
6262 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 12, DECEMBER 2011

Fast Reinforcement Learning for Energy-Efficient Wireless
Communication

Nicholas Mastronarde and Mihaela van der Schaar

Abstract—We consider the problem of energy-efficient point-to-point
transmission of delay-sensitive data (e.g., multimedia data) over a fading
channel. We propose a rigorous and unified framework for simultaneously
utilizing both physical-layer and system-level techniques to minimize
energy consumption, under delay constraints, in the presence of stochastic
and unknown traffic and channel conditions. We formulate the problem
as a Markov decision process and solve it online using reinforcement
learning. The advantages of the proposed online method are that i) it does
not require a priori knowledge of the traffic arrival and channel statistics
to determine the jointly optimal physical-layer and system-level power
management strategies; ii) it exploits partial information about the system
so that less information needs to be learned than when using conventional
reinforcement learning algorithms; and iii) it obviates the need for action
exploration, which severely limits the adaptation speed and run-time
performance of conventional reinforcement learning algorithms.

Index Terms—Energy-efficient wireless multimedia communication,
dynamic power management, power-control, adaptive modulation and
coding, Markov decision process, reinforcement learning.

I. INTRODUCTION

Delay-sensitive wireless multimedia communication systems often
operate in dynamic environments where they experience time-varying
channel conditions (e.g., fading channel) and dynamic traffic loads
(e.g., variable bit-rate). In such systems, the primary concern has
typically been the reliable delivery of data to the receiver within
a tolerable delay. Increasingly, however, battery-operated mobile
devices are becoming the primary means by which people consume,
author, and share delay-sensitive content (e.g., real-time streaming
of multimedia data, videoconferencing, gaming etc.). Consequently,
energy-efficiency is becoming an increasingly important design con-
sideration.

State-of-the-art research that addresses the problem of en-
ergy-efficient wireless communications can be roughly divided
into two categories: physical (PHY) layer-centric solutions such as
power-control [1] and adaptive modulation and coding (AMC) [5]
and system-centric solutions such as dynamic power manage-
ment (DPM) [2]. Although these techniques differ significantly, they
can all be used to tradeoff delay and energy to increase the lifetime of
battery-operated mobile devices.

PHY-centric solutions: A plethora of existing PHY-centric solu-
tions focus on optimal single-user power-control with the goal of min-
imizing transmission power subject to queuing delay constraints (e.g.,
[1] and [8]). Unfortunately, existing solutions typically require statis-
tical knowledge of the underlying dynamics (e.g., the channel state

Manuscript received June 12, 2011; accepted July 25, 2011. Date of publi-
cation August 18, 2011; date of current version November 16, 2011. The as-
sociate editor coordinating the review of this manuscript and approving it for
publication was Dr. Lawrence Carin. This work is supported in part by the Na-
tional Science Foundation under NSF CAREER Award CCF-0541453 and NSF
CNS-0509522.

N. Mastronarde was with the University of California at Los Angeles, Los
Angeles, CA 90095 USA. He is now with the State University of New York at
Buffalo, Buffalo, NY 14260 USA (e-mail: nmastron@buffalo.edu).

M. van der Schaar is with the University of California at Los Angeles, Los
Angeles, CA 90095 USA (e-mail: mihaela@ee.ucla.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2011.2165211

and traffic distributions), which is not available in practice. Without
this information, either suboptimal heuristics are deployed [1], which
cannot provide optimal power consumption while satisfying the strin-
gent delay constraints required by wireless multimedia applications,
or slow-to-converge learning algorithms are deployed [8]. Other PHY-
centric solutions are based on adaptive modulation, adaptive coding, or
AMC to tradeoff delay and energy [5].

While PHY-centric solutions are effective at minimizing transmis-
sion power, they ignore the fact that it costs power to keep the wire-
less card on and ready to transmit; therefore, a significant amount of
power can be wasted even when there are no packets being transmitted.
System-level solutions address this.

System-level solutions: System-level solutions rely on DPM, which
enables system components such as the wireless network card to be put
into low-power states when they are not needed [2], [3]. Unfortunately,
existing online solutions to the DPM do not exploit the structure of the
problem, and therefore exhibit suboptimal learning performance.

