overheads can be interpreted as the cost
of optimal decentralized learning (optimal in the sense that it
performs equally as well as the centralized learning algorithm).
Nevertheless, the proposed centralized and layered Q-learning
algorithms are far less complex and use less memory than the
alternative learning solutions discussed in Section IV-A. We
also observe that, in both cases, the communication overheads
per time slot are O(1) because they are independent of the size
of the state and action sets at each layer; however, the precise
number of messages exchanged depends on the deployed
learning algorithm as illustrated in Figs. 2 and 3, and noted in
Table II.

V. ACCELERATED LEARNING USING VIRTUAL EXPERIENCE

The large number of buffer states at the APP layer sig-
nificantly limits the system’s learning speed because the
Q-learning update step defined in (14) updates the action-value
function for only one state-action pair in each time slot. Several
existing variants of Q-learning adapt the action-value function
for multiple state-action pairs in each time slot. These include
model-free temporal-difference-A updates, and model-based
algorithms such as Dyna and prioritized sweeping [14], [15];
however, these existing solutions are not system specific and
assume no a priori knowledge of the problem’s structure. Con-
sequently, they can only update previously visited state-action
pairs, leaving the learning algorithm to act blindly (or with
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(8(1),a(1))

7(1)

L (E(D),a(D))

o > .

max

(b)

Fig. 4. Backup diagrams. (a) Conventional Q-learning; (b) Q-learning with virtual updates. The virtual update algorithm applies a backup on the actual ET and
an additional ¥ backups on virtual ETs in £ (6™ ) indexed by 1 < v < P. (a) Q-learning backup for actual ET o™ = (s™,a", r",s"1). (b) Q-learning backup

for ¥ virtual ETs 6™ = (3™,a™,7",5 € E(o™)).

very little information) the first few times that it visits each
state, thereby resulting in suboptimal learning performance
(our experimental results in Section VI-D strongly support this
conclusion).

In this subsection, we propose a new Q-learning variant,
which can be used in addition to the abovementioned variants.
Unlike conventional reinforcement learning algorithms, which
assume that no a priori information is available about the
environmental dynamics,® the proposed algorithm exploits the
form of the transition probability and reward functions (defined
in Section II) in order to update the action-value function for
multiple statistically equivalent state-action pairs in each time
slot, including those that have never been visited. In our specific
setting, we exploit the fact that the data unit arrival distribution
pi(t|f, 2z, h) (defined in (5)) is conditionally independent of
the current buffer state ¢" (given z”, h"™, and ™). This allows
us to extrapolate the experience obtained in each time slot to
other buffer states and action pairs. Thus, in stationary (non-
stationary) environments, the proposed algorithm improves
convergence time (adaptation speed) at the expense of increased
computational complexity. For ease of exposition, we discuss
the algorithm in terms of the centralized system; however, it
can be easily extended to work with the layered Q-learning
algorithm proposed in Section IV-C.

Let o (s”,a",r",s" ) represent the ET at stage
n, where s” (z™,q", "), a” (u™, h™), r™
g5 —wiJP —weJ3, and "1 = (2" FL gn L ) Given g"
and the number of data unit arrivals LF”J = Lf"(z", h™, f”)J ,
the next buffer state g"*! can be easily determined from (3). By
exploiting our partial knowledge about the system’s dynamics,

%In conventional reinforcement learning [14], [15], the actors (i.e., the system
layers in our setting) are assumed to have no a priori information about the form
of the transition probability and reward functions beyond possible high-level
structural knowledge about the factored transition and reward dynamics [17],
[23]. In other words, in a conventional reinforcement learning framework, the
additive decomposition structure of the reward function defined in (9) and the
factored transition probability structure defined in (8) may be known a priori,
but the actual form of the utility gain defined in (7) and the actual form of the
transition probability function defined in (6) cannot be known a priori.

