
Joint Physical-Layer and System-Level
Power Management for Delay-Sensitive

Wireless Communications
Nicholas Mastronarde, Member, IEEE, and Mihaela van der Schaar, Fellow, IEEE

Abstract—We consider the problem of energy-efficient point-to-point transmission of delay-sensitive data (e.g., multimedia data) over

a fading channel. Existing research on this topic utilizes either physical-layer centric solutions, namely power-control and adaptive

modulation and coding (AMC), or system-level solutions based on dynamic power management (DPM); however, there is currently no

rigorous and unified framework for simultaneously utilizing both physical-layer centric and system-level techniques to achieve the

minimum possible energy consumption, under delay constraints, in the presence of stochastic and a priori unknown traffic and channel

conditions. In this paper, we propose such a framework. We formulate the stochastic optimization problem as a Markov decision

process (MDP) and solve it online using reinforcement learning (RL). The advantages of the proposed online method are that 1) it does

not require a priori knowledge of the traffic arrival and channel statistics to determine the jointly optimal power-control, AMC, and DPM

policies; 2) it exploits partial information about the system so that less information needs to be learned than when using conventional

reinforcement learning algorithms; and 3) it obviates the need for action exploration, which severely limits the adaptation speed and

runtime performance of conventional reinforcement learning algorithms. Our results show that the proposed learning algorithms can

converge up to two orders of magnitude faster than a state-of-the-art learning algorithm for physical layer power-control and up to three

orders of magnitude faster than conventional reinforcement learning algorithms.

Index Terms—Energy-efficient wireless communications, dynamic power management, power-control, adaptive modulation and

coding, Markov decision process, reinforcement learning

Ç

1 INTRODUCTION

DELAY-SENSITIVE communication systems often operate in
dynamic environments where they experience time-

varying channel conditions (e.g., fading channel) and
dynamic traffic loads (e.g., variable bit-rate). In such
systems, the primary concern has typically been the reliable
delivery of data to the receiver within a tolerable delay.
Increasingly, however, battery-operated mobile devices are
becoming the primary means by which people consume,
author, and share delay-sensitive content (e.g., real-time
streaming of multimedia data, videoconferencing, gaming
etc.). Consequently, energy-efficiency is becoming an
increasingly important design consideration. To balance
the competing requirements of energy-efficiency and low
delay, fast learning algorithms are needed to quickly adapt
the transmission decisions to the time-varying and a priori
unknown traffic and channel conditions.

Existing research that addresses the problem of energy-
efficient wireless communications can be roughly divided
into two categories: physical (PHY) layer-centric solutions
such as power-control and adaptive modulation and coding

(AMC); and system-centric solutions such as dynamic
power management (DPM). (DPM enables system compo-
nents such as the wireless network card to be put into low-
power states when they are not needed [3], [4], [5], [6]. We
discuss this in more detail in Section 2.2.) Although these
techniques differ significantly, they can all be used to
tradeoff delay and energy to increase the lifetime of battery-
operated mobile devices [2], [3] [8].

PHY-centric solutions. A plethora of existing PHY-
centric solutions focus on optimal single-user power-control
(also known as minimum energy transmission or optimal
scheduling) with the goal of minimizing transmission power
subject to queuing delay constraints (e.g., [1], [2]). It is well
known that transmitting with more power in good channel
states, and with less power in poor channel states,
maximizes throughput under a fixed energy budget. For
this reason, Rajan et al. [1] and Berry and Gallager [2] use
dynamic programming, coupled with a stochastic fading
channel model, to determine the optimal power-control
policy. Unfortunately, the aforementioned solutions require
statistical knowledge of the underlying dynamics (i.e., the
channel state and traffic distributions), which is typically
not available in practice. When this information is not
available, only heuristic solutions, which cannot guarantee
optimal performance, are provided. For example, in [2], a
heuristic power-control policy is proposed that is only
optimal for asymptotically large buffer delays. Moreover,
[1] and [2] are information-theoretic in nature, so they
ignore transmission errors, which commonly occur in
practical wireless transmission scenarios.

Other PHY-centric solutions are based on adaptive
modulation, adaptive coding, or AMC. Although these
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techniques are typically used to tradeoff throughput and
error-robustness in fading channels [22], they can also be
exploited to tradeoff delay and energy as in [8], where they
are referred to as dynamic modulation scaling, dynamic
code scaling, and dynamic modulation-code scaling, re-
spectively. Offline and online techniques for determining
optimal scaling policies are proposed in [8], however, these
techniques cannot be extended in a manner that tightly
integrates PHY-centric and system-level power manage-
ment techniques.

Although PHY-centric solutions are effective at mini-
mizing transmission power, they ignore the fact that it costs
power to keep the wireless card on and ready to transmit;
therefore, a significant amount of power can be wasted even
when there are no packets being transmitted. System-level
solutions address this problem.

System-level solutions. System-level solutions rely on
DPM, which enables system components such as the
wireless network card to be put into low-power states
when they are not needed [3], [4], [5], [6]. A lot of work has
been done on DPM, ranging from rigorous work based on
the theory of Markov decision processes (MDPs) [3], [4], [5],
to low-complexity work based on heuristics [6]. In [3], the
optimal DPM policy is determined offline under the
assumption that the traffic arrival distribution is known a
priori. In [5], an online approach using maximum like-
lihood estimation to estimate the traffic arrival distribution
is proposed. This approach requires using the complex
value iteration algorithm to update the DPM policy to
reflect the current estimate of the traffic distribution. In [4],
a supervised learning approach is taken to avoid the
complex value iteration algorithm. However, this approach
incurs large memory overheads because it requires many
policies to be computed offline and stored in memory to
facilitate the online decision making process. Unfortu-
nately, due to their high computational and memory
complexity, the aforementioned online approaches are
impractical for optimizing more complex, resource-con-
strained, and delay-sensitive communication systems.

Our contributions are as follows:

. Unified power management framework. We pro-
pose a rigorous and unified framework, based on
Markov decision processes and reinforcement learn-
ing (RL), for simultaneously utilizing both PHY-
centric and system-level techniques to achieve the
minimum possible energy consumption, under
delay constraints, in the presence of stochastic traffic
and channel conditions. This is in contrast to existing
work that only utilizes power-control [1] [2], AMC
[8], or DPM [3], [4], [5], [6] to manage power.1

. Generalized postdecision state. We propose a
decomposition of the (offline) value iteration and
(online) RL algorithms based on factoring the
system’s dynamics into a priori known and a priori
unknown components. This is achieved by general-
izing the concept of a postdecision state (PDS, or
afterstate [11]), which is an intermediate state that
occurs after the known dynamics take place but
before the unknown dynamics take place. Similar

decompositions have been used for modeling games
such as tic-tac-toe and backgammon [11], for dynamic
channel allocation in cellular telephone systems [11],
and for delay-constrained scheduling over fading
channels (i.e., power-control) [12], [16]. However, we
provide a more general formulation of the PDS
concept than existing literature. Specifically, existing
literature introduces the PDS concept for very specific
problem settings, where the PDS is a deterministic
function of the current state and action, and where the
cost function is assumed to be known. In general,
however, the PDS can be a nondeterministic function
of the current state and action, and it can be used in
any MDP in which it is possible to factor the
transition probability and cost functions into known
and unknown components. The advantages of the
proposed PDS learning algorithm are that it exploits
partial information about the system, so that less
information needs to be learned than when using
conventional RL algorithms and, under certain
conditions, it obviates the need for action exploration,
which severely limits the adaptation speed and
runtime performance of conventional RL algorithms.

. Virtual experience. Unlike existing literature, we
take advantage of the fact that the unknown
dynamics are independent of certain components
of the system’s state. We exploit this property to
perform a batch update on multiple PDSs in each
time slot. We refer to this batch update as virtual
experience learning. Prior to this work, it was
believed that the PDS learning algorithm must
necessarily be performed one state at a time because
one learns only about the current state being
observed, and can, therefore, update only the
corresponding component [12]. Importantly, our
experimental results illustrate that virtual experience
can reduce the convergence time of learning by up
to two orders of magnitude compared to “one state
at a time” PDS learning.