Our contributions are as follows.
1) We jointly adapt the power-control, AMC, and DPM policies ac-

cording to the current (known) and future (predicted) traffic and
channel conditions. In addition to being the first to provide a uni-
fied framework for jointly optimizing system-level and PHY-cen-
tric power management (PM) techniques for delay-sensitive wire-
less multimedia, we are the first to apply reinforcement learning
(RL) to the DPM problem.

2) We propose a novel decomposition of the (offline) value iteration
and (online) RL algorithms based on dividing the system’s dy-
namics into a priori known and unknown components. The ad-
vantages of the proposed decomposition method are that it ex-
ploits partial information about the system so that less informa-
tion needs to be learned than when using conventional RL algo-
rithms [7] and, under certain conditions, it obviates the need for
action exploration, which severely limits the adaptation speed and
run-time performance of conventional RL algorithms [7].

3) We take advantage of the fact that the unknown dynamics are in-
dependent of certain components of the system’s state. We ex-
ploit this property to perform a batch update on multiple states in
each time slot. We refer to this batch update as virtual experience
learning. Prior to this work, it was believed that learning must nec-
essarily be performed one state at a time because one learns only
about the current state being observed, and can, therefore, update
only the corresponding component [8].

The remainder of the paper is organized as follows. In Section II, we
introduce the system model and assumptions. In Section III, we formu-
late the power management (PM) problem and discuss how to solve it
online using RL. In Section IV, we present our simulation results. We
conclude in Section V.

II. PRELIMINARIES

Fig. 1 illustrates the considered wireless multimedia transmission
system. We assume that time is slotted into discrete-time intervals of
length ��. Transmission and PM decisions are made at the beginning
of each interval.

Let �� denote the fading coefficient over the point-to-point link
in time slot �. As in [1] and [8], we assume that the sequence of
channel states ��� � � � � � �� �� � � �� can be modeled as a Markov
process with transition probability function (TPF) ����� � ��. �� is
assumed to be unknown. The PHY layer can use any modulation
and coding scheme. Our only assumptions are that the bit-error
probability (BEP) and the transmission power can be expressed
as 	
�� � 	
����� ��

��� �
�� and ��

�� � �����
��	
��� ���,

1053-587X/$26.00 © 2011 IEEE

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 12, DECEMBER 2011 6263

Fig. 1. Wireless transmission system. The components outlined in bold are the
focus of this paper.

respectively, where �� is the packet throughput in packets per time
slot. Without loss of generality, we select the packet throughput and
the BEP as decision variables at the PHY layer.

We also assume that the wireless card can be put into low power
states to reduce the power consumed by its circuits. Specifically, the
wireless card can be in one of two PM states in the set � � ���� ���
and can be switched on and off using one of the two PM actions in
the set � � �� ��� � ��� [2]. Using the above definitions, the power
consumed in time slot � is

����� ���	
�� �� ��

�

���� �����
��	
��� ���� � if � � ��� � � � ��

����� if � � ��� � � � ��

���� otherwise
(1)

where ��� (watts) is the transmission power, ��� and ��� (watts) are
the power consumed by the wireless card in the ON and OFF states,
respectively, and ��� (watts) is the power consumed when it transi-
tions from ON to OFF or from OFF to ON. Similar to [2], we assume
that the sequence of PM states ��� � � � � � �� �� � � �� is a controlled
Markov process with known TPF 	���� � �� ��. We note that the packet
throughput � is non-zero only if � � �� and � � � ��; otherwise,
� � �.

We assume that the source injects
� � 	��
� packets of size � bits
into the first-in first-out (FIFO) transmission buffer in each time slot. 	�

is assumed to be unknown and the buffer has finite size � packets. The
buffer state � � � ��� �� � � � � �� evolves recursively as follows:

��� � ��� �� 	 �� �	
��� ���
�� �� (2)

where ���	
��� ���
 �� is the packet goodput in packets per
time slot (i.e., the number of packets transmitted without error). For
simplicity, we will write �� � ���	
��� ���. The sequence of
buffer states �� � � � �� �� � � �� can be modeled as a controlled
Markov process with TPF 	��� � �� �� ���	
�� �� ��.