TWe say that a state-action pair (3, @) is statistically equivalent to the pair
(s.a) ifp(s'|s,a) = p(s'|s,a), Vs € §and R(5,a) can be determined
from R (s,a).

we can use the statistical information provided by LfnJ to gen-
erate virtual experience tuples (virtual ETs) that are statistically
equivalent to the actual ET. This statistical equivalence allows
us to perform the Q-learning update step for the virtual ETs
using information provided by the actual ET.
We let 6" = (57&,7:,5") € X (o™) represent one virtual
ET in the set of virtual ETs X(¢™). In order to be statistically
equivalent to the actual ET, the virtual ETs in ¥(6™) must satisfy
the following two conditions.
1. The data unit arrival distribution pz(f|f, 2, ) defined in
(5) must be the same for the virtual ETs as it is for the actual
ET. In other words, the virtual operating frequency f , the
virtual type z, and the virtual configuration h must be the
same as the actual operating frequency f, the actual type
2", and the actual configuration h™, respectively. This also
implies that the virtual costs at the APP and joint OS/HW
layers are the same as the actual costs at these layers, i.e.,
Jy = JPand J, = JP.

2. The next virtual buffer state ¢ € S, must be related to
the current virtual buffer state § € S, through the buffer
evolution equation defined in (3): i.e.,

N (25)

j= min{[(j—l— LfN"J -1 7Nq}
where |#"| is the number of data unit arrivals under the
actual ET.

Any virtual ET that satisfies the two above conditions can
have its reward determined using information embedded in the
actual ET. Specifically, from the first condition, we know that
the virtual ET’s local costs are J; = JJ* and J, = JJ. Then,
based on the second condition, we can compute the virtual
ET’s utility gain as go 1 - (d—i— [f"J — 1/Nq)2. Finally,
the Q-learning update step defined in (14) can be performed
on every virtual ET " (.§, a,r, .§') € X (o") as if it is the
actual ET.

Performing the Q-learning update step on every virtual ET
in ¥ (o™) incurs a computational overhead of approximately
O(|Z (™) x AJ) in time slot n (note that ¥ (¢™) is typically
as large as the buffer state set S; = {¢:¢=0,...,N,} if you
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TABLE III
ACCELERATED LEARNING USING VIRTUAL EXPERIENCE TUPLES

1.  Initialize ()(s,a) arbitrarily for all (s,a) € SxA;
2. Initialize state SU;
3. | For n=0,1,...
4. Take action a@" using ¢ -greedy action selection on Q)(s",);
5. Obtain experience tuple o" = (s",a”,r”,s”“) and record ﬁ" ;
6. For all § € S, % Generate the virtual ET set X(o")
i= { = min{[(j + [f”J - 1]+,Nq}; % virtual ET next buffer state
. § = (f,f,(}) = (f",2",q); % virtual ET state
9. a= ('&,ﬁ) = (u",h"); % virtual ET action
ko i g+E|-1Y § § .
F = 1—[ N, ] —wd{ — w3 ; % virtual ET reward
11. § = (f’, 7, ("j') = (f”“,z”“,«j') ; % virtual ET next state
12. = (5,&,7’,5/) eX(o"); % store virtual ET
13. For U virtual ETs & € X(o") % Update virtual ETs
14. 5= [f + ylrlpgi(Q(él,a')] —Q(§,a); % TD error for virtual ET &"
15,

Q(3,a) — Q(3,@) + ad ;

oe

include the actual ET). Unfortunately, it may be impractical to
incur such large overheads in every time slot, especially if the
data unit granularity is small (e.g., one macroblock). Hence,
in our experimental results in Section VI, we show how the
learning performance is impacted by updating ¥ < |X (6™)]
virtual ETs in each time slot by selecting them randomly and
uniformly from the virtual ET set X (™).

Table III describes the virtual ET based learning procedure in
pseudo-code and Fig. 4 compares the backup diagram [14] of the
conventional Q-learning algorithm to the proposed algorithm
with virtual ET updates. Importantly, because the virtual ETs
are statistically equivalent to the actual ET, the virtual ET based
learning algorithm is not an approximation of the Q-learning al-
gorithm; in fact, the proposed algorithm accelerates Q-learning
by exploiting our partial knowledge about the structure of the
considered problem.

