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Abstract—The high complexity and time-varying workload of
emerging multimedia applications poses a major challenge for dy-
namic voltage scaling (DVS) algorithms. Although many DVS algo-
rithms have been proposed for real-time applications, an efficient
method for evaluating the optimality of such DVS algorithms for
multimedia applications does not yet exist. In this paper, we pro-
pose the first offline linear programming (LP) method to determine
the minimum energy consumption for processing multimedia tasks
under stringent delay deadlines. On the basis of the obtained en-
ergy lower bound, we evaluate the optimality of various existing
DVS algorithms. Furthermore, we extend the LP formulation in
order to construct an online DVS algorithm for real-time multi-
media processing based on robust sequential linear programming.
Simulation results obtained by decoding a wide range of video se-
quences show that, on average, our online algorithm provides a
scheduling solution that requires less than 0.3 % more energy than
the optimal lower bound with only 0.03 % miss rate. In comparison,
a very recent algorithm consumes approximately 4% more energy
than the optimal lower bound at the same miss rate.

Index Terms—Dynamic voltage scaling (DVS), energy man-
agement, linear programming (LP), multimedia communication,
scheduling, system modeling.

I. INTRODUCTION

UE TO THE popularity of streaming multimedia applica-
D tions on mobile and pervasive computing devices, com-
putationally intensive multimedia applications must often be
processed by energy-limited systems. Dynamic voltage scaling
(DVS) enabled processors are particularly attractive for such
devices, since they can adapt their voltage level and associ-
ated clock frequency in real time to save energy while han-
dling time-varying workloads and display deadlines [1], [2]. In
general, a DVS-enabled processor can conserve energy by re-
ducing its voltage level; however, decreasing the voltage level
will also slow the processor clock speed, thereby increasing the
processing time, and hence the overall delay [2]-[4]. DVS algo-
rithms attempt to find a dynamic balance between the operating
level (i.e., power and frequency) of the processor and the quality
of service for multimedia applications in terms of meeting strin-
gent delay deadlines.
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A. Existing Works

A wide variety of DVS algorithms has been proposed for
delay-sensitive applications [5]-[14]. Earlier DVS algorithms
perform optimization over one or two tasks, considering either
the worst-case execution time (WCET) or the average-case ex-
ecution time (ACET) [6], [9]. The performance of these ap-
proaches is limited because future tasks with imminent dead-
lines may require extremely high processing power to finish
in time. Alternatively, a stochastic soft real-time scheduler was
proposed to increase the voltage level adaptively, as long as the
soft deadline is met in the worst case [7]. However, this is based
on the assumption that all jobs follow the same complexity dis-
tribution, which is rarely the case for multimedia applications.
Hence, setting periodic soft deadlines and using the same com-
plexity model for all jobs can be suboptimal.

Another category of DVS algorithms considers joint power
scheduling based on multiple job deadlines. Look-ahead ear-
liest deadline first (1aEDF) [5] attempts to process tasks at
the lowest frequencies and tries to defer jobs such that the
minimum amount of work is done while ensuring that all future
deadlines will still be met. Some approaches employ feedback
control or adaptive linear prediction to estimate the complexity
of future jobs [8], [10]-[12], which take advantage of temporal
correlations and patterns inherent in multimedia jobs. Some
DVS approaches also employ application-based feedback to the
operating system instead of expected statistical behavior [29],
and consider energy consumption for both microprocessor and
memory devices [32] or the whole system [23], [24]. Scalable
scheduling approaches also exist [11], [28] where the number
of tasks released for execution (and hence, the number of
deadlines to consider) can be controlled by adjusting various
parameters, such as the “aggressiveness” factor in [11]. To im-
prove the performance of application-aware DVS algorithms, in
our prior work [13], we proposed the construction of stochastic
multimedia complexity models, where different video frames
and sequence types are classified into different sets of com-
plexity distributions. The parameters of the distributions can be
transmitted in advance and used to analytically approximate the
delay for processing each frame at different processor operating
levels, thus enabling the system to adapt the processor voltage
in real time. A technique combining intra- and intertask voltage
scheduling is proposed in [15]. However, the optimal voltage
schedule solutions proposed are only optimal statistically.

In the existing studies, online DVS algorithms are evaluated
by experimental comparisons with other online algorithms.
However, there has not been a low-complexity approach to
determine how far these algorithms are from the optimal power
scheduling scheme. A few studies have provided methods for
computing the optimal offline scheduling problem, such as
solving an integer linear program (ILP) [21] or a dynamic
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programming problem [12]. However, in these studies, the
complexity grows superpolynomially with the number of jobs
considered. This intractability results from certain assumptions,
such as the voltage switch overhead being significant compared
to the complexity required for processing each job, and thus,
voltage switch should not be used within a job. However, this
assumption is not necessary if the multimedia job complexities
are very high compared to the switch overhead, which is usually
the case for state-of-the-art video coders.