We define the state of the system as � �� �� �� � � and the action
as � �	
�� �� �� � �. The sequence of states ��� � � � �� �� � � ��
can be modeled as a controlled Markov process with TPF:

	��� � �� �� � 	��� � �� �� ���	
�� �� ��	���� ���	������� ��� (3)

Our goal is to minimize energy consumption subject to an average
delay-constraint. To this end, we define the instantaneous cost ���� ��
as a weighted sum of two terms:

���� �� � ����� ���	
�� �� �� ����� ���	
�� �� �� (4)

where � is a positive Lagrange multiplier, ����� ���	
�� �� �� is
the power cost defined in (1), and ���� ���	
�� �� �� is the buffer
cost. The buffer cost is designed to reward the system for minimizing
queuing delays, thereby protecting against overflows that may result
from a sudden increase in transmission delay due to a bad fading

channel or traffic burst. Formally, we define the buffer cost as the
expected sum of the holding cost and overflow cost with respect to the
arrival and goodput distributions:

���� ���	
�� �� ��

� ���� �	 � �

	�
��� ����

 ���� ��	 � �
	�� ��

������� ����

(5)

where � � ����	 �� depends on the discount factor � defined in the
next section. The holding cost is proportional to the queuing delay by
Little’s theorem [6]. The per-packet overflow penalty � ensures that it
is suboptimal to drop packets while simultaneously transmitting with
low power or shutting off the wireless card.

III. LEARNING THE OPTIMAL POLICY

The objective of the power management problem is to minimize the
infinite horizon discounted cost, i.e.,

� 	��� � �

�

���

������ � �� � �� � (6)

where �� is the instantaneous cost at time � with expectation ����� ���
defined in (4); � � ��� �� is the discount factor and ���� denotes the
discount factor to the � th power; � � � � � is a policy, which maps
states to actions such that �� � �����; and, the expectation is over the
sequence of states ��� � � � �� �� � � ��.

We refer to � 	��� as the value of state � and � 	 as the state-value
function. The optimal policy �� minimizes (6) from any initial state
�� � � and the optimal state-value function � � � � � satisfies the
following dynamic programming equation:

� ���� � ���

��

���� �� �
� ��

	��� � �� ��� ����� � (7)

Assuming that the cost and TPF are known, (7) can be computed numer-
ically using the well-known value iteration algorithm [7]. In practice,
however, the TPF and cost function are (partially) unknown a priori
so � � and �� must be learned online using RL (e.g., �-learning [7]).
In Section III-A, we develop a framework that allows us to integrate
known information about the TPF and cost function into the learning
process to improve run-time performance compared to conventional RL
algorithms.

A. Proposed Postdecision State Learning

1) Postdecision State Definition: Similar to [8], we define a postde-
cision state (PDS) to describe the state of the system after the known
dynamics take place, but before the unknown dynamics take place. We
denote the PDS as �� and the set of possible PDSs as �� . The PDS
at time � is related to the state �� � ��� ��� ���, action �� �
�	
��� ��� ���, and the state at time � �, as follows:

��� �� ���� �� ��� � ���� ���� ���� � ��� 	 ���� ��� �����

����� �� ���� � �� ���� � ����� ����� �����

� ���
�� ����� ������

The buffer’s PDS �� � �	 �� characterizes the buffer state after the
packets are transmitted, but before new packets arrive; the channel’s
PDS is the same as the channel state at time �; and, the power manage-
ment PDS is the same as the power management state at time ��. In
other words, the PDS incorporates all of the known information about

6264 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 12, DECEMBER 2011

TABLE I
KNOWN AND UNKNOWN DYNAMICS. �� � � IS THE INDICATOR FUNCTION, WHICH TAKES VALUE 1 IF ITS ARGUMENT IS TRUE AND 0 OTHERWISE

the transition from state �� to state ���� after taking action ��. Mean-
while, the next state incorporates all of the unknown dynamics that
were not included in the PDS (i.e., the number of packet arrivals �� and
next channel state ����). Note that the buffer state at time � � � can
be rewritten in terms of the buffer’s PDS at time � as ���� � ���� ��.