VI. EXPERIMENTS

In this section, we compare the performance of the proposed
learning algorithms against the performance of several existing
algorithms in the literature using the cross-layer DMS described
in Section II. Table IV details the parameters used in our DMS
simulator, which we implemented in Matlab. In our simulations,
we use actual video encoder trace data, which we obtained by
profiling the H.264 JM Reference Encoder (version 13.2) on
a Dell Pentium IV computer. Our traces comprise measure-
ments of the encoded bit-rate (bits/MB), reconstructed distor-
tion (MSE), and encoding complexity (cycles) for each video
MB of the Foreman sequence (30 Hz, CIF resolution, quanti-

Q-learning update for virtual ET &"

zation parameter 24) under three different encoding configura-
tions. The chosen parameters are listed in Table IV. We use a
data unit granularity of one macroblock. As in [7], we assume
that the power frequency function is of the form P(f) = rf?,
where k € R and 6 € [1, 3]. Since real-time encoding is not
possible with the available encoder, we set the data unit arrival
rate to n = 44 DUs/s, which corresponds to 1/9 frames per
second.

For the simulations in Sections VI-B and C, we use stationary
data traces, which we generate from the measured (nonsta-
tionary) data traces by assuming that the rate, distortion, and
complexity samples are drawn from i.i.d. random variables with
distributions equivalent to the distributions of the quantities
over the entire nonstationary data traces. In Section VI-D, we
perform simulations using both the measured (nonstationary)
and generated (stationary) data traces.

A. Evaluation Metrics

We deploy two different metrics to compare the performance
of the various learning algorithms discussed in this paper. The
first metric is the weighted estimation error, which we define as

Weighted estimation error
2> w(s)
secS

where p* is the stationary distribution under the optimal policy
™, V*(s) = max Q* (s,a) is the optimal state-value func-
tion, and V"™ (s) =

V*(s) = V" (s)

V* (s) (20)

max Q" (s,a) is the state-value function
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TABLE IV
SIMULATION PARAMETERS (FOREMAN SEQUENCE, 30 Hz, CIF RESOLUTION, QUANTIZATION PARAMETER 24)

Layer Parameter Value
Data Unit Granularity 1 Macroblock
Buffer State Set S, ={0,...,N,}, N, = 50 DUs
S, = {z,29,2
Data Unit Type Set ! {120, 2}
21=P,Z2=B,Z3=I
Application Aspp = {h oy s}
Layer hy : Quarter
. : -pel MV, 8x8 block ME
P ter Configurat 1
(APP) arameter L-ontiguration hy : Full-pel MV, 8x8 block ME

hg : Full-pel MV, 16x16 block ME

APP Cost Weight

wypp = 22/1875

Rate-Distortion Lagrangian

Mg =1/16

Data Unit Arrival Rate

1 = 44 (Data Units/Sec)

Operating System

Power-Frequency Function

P(f) = sf?
k€15%x107% and 6 = 3.

/ Hardware Layer
(Joint OS/HW)

Operating Frequency Set

Aos = {200,400,600,800,1000} Mhz

Joint OS/HW Cost Weight

Wos = 22/125

estimate at stage n. In (26), we weight the estimation error
|[V*(s) — V"™ (s)| by p*(s) because the optimal policy will
often only visit a small subset of the states, and the remaining
states will never be visited; thus, if we were to estimate V* (s)
while following the optimal policy, a nonweighted estimation
error would not converge to 0, but the proposed weighted esti-
mation error would.