. Application of reinforcement learning to dynamic
power management. We believe that this paper is
the first to apply RL to the DPM problem. This is
nontrivial because naı̈ve application of RL can lead
to very poor performance. This is because conven-
tional RL solutions (e.g., Q-learning) require fre-
quent action exploration, which lead to significant
power and delay penalties when a suboptimal
power management action is taken. Using PDS
learning in conjunction with virtual experience
learning, however, obviates the need for action
exploration and allows the algorithm to quickly
adapt to the dynamics and learn the optimal policy.

The primary limitation of our algorithm is that, although
it generally performs well, it is not provably optimal under
non-Markovian dynamics. In fact, when the traffic is highly
time-varying and the Markovian assumption is violated, the
proposed solution can occasionally perform worse than a
simple threshold policy. This phenomenon has been
observed in prior literature on dynamic power manage-
ment. For example, it has been shown in [3] that simple
timeout policies can occasionally outperform MDP-based
policies in non-Markovian environments.

The remainder of the paper is organized as follows: In
Section 2, we introduce the system model and assumptions.
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1. More accurately, prior research on power-control implicitly considers
adaptive coding because it assumes that optimal codes, which achieve
information-theoretic capacity, are used.



In Section 3, we describe the transmission buffer and traffic
models. In Section 4, we formulate the power management
problem as an MDP. In Section 5, we discuss how to solve
the problem online using RL. In Section 6, we present our
simulation results. Section 7 concludes the paper.

2 PRELIMINARIES

In this section, we introduce the time-slotted system model
used in this paper. We assume that time is slotted into
discrete-time intervals of length �t such that the nth time
slot is defined as the time interval ½n�t; ðnþ 1Þ�tÞ.
Transmission and power management decisions are made
at the beginning of each interval and the system’s state is
assumed to be constant throughout each interval. Fig. 1
illustrates the considered wireless transmission system. We
describe the deployed PHY-centric power management
techniques in Section 2.1 and the deployed system-level
power management technique in Section 2.2. We describe
the transmission buffer model in Section 3.

2.1 Physical Layer: Adaptive Modulation and
Power-Control

We consider the case of a frequency non-selective channel,
where hn 2 H denotes the fading coefficient over the point-
to-point link (i.e., from the transmitter to the receiver) in time
slot n as illustrated in Fig. 1. As in [1], [2], [12], and [13], we
assume that the set of channel states H is discrete and finite,
and that the channel state is constant for the duration of a time
slot, that it can be estimated perfectly, and that the sequence
of channel states fhn 2 H : n ¼ 0; 1; . . .g can be modeled as
a Markov chain with transition probabilities phðh0jhÞ.

The physical layer is assumed to be a single-carrier
single-input single-output (SISO) system with fixed symbol
rate of 1=Ts (symbols per second). The transmitter sends at a
data rate �n=Ts (bits/s) to the receiver, where �n � 1 is the
number of bits per symbol determined by the modulation
scheme in the AMC component shown in Fig. 1. All packets
are assumed to have packet length L (bits) and the symbol
period Ts is fixed.

The proposed framework can be applied to any modula-
tion and coding schemes. Our only assumptions are that the
bit-error probability (BEP) at the output of the maximum
likelihood detector of the receiver, denoted by BEPn, and
the transmission power, denoted by Pn

tx, can be expressed as

BEPn ¼ BEP hn; Pn
tx; z

n
� �

ð1Þ

and

Pn
tx ¼ Ptx h

n;BEPn; znð Þ; ð2Þ

where zn is the packet throughput in packets per time slot.
Assuming independent bit-errors, the packet loss rate (PLR)
for a packet of size L can be easily computed from the BEP
as PLRn ¼ 1� ð1�BEPnÞL.

We will use the packet throughput as a decision variable
in our optimization problem as shown in Fig. 1. To achieve
a packet throughput of zn 2 Z (i.e., to transmit Lzn bits in
�t seconds), the modulation scheme must set the number of
bits per symbol to

�n ¼ znLTs=�td e;

where dxe denotes the smallest integer that is greater than
x. Given the packet throughput, which determines the
number of bits per symbol, and channel state hn, we are
then free to either select 1) the transmission power Pn

tx, from
which we can determine the BEP using (1), or select 2) the
BEP, from which we can determine the transmission power
using (2). We select the BEP as our decision variable, as
shown in Fig. 1, but the proposed framework can also be
applied if we select the transmission power.

For illustration, throughout this paper we assume that (1)
and (2) are known; however, the proposed learning frame-
work is general and can be directly extended to the case
when (1) and (2) are unknown a priori. We also select a fixed
coding scheme for simplicity; however, the proposed
framework can still be applied using adaptive modulation
and coding with an appropriate modification to the BEP and
transmission power functions. Note that if both modulation
and coding can be adapted, then (1) and (2) are often
unattainable analytically. Thus, if (1) and (2) are assumed to
be known, it is necessary to resort to models based on fitting
parameters to measurements as in [19], [20], and [21].

2.2 System-Level: Dynamic Power Management
Model

In addition to adaptive modulation and power-control,
which determine the active transmission power, we
assume that the power manager illustrated in Fig. 1 can
put the wireless card into low power states to reduce the
power consumed by its electronic circuits. Specifically, the
wireless card can be in one of two power management
states in the set X ¼ fon; offg and can be switched on and
off using one of the two power management actions in the
set Y ¼ fs on; s offg. The framework can be easily extended
to multiple power management states as in [4], but we only
consider two for ease of exposition. As in [3], the notation
s on and s off should be read as “switch on” and “switch
off,” respectively.
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Fig. 1. Wireless transmission system. The components outlined in bold are the focus of this paper.



If the channel is in state h, the wireless card is in state x,
the maximum BEP is BEPn, the power management action
is y, and the packet throughput is z, then the required
power is

� h; x½ �; BEP; y; zð Þ

¼
Pon þ Ptx h

n;BEPn; znð Þ
� �

; if x ¼ on; y ¼ s on;

Poff:; if x ¼ off; y ¼ s off;

Ptr; otherwise;

8><>: ð3Þ

where Ptx (watts) is the transmission power defined in (2),
Pon and Poff (watts) are the power consumed by the wireless
card in the “on” and “off” states, respectively, and Ptr (watts)
is the power consumed when it transitions from “on” to
“off” or from “off” to “on.” Similar to [3], we assume that
Ptr � Pon > Poff � 0 such that there is a large penalty for
switching between power states, but remaining in the “off”
state consumes less power than remaining in the “on” state.2

As in [3], we model the sequence of power management
states fxn 2 X : n ¼ 0; 1; . . .g as a controlled Markov chain
with transition probabilities pxðx0jx; yÞ. Let PxðyÞ denote the
transition probability matrix conditioned on the power
management action y, such that PxðyÞ ¼ ½pxðx0jx; yÞ�x;x0 . Due
to the high level of abstraction of the model, it is possible
that there is a nondeterministic delay associated with
the power management state transition such that

Pxðs onÞ ¼
on off

on

off

1 0

� 1� �

� �
;

Px s offð Þ ¼
on off

on

off

1� � �

0 1

� �
;

ð4Þ

where the row and column labels represent the current (xn)
and next (xnþ1) power management states, respectively, and
� 2 ð0; 1� (respectively, 1� �) is the probability of a success-
ful (respectively, an unsuccessful) power state transition.
For simplicity of exposition, we will assume that the power
state transition is deterministic (i.e., � ¼ 1); however, our
framework applies to the case with � < 1 (with � known or
unknown). We note that the packet throughput z can be
nonzero only if x ¼ on and y ¼ s on; otherwise, the packet
throughput z ¼ 0.