By introducing the PDS, we can factor the TPF into known and un-
known components, where the known component accounts for the tran-
sition from the current state to the PDS, i.e., � � ��, and the unknown
component accounts for the transition from the PDS to the next state,
i.e., �� � ��. Formally,

���� � �� �� �
��

����
� � ��� ������� � �� �� (8)

where the subscripts k and u denote the known and unknown compo-
nents, respectively. We can factor the cost function similarly:

	��� �� � 	���� �� �
��

����� � �� ��	����� ��
 (9)

Note that, unlike [8], the transition from the current state to the PDS
may be nondeterministic and the cost function is factorized into known
and unknown components. Hence, the considered PDS definition is a
generalization of the PDS definition used in [8].

In the system under study, we assume that the known and unknown
TPF and cost functions are defined as in Table I. However, with ap-
propriate modifications to the definitions in Table I, and to the PDS,
the proposed framework can be applied regardless of what is known.
Notice that, in general, both the known and unknown components may
depend on the action and the PDS. In the system under study, however,
the unknown components only depend on the PDS (i.e., ����� � ��� �� �
����

� � ��� and 	����� �� � 	�����) so we will focus on this case in the
remainder of the paper. This is also true in [1] and [8].

2) Postdecision State Learning Algorithm: Before we can describe
the PDS learning algorithm, we need to define the PDS value function,
which is a value function defined over the PDSs. The optimal PDS
action-value function, denoted by �� �, can be expressed as a function
of the optimal state-value function and vice versa:

�� ����� � 	����� � �

�

����
� � ���� ������ (10)

�
���� � ��	

���
	���� �� �

��

����� � �� �� ��
�����
 (11)

Given the optimal PDS value function, the optimal policy can be com-
puted as

�
������ � ��	

���
	���� �� �

��

����� � �� �� ��
�����
 (12)

By substituting (10) into (12) and using the relationships defined in
(8) and (9), it can be shown that ���� and � are equivalent. This is
important because it means that we can use the PDS value function to
learn the optimal policy.

TABLE II
LEARNING ALGORITHM COMPLEXITY (IN EACH TIME SLOT). IN THE SYSTEM

UNDER STUDY � ��� � ��� AND ��� � �� � ��

PDS learning uses a sample average of the PDS value function to
learn �� � given the experience tuple ��� � ���� ��� ���� 	�� � �

���� in
each time slot: i.e.,

�� ��������� ��� �
�� �� ������ � �

�

	
�

� � ��
������� (13)

where �� �
�� �� is a time-varying learning rate parameter.
There are several ways in which the PDS learning algorithm uses in-

formation more efficiently than the conventional �-learning algorithm
[7]. First, PDS learning exploits partial information about the system so
that less information needs to be learned. This is evident from the use
of the known information (i.e., 	����� �� and �����

� � ��� ��) in (11).
Second, updating a single PDS using (13) provides information about
the state-value function at many states. This is evident from the ex-
pected PDS value function on the right-hand-side of (11). Third, be-
cause the unknown dynamics (i.e., 	������ and ����

��������) do not
depend on the action, there is no need for randomized exploration to
find the optimal action in each state [7]. This means that the latest esti-
mate of the value function can always be exploited and therefore non-
greedy actions never have to be tested.

B. Virtual Experience Learning

The PDS learning algorithm described in the previous subsection
only updates one PDS in each time slot. In this subsection, we will dis-
cuss how to update multiple PDSs in each time slot in order to accel-
erate the learning rate and improve run-time performance. The key idea
is to realize that the traffic arrival and channel state distributions are in-
dependent of the buffer and power management states. Consequently,
the statistical information obtained from the PDS at time � about the
a priori unknown traffic arrival and channel state distributions can be
extrapolated to other PDSs with different postdecision buffer states and
different postdecision power management states. Specifically, given the
PDS experience tuple in time slot �, i.e., ��� � ���� ��� ���� 	�� � �

����,
the PDS value function update defined in (13) can be applied to every
virtual experience tuple in the set

����� �
���� ���
��� ���� ���� 	���� �

���
��� ��� ����� �����

����� ��� � � � 	

(14)

where 	���� �� � �������� ���� ��. We refer to elements of ����
as virtual experience tuples because they do not actually occur in time

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 12, DECEMBER 2011 6265

TABLE III
SIMULATION PARAMETERS

slot �. As shown in (14), the virtual experience tuples in ����� are
the same as the actual experience tuple ��� except that they have a dif-
ferent postdecision buffer state and/or a different postdecision power
management state, and a different cost.