Although the weighted estimation error tells us how quickly
an algorithm can learn the optimal policy, it does not tell
us how well the algorithm performs while learning. To see
why this is, consider an (exaggerated) scenario in which
|[V*(s) — V™ (s)] = 0, but the exploration rate in the greedy
action selection procedure is ¢ = 1 (i.e., always explore). In
this scenario, the greedy actions are optimal, but the random
policy implemented by always exploring will be far from
optimal. For this reason, we define a second evaluation metric
using the average reward, which more accurately measures
the system’s performance. For a simulation of duration N, the
average reward metric is defined as

N-1
1
Average reward = N Z " 27
n=0

where 1" is the reward sample obtained at stage n. If the ex-
ploration rate £ decays appropriately to 0 as n — oo, then the
average reward will increase as the weighted estimation error
decreases. Determining an optimal decay strategy for ¢ is an im-
portant problem, but is beyond the scope of this paper. We refer
the interested reader to [14], [15] [31] for more information on
the exploitation-exploration trade off.

We note that the weighted estimation error cannot be eval-
uated under nonstationary dynamics because the optimal state
value function cannot be determined. Hence, for nonstationary
dynamics, we rely solely on the average reward to evaluate

the learning performance. Nevertheless, the rate at which the
weighted estimation error converges under stationary dynamics
for a particular learning algorithm is indicative of how well that
algorithm will perform when the dynamics are nonstationary.

B. Single-Layer Learning Results

Before presenting our cross-layer learning results, we be-
lieve it is informative to see how well a single layer can learn
(say layer [) when the other layer (say layer —I) deploys a
static policy. The learning layer deploys a simple adaptation
of the centralized Q-learning algorithm in which it knows the
global state and global reward, but does not know the actions
implemented by the other layer. The details of the single-layer
learning algorithm are omitted due to space constraints; how-
ever, we note that it is essential that the learning layer knows
the global state and global reward so that it can learn how it
impacts the other system layers. Otherwise, if the joint OS/HW
layer is unaware of its impact on the application’s delay and
quality, for example, it will always selfishly minimize its own
costs by operating at its lowest frequency and power, which can
adversely impact the real-time application’s performance.

For illustration, we assume that the static layer deploys its
optimal local policy 7*,; corresponding to the global optimal
policy 7* = (7r;",7ril); hence, layer [ attempts to learn .
Fig. 5 illustrates the optimal policies at the APP layer (73) and
the joint OS/HW layer (7} ) for each buffer state and data unit
type when the current operating frequency is f = 600 MHz.
In Fig. 5, the application actions (i.e., parameter configurations)
are as defined in Table IV.

Fig. 6 compares the cumulative average reward obtained
using single-layer learning to the optimal achievable reward,
and Table V shows the corresponding power, rate-distortion
costs, utility gain, and buffer overflows, for a simulation of
duration N = 192,000 time slots (approximately 485 frames



MASTRONARDE AND VAN DER SCHAAR: ONLINE REINFORCEMENT LEARNING FOR DYNAMIC MULTIMEDIA SYSTEMS 301

APP Configuration

0 10 20 30 40 50
Buffer State
(a)

OS/HW Freq. Command (MHz)

0 10 20 30 40 50
Buffer State
(b)

Fig. 5. Optimal policies for each data unit type. (a) APP parameter configurations. (b) Joint OS/HW layer frequency command. The current operating frequency

is set to be f = 600 MHz.
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Fig. 6. Cumulative average reward for single-layer learning with stationary
trace (N = 192.,000).

drawn from the Foreman sequence, CIF resolution, by re-
peating the sequence from the beginning after 300 frames). We
observe that the total average reward obtained when the joint
OS/HW layer learns in response to the APP layer’s optimal
local policy 75 is lower than when the APP layer learns in
response to the joint OS/HW layer’s optimal local policy #7.
This is because there are more actions to explore at the joint
OS/HW layer (5 compared to 3), and the joint OS/HW layer’s
policy is more important to the system’s overall performance
than the APP layer’s policy for the chosen simulation parame-
ters (see Table IV). For instance, given the action sets defined
in Table IV, the joint OS/HW layer can significantly impact
the application’s experienced delay (i.e., a factor of 5 change
from 200 MHz to 1000 Mhz), while the APP layer cannot
(i.e., its actions impact the delay by less than a factor of 2).
Consequently, when the APP layer learns in response to the
joint OS/HW layer’s optimal policy [Fig. 5(b)], the system is
initially better off than when the joint OS/HW layer learns in
response to the APP layer’s optimal policy [Fig. 5(a)].