Furthermore, leakage current in CMOS circuits today con-
tributes a significant portion to total power consumption.
Leakage current is expected to increase fivefold with each
generation [16]. Hence, leakage power in DVS problems has
been studied intensively [16]-[19]. When technologies such as
power gating are used to reduce leakage power, the zero power
and frequency of sleeping mode should be considered in a DVS
algorithm, and it is possible that the power--frequency function
for processors could be nonconvex. In this case, existing works
[6], [8], [13], [17] that attempt to minimize idle periods under
the assumption of a convex power--frequency function will
be no longer effective. Hence, adaptive DVS algorithms and
efficient analysis of optimality for both convex and nonconvex
power--frequency functions are needed.

B. Contributions of This Paper

The contributions of this paper are as follows: first, we an-
alyze the optimality of DVS algorithms by deriving a lower
bound for energy consumption subject to processing all jobs be-
fore their delay deadlines (i.e., zero miss rate). We propose a
linear programming DVS solution to obtain the optimal offline
scheduling solution for both convex and nonconvex power--fre-
quency functions. Unlike the integer programming formulation
presented in [21] for temperature-aware DVS scheduling, we
take advantage of the fact that the delay overhead of voltage
switch is negligible compared to the high multimedia job com-
plexities. On the basis of the workload traces collected during
execution time, we solve the offline LP problem to obtain the
lower energy bound for DVS algorithms. A thorough investiga-
tion of video decoding results (where many video sequences are
decoded at many different bit rates) shows that, under the same
zero miss rate, laEDF [5] consumes approximately 15% more
energy than the optimal solution, and our prior queuing-based
algorithm in [13] consumes approximately 4% more than the
optimal solution.

Second, on the basis of the proposed LP formulation and ac-
curate multimedia complexity modeling, we propose an online
robust sequential linear programming approach to DVS, namely
SLP/r, which outperforms the existing DVS solutions. Experi-
mental results from real-time video decoding (where workloads
are highly time-varying) indicate that SLP/r consumes less than
0.3% more energy than the optimal DVS solution while drop-
ping only 0.03% of decoding jobs. While a very recent algo-
rithm (the queuing-based algorithm 2 in [13]) consumes approx-
imately 4% more energy than the optimal at the same miss rate,
our online approach has significantly reduced the gap between
online algorithms and optimal solution from 4% to 0.3%. Also
of note, the SLP/r algorithm has only a small overhead, since the
time complexity of SLP/r mainly depends on the efficiency of
the LP solver. The relative complexity of SLP/r will scale down
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Fig. 1. Comparison of various decoding jobs for video sequences Stefan and
coastguard.

when supporting increasingly computational applications (e.g.,
higher resolution multimedia decoding) in the future.

Although we have used video decoding as an example in this
paper for motivation and experiment, both the offline LP and on-
line SLP/r approaches are applicable to the DVS problem con-
cerning other delay-sensitive real-time applications with time-
varying workloads, such as data mining and stream processing
applications.

This paper extends our previous study in [27]. We extend
the online algorithm SLP/r to support adjustable granularities of
running sequential linear programming. Also, by studying and
optimizing over the granularity and conservativeness of SLP/r,
we further reduce the energy consumption gap between online
algorithms and optimal solution by 3x (from 1% to 0.3%).

The rest of this paper is organized as follows. Section II pro-
vides background on multimedia complexity and power mod-
eling. Section III formally states the real-time DVS problem.
Sections IV and V introduce the optimal offline LP solution and
the online SLP/r algorithm, respectively. Section VI presents ex-
perimental results to validate our work. Section VII concludes
our study.

II. BACKGROUND AND MODELING

A. Multimedia Complexity

State-of-the-art video coders (H.264, SVC, etc.) often encode
adjacent frames jointly in order to exploit the temporal corre-
lation existing in the video, thereby reducing video transmis-
sion bit rate. However, this leads to complicated group-of-pic-
tures (GOPs) structures, where particular video frames require
the reconstruction of reference frames in order to be decoded,
and other video frames require few or no such reference frame
for their decoding. This results in significant workload varia-
tions between adjacent decoding jobs (see Fig. 1). Moreover,
the workload variations will also depend on the different char-
acteristics exhibited by video sequences (e.g., different motion
and texture characteristics) [12], [13].

In this paper, to mitigate the detrimental effects of highly
time-varying workloads on DVS algorithms, we adopt the appli-
cation-aware model for the video coding complexity described
in [13] for the proposed online algorithm. In our prior work
[13], we showed that complexity statistics of decoding jobs can



CAO et al.: OPTIMALITY AND IMPROVEMENT OF DYNAMIC VOLTAGE SCALING ALGORITHMS FOR MULTIMEDIA APPLICATIONS 683

S Class 1Jobs - Class 2Jobs

® ®. 6

Q o)

s 5

3 4 3 4

< <

s =

8 2 el 2

2 2

g 0 g 0

3 6 7 8 5 o ol e
#of cycles x10° #of cycles  x10°

Fig. 2. Workload distribution within one class of decoding jobs.

be decomposed into the sum of complexity metrics that follow
simple, well-known distributions, such as Poisson distribution
for entropy decoding. Hence, we can approximate each metric
by independent identically distributed (i.i.d.) random complex-
ities, which sum up to approximate a Gaussian distribution by
the central limit theorem of probability. Hence, for experiments
in our study, we assume that the complexity of jobs follows
Gaussian distribution. However, our algorithms are applicable
to other media complexity models (e.g., the ones used in [12])
or media compression tasks.