3 TRANSMISSION BUFFER AND TRAFFIC MODEL

We assume that the transmission buffer is a first-in first-out
queue. As illustrated in Fig. 1, the source injects ln packets
into the transmission buffer in each time slot, where ln has
distribution plðlÞ. Each packet is of size L bits and the arrival
process fln : n ¼ 0; 1; . . .g is assumed to be independent and
identically distributed (i.i.d) with respect to the time slot
index n. The arriving packets are stored in a finite-length
buffer, which can hold a maximum of B packets. The buffer
state b 2 B ¼ f0; 1; . . . ; Bg evolves recursively as follows:

b0 ¼ binit;

bnþ1 ¼ min bn � fn BEPn; znð Þ þ ln; Bð Þ;
ð5Þ

where binit is the initial buffer state and fnðBEPn; znÞ � zn is
the packet goodput in packets per time slot (i.e., the number
of packets transmitted without error), which depends on
the throughput zn 2 f0; . . . ;minðbn; zmaxÞg ¼ ZðbnÞ and the
BEP BEPn 2 E. Note that, by enforcing zn � bn, we do not
have to include underflow conditions in the buffer evolu-
tion equation (5). Recall that the packet throughput z, and
therefore the packet goodput f , can be nonzero only if x ¼
on and y ¼ s on; otherwise, they are both zero (i.e.,
z ¼ f ¼ 0). Also, note that the packets arriving in time slot
n cannot be transmitted until time slot nþ 1 and that any
unsuccessfully transmitted packets stay in the transmission
buffer for later (re)transmission. For notational simplicity,
we will omit the arguments of the packet goodput and
instead write fn ¼ fnðBEPn; znÞ. Assuming independent
packet losses, fn is governed by a binomial distribution, i.e.,

pf fnjBEPn; znð Þ ¼ bin zn; 1� PLRnð Þ; ð6Þ

and has expectation E½fn� ¼ ð1� PLRnÞzn. We refer to
pfðfnjBEPn; znÞ as the goodput distribution.

Based on the buffer recursion in (5), the arrival distribu-
tion plðlÞ, and the goodput distribution pfðf jBEP; zÞ, the
sequence of buffer states fbn : n ¼ 0; 1; . . .g can be modeled
as a controlled Markov chain with transition probabilities

pb b0j b; h; x½ �; BEP; y; zð Þ

¼

Xz
f¼0

pl b0 � b� f½ �ð Þpf f jBEP; zð Þ; if b0 < B;

Xz
f¼0

X1
l¼B� b�f½ �

pl lð Þpf f jBEP; zð Þ; if b0 ¼ B:

8>>>><>>>>:
ð7Þ

Equation (7) is similar to the buffer state transition
probability function in [9], except that the model in [9]
assumes that the packet goodput f is equal to the packet
throughput z (i.e., there are no packet losses).

We also define a buffer cost to reward the system for
minimizing queuing delays, thereby protecting against
overflows that may result from a sudden increase in
transmission delay due to a bad fading channel or traffic
burst. Formally, we define the buffer cost as the expected
sum of the holding cost and overflow cost with respect to the
arrival and goodput distributions, i.e.,

gð b; x½ �; BEP; y; zÞ ¼
X1
l¼0

Xz
f¼0

pl lð Þpf f jBEP; zð Þ

b� f½ �|fflfflffl{zfflfflffl}
holding cost

þ �max b� f½ � þ l�B; 0ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
overflow cost

8><>:
9>=>;:

ð8Þ

In (8), the holding cost represents the number of packets
that were in the buffer at the beginning of the time slot, but
were not transmitted (and hence must be held in the buffer
to be transmitted in a future time slot). If the buffer is stable
(i.e., there are no buffer overflows), then the holding cost is
proportional to the queuing delay by Little’s theorem [10]. If
the buffer is not stable (i.e., there is a finite probability of
overflow such that Little’s theorem does not apply), then
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2. In [32], the authors find that switching from the doze mode (“off”) to
the idle mode (“on”) consumes the same power as being in the idle mode.
However, as noted in [33], different manufacturers have different
implementations of the power-save mode, leading to different switching
power penalties, which our framework can be easily adapted to cope with.



the overflow cost imposes a penalty of � for each dropped
packet. We describe how to define � at the end of Section 4,
after introducing the formal optimization problem, because
its definition requires a parameter used in the optimization.

4 WIRELESS POWER MANAGEMENT PROBLEM

FORMULATION

4.1 Formulation as a Constrained Markov Decision
Process

In this section, we formulate the wireless power manage-
ment problem as a constrained MDP. We define the joint
state (hereafter state) of the system as a vector containing the
buffer state b, channel state h, and power management state
x, i.e., s ¼� ðb; h; xÞ 2 S. We also define the joint action
(hereafter action) as a vector containing the BEP BEP ,
power management action y, and packet throughput z,
i.e., a ¼� ðBEP; y; zÞ 2 A. The sequence of states fsn : n ¼ 0;
1; . . .g can be modeled as a controlled Markov chain with
transition probabilities that can be determined from the
conditionally independent buffer state, channel state, and
power management state transitions as follows:

p s0js; að Þ ¼ pb b0j b; h; x½ �; BEP; y; zð Þph h0jhð Þpx x0jx; yð Þ: ð9Þ

The objective of the wireless power management problem is
to minimize the infinite horizon discounted power cost subject
to a constraint on the infinite horizon discounted delay. We
describe below why we use a discounted criterion instead of,
for example, a time average criterion. Let � : S 7! A denote
a stationary policy mapping states to actions such that
a ¼ �ðsÞ, and let � denote the set of all possible stationary
policies. Starting from state s and following policy � 2 �,
the expected discounted power cost and expected dis-
counted delay are defined as

�P� sð Þ ¼ E
X1
n¼0

�ð Þn� sn; � snð Þð Þjs0 ¼ s
" #

ð10Þ

and

�D� sð Þ ¼ E
X1
n¼0

�ð Þng sn; � snð Þð Þjs0 ¼ s
" #

; ð11Þ

where the expectation is over the sequence of states
fsn : n ¼ 0; 1; . . .g, � 2 ½0; 1Þ is the discount factor, and ð�Þn
denotes the discount factor to the nth power. Formally, the
objective of the constrained wireless power management
problem is

Minimize �P� sð Þ subject to �D� sð Þ � �; 8s 2 S; ð12Þ

where � is the discounted buffer cost constraint. Note that,
although � is technically a constraint on (11) (i.e., the
discounted buffer cost, which includes the overflow cost),
we will often refer to it as the “delay constraint” or “holding
cost constraint.”3 This is appropriate because feasible
solutions to (12) typically incur negligible overflow costs
as demonstrated by our simulations in Section 6. A

necessary condition for the existence of a feasible solution
to (12) is that there exists at least one transmission action
z 2 Z that is larger than the expected packet arrival rate,
i.e., there must exist a z >

P1
l¼0 plðlÞ � l.

It turns out that the discounted cost criterion is
mathematically more convenient than an average cost
criterion due to the structure of the considered MDP.
Specifically, unlike [9], [12], [13], our MDP is multichain
rather than unichain4 because we consider DPM. This can be
seen by imagining a DPM policy that keeps the wireless
card “off” in the “off” state “on” in the “on” state, thereby
inducing two closed irreducible recurrent classes of states.
As discussed in [27, Chapters 8 and 9], for unichain MDPs, a
single optimality equation is enough to characterize the
optimal policy under an average reward objective. For
multichain MDPs, however, a single optimality equation
may not be sufficient to characterize the optimal policy.
Consequently, algorithms for multichain models are more
complex, and the theory is less complete, than for unichain
models. We chose to use the discounted criterion because it
only requires a single optimality equation regardless of the
chain structure of the MDP

In addition to mathematical convenience, there are
several intuitive justifications for using discounted objec-
tives and constraints, which weigh immediate costs more
heavily than expected future costs. First, in practice, traffic
and channel dynamics are only “stationary” over short time
intervals; consequently, forecasts of costs that a policy will
incur far in the future are unreliable (because they are based
on past experience which does not have the same statistics
as future experience), so expected future costs should be
discounted when making decisions in each time slot.
Second, we may indeed want to optimize the time average
cost, but because the application’s lifetime is not known a
priori (e.g., a video conference may end abruptly), we
assume that the application will end with probability 1� �
in any time slot (i.e., in any state, with probability 1� �, the
MDP will transition to a zero cost absorbing state). This
second interpretation is thoroughly described in [3].