By performing the PDS update in (13) on every virtual experience
tuple in �����, the proposed virtual experience learning algorithm
improves adaptation speed at the expense of a �� � � �-fold increase
in computational complexity ��� � � � � � ������. We show in the re-
sults section that we can trade off performance and learning complexity
by only performing the complex virtual experience updates every �
time slots. Table II compares the complexity of the considered learning
algorithms.

IV. SIMULATION RESULTS

A. Simulation Setup

Table III summarizes the parameters used in our MATLAB-based
simulator. We assume that the physical layer is designed to handle
QAM rectangular constellations and that a Gray code is used to map
the information bits into QAM symbols. The corresponding bit-error
probability and transmission power functions can be found in [4]. We
evaluate the performance of the proposed algorithm for��� � 320 mW
such that it is much larger than ��� as in typical 802.11a/b/g wireless
cards [9]. In our simulations, we let ����� be an i.i.d. Poisson packet
arrival process with arrival rate � � ��� packets/second; however, it
is important to note that the channel transition distribution ����� ���
and packet arrival distribution ����� are unknown a priori in our sim-
ulations so the proposed learning algorithms are required to optimize
the power-delay performance. Lastly, we choose a discount factor of
	 � �
�� in the optimization objective (closer to 1 yields better per-
formance after convergence, but requires more time to converge).

The signal-to-noise ratio (SNR) used for the tests is 	
�� �
��

����� , where ��

�� is the transmission power in time slot ���� is
the noise power spectral density, and is the bandwidth. We assume
that the bandwidth is equal to the symbol rate, i.e., � ����, where
�� is the symbol duration.

B. Learning Algorithm Comparison

Simulation results using the parameters described in Table III are
presented in Fig. 2 for numerous simulations with duration 75 000 time
slots (750 s) and ��� � �� mW. The two plots in Fig. 2 compare
the performance of the proposed PDS learning algorithm (with virtual
experience updates every � � �� ��� ��� ��� time slots and without
virtual experience updates) to the conventional �-learning algorithm
[7] and to an existing PDS learning-based solution [8], which does not

Fig. 2. Quantitative learning algorithm comparison. (a) Cumulative average
holding cost versus time slot. (b) Cumulative average power versus time slot.

consider system-level power management (i.e., no DPM) and does not
exploit virtual experience.

As expected, using a virtual experience update period of 1 leads to
the best performance [see “PDS�Virtual Experience �update period �
��” in Fig. 2]; in fact, this algorithm achieves near optimal performance
after about 3000 time slots, at which point the cumulative holding cost
and power settle to nearly steady-state values. Thus, if sufficient com-
putational resources are available, the jointly optimal power-control,
AMC, and DPM policies can be quickly learned online by smartly
exploiting the structure of the problem using PDS learning combined
with virtual experience. In existing wireless communications systems
(especially in mobile devices), however, there are not enough compu-
tational resources to use virtual experience in every time slot. Hence,

6266 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 12, DECEMBER 2011

Fig. 3. Comparison of the optimal policy with imperfect statistics to the PDS
learning algorithm with virtual experience and ������ ����	�
 �. The �
axis is in log-scale to highlight the learning process over time. (a) Holding cost
versus time slot. (b) Power versus time slot.

we also illustrate the performance of the proposed algorithm for dif-
ferent update periods [see “PDS�Virtual Experience �update period �
��� ��� ����” in Fig. 2] and without doing any virtual experience up-
dates (see “PDS Learning” in Fig. 2). As the number of updates in each
time slot is decreased, the learning performance also decreases.

We now compare our proposed solution to the “PDS learning (no
DPM)” curves in Fig. 2, which were obtained using the PDS learning
algorithm introduced in [8]. The “PDS learning (no DPM)” algorithm
performs poorly in terms of power consumption because it does not
take advantage of system-level DPM, which is where the large ma-
jority of power savings comes from when ��� is significantly larger
than ���. Thus, PHY-centric solutions that completely ignore system-
level power management achieve severely suboptimal power in prac-
tice. (Note that PHY-centric solutions are still important for achieving
the desired delay constraint!)