In our study, a job class is defined as a particular frame type
in a GOP. For example, we may consider four job classes for
a GOP structure in a three-temporal-level motion-compensated
temporal filtering (MCTF) wavelet video coder, where each job
involves decoding two video frames. Similarly, job classes can
be determined for MPEG and H.264 coders based on intra- (I),
bipredictive- (B), and different predicted (P)-frame types. To
model the complexity within each class of jobs, offline training
of decoding is used to obtain workload distributions of each
job class in different video sequences, as shown in Fig. 2 for
the MCTF wavelet coder. These distributions enable us to col-
lect important information about the decoding complexity of
each job class, such as the mean and standard deviation. Then,
this metadata information can be sent by the encoder/server
ahead of jobs with low transmission overhead whenever the se-
quence characteristics or coder parameters change [25]. Such
information can be used by the proposed online DVS algorithm
to achieve the tradeoff between energy consumption and quality
of service.

Finally, note that the complexity of each video decoding job
is on the order of a billion cycles. Hence, overheads associated
with voltage switches, which are on the order of less than 100
clock cycles [24], are negligible compared to the processing
complexity of multimedia tasks. On the other hand, the number
of voltage switches is the number of voltage levels adopted
within the job (we can integrate the time allocations of each
voltage level into one if more than one time allocation of a
voltage level is scheduled). The largest number of voltage
switches occurs for the job within which we utilize all different
voltage levels. Hence, the number of voltage switches within a
job is not more than the total number of voltage levels. On the
basis of these observations, we assume that the voltage switch
overhead can be ignored.

B. Dynamic and Leakage Powers

In general, a processor consumes both dynamic and leakage
powers for a given Vyq level, and consumes no power when the
Vaa level is zero, i.e., in the power gating or sleep mode. To
evaluate our proposed algorithms, we adopt the power model
proposed in [17] and used in [16] and [21] for real-time applica-

TABLE I
70 NM TECHNOLOGY CONSTANTS

Const Value Const Value Const Value
K, 0.063 K 526x10™" C 0.43x10”
K, 0.153 Vnr 0.244 I 4.8x107°
K; 5.38x107 Vs -0.7 Lq 37
K, 1.83 A 15 L, 4x10°
K 4.19

tions. However, the algorithms proposed in this paper can apply
to any power model, regardless of whether the power--frequency
function is convex or not. The dynamic power is

Py = CVLF (1)

where C'is the effective switching capacitance, Vyq is the supply
voltage, and F' is the clock frequency. We choose the leakage
power model from [17], which includes the subthreshold and
the reverse bias leakage power. For a given supply voltage Vg,
the leakage power P, and subthreshold leakage current I, are

©))
3)

where L, is the number of devices in the circuit, I; is the reverse
bias junction current, Vy4 is the body bias voltage, and K3, K4,
and K are constant fitting parameters. The clock frequency F’
and the threshold voltage V;y, are

Ps :Lg (VddIsub + |VbS|Ij)

7 V4
Lo = K36K4V(|<|6Koh>s

(Vaa — Ven)*
= Vad = Vi) 4
(LiK) @
Vin =Vin1 — K1Vaa — K2 Vi )

where L is the logic depth of the path, a, K1, K2, and V}y,; are
technology constants. We adopt the constants for 70 nm tech-
nology node from [16] in our experiment, shown in Table I.

Assumptions and Clarifications

In this paper, the DVS problem we are solving has certain at-
tributes that must be considered: we consider a known workload
for the offline problem and an uncertain workload for the online
problem; we consider both inter- and intrajob scheduling, where
we allow voltage switch to occur within a job as well as between
jobs; similar to most DVS-enabled processors, the configurable
voltage levels are discrete.

Furthermore, we assume that power is constant if the voltage
and frequency level are set; this assumption is also adopted in
many existing works [5]-[15]. Also, we assume that compared
with multimedia decoding jobs, the voltage switch overhead is
small enough to be ignored. For the offline problem, we assume
that the complexity and arrival time for each decoding job are
known. This information can be obtained from the trace of the
video decoding. For the online problem, we assume that the
mean and standard deviation of complexities are obtained by
ofline training and transmitted to the decoder before decoding
of these jobs start [13].

III. PROBLEM STATEMENT

For the DVS problem, we are given a sequence of decoding
jobs. Each job has a given complexity (workload in unit of clock
cycles), arrival time, and display deadline. Because we are per-
forming real-time media transmission and decoding, the arrival
time can be influenced by the time-varying network character-
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istics [26]. Also, a voltage/frequency configurable system can
switch the frequency of its processor by dynamically adapting
its voltage level. Hence, we have a set of active operating levels
with frequencies and corresponding powers (sum of leakage
power and dynamic power). Furthermore, if power gating is en-
abled, we have an additional operating level for the sleep mode.
The goal of a DVS algorithm is to find a scheduling solution
to minimize the total energy consumption. The DVS problem is
formalized as follows.

1) Problem Formulation 1: Given M decoding jobs with
their associated complexities, arrival times, and display dead-
lines, plus K voltage levels with the associated clock frequen-
cies and power, the DVS problem is to find the voltage sched-
uling solution to minimize the energy consumption for the entire
sequence of jobs under the following constraints: the decoder
can only start a job after it arrives from the network and the de-
coder needs to finish each job before its deadline.