Now that we are familiar with the optimization objective
and constraint, we can describe how to define the per-packet
overflow penalty � used in the buffer cost function in (8). �
must be large enough to ensure that it is suboptimal to drop
packets while simultaneously transmitting with low power
or shutting off the wireless card. In order to make dropping
packets suboptimal, it is necessary to penalize every
dropped packet by at least as much as it would cost to
admit it into the buffer. The largest cost that a packet can
incur after being admitted into the buffer is approximately
the infinite horizon holding cost that would be incurred if the
packet is held in the buffer forever. Since a packet arriving in
time slot n0 does not incur holding costs until time slot
n0 þ 1, this infinite horizon holding cost can be computed as

� ¼
X1

n¼n0þ1

ð�Þn�n0 1 ¼ �=ð1� �Þ; ð13Þ
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3. Note that we impose a constraint on the (discounted) average delay.
This is different from a hard delay constraint, which would guarantee that
no single packet is delayed by more than � seconds. Unfortunately, due to
the stochastic nature of the problem, it is not possible to guarantee a hard
delay constraint.

4. An MDP is unichain if the transition matrix corresponding to every
deterministic stationary policy � : S 7! A is unichain, that is, it consists of
a single recurrent class plus a possibly empty set of transient states [27].
Meanwhile, an MDP is multichain if the transition matrix corresponding
to at least one stationary policy contains two or more closed irreducible
classes [27].



where � is the same discount factor used in (10) and (11),
and 1 is the instantaneous holding cost that is incurred by
the packet in each time slot that it is held in the buffer.

4.2 The Lagrangian Approach

We can reformulate the constrained optimization in (12) as
an unconstrained MDP by introducing a Lagrange multi-
plier associated with the delay constraint. We can then
define a Lagrangian cost function

c	 s; að Þ ¼ � s; að Þ þ 	g s; að Þ; ð14Þ

where 	 � 0 is the Lagrange multiplier, �ðs; aÞ is the power
cost defined in (3), and gðs; aÞ is the buffer cost defined in
(8). From [28], we know that solving the constrained MDP
problem is equivalent to solving the unconstrained MDP
and its Lagrangian dual problem. We present this in the
following:

Theorem 1. The optimal value of the constrained MDP problem
can be computed as

L�
�;	�

� sð Þ ¼ min
�2�

max
	�0

V �;	 sð Þ�	� ¼ max
	�0

min
�2�

V �;	 sð Þ � 	�; ð15Þ

where

V �;	 sð Þ ¼ E
X1
n¼0

�ð Þnc	 sn; � snð Þð Þjs0 ¼ s
" #

ð16Þ

and a policy �� is optimal for the constrained MDP if and only if

L�
�;	�

� sð Þ ¼ max
	�0

V ��;	 sð Þ þ 	�: ð17Þ

Proof. The detailed proof can be found in [28, Chapter 3]. tu

For a fixed 	, the rightmost minimization in (15) is
equivalent to solving the following dynamic programming
equation:

V �;	ðsÞ¼min
a2A

c	ðs; aÞþ�
X
s02S

pðs0js; aÞV �;	 s0ð Þ
( )

; 8s2S; ð18Þ

where V �;	 : S 7! IR is the optimal state-value function.
We also define the optimal action-value function Q�;	 : S �

A 7! IR, which satisfies

Q�;	ðs; aÞ ¼ c	ðs; aÞ þ �
X
s02S

pðs0js; aÞV �;	 s0ð Þ; ð19Þ

where V �;	ðs0Þ ¼ mina2A Q
�;	ðs0; aÞ. In words, Q�;	ðs; aÞ is the

infinite horizon discounted cost achieved by taking action a
in state s and then following the optimal policy ��;	

thereafter, where

��;	ðsÞ ¼ arg min
a2A

Q�;	ðs; aÞ; 8s 2 S: ð20Þ

Assuming that the cost and transition probability functions
are known and stationary, (18), (19), and (20) can be
computed numerically using the well-known value iteration
algorithm [11].

For notational simplicity, we drop the Lagrange multi-
plier from the notation in the remainder of the paper unless
it is necessary; hence, we will write cðs; aÞ, V �ðsÞ, Q�ðs; aÞ,
��ðsÞ instead of c	ðs; aÞ, V �;	ðsÞ, Q�;	ðs; aÞ, and ��;	ðsÞ,
respectively. We discuss how to learn the optimal 	 in

Section 5.2. The relationships between the state and action
at time n, the state at time nþ 1, the transition probability
and cost functions, and the state-value function, are
illustrated in Fig. 2.

5 LEARNING THE OPTIMAL POLICY

In practice, the cost and transition probability functions are
(partially) unknown a priori. Consequently, V � and ��

cannot be computed using value iteration; instead, they
must be learned online, based on experience. To this end,
we adopt a model-free RL approach, which can be used to
learn Q� and �� online, without first estimating the
unknown cost and transition probability functions.

We begin in Section 5.1 by introducing a well-known
model-free RL algorithm called Q-learning, which directly
estimates Q� under the assumption that the system’s
dynamics are completely unknown a priori. In Section 5.2,
we develop a framework that allows us to integrate known
information about the cost and transition probability
functions into the learning process. Exploiting this partially
known information dramatically improves runtime perfor-
mance compared to the Q-learning algorithm.

5.1 Conventional Q-Learning

Central to the conventional Q-learning algorithm is a simple
update step performed at the end of each time slot based on
the experience tuple (ET) 
n ¼ ðsn; an; cn; snþ1Þ, i.e.,

Qnþ1ðsn; anÞ  1� �nð ÞQnðsn; anÞ

þ �n
h
cn þ �min

a02A
Qn
�
snþ1; a0

�i
;

ð21Þ

where sn and an are the state and performed action in time
slot n, respectively; cn is the corresponding cost with
expectation cðsn; anÞ; snþ1 is the resulting state in time slot
nþ 1, which is distributed according to pðsnþ1jsn; anÞ; a0 is
the greedy action in state snþ1, which minimizes the current
estimate of the action-value function; �n 2 ½0; 1� is a time-
varying learning rate parameter; and, Q0ðs; aÞ can be
initialized arbitrarily for all ðs; aÞ 2 S � A.

Q-learning essentially uses a sample average of the action-
value function, i.e., Qn, to approximate Q�. It is well known
that if 1) the instantaneous cost and transition probability
functions are stationary, 2) all of the state-action pairs are
visited infinitely often,5 and 3) �n satisfies the stochastic
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Fig. 2. Visualization of the MDP.

5. A state-action pair ðs; aÞ is said to be visited infinitely often if
limN!1

PN
n¼0 Iðsn ¼ s and an ¼ aÞ ¼ 1. In other words, if the system is

allowed to run forever, then ðs; aÞ will be sampled an infinite number of
times.



approximation conditions
P1

n¼0 �
n ¼ 1 and

P1
n¼0 ð�nÞ

2 <1,
then Qn converges with probability 1 to Q� as n!1 (for
example, �n ¼ 1=ðnþ 1Þ or �n ¼ ð1=nÞ0:7 satisfy the stochas-
tic approximation conditions).6 Subsequently, the optimal
policy can be calculated using (20).

Using Q-learning, it is not obvious what the best action
is to take in each state during the learning process. On the
one hand, Q� can be learned by randomly exploring the
available actions in each state. Unfortunately, unguided
randomized exploration cannot guarantee acceptable run-
time performance because suboptimal actions will be taken
frequently. On the other hand, taking greedy actions, which
exploit the available information in Qn, can guarantee a
certain level of performance, but exploiting what is already
known about the system prevents the discovery of better
actions. Many techniques are available in the literature to
judiciously tradeoff exploration and exploitation. In this
paper, we use the so-called "-greedy action selection method
[11], but other techniques such as Boltzmann exploration
can also be deployed [11]. Importantly, the only reason
why exploration is required is because Q-learning assumes
that the unknown cost and transition probability functions
depend on the action. In the remainder of this section, we
will describe circumstances under which exploiting partial
information about the system can obviate the need for
action exploration.

Q-learning is an inefficient learning algorithm because it
only updates the action-value function for a single state-
action pair in each time slot and does not exploit known
information about the system’s dynamics. Consequently, it
takes a long time for the algorithm to converge to a near-
optimal policy, so runtime performance suffers [17], [18]. In
the remainder of this section, we introduce two techniques
that improve learning performance by exploiting known
information about the system’s dynamics and enabling
more efficient use of the experience in each time slot.