We note that, in Fig. 6, the saturated performance of the APP
and joint OS/HW layers’ learning algorithms is due to the finite
exploration probability (i.e., ¢ > 0 in the e-greedy action se-
lection procedure), which forces the layers to occasionally test
suboptimal actions.

C. Cross-Layer Learning Results

In this subsection, we evaluate the performance of the cen-
tralized and layered Q-learning algorithms proposed in Sec-
tions IV-B and C, respectively. Fig. 7 compares the cumulative

TABLE V
SINGLE-LAYER LEARNING PERFORMANCE STATISTICS FOR STATIONARY TRACE
(N = 192,000)

APP Layer Joint OS/HW Optimal
Learns Layer Learns
Avg. Reward 0.7337 0.7172 0.7631
Avg. Power (W) 0.2835 0.4512 0.2435
Avg. R-D 14.93 15.08 14.75
Avg. Gain 0.9588 0.9736 0.9790
No. Overflows 0 61 0

average reward obtained using layered Q-learning to the perfor-
mance of the centralized learning algorithm, the optimal achiev-
able reward, and the performance of the myopic learning algo-
rithm deployed in the state-of-the-art cross-layer coordination
framework called GRACE-18 [5]; Fig. 8 compares the weighted
estimation error for the centralized and layered Q-learning algo-
rithms; and, Table VI shows the corresponding power, rate-dis-
tortion costs, utility gain, and buffer overflows. As in the pre-
vious simulations, the simulation duration is N = 192,000
time slots. Recall from Table II that the algorithms compared
in this subsection have roughly the same computational com-
plexity (note that the complexity of the GRACE-1 algorithm is
roughly O (].A]) in our setting because it requires finding the ac-
tion that will most closely meet a data unit’s deadline).

As expected, the layered Q-learning algorithm performs
equally as well as the centralized Q-learning algorithm, but also
allows the layers to act autonomously through decentralized
decisions and updates. Meanwhile, the myopic learning algo-
rithm deployed by GRACE-1 performs very poorly in terms of
overall reward. This is because, for each data unit, GRACE-1
myopically selects the lowest processing frequency that can
successfully encode it before its deadline; consequently, the
buffer quickly fills, which makes the system susceptible to
delay deadline violations due to the time-varying workload
(this is similar to what happens when using the “conventional
gain” function described in the Appendix).

8In GRACE-1, the statistical cycle demand (complexity) of a video encoding
application is measured using an exponential average of the 95th-percentile
complexity of recently completed jobs (processed data units) in a sliding
window. Based on the statistical cycle demand, GRACE-1 myopically encodes
jobs at the lowest frequency which will meet the job’s deadline. If slack remains
after processing a job, then it is reclaimed for future jobs.
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TABLE VI

CROSS-LAYER LEARNING PERFORMANCE STATISTICS FOR STATIONARY TRACE (N = 192, 000)

. Centralized Layered
Optimal Q-learning Q-Lgarning GRACE-1

Avg. Reward 0.7631 0.4727 0.4721 -0.1730

Avg. Power (W) 0.2435 0.3815 0.4061 0.4982

Avg. Rate-Distortion 14.75 15.00 14.99 15.30

Avg. Utility Gain 0.9790 0.7158 0.7195 0.0942

No. Overflows 0 1231 1251 3040

0.8
— Optimal existing reinforcement learning algorithm called temporal-dif-
0.6 . Centralized Q-learning ference-A learning® (i.e., T"D(\) [15]), which has comparable
?U ——- Layered Q-learning complexity (roughly O ((¥ + 1) |A|) in each time slot for ¥
3 0.4} == GRACE-1 —— virtual ET or TD()) updates in addition to the actual ET up-
‘r_ ’ e date). Recall that, in this subsection, we simulate the system
g with the measured (nonstationary) trace data and the generated
: (stationary) trace data.