To write DVS problem in formulas, let C =
{017"'70AI}7 T = {T17"'7T1W}’ and D = {D17"'7D1\/[}
be the complexity, arrival time, and display deadline of each job,
respectively. Let F' = {Fy,...,Fi} and P = {Py,..., Py}
(Fy and P, for sleeping mode) be the associated clock fre-
quencies and powers for each voltage level, respectively. The
scheduling solutionis S = {75, V5, N}, where N is the number
of voltage switches, and Ts = {to,...,tn,tN+1,50 = 0}
and V; = {vg,...,vn} are the time (not including ¢y 1) and
voltage level for each switch; tx1 is the time all jobs are
finished.

Then, the DVS problem is

N
min K = Z (ti-i—l - ti)Pm' (6)
=0

subject to

for0<n<N @)

where (6) describes the total energy consumption and (7) de-
scribes the constraints: the decoder can only start decoding a
job after it arrives, and each job should be finished before its
display deadline. U(t) and L(t) are the upper and lower bounds
of cumulative decoding complexity at time ¢, and will be defined
precisely later in this section.

When the precise complexity of each job is known, the
constraints for the problem are given by deterministic C; and
T;. When uncertainties exist in the workload and transmission
time, C; and I; can be viewed as stochastic variables and DVS
scheduling algorithms cannot guarantee that all jobs will be
decoded before their deadlines. Hence, in the stochastic case,
the hard deadline constraint can be replaced with the constraint
of keeping the miss rate for jobs within a tolerable range.

We further illustrate the DVS problem in the time-complexity
space, as shown in Fig. 3. Here, the x axis is the time and the y
axis is the cumulative complexity of jobs. T; indicates arrival
time and D; indicates deadline. C; is the complexity of each
job. The step function U (%) is the cumulative complexity of jobs
based on their arrival times. It indicates the maximal computa-
tion that can by done by time ¢. Step function L(¢) is the cumula-
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Fig. 3. DVS problem formulation in time-complexity space.

tive complexity of jobs based on their deadlines. It indicates the
minimal computation that needs to be done by time ¢. So, U (%)
depends on T; and C;, while L(t) depends on D; and C;. U(t)
is not simply a shift of L(¢) over time since U(t) captures the
transmission time of a job over a network. On the other hand, the
display deadlines are deterministic and correspond to the video
frame display times. The constraints are given by

k
Ut) =y (Cy)
=1
for Th 1 <t<Tp, 1<k<M, Ty=0 (8)
k—1
L(t) = ) _(Cy),
=0
for Dj_1 <t< Dy, 1<k<M,
Co=0, Dy=0. )

Since the decoder cannot start decoding a job before it is com-
pletely received from the network, and it must finish the job be-
fore its deadline, a valid DVS solution is a piecewise linear curve
between U (t) and L(t). As shown in Fig. 3, the point connecting
two segments indicates the time for a voltage switch, while the
slope of a segment indicates the clock frequency. We call this
curve the cumulative computation curve, as described in (7).

IV. OPTIMAL OFFLINE SOLUTION

In this section, we show that the deadline-driven multimedia
DVS problem can be mapped into a tractable LP problem. If we
know the precise complexity and arrival time of each decoding
job, we can obtain the optimal scheduling solution.

We define a transition point as the time when a new job ar-
rives (i.e., any T;) or when a job deadline is reached (i.e., any
D;). We also define an adaptation interval as the time period
between two adjacent transition points. The adaptation intervals
for sample U(t) and L(t) curves are marked in dotted lines in
Fig. 4. We now prove an important theorem for DVS.

1) Primary Theorem: Within an adaptation interval where
U(t) and L(t) are constant, a feasible voltage scheduling can
be expressed as the time allocation of each voltage level. An-
other voltage scheduling with the same allocation will have the
same cumulative computation and the same amount of energy
consumed by the end of the adaptation interval.

Proof: First, if the scheduling has more than one time allo-
cation for a voltage level, we can integrate these allocations into
one. The total energy consumption is the sum of each time al-
location multiplied by the corresponding power, and the total



CAO et al.: OPTIMALITY AND IMPROVEMENT OF DYNAMIC VOLTAGE SCALING ALGORITHMS FOR MULTIMEDIA APPLICATIONS 685

u(t)
total complexity
of transmitted jobs

L()
complexity consumption
deadline

Ti Di Tu1 DTz Di2 Tis Time

Fig. 4. Adaptation intervals.

uit) uit)

L(t) L(t)
Seq: 2,0,1,3,4 Seq: 0,1,2,3,4

Fig. 5. Different voltage scheduling orderings.

computation consumption is the sum of each time allocation
multiplied by the corresponding frequency. If the time alloca-
tion is fixed for all voltage levels, the energy consumption and
cumulative computation are both fixed. Second, the cumulative
computation curve will lie between U (¢) and L(t). If U(t) and
L(¢) are constant, the order of voltage levels will not affect the
performance. Fig. 5 presents an example for two different or-
ders (2,0,1,3,4) and (0,1,2,3,4) (the numbers refer to the slopes)
with the same time allocation. [ |

The primary theorem is the key idea to map the DVS problem
to a tractable LP problem. Rather than finding the precise times
for voltage switches, which would create an intractable ILP
problem as in [21], we instead solve for the percentage of time
for each voltage level within an adaptation interval. The LP
problem is formulated as follows.