5.2 Proposed Postdecision State Learning

5.2.1 Partially Known Dynamics

The conventional Q-learning algorithm learns the value of
state-action pairs under the assumption that the environ-
ment’s dynamics (i.e., the cost and transition probability

functions) are completely unknown a priori. In many
systems, however, we have partial knowledge about the
environment’s dynamics. Table 1 highlights what is
assumed known, what is assumed unknown, what is
stochastic, and what is deterministic in this paper. Note
that this is just an illustrative example and the dynamics
may be classified differently under different conditions. For
example, if the parameter � in (4) is known and in the
interval ð0; 1Þ, then the power management state transition
can be classified as stochastic and known as in [3]; if � is
unknown, then the power management state transition can
be classified as stochastic and unknown; if the BEP function
defined in (1) is unknown, then the goodput distribution
and holding cost can be classified as stochastic and
unknown; or, if the transmission power function in (2) is
unknown, then the power cost can be classified as unknown.
Importantly, the proposed framework can be applied
regardless of the specific classification. In Section 5.2.2, after
introducing the PDS, we discuss how our PDS is a
generalization of the PDS defined in [12], which can only
be applied for specific classifications.

We will exploit the known information about the
dynamics to develop more efficient learning algorithms
than Q-learning, but first we need to formalize the concepts
of known and unknown dynamics in our MDP-based
framework.

5.2.2 Generalized Postdecision State Definition

We define a postdecision state (PDS) to describe the state of
the system after the known dynamics take place, but before
the unknown dynamics take place. As noted in the
introduction, the PDS is a known construct in prior
literature, see, e.g., [11], [12], [26], but we generalize the
concept to apply it to the considered problem. We denote
the PDS as ~s 2 S (note that the set of possible PDSs is the
same as the set of possible states). Based on the discussion
in the previous section, the PDS at time n is related to the
state sn ¼ ðbn; hn; xnÞ, action an ¼ ðBEPn; yn; znÞ, and the
state at time nþ 1, as follows:

. PDS at time n: ~sn ¼ ð~bn; ~hn; ~xnÞ ¼ ð½bn � fn�; hn; xnþ1Þ.

. State at time n þ 1 : snþ1 ¼ ðbnþ1; hnþ1; xnþ1Þ ¼
ð½bn � fn� þ ln; hnþ1; xnþ1Þ.

The buffer’s PDS ~bn ¼ bn � fn characterizes the buffer
state after the packets are transmitted, but before new packets
arrive; the channel’s PDS is the same as the channel state at
time n; and, the power management PDS is the same as the
power management state at time nþ 1. In other words,
the PDS incorporates all of the known information about the
transition from state sn to state snþ1 after taking action an.
Meanwhile, the next state incorporates all of the unknown
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TABLE 1
Classification of Dynamics

6. Condition 1) will only hold if the arrival distribution and channel
transition probabilities are stationary, which is often not true in practice. In
situations where the dynamics are time-varying, faster learning algorithms
like those proposed in Sections 5.2 and 5.3 are required to closely track the
dynamics and achieve near optimal performance. Condition 2) is satisfied
under an appropriate exploration policy [11] as long as the MDP is
communicating [27]. Condition 3) is trivially satisfied because we choose
the sequence of learning rates f�ng.



dynamics that were not included in the PDS (i.e., the number
of packet arrivals ln and next channel state hnþ1). Note that
the buffer state at time nþ 1 can be rewritten in terms of the
buffer’s PDS at time n as bnþ1 ¼ ~bn þ ln.

These relationships are illustrated in Fig. 3, where it is
also shown that several state-action pairs can lead to the
same PDS. A consequence of this is that acquiring
information about a single PDS provides information about
the many state-action pairs that can potentially precede it.
Indeed, this is the foundation of PDS-based learning, which
we describe in Section 5.2.4.

By introducing the PDS, we can factor the transition
probability function into known and unknown components,
where the known component accounts for the transition
from the current state to the PDS, i.e., s! ~s, and the
unknown component accounts for the transition from the
PDS to the next state, i.e., ~s! s0. Formally,

p s0js; að Þ ¼
X

~s

pu s
0j~s; að Þpk ~sjs; að Þ; ð22Þ

where the subscripts k and u denote the known and
unknown components, respectively. We can factor the cost
function similarly

cðs; aÞ ¼ ckðs; aÞ þ
X

~s

pk ~sjs; að Þcuð~s; aÞ: ð23Þ

The factorized transition probability and cost functions
in (22) and (23), respectively, reduce to the factorized
transition probability and cost functions that are implicitly
used in [12] when cuð~s; aÞ ¼ 0 and pkð~sjsn; aÞ contains only
1s and 0s, i.e., when the transition from the state to the PDS
is deterministic. Consequently, the algorithm in [12] cannot
account for packet losses (because a deterministic PDS
requires the goodput to be equal to the throughput) and
cannot penalize buffer overflows (because all components
of the cost function are assumed to be known, and the
buffer overflow cost necessarily depends on the arrival
distribution, which is unknown).

Notice that, in general, both the known and unknown
components may depend on the action and the PDS. The
proposed framework can be extended to this scenario, but
action exploration will be necessary to learn the optimal
policy. In the system under study, however, the unknown
components only depend on the PDS (i.e., puðs0j~s; aÞ ¼
puðs0j~sÞ and cuð~s; aÞ ¼ cuð~sÞ). The implication of this,

discussed further in Section 5.2.4, is that action exploration
is not needed to learn the optimal policy. We will focus on
the second scenario in the remainder of the paper.
Specifically, the known and unknown transition probability
functions are defined as

pk ~sjs; að Þ ¼ px ~xjx; yð Þpf b� ~bjBEP; z
� �

I ~h ¼ h
� �

ð24Þ

and

pu s
0j~sð Þ ¼ ph h0j~h

� �
pl b0 � ~b
� �

I x0 ¼ ~xð Þ; ð25Þ

where Ið�Þ is the indicator function, which takes value 1 if
its argument is true and 0 otherwise. Meanwhile, the known
and unknown cost functions are defined as

ckðs; aÞ ¼ � h; x½ �; BEP; y; zð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
power cost

þ 	
Xz
f¼0

pf f jBEP; zð Þ b� f½ �|fflfflffl{zfflfflffl}
holding cost

ð26Þ

and

cu ~sð Þ ¼ 	�
X1
l¼0

pl lð Þmax ~bþ l�B; 0
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
overflow cost

: ð27Þ

5.2.3 Postdecision State-Based Dynamic Programming

Before we can describe the PDS learning algorithm, we need
to define the PDS value function, which is a value function
defined over the PDSs. In the PDS learning algorithm, the
PDS value function plays a similar role as the action-value
function does in the conventional Q-learning algorithm.
The optimal PDS value function, denoted by ~V �, can be
expressed as a function of the optimal state-value function
and vice-versa

~V � ~sð Þ ¼ cu ~sð Þ þ �
X
s0
pu s

0j~sð ÞV � s0ð Þ; ð28Þ

V � sð Þ ¼ min
a2A

ckðs; aÞ þ
X

~s

pk ~sjs; að Þ ~V � ~sð Þ
( )

: ð29Þ

Given the optimal PDS value function, the optimal policy
can be computed as

MASTRONARDE AND VAN DER SCHAAR: JOINT PHYSICAL-LAYER AND SYSTEM-LEVEL POWER MANAGEMENT FOR DELAY-SENSITIVE... 701

Fig. 3. Relationship between the state-action pair at time n, PDS at time n, and state at time nþ 1. State action pairs ðs1; a1Þ; . . . ; ðsi; aiÞ potentially
lead to the same PDS.



��PDS sð Þ ¼ min
a2A

ckðs; aÞ þ
X

~s

pk ~sjs; að Þ ~V � ~sð Þ
( )

: ð30Þ

The following proposition proves that ��PDS, defined in (30),
and ��, defined in (20), are equivalent. The proposition is
important because it enables us to use the PDS value
function to learn the optimal policy.

Proposition 1. ��PDS and �� are equivalent.

Proof. Due to space limitations, we refer the interested
reader to [36] for the full proof. tu

5.2.4 The Postdecision State Learning Algorithm

While Q-learning uses a sample average of the action-value
function to approximate Q�, PDS learning uses a sample
average of the PDS value function to approximate ~V �.
However, because the value function V can be directly
computed from the PDS value function ~V using the known
dynamics and (29), the PDS learning algorithm only needs to
learn the unknown dynamics in order to learn the optimal
value function V � and policy ��. The PDS learning
algorithm is summarized in Table 2.