(% I Fig. 9 illustrates the cumulative average reward achieved
0l when we allow U € {0,1,15,30,45} virtual ET or TD())
L updates in each time slot (the case when ¥ = 0 is equiva-
02 gy s e g N I N Y N G lent to the conventional centralized Q-learning algorithm in
0 5 10 15 which only the actual ET is updated); Fig. 10 compares the
Time slot (n) x 10% weighted estimation error for the same learning algorithms;

Fig.7. Cumulative average reward for cross-layer learning algorithms with sta-
tionary trace (N = 192,000).
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Fig. 8. Weighted estimation error metric for cross-layer learning algorithms
with stationary trace (N = 192,000).

It is important to note that, even though the proposed learning
algorithms outperform the existing myopic learning algorithm,
there is still significant improvement to be made. In particular,
the centralized and layered Q-learning algorithms learn too
slowly because they only update one state-action pair in each
time slot. Consequently, the number of buffer overflows and
the power consumption are both higher, and the utility gain is
lower, than in the optimal case. In Section VI-D, we show that
the learning performance (including the weighted estimation
error and the average reward) can be dramatically improved by
smartly updating multiple state-action pairs in each time slot.

D. Accelerated Learning With Virtual ETs

In this subsection, we compare the performance of the pro-
posed virtual ET based learning algorithm (see Section V) to an

and, Table VII illustrates corresponding detailed simulation
results.

Interestingly, the T'D()\) updates are completely ineffectual
at improving the system’s performance. In particular, it is ob-
vious that increasing the number of 7'D()\) updates in each
time slot does not guarantee higher average rewards or lower
weighted estimation errors. Meanwhile, increasing the number
of virtual ET updates in each time slot dramatically improves the
weighted estimation error metric and the average reward. The
reason for this stark difference in performance is because the
virtual ET based learning algorithm can learn about state-action
pairs without visiting them, while the T D(\) learning algorithm
can only learn about previously visited state-action pairs. The
ability to learn about unvisited states is very important in our
problem setting because after the buffer initially fills from early
exploration (resulting in the initial drop in rewards illustrated
in Figs. 6, 7, and 9), the learning algorithm must learn to effi-
ciently drain the buffer without consuming too much power or
unnecessarily reducing the application’s quality. This is simple
when using virtual ETs because the information obtained from
experience in a “near full” buffer state (e.g., ¢ = N, — 1) can be
extrapolated to a “near, near full” buffer state (e.g., ¢ = Ny, —2)
and so on. When using 7' D()\) updates, however, the algorithm
learns very slowly about “near, near full” buffer states because
they are visited only infrequently from the “near full” buffer
state. For this reason, T'D(A) (even for a large number of up-
dates) has trouble emptying the buffer, and performs no better
than the conventional centralized Q-learning algorithm, which
updates only one state-action pair in each time slot.

9In our implementation, 7"D(A) applies the update step defined in (14) to
the ¥ most frequently visited states in the recent past. These recently visited
states are updated using the TD error obtained for the current state weighted
by the previously visited states’ “eligibility” as defined in [15]. Informally, the
“eligibility” is the discounted frequency with which states have been visited in
the past.
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Fig.9. Cumulative average reward achieved with virtual ET and T'D()) updates for a stationary trace and a nonstationary trace, compared to the optimal achiev-

able reward under the stationary trace (N = 64, 000).