2) Problem Formulation 2: The offline DVS problem is

N K
min F = Z Z (Ai; Pi(I; — I;—1))

(10
i=1 j=0
subject to
K
0<A; <1, for 0<j<K and ZA,L-]» =1 (11)
j=0
n K
L(L,) <> (FAij(I; = Iisy))
i=1 j=0
<U(I,), for1<n<L. (12)

Here, we label the transition points as an ordered set
I ={Iy,..., I}, where Iy = 0 and I}, = Teng, i.¢., we have
a total of L adaptation intervals. For these L intervals, we have
voltage-level allocation vectors given by A = {A;,..., AL},
where A; = {Aj,...,A;x} and A;; is the percentage of

voltage level j in adaptation interval I; to I;;;. Then, the
unknown is the voltage-level allocation vectors given by A.

u(t)

N
»
l; [P O lisa Media Time

Fig. 6. Scheduling solution.

The constraint in (12) is that the valid DVS solution should be
between U(t) and L(t) defined in (6) and (7).

One can easily prove that the problem defined in (10)--(12)
is a linear programming problem [30]. Hence, with this formu-
lation, solving the LP problem leads to the optimal solution for
the offline DVS problem. Once the optimal time allocation in
each adaptation interval is obtained, we schedule the voltage
from lowest to highest. We show an example with three voltage
levels (including power gating) in Fig. 6. For the first adaptation
interval, voltage level 0, 1, and 2 occupy 50%, 25%, and 25%
of time, respectively, for the second, third, and fourth intervals,
the time allocation is (0%, 100%, 0%), (66%, 34%, 0%), and
(75%, 25%, 0%), respectively. As shown in the figure, we start
from the lowest voltage level with nonzero time allocation and
we skip the unused voltage levels.

Note that this formulation is pervasive: the operating voltages
can be of any discrete values, and there is no requirement for the
power--frequency model. Furthermore, this formulation is also
applicable to other delay-sensitive DVS problems for real-time
applications.

The offline approach can be used to determine the opera-
tional lower bound for energy consumption, as well as whether
the utilized online DVS algorithm operates close to the optimal
scheme. In the next section, we will discuss an online adaptation
of the proposed algorithm.

V. EFFECTIVE ONLINE ALGORITHM

For online multimedia applications, where jobs are received
over a network, we often do not know the precise complexity
and arrival times of each decoding job. Nevertheless, the idea of
mapping DVS into a linear programming problem in Section IV
can still be used for online DVS. We solve the stochastic online
DVS problem by sequentially solving a robust linear program
(rLP). We label our algorithm SLP/r.

There are three stages in each round of SLP/r: prediction,
solving rLP, and commitment. For prediction, we predict the sto-
chastic complexity of decoding jobs in a future time window by
using the linear combination of the mean and standard devia-
tion of jobs. As discussed in Section II-A, this information can
be transmitted to the decoder before decoding start. Then we
solve an rLP problem to obtain the scheduling solution for the
predicted decoding jobs in the window. Finally, we commit one
or more jobs based on the scheduling solution obtained from
solving rLLP. The committed number of jobs is defined as the
granularity of tLP. It is smaller than the number of jobs pre-
dicted in prediction stages. After commitment, we move the
window forward, predict the complexity in the new window, and
repeat the rLP based on new statistics.
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A. Consideration of Stochastic Complexity

The prediction of future decoding job complexities in the
sliding window is crucial to our online solution. Using only the
mean of each job class for prediction may lead to a high miss
rate. To reduce the probability of misses, we incorporate the
standard deviation of each job class with the mean to estimate
the bounded “worst-case” complexity in a probabilistic manner.
In SLP/r, we adopt the linear combination of the mean and stan-
dard deviation for each job class to explicitly adjust U(t) and
L(t), and hence, to determine the miss rate probability. The ad-
justments are based on a conservativeness a.. Note that for jobs
far into the future of a prediction window, the cumulative stan-
dard deviation over jobs may be large. Therefore, a scaled coef-
ficient a (possibly 0, such that only the mean is considered) can
be used to guarantee feasibility of rLP. This does not necessarily
increase the miss rate, because we only commit the imminent
jobs and not all predicted jobs in commit stage.