The following theorem shows that the PDS learning
algorithm converges to the optimal PDS value function
~V �;	ð~sÞ in stationary environments.

Theorem 2. The postdecision state learning algorithm converges
to the optimal postdecision state value function ~V �;	ð~sÞ in
stationary environments when the sequence of learning rates
�n satisfies

P1
n¼0 �

n ¼ 1 and
P1

n¼0 ð�nÞ
2 <1.

Proof. Due to space limitations, we refer the interested
reader to [36] for the full proof. tu

The optimal value of the Lagrange multiplier 	 in (14),
which depends on the delay constraint �, can be learned
online using stochastic subgradients as in [12]: i.e.,

	nþ1 ¼ � 	n þ �n gn � 1� �ð Þ�ð Þ½ �; ð34Þ

where � projects 	 onto ½0; 	max�, �n is a time-varying
learning rate with the same properties as �n, gn is the buffer
cost with expectation gðsn; anÞ, and the ð1� �Þ� term
converts the discounted delay constraint � to an average

delay constraint. The following additional conditions must
be satisfied by �n and �n to ensure convergence of (34) to 	�

in Theorem 1:

X1
n¼0

ð�n þ �nÞ <1 and lim
n!1

�n=�n ! 0: ð35Þ

Although theoretical convergence of the PDS learning
algorithm requires a stationary Markovian environment, it
is possible to track nonstationary Markovian dynamics by
making a simple modification to the sequences of learning
rates f�ng (for the PDS value function update) and f�ng
(for the Lagrange multiplier update). Specifically, keeping
�n and �n bounded away from zero will prevent past
experience from heavily biasing the PDS value function
and Lagrange multiplier, thereby allowing them to track
the nonstationary dynamics. This strategy, when coupled
with learning algorithms like PDS learning and virtual
experience learning (see Section 5.3), which can quickly
converge in stationary Markovian environments (see our
simulation results in Section 6.2), can achieve good system
performance even in nonstationary Markovian environ-
ments (see our simulation results in Section 6.4).

There are several ways in which the PDS learning
algorithm uses information more efficiently than Q-learn-
ing. First, PDS learning exploits partial information about
the system so that less information needs to be learned.
This is evident from the use of the known information (i.e.,
ckðsn; aÞ and pkð~snjsn; aÞ) in (31) and (32). Second, updating
a single PDS using (33) provides information about the
state-value function at many states. This is evident from
the expected PDS value function on the right-hand-side of
(32). Third, because the unknown dynamics (i.e., cuð~snÞ
and puðsnþ1j~snÞ) do not depend on the action, there is no
need for randomized exploration to find the optimal action
in each state. This means that the latest estimate of the
value function can always be exploited and therefore
nongreedy actions never have to be tested.

5.3 Proposed Virtual Experience Learning

The PDS learning algorithm described in the previous
section only updates one PDS in each time slot. In this
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TABLE 2
Postdecision State-Based Learning Algorithm



section, we discuss how to update multiple PDSs in each
time slot in order to accelerate the learning rate and
improve runtime performance. The key idea is to realize
that the traffic arrival and channel state distributions are
independent of the buffer and power management states.
Consequently, the statistical information obtained from the
PDS at time n about the a priori unknown traffic arrival and
channel state distributions can be extrapolated to other
PDSs with different postdecision buffer states and different
postdecision power management states. Specifically, given
the PDS experience tuple in time slot n, i.e., ~
n ¼ ðsn; an;
~sn; cnu; s

nþ1Þ, the PDS value function update defined in (33)
can be applied to every virtual experience tuple in the setX

ð~
nÞ ¼ fðsn; an; ½~b; ~hn; ~x�; cuð~b; lnÞ; ½~bþ ln; hnþ1; ~x�Þj
8ð~b; ~xÞ 2 B � Xg;

ð36Þ

where cuð~b; lÞ ¼ �maxð~bþ l�B; 0Þ. We refer to elements ofP
ð~
Þ as virtual experience tuples because they do not

actually occur in time slot n. As shown in (33), the virtual
experience tuples in

P
ð~
nÞ are the same as the actual

experience tuple ~
n except that they have a different
postdecision buffer state and/or a different postdecision
power management state, and a different cost.

By performing the PDS update in (33) on every virtual
experience tuple in

P
ð~
nÞ, the proposed virtual experience

learning algorithm improves adaptation speed at the
expense of a jB � Xj-fold increase in computational com-
plexity (jB � Xj ¼ j

P
ð~
Þj). We show in the results section

that we can tradeoff performance and learning complexity
by only performing the complex virtual experience updates
every T time slots.

5.4 Conceptual Comparison of Learning Algorithms

Fig. 4 illustrates the key differences between Q-learning
(described in Section 5.1), PDS learning (proposed in
Section 5.2), and virtual experience learning (proposed in
Section 5.3). To facilitate graphical illustration, Fig. 4 uses a
simplified version of the system model defined in Section 3
in which the state is fully characterized by the buffer state b,
the only action is the throughput z, and there are no packet
losses. Fig. 4a illustrates how one Q-learning update on
state-action pair ðb; zÞ only provides information about the
buffer-throughput pair ðb; zÞ. Fig. 4b illustrates how one
PDS learning update on PDS b� z provides information

about every state-action pair that can potentially lead to the
PDS, which in this example corresponds to all buffer-
throughput pairs ðb0; z0Þ such that b0 � z0 ¼ b� z. Finally,
Fig. 4c illustrates how performing a PDS learning update on
every virtual experience tuple associated with PDS b� z
provides information about every buffer state.

We now discuss the computational and memory com-

plexity of the Q-learning, PDS learning, and virtual

experience algorithms. But first, we note that in the
considered system, the expectation on the right hand side

of (31) and (32) can be efficiently computed asX
~s

pk ~sjsn; að Þ ~V n ~sð Þ

¼
X

~x2X ;f�zp
x ~xjx; yð Þpf f jBEP; zð Þ ~V n b� f; h; ~xð Þ:

ð37Þ

The Q-learning algorithm described in Section 5.1 requires

storing jSj � jAj action-values, i.e., Qnðs; aÞ for all s 2 S and
a 2 A. The PDS learning algorithm described in Section 5.2

requires storing jSj state-values, i.e., V nðsÞ for all s 2 S, and
jSj postdecision state-values, i.e., ~V nð~sÞ for all ~s 2 S.

Additionally, the PDS learning algorithm (implemented

using (37)) requires storing the goodput distribution
pfðfjBEP; zÞ, power management transition probability

function pxðx0jx; yÞ, and the known cost function ckðs; aÞ,
which have sizes jZj2jEj, jXj2jYj, and jSj � jAj, respectively.
Using the state and action sets in our simulations (see

Table 4 of Section 6), it is easy to determine that the PDS
learning algorithm does not require much more memory

than Q-learning, i.e., storage for 47,205 floating points

compared to 45,760 floating points. Also note that PDS
learning with virtual experience has the same memory

requirements as PDS learning.
Table 3 illustrates both the greedy action selection

complexity and learning update complexity for Q-learning,
PDS learning, and virtual experience learning. It is clear
from Table 3 that as more information is integrated into the
learning algorithm, it becomes more computationally
complex to implement. It is noteworthy that the virtual
experience tuples in (34) can be updated in parallel using,
for example, vector instructions. Hence, it is possible to
implement virtual experience learning with as little com-
plexity as PDS learning.
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Fig. 4. State-action pairs that are impacted in one time slot when using different learning updates (highlighted in white). (a) Q-learning update for
state-action pair ðb; zÞ. (b) PDS update for PDS b� z. (c) Virtual experience updates for PDS b� z.



6 SIMULATION RESULTS

6.1 Simulation Setup

Table 4 summarizes the parameters used in our MATLAB-
based simulator. We assume that the PHY layer is designed
to handle QAM rectangular constellations and that a Gray
code is used to map the information bits into QAM symbols.
The corresponding bit-error probability and transmission
power functions can be found in [7]. We evaluate the
performance of the proposed algorithm for several values of
Pon: at 320 mW, Pon is much larger than Ptx as in typical
802.11a/b/g wireless cards [15]; at 80 mW, Pon is closer to
Ptx as in cellular networks. The channel transition distribu-
tion phðh0jhÞ and packet arrival distribution plðlÞ are
assumed to be unknown a priori in our simulations. Finally,
we choose a discount factor of � ¼ 0:98 in the optimization
objective (� closer to 1 yields better performance after
convergence, but requires more time to converge).