Lastly, we observe that the conventional �-learning algorithm
(see “�-learning” in Fig. 2) performs very poorly; in fact, because
�-learning requires action exploration, it assumes no a priori knowl-
edge of the dynamics, and it only updates one state-action pair in each
time slot, it fails to learn in 75 000 time slots what the PDS-based
algorithms learn in less than 1000 time slots.

C. Comparison to Optimal Policy With Imperfect Statistics

In Fig. 3, we compare the performance of the best learning algo-
rithm in Fig. 2 [“PDS � Virtual Experience (update period = 1)”] to

the expected performance of a per-step suboptimal algorithm, which
is optimal with respect to the previously observed experience. Specifi-
cally, the per-step suboptimal algorithm uses value iteration to compute
the optimal policy with respect to imperfect statistics, which are esti-
mated from previous channel transition and packet arrival realizations.
The reason the PDS learning algorithm does not track the per-step sub-
optimal algorithm more closely during the early stages of learning is
because it not only needs to sample the environment (like the per-step
suboptimal algorithm), but it is also limited in the number of computa-
tions it can apply in each time slot to learn the optimal value function
(unlike the per-step suboptimal algorithm, which can compute the value
function directly from the statistics without regard for complexity). It is
clear that the proposed algorithm achieves the best delay performance
possible given the sampled experience within approximately 200 time
slots and the best power performance given the available sampled ex-
perience within approximately 3000 time slots.

V. CONCLUSION

In this paper, we considered the problem of energy-efficient point-to-
point transmission of delay-sensitive multimedia data over a fading
channel. We proposed a unified reinforcement learning solution for
finding the jointly optimal power-control, AMC, and DPM policies
when the traffic arrival and channel statistics are unknown. We ex-
ploited the structure of the problem by introducing a postdecision state,
eliminating action-exploration, and enabling virtual experience to dra-
matically improve performance compared to conventional reinforce-
ment learning algorithms and state-of-the-art learning solutions. The
results strongly support the use of system-level power management so-
lutions in conjunction with network-centric solutions to achieve op-
timal power-delay performance. Finally, the proposed learning algo-
rithm essentially performs as good as possible given limited sampling
within a reasonable number of time slots.

REFERENCES

[1] R. Berry and R. G. Gallager, “Communications over fading channels
with delay constraints,” IEEE Trans. Inf. Theory, vol. 48, no. 5, pp.
1135–1149, May 2002.

[2] E.-Y. Chung, L. Benini, A. Bogliolo, Y.-H. Lu, and G. De Micheli,
“Dynamic power management for nonstationary service requests,”
IEEE Trans. Comput., vol. 51, no. 11, pp. 1345–1361, Nov. 2002.

[3] K. Nahrstedt, W. Yuan, S. Shah, Y. Xue, and K. Chen, “QoS support in
multimedia wireless environments,” in Multimedia Over IP and Wire-
less Networks, M. van der Schaar and P. Chou, Eds. New York: Aca-
demic, 2007.

[4] J. G. Proakis, Digital Communications. New York: McGraw-Hill,
2001.

[5] C. Schurgers, “Energy-aware wireless communications,” Ph.D. disser-
tation, Electr. Eng. Dept., Univ. of California, Los Angeles, 2002.

[6] D. Bertsekas and R. Gallager, Data Networks. Upper Saddle River,
NJ: Prentice-Hall, 1987.

[7] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA: MIT Press, 1998.

[8] N. Salodkar, A. Bhorkar, A. Karandikar, and V. S. Borkar, “An on-line
learning algorithm for energy efficient delay constrained scheduling
over a fading channel,” IEEE J. Sel. Areas Commun., vol. 26, no. 4, pp.
732–742, Apr. 2008.

[9] Cisco, Cisco Aironet 802.11a/b/g Wireless CardBus
Adapter Data Sheet [Online]. Available: http://www.cisco.
com/en/US/prod/collateral/wireless/ps6442/ps4555/ps5818/
product_data_sheet09186a00801ebc29.html