1) Problem Formulation 3: The rLP problem for a given pre-
diction window is

W K
min £ = Z Z (A;; Pjop) (13)
i=1 j=0
subject to
K
0<A; <1, for 0<j<Kand Y Aj =1 (14)
=0
n K
L(1,) <373 (FAijp)
i=1 j=0
<U(I,), forl<n<W (15)

where ¢ is the display interval and W is the prediction window
size. Adaptation intervals I, U(t), and L(t) are defined as the
follows:

I:{IO,....I[/‘} Ii:itp (16)
k

Ut) =Y (Cwyts) for I <t<Ip, 1<k<W (17)
7=1

L(t) = max(0,U(t — 6¢)) (18)

where W is the current adaptation interval and C; is the pre-
dicted stochastic complexity of job ¢. Equations (17) and (18)
show that U(t) and L(t) are the upper and lower bounds of the
cumulative predicted complexity. Also, since we assume that
each job released ¢ display intervals before the display deadline,
U (t) is simply a time-shifted version of L(t) (detailed descrip-
tion in Section V-B and V-C). Specifically, we have

CN’WO +i S PWots T QU+
( (R—j+ 1))
a, =max | 0,a-—F—— |,

19)

for 1<;<W (20)
R
where p; and v; are the mean and variance of stochastic com-
plexity of job i, « is the conservativeness, and R is a constant.
Equation (20) indicates that the coefficient of standard devia-
tion decreases between o and O over time. Note that a tradeoff
between miss rate and energy consumption can be achieved
by tuning «. For example, increasing o will make the bounds
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tighter and leads to a lower miss rate at the cost of higher av-
erage energy consumption.

One can show that the problem defined by (13)--(20) is an rLP
problem [13]. Once we get the schedule solution, we schedule
the voltage in the order from lowest to highest voltage level,
identical to the offline problem. Note that with stochastic com-
plexity model, the proposed online algorithm applies to other
real-time applications although we only use video decoding as
an example. After committing one or more jobs, we need to ad-
just U(t) and L(t) dynamically. The idea will be discussed and
demonstrated in Section V-C.

B. Extension to Unreliable Network

For SLP/r, another challenge is that we need to cope with the
time-varying network characteristics since we do not know the
exact arrival time of a job. We assume that a network buffer at
the decoding side collects packets and dispatches jobs to the de-
coder according to the display frame rate. Then, we predict the
time when each job is ready to be decoded is 6 display intervals
before the deadline. This indicates that the adaptation intervals
are divided by the display deadlines of each job, and the number
of adaptation intervals is M +6, where M is the number of jobs.
In this fashion, we can reduce the number of adaptation inter-
vals from 2M to M + 6 (hence the size of the rLP problem). In
this case, the adaptation intervals I, U(t), and L(t) are defined
as (16)—(18). If a job arrives before the scheduling time (i.e.,
the real U(¢) is higher than the complexity consumption line),
we determine the voltages as guided by rLLP. If a job arrives late
due to insufficient network bandwidth, power gating can be used
to shut down the processor until this new job arrives, based on
which U (¢) and L(t) are adjusted for the next rLP.

C. Illustration of SLP/r

We further illustrate SLP/r in the time-complexity space, as
shown in Fig. 7. Fig. 7(a) shows the prediction stage. We pre-
dict the complexity of each job using the linear combination of
mean and standard deviation (gray area). We predict that the ar-
rival time U (¢) is ahead of L(t) by 6 display intervals, then U (¢)
is only a shift of L(¢). Note that though we show a prediction
of three jobs here, in our implementation, we often predict 8 or
16 jobs. We then solve an rLP for jobs in the window, as shown
in Fig. 7(b); the dotted line perpendicular to the x axis indicates
the adaptation intervals and the dotted piecewise linear curve
indicates the scheduling solution from solving rLP. The solid
curve in the bottom indicates the existing cumulative computa-
tion curve from the previous round.

The strategies for dealing with unreliable networks are shown
in Fig. 7(c) and (d). Fig. 7(c) highlights the case when a job
arrives late, while Fig. 7(d) highlights the case when a job ar-
rives early. Here, the dotted step curve indicates U(t) for ro-
bust linear programming, while the solid step curve indicates
real U(t) [the same applies for Fig. 7(d)]. In Fig. 7(c), the solid
piecewise linear curve illustrates that we power gate over the
delayed time period, and then commit a given number of jobs
(the given number is the granularity of SLP/r). Because the unit
of commitment is an adaptation interval, the granularity of rLP
defines a lower bound on the number of jobs to be committed. If
the decoder finishes decoding and has extra computation to be
done in the last adaptation interval, we begin decoding the next
job (and possibly more jobs if these jobs have arrived, and extra
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Fig. 7. Detailed illustration of SLP/r.

resources are available). As shown in Fig. 7(c), we also commit
part of the second job because extra computation is done within
the third adaptation interval. Fig. 7(d) indicates the case when
jobs arrive earlier. In this case, we commit two jobs plus part
of the third job. This is because the first job cannot be finished
within the first two adaptation intervals, and in the third adapta-
tion interval, the second job and part of the third job are finished.
Note that though the granularity set for this example is one job,
it is possible to commit more jobs in each round of rLP, two,
and part of the third shown in this case. After commitment, we
need to adjust the prediction for the third job in the next run of
rLP, since part of the third job has been completed. As shown in
Fig. 7(e), we reduce the predicted complexity of the third job as
part of it has been finished. Also, we move the future window
forward to start the next round, as indicated by the dotted rec-
tangle. Then, we repeat this process until all jobs are finished.