VIRTUAL EXPERIENCE LEARNING STATISTICS FOR STATIONARY (NOE—A‘SI?FI/-:"EO\II\II:RY) DATA TRACE OUTSIDE (INSIDE) PARENTHESES (N = 64, 000)
Number of Virtual ET Updates
=0 v =1 v =15 v =30 U = 45
Avg. Reward 0.2785 (0.3015) | 0.6414 (0.6078) | 0.6893 (0.6710) [ 0.7076 (0.6759) | 0.7200 (0.6944)
Avg. Power (W) 0.4212 (0.4632) | 0.4164 (0.4314) | 0.3817(0.3864) | 0.3432(0.3657) | 0.3108 (0.3381)
Avg. Rate-Distortion 15.00 (14.89) 14.92 (14.77) 15.06 (14.84) 14.93 (14.81) 14.87 (14.71)
Avg. Utility Gain 0.5287 (0.5577) | 0.8898 (0.8570) | 0.9332(0.9131) | 0.9432(0.9140) | 0.9492 (0.9264)
No. Overflows 1196 (1410) 1035 (1271) 502 (437) 226 (378) 103 (438)
Number of 7D( \ ) Updates
=0 =1 ¥ =15 ¥ =30 ¥ =45
Avg. Reward 0.2835 (0.3188) | 0.3807 (0.2899) | 0.3449 (0.2903) | 0.3141 (0.3088) | 0.3287 (0.3388)
Avg. Power (W) 0.4494 (0.4707) | 0.4649 (0.4732) | 0.4551(0.4672) | 0.4530(0.4644) | 0.4544 (0.4875)
Avg. Rate-Distortion 15.07 (14.88) 15.14 (14.92) 15.14 (14.88) 15.03 (14.84) 15.15 (14.91)
Avg. Utility Gain 0.5395 (0.5763) | 0.6402 (0.5483) | 0.6026 (0.5472) | 0.5703 (0.5647) | 0.5866 (0.5997)
No. Overflows 1255 (1630) 1230 (1491) 1267 (1511) 1234 (1491) 1250 (1317)
e % proposed virtual ET based learning algorithm is robust to the
; e CERT TN nonstationary dynamics in the measured data traces. This is pri-

= Centralized Q-learning (¥=0)

= Virtual ETs (¥=1)

=== Virtual ETs (¥=15)

TD(A) W=1)

Weighted error metric

Time slot (n)

4
x 10
Fig. 10. Weighted estimation error metric for virtual ETs and TD()) with
stationary trace (N = 64,000).

One might expect that violating the stationarity assumption,
which is widely used in the reinforcement learning literature
(see [14]-[16]), would be disastrous to the system’s perfor-
mance. We observe in Fig. 9 and Table VII, however, that the

marily due to its ability to quickly propagate new information
obtained at one state-action pair throughout the state-action
space. From the data in Table VII, we observe that the percent
difference between the reward obtained in the stationary case
and the nonstationary case is less than 6%.

As in the single-layer learning case, the learning performance
with virtual ETs saturates due to the finite exploration proba-
bility (i.e., ¢ > 0), which prevents the learning algorithm from
converging to the optimal policy.

It is important to note that, in these experiments, we have as-
sumed that the update complexity is negligible. This would be
true if the updates were performed infrequently (e.g., per video
frame) or if the updates were performed in parallel (e.g., using
a vector processor); however, it is not a valid assumption for the
very frequent and serial updates deployed here (i.e., per video
macroblock, without a vector processor). Hence, performing 15,
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30, or 45 updates in each time slot is not reasonable, but per-
forming 1 or 2 virtual ET updates is. Despite this technicality,
we have shown the relative performance improvements that can
be achieved by updating multiple virtual experience tuples in
each time slot. An interesting trade off to investigate in future
research is the impact of a coarser data unit granularity with
a simultaneous increase in the number of virtual updates (such
that the average learning complexity remains constant). Last, we
note that the learning performance could be further improved
(for the same number of virtual ET updates) by directing the
virtual ET updates to states that are most likely to be visited in
the near future (e.g., states near the observed next-state), instead
of randomly updating the virtual experience tuples.