The signal-to-noise ratio (SNR) used for the tests is
SNRn ¼ Pn

tx=N0W , where Pn
tx is the transmission power in

time slot n, N0 is the noise power spectral density, and W is
the bandwidth. We assume that the bandwidth is equal to the
symbol rate, i.e., W ¼ 1=Ts, where Ts is the symbol duration.

6.2 Learning Algorithm Comparison

Simulation results using the parameters described in Section
6.1 and Table 4 are presented in Fig. 5 for numerous
simulations with duration 75,000 time slots (750 s) and Pon ¼
320 mW. Fig. 5a illustrates the cumulative average cost
versus time, where the cost is defined as in (14); Fig. 5b
illustrates the cumulative average power versus time, where
the power is defined as in (3); Figs. 5c and 5d illustrate
the cumulative average holding cost and cumulative

average packet overflows versus time, respectively, as
defined in (8); Fig. 5e illustrates the cumulative average
number of time slots spent in the off state (with both x ¼ off
and y ¼ s off), denoted by �off , versus time; and Fig. 5f
illustrates the windowed average of the Lagrange multiplier
versus time (with a window size of 1,000 time slots).

Each plot in Fig. 5 compares the performance of the
proposed PDS learning algorithm (with virtual experience
updates every T ¼ 1; 10; 25; 125 time slots) to the conven-
tional Q-learning algorithm [11] and to an existing PDS
learning-based solution [12]. The curves labeled “PDS
Learning (No DPM)” are obtained by adapting the algo-
rithm in [12] to use a discounted MDP formulation, rather
than a time-average MDP formulation, and to include an
adaptive BEP. This algorithm does not consider system-
level power management (i.e., no DPM) and does not
exploit virtual experience. Meanwhile, the curves labeled
“PDS Learning” are obtained using the PDS learning
algorithm proposed in Section 5.2, which includes system-
level power management.

As expected, using a virtual experience update period of
1 leads to the best performance (see “PDS þ Virtual
Experience (update period ¼ 1)” in Fig. 5); in fact, this
algorithm achieves approximately optimal performance
after 3,000 time slots, at which point the cumulative average
cost and Lagrange multiplier settle to nearly steady-state
values (Figs. 5a and 5f, respectively). Thus, if sufficient
computational resources are available, the jointly optimal
power-control, AMC, and DPM policies can be quickly
learned online by smartly exploiting the structure of the
problem using PDS learning combined with virtual experi-
ence. In existing wireless communications systems (espe-
cially in mobile devices), however, there may not be enough
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TABLE 3
Learning Algorithm Computational Complexity (in Each Time Slot)

In the System under Study, j ~Sj ¼ jX � Zj and j
P
j ¼ jB � Xj

TABLE 4
Simulation Parameters



computational resources to use virtual experience in every
time slot (we assume that vector instructions are not
available, so the updates cannot be performed in parallel).
Hence, we also illustrate the performance of the proposed
algorithm for different update periods (see “PDS þVirtual
Experience (update period ¼ 10; 25; 125)” in Fig. 5) and
without doing any virtual experience updates (see “PDS
Learning” in Fig. 5). As the number of updates in each time
slot is decreased, the learning performance also decreases.

From the plots with different update periods, we can
identify how the system adapts over time. Initially, the
holding cost and packet overflows rapidly increase because
the initial policy is not tuned to the specific traffic and
channel conditions. This increasing delay drives the
Lagrange multiplier to its predefined maximum value
(resulting in a cost function that weighs delay more heavily
and power less heavily), which leads to increased power
consumption, which in turn drives the holding cost back
down toward the holding cost constraint. As the cumulative
average holding cost decreases toward the holding cost
constraint, the Lagrange multiplier also begins to decrease,

which eventually leads to a decrease in power consumption
(because the cost function begins to weigh delay less
heavily and power more heavily). Clearly, this entire
process proceeds more quickly when there are more
frequent virtual experience updates, thereby resulting in
better overall performance. This process also explains why
near optimal delay performance is achieved sooner than
near optimal power consumption (because the minimum
power consumption can only be learned after the holding
cost constraint is satisfied).

We now compare our proposed solution to the “PDS
Learning (No DPM)” curves in Fig. 5, which were obtained
using the PDS learning algorithm introduced in [12]
(modified slightly as described at the beginning of this
section). It is clear that this algorithm performs approxi-
mately the same as our proposed “PDS þVirtual Experience
(update period ¼ 125)” algorithm in terms of delay
(i.e., holding cost and overflows) but not in terms of power.
The reason for the large disparity in power consumption is
that the PDS learning algorithm introduced in [12] does not
take advantage of system-level DPM, which is where the
large majority of power savings comes from when Pon is
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Fig. 5. Quantitative learning algorithm comparison with Pon ¼ 320 mW. (a) Cumulative average cost versus time slot. The y-axis is in log-scale due to
the high dynamic range. (b) Cumulative average power versus time slot. (c) Cumulative average holding cost versus time slot. (d) Cumulative
average packet overflows versus time slot. The y-axis is in log-scale due to the high dynamic range. (e) Cumulative average �off versus time slot.
(f) Windowed average of Lagrange multiplier 	 versus time slot (window size ¼ 1;000 time slots).



significantly larger than Ptx. This is corroborated by the fact
that the �off curves in Fig. 5e and the power consumption
curves in Fig. 5b are very similarly shaped. Thus, solutions
that ignore system-level power management achieve
severely suboptimal power in practice. (Note that PHY-
centric power management solutions are still important for
achieving the desired delay constraint!) Interestingly,
despite using the same number of learning updates in each
time slot, the “PDS Learning (No DPM)” algorithm per-
forms better than “PDS Learning” algorithm in terms of
delay (i.e., holding cost and overflow). This can be
explained by the fact that DPM is ignored, so the learning
problem is considerably simpler (i.e., there are less states
and actions to learn about).

Finally, we observe that the conventional Q-learning
algorithm (see “Q-learning” in Fig. 5) performs very poorly.
Although Q-learning theoretically converges to the optimal
policy, and therefore, should eventually approach the
performance of the other algorithms, its cost in Fig. 5a goes
flat after its buffer overflows in Fig. 5d. It turns out that Q-
learning has trouble finding the best actions to reduce the
buffer occupancy because it requires action exploration and
it only updates one state-action pair in each time slot.
Nevertheless, it is clear from the increasing power cost in
Fig. 5b and the decreasing value of �off in Fig. 5e that Q-
learning is slowly learning the optimal policy: indeed, all of
the learning algorithms must learn to keep the wireless card
on before they can transmit enough packets to drain the
buffer and satisfy the buffer constraint.

It is important to note that the learning algorithms
converge to the optimal value and optimal policy faster
than they appear to in Fig. 5. The reason for this is that
Fig. 5 shows cumulative average results, which are biased
by the initial suboptimal performance. To more accurately
compare the convergence time scales of the various
learning algorithms, we use the following weighted percent
error metric, which is similar to the one proposed in [26,
Chapter 15.4.5]:

en;�
� ¼
X
s2S

p�ðsÞ V �ðsÞ � V nðsÞ½ �=V �ðsÞj j;

where p�ðsÞ is the stationary probability of being in state s
under the optimal policy ��, V �ðsÞ is the optimal state-value
function, and V nðsÞ is the learned state-value function at the
beginning of time slot n. We weight the estimation error
jV �ðsÞ � V nðsÞj by p�ðsÞ because the optimal policy will
often only visit a subset of the states, and the remaining
states will never be visited; thus, if we were to estimate
V �ðsÞ while following the optimal policy ��, a nonweighted

estimation error would not converge to 0, but the weighted
estimation error would. Using the weighted percent error
metric, we define the �-convergence time as follows:

n�converge ¼ minfnjet;�� < �; for all t � ng:

In words, the �-convergence time is the earliest time after
which the weighted percent error is always below the
threshold �. Table 5 compares the �-convergence times of the
various learning algorithms for � ¼ 0:1. Note that virtual
experience can converge up to two orders of magnitude
faster than PDS learning without virtual experience, and up
to three orders of magnitude faster than Q-learning.