TABLE II
FREQUENCY AND POWER FOR DIFFERENT V4 LEVELS
vdd (V) 0.6 0.7 0.8 0.9 1.0
Frequency (GHz) 079 127 181 242 3.09
Dynamic Power (10-5W) 0.12 027 0.0 0.84 1.33
Leakage Power (10-5W) 021 029 040 0.54 0.72
Total Power (10-5W) 033 0.56  0.90 1.38 2.05

VI. SIMULATIONS AND RESULTS

A. Experimental Setup

In our experiments, we adopted the power and frequency
models for the 70 nm technology node in [16] and [17]. We
considered discrete voltage levels Vyq between 0.6 and 1.0 V
with voltage step sizes of 0.1 V. The clock frequencies and
power for different Vyq levels are presented in Table II.

We combined ten video sequences with different character-
istics into a long sequence, which was then decoded using a
four-temporal-level MCTF coder.! We measured the complexity
of each decoding job in terms of clock cycles of real computers
and used the measurement for offline scheduling. We pretrained
the stochastic model using the measurement for the proposed
online algorithm SLP/r as in [13].

To simulate a real-time video decoding environment with se-
quences that have a frame rate of 30 Hz, we fixed display dead-
lines for the application. We assumed that the frame arrivals
from the network following the normal distribution as discussed
in [25] to simulate a wireless network, and we applied the same
generated arrival times of jobs for all algorithms in our exper-
iments. For all algorithms, we calculated the energy using the
same power model considering the leakage power. Since the ac-
tual value of energy is not important for comparison between
the three methods, we report the normalized energy, given by
the energy consumption ratio of online schemes to the optimal
solution.

Furthermore, because of the stochastic nature of complexities
and transmission delays, we present results based on a Monte
Carlo simulation, where the Gaussian distribution of decoding
complexities is from the trace of a real decoding system [13]. We
also modeled the transmission delay using a normal distribution
[25].

Two parameters need to be set by the user in SLP/r. The first
one is the conservativeness (« in Problem Formulation 3), which
decides the tradeoff between miss rate and energy. The second
one is the granularity of SLP/r. It is the number of jobs to commit
before shifting the future time window. It decides the tradeoff
between runtime and quality of solution. Intuitively, a large con-
servativeness and a small granularity may lead to higher energy
consumption, while a low conservativeness and a large granu-
larity may lead to a high miss rate. Our experiment in the next
section will study different combinations of conservativeness
and granularity to verify whether the above intuition is correct.

B. Optimality Study

In our experiment, we extended 1aEDF [5] and the queuing-
based algorithms [13] to use the leakage-aware power model.
Also, we extended these algorithms to consider sleep mode for

'We chose the MCTF coder since the workload variations are highly notable
for the different sequences. Note that using a different coder would only lead
to a different complexity trace for the decoding jobs, but would not affect the
optimality of our offline algorithm.
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Fig. 8. Energy and miss rate.

a fair comparison. For queuing-based algorithms 1 and 2 in
[13], we selected algorithm 2 for comparison as it outperforms
algorithm 1 experimentally. We tuned the parameters to ob-
tain different trade off points for energy and miss rate. For the
queuing-based algorithm, we tuned the delay sensitivity param-
eter ¢, and for laEDF, we used different WCETsSs.

The results are shown in Fig. 8. The energy achieved by the
optimal offline LP solution (e.g., the lower bound) is normalized
to 1. Note that based on our formulation, the optimal solution al-
ways has zero miss rate. The result shows that, for a zero miss
rate, laEDF consumes approximately 15% more than the op-
timal and queuing-based algorithm 2 consumes approximately
4% more than the optimal.

We also compared SLP/r with the optimal solution and ex-
isting algorithms. For this experiment, we set granularity as 1
job, and we tuned the conservativeness « to obtain different
tradeoff points for energy and miss rate. The sliding window
size of SLP/r is set to 16 jobs (two GOPs). In Fig. 8, one can ob-
served that SLP/r has only about 0.6% more energy consump-
tion than the optimal solution while keeping the miss rate below
0.1%. The queuing-based algorithm 2 consumes roughly 3.5%
more energy than SLP/r under the same miss rate (0.1%), while
IaEDF consumes approximately 13% more than SLP/r. Though
the existing work in [13] is very close to optimal, SLP/r fur-
ther explores the potential of online DVS algorithms and signif-
icantly reduces the gap between online algorithms and optimal
solution. Also, note that the comparison is based on the result
from SLP/r with granularity of 1 job. However, we can achieve
an even better solution by changing other parameter settings,
shown in the following section.

C. Optimizing SLP/r

To study the impact of granularity on the decoding quality of
the solution, we ran simulations for granularities from 1 job to
8 jobs and compare the lowest energy points. In Fig. 9, the sim-
ulation results for granularities 1, 2, 4, and 6 jobs are plotted.
We found that for a granularity of 4 jobs, we achieved 0.03%
miss rate with 0.3% more energy compared to the optimal of-
fline solution, which outperforms all other granularities. Also,
the increase of normalized energy with an increasing miss rate
for large granularities is an interesting phenomenon. This is be-
cause, for large granularities, when the conservativeness is low,
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the predicted complexity bounds may be looser than the ac-
tual bounds, especially for jobs far in the window. The sched-
uling solution from the loose bounds will adopt lower voltage
level than needed. Hence, when jobs are committed, computa-
tion complete before deadline may be less than needed, thus
causing a missed job. Meanwhile, computation that needs to be
complete will be more for the next immediate job in the next
round of SLP/r. In this way, the voltage levels adopt will be
higher for the next immediate job in the window and lower for
the jobs far in the window. Hence, the overall energy consump-
tion will be higher. For small granularities such as 1 job, the
adjustment is faster. Hence, the energy consumption will not be
higher.