VII. CONCLUSION

Foresighted decisions are required to optimize the perfor-
mance of resource-constrained multimedia systems. However,
in practical settings, in which the system’s dynamics are un-
known a priori, efficiently learning the optimal foresighted
decision policy can be a challenge. Specifically, selecting an
improper learning model can lead to an unacceptably slow
learning speed, incur excessive memory overheads, and/or
adversely impact the application’s real-time performance due
to large computational overheads. In this paper, we choose
reinforcement learning to appropriately balance time-com-
plexity, memory complexity, and computational complexity.
We propose a centralized and a layered reinforcement learning
algorithm and extend these algorithms to exploit our partial
knowledge of the system’s dynamics. The proposed accelerated
learning algorithm, which is based on updating multiple sta-
tistically equivalent state-action pairs in each time slot, allows
us to judiciously tradeoff per-stage computational complexity
and time-complexity (i.e., learning speed), while incurring low
memory overheads.

In our experimental results, we verify that the layered
learning solution performs equally as well as the centralized
solution, which may be impractical to implement if the layers
are designed by different manufacturers or operate at different
time-scales. We also illustrate that our proposed foresighted
learning algorithms outperform the myopic learning algorithm
deployed in an existing state-of-the-art cross-layer optimiza-
tion framework and that, by exploiting knowledge about the
system’s dynamics, we can significantly outperform an existing
application-independent reinforcement learning algorithm that
has comparable computational overheads.

A fruitful direction for future research is the application of the
techniques introduced in this paper to cross-layer optimization
of the network protocol stack.

APPENDIX

In this appendix, we discuss the form of the utility gain func-
tion defined in (7). Conventionally, if a multimedia buffer does
not overflow (i.e., the buffer constraints are not violated), then
there is no penalty (see, for example, [21] and [22]). Within the
proposed MDP-based framework, where it is difficult to explic-
itly impose constraints because the dynamics are not known a
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Fig. 11. Buffer evolution in N = 20,000 time slot simulation. (a) Conven-

tional utility gain results in the buffer filling rapidly; (b) conventional utility
gain leads to overflows; (c) proposed utility gain keeps the buffer occupancy
low; (d) proposed utility gain prevents overflows.

priori, the conventional buffer model must be integrated into the
system’s reward function. Specifically, it can be integrated into
the reward through a utility gain function of the form

. o+l 1< N,
Jeonv(8,0L) = {Nq _ (q + m _ 1) . otherwise

which provides a reward of 1 if the buffer does not overflow, and
a penalty proportional to the number of overflows otherwise.

In contrast to the proposed continuous utility gain function
defined in (7), geonv (8, ar) is disjoint. As a result, the optimal
foresighted policy obtained using gcony (8, az,) will initially fill
the buffer rapidly in an attempt to minimize rate-distortion and
power costs (because it is not penalized for filling the buffer) as
illustrated in Fig. 11(a). Subsequently, the policy will attempt
to keep the buffer nearly full in order to balance the cost of
overflow with the rate-distortion and power costs required to
reduce the buffer’s occupancy. Unfortunately, with the buffer
nearly full, any sudden burst in the complexity of a data unit
will immediately overflow the buffer as illustrated in Fig. 11(b).
In contrast, the proposed utility gain function is robust against
bursts in complexity because it encourages the buffer occupancy
to remain low as illustrated in Fig. 11(c) and (d).

The data in Table VIII shows that the proposed utility gain
function not only prevents buffer overflows, but it also achieves
comparable power consumption as the conventional utility gain
function. Thus, we have verified that our choice of utility gain
function is good. An added benefit of the proposed utility gain
function is that it aids in the learning process. This is because
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TABLE VIII

PERFORMANCE STATISTICS USING THE CONVENTIONAL UTILITY GAIN

FUNCTION AND THE PROPOSED UTILITY GAIN FUNCTION
Form of the utility gain
Conventional | Proposed

Avg. Power (W) 0.2421 0.2427
Avg. Rate-Distortion 14.95 14.84
No. Overflows 394 0

actions are immediately rewarded (or penalized) based on how
they impact the buffer state.
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