To further study the impact of parameter settings, we ap-
plied different combinations of conservativeness (from O to 4)
and granularities (from 1 job to 8 jobs). The corresponding re-
sults for energy and miss rate are shown in Figs. 10 and 11,
respectively.



CAO et al.: OPTIMALITY AND IMPROVEMENT OF DYNAMIC VOLTAGE SCALING ALGORITHMS FOR MULTIMEDIA APPLICATIONS 689

The impact of parameters on energy is shown Fig. 10. One can
see that, for a fixed granularity, larger conservativeness usually
leads to higher energy consumption. Also, for conservativeness
less than 1, energy consumption increases while conservative-
ness decreases. This trend is more distinct for larger granulari-
ties. The interpretation is that a large conservativeness leads to
a larger prediction of job complexity in the window. Thus, the
corresponding schedule solution tends to adopt a higher voltage
level, which leads to higher energy consumption. A very small
conservativeness, on the other hand, leads to a less than needed
computation done. Hence, if the next job carries a large work-
load, the processor needs to operate at a high voltage level to
compensate for lost time. For larger granularity, this phenom-
enon is more significant because the feedback and adjustment
are slower. Another interesting phenomenon is that energy vi-
bration appears in the large conservativeness region. For a large
conservativeness, granularities 4 and 8 jobs consume less en-
ergy than others. This is because of the specific GOP structure
adopted in our experiment. Granularities of 4 and 8 jobs always
have jobs that contain I frames (large workload) as the imme-
diate next job in the future time window. Because of the large
« of the immediate next job (see (19) and (20) for details), the
prediction will be very conservative. Hence, the prediction will
result in higher energy consumption and lower miss rate. This
phenomenon is more distinct for conservativeness 4 due to the
higher energy consumption, which results from a large conser-
vativeness.

The impact of parameters on miss rate is shown Fig. 11. We
find that, for conservativeness larger than 2, most granularities
lead to a zero miss rate. When the conservativeness is small,
granularities of 4 and 8 jobs have a lower miss rate. This phe-
nomenon is again the result of the GOP structure used in our
experiment.

To identify the default parameters of SLP/r, we observed from
Fig. 10 that, for granularity of 4-6 jobs and conservativeness
1.5, we can get the minimal energy consumption (marked by
arrows). In Fig. 11, among these parameter settings, a granu-
larity of 4 jobs and conservativeness 1.5 has a miss rate very
close to zero. Therefore, for the decoder used, we determined
that the combination of a 4 job granularity and conservative-
ness 1.5 is the approximate optimal parameter setting, and can
be used as default parameters. The analysis is as follows: for a
small granularity, increasing the conservativeness will lead to
lower miss rate, but it will be too aggressive using a large con-
servativeness for each of them. Hence, a larger granularity will
balance the conservativeness and miss rate better. However, too
large granularity will lead to inaccurate predictions and lagged
adjustments. Hence, there exists an approximate optimal combi-
nation of granularity and miss rate: 4 jobs for granularity and 1.5
for conservativeness, as shown in our experiment. It is important
to note that the energy and miss rate do not change dramatically
around the aforementioned setting. Therefore, it is a robust set-
ting. This setting can be used in practice because we have con-
sidered decoding of different video types in our experiment.

D. Runtime

For a granularity of 4 jobs and conservativeness of 1.5, the
total runtime of SLP/r for the combined 512-s-long video se-
quence is 18 s, which indicates that the runtime overhead of the

online scheduling algorithm is approximately 3.5% of the video
decoding workload, which is acceptable. Though the runtime
existing laEDF and queuing-base algorithms are less than 0.1%,
we expect the relative runtime overhead of SLP/r to decrease in
the future with more careful implementation. The associated en-
ergy overhead of scheduling will also decrease relatively to the
more computationally intensive applications such as higher res-
olution video decoding.

VII. CONCLUSION

In this paper, we have analyzed the optimality of online DVS
algorithms by formulating the optimal ofline DVS as a linear
program. We show that at a zero miss rate, the existing works
consume 4% more energy than the optimal solution. We have
also developed an effective online DVS algorithm using robust
sequential linear programming, which significantly outperforms
existing online DVS solutions and is merely 0.3% away from the
optimal. Though existing work is close to optimal, we further
reduce the gap between online algorithms and optimal solution
from 4% to 0.3%.

To further improve the performance of these DVS solutions,
we plan to develop solutions that can more precisely predict
complexity of future jobs by exploiting the video sequence char-
acteristics and the corresponding coding parameters used by
state-of-the-art multimedia coding algorithms. In this way, we
can reduce the runtime overhead of SLP/r by reducing the fre-
quency of solving the rLP problem. Also, we plan to build a
lookup table for scheduling solutions based on offline training
to further reduce the runtime. Finally, we will apply our pro-
posed formulation and algorithms to other real-time delay-sen-
sitive applications with time-varying workloads.
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