6.3 Comparison to a Policy that is Optimal with
Respect to Past History

In Fig. 6, we compare the performance of the best learning

algorithm in Fig. 5 (i.e., “PDS þVirtual Experience (update

period¼ 1)”) to the performance of a learning algorithm that

is optimal with respect to past experience. Specifically, in

time slot n, for n ¼ 0; 1; . . . , the optimal learning algorithm

uses value iteration [11] to compute a policy that is optimal

with respect to estimates of the arrival distribution plðlÞ and

channel transition phðh0jhÞ. The estimates in time slot n,

denoted by cpn;lðlÞ and dpn;hðh0jhÞ, are determined from

previous packet arrival and channel realizations using

maximum likelihood estimation, i.e., cpn;lðlÞ¼ 1
n

Pn�1
t¼0 Iðlt¼ lÞ

and dpn;hðh0jhÞ¼ 1
n

Pn�1
t¼0 Iðhtþ1¼ h0jht ¼ hÞ, where Ið�Þ is the

indicator function. They are then substituted into the

definitions of the buffer transition probability function in

(7) and the buffer cost in (8), which, in turn, are substituted

into the state transition probability function in (9), and the

Lagrangian cost in (14). Finally, value iteration [11] is used to

compute the optimal policy with respect to the estimated

state transition probability and Lagrangian cost functions.
The optimal learning algorithm described above is the

best that any learning algorithm can do given past
experience. However, it is not practical to implement in a
real system due to the complexity of value iteration. For this
reason, we use it as a benchmark against which we can
compare the PDS learning algorithm with virtual experi-
ence proposed in Section 5.3.

It is clear from Fig. 6 that the optimal learning algorithm
initially achieves suboptimal power and delay perfor-
mance. This is because it has limited samples of the
environment (i.e., the packet arrival and channel transition
distributions) with which to estimate the optimal policy. It
is also clear that the proposed PDS learning algorithm with
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TABLE 5
Convergence Time

Q-learning results are rounded up to the nearest 1,000. All other results are rounded up to the nearest 100.



virtual experience initially performs worse than the optimal
learning algorithm. This is because the proposed algorithm
not only needs to sample the environment, but, due to
complexity constraints, it also needs to incrementally learn
the PDS value function as described in Table 2. Never-
theless, within approximately 200 (respectively, 3,000) time
slots, the proposed learning algorithm performs as well as
the optimal learning algorithm in terms of the average
holding cost (respectively, average power consumption).

6.4 Performance under Nonstationary and
Non-Markovian Dynamics

In this section, we compare our proposed solution to the
network energy saving solution in [6], which combines
transmission scheduling with DPM, but uses a fixed BEP.
Like our proposed solution, the DPM and packet schedul-
ing solution in [6] uses a buffer to enable power-delay
tradeoffs. Unlike our proposed solution, however, the
solution in [6] ignores the channel and traffic dynamics
and is based on a simple threshold-k policy: That is, if the
buffer backlog exceeds k packets, then the wireless card is
turned on and all backlogged packets are transmitted as
quickly as possible; then, after transmitting the packets, the
wireless card is turned off again.

Fig. 7 illustrates the average power-delay performance
achieved by the proposed PDS learning algorithm (with

virtual experience updates every T ¼ 50 time slots) and the
threshold-k policy after 75,000 time slots for Pon 2
f80; 160; 320g mW and k 2 f3; 5; 7; 9; 11; 13; 15g. All curves
are generated assuming a fixed PLR of 1 percent and are
obtained under nonstationary arrival dynamics7 and
channel dynamics.8 The proposed algorithm performs
between 10 and 30 mW better than the threshold-k policy
across the range of holding cost constraints and values of k
despite the fact that RL algorithms can only converge to
optimal solutions in stationary and Markovian environ-
ments. Interestingly, the results in Fig. 7 show that, for low
values of Pon, the average power can actually increase as the
delay increases under the threshold-k policy. This is
because, after the buffer backlog exceeds the predefined
threshold k, the wireless card is turned on and transmits as
many packets as possible regardless of the channel quality.
Hence, a significant amount of transmit power is wasted in
bad channel states. However, as Pon increases, the results in
Fig. 7 show that the performance begins to improve and
more closely approximate the optimal power-delay trade-
off. Indeed, a more aggressive scheduling policy becomes
necessary as Pon increases so that the wireless card may be
in the “off” state more often. The threshold-k policy takes
this observation to the extreme by transmitting the
maximum number of packets possible in order to max-
imize the time spent in the “off” state. Unfortunately,
because it ignores the transmission power, the threshold-k
policy cannot perform optimally, especially for smaller
values of Pon.

We now examine the sensitivity of the proposed solution
to nonstationary and non-Markovian traffic, which we
simulate using a variable bit-rate (VBR) video trace
obtained by encoding 300 frames of the Foreman sequence
using an H.264 video encoder (30 frames per second, CIF
resolution, IBBPBB group of pictures structure, 1.7 Mbps
encoded bitrate). It is important to note that the VBR traffic
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Fig. 6. Comparison of the optimal learning algorithm to the PDS learning algorithm with virtual experience and update period¼ 1. The x-axis is in log-
scale to best highlight the learning process over time. (a) Holding cost versus time slot. (b) Power versus time slot.

Fig. 7. Power-delay performance of proposed solution (with virtual
experience updates every T ¼ 50 time slots) compared to the power-
delay performance of the threshold-k policy for k 2 f3; 5; 7; 9; 11; 13; 15g.
Traffic and channel dynamics are nonstationary.

7. The arrival dynamics are generated by a 5-state Markov chain with
states (0, 100, 200, 300, 400) packets/s and corresponding stationary
distribution (0.0188, 0.3755, 0.0973, 0.4842, 0.0242). The state indicates the
expected arrival rate for a Poisson arrival distribution. Importantly,
the MDP does not know the traffic state; therefore, from its point of view,
the traffic is nonstationary and non-Markovian.

8. Nonstationary channel dynamics are generated by randomly
perturbing the channel state transition probability pðh0 jhÞ from time slot
to time slot.



load varies rapidly (approximately every 33 ms) due to the
different frame types in the group of pictures structure.9

Additionally, the last 100 frames of the Foreman sequence
generate much heavier traffic than the first 200 frames
because of the fast motion induced by the panning camera.
Overall, the dynamics are very challenging for any RL
algorithm to adapt to.

Fig. 8a illustrates the average power-delay performance
of the proposed solution (with virtual experience updates
in every time slot and the delay constraints shown on the
x-axis) compared to the average performance of the
threshold-k policy for k 2 f3; 5; 7; 9; 11; 13; 15g. For large
values of k, the threshold-k policy outperforms the proposed
solution due to the violation of the Markovian assumption.
Although our solution performs well, it is not provably
optimal for non-Markovian dynamics. This finding corre-
lates with prior literature on dynamic power management
[3], where it has been shown that simple timeout policies
can occasionally outperform MDP-based policies in non-
Markovian environments. Note that the threshold-k policy
performs poorly for lower values of k (i.e., 3, 5, and 7)
because it turns off the wireless card without anticipating
future traffic arrivals, thereby forcing it to immediately turn
the card back on and incur unnecessary power management
transition power and delay overheads.

Fig. 8b illustrates, at a finer granularity than Fig. 8a, the
sensitivity of the proposed solution (with virtual experience
updates in every time slot and a delay constraint of four
packets) to non-Markovian dynamics. Each point in Fig. 8b
corresponds to the average power (left y-axis) or delay
(right y-axis) performance obtained in a simulation using an
arrival process that is a convex combination of a stationary
Poisson arrival process and the aforementioned VBR video
trace, both with an average arrival rate of 340 packets/s
(1.7 Mbps). The convex combination is characterized by the
parameter ! 2 ½0; 1� shown on the x-axis of Fig. 8b. When
! ¼ 0, the traffic is stationary and Poisson; when ! ¼ 1 it is
taken from the VBR video trace; and for ! 2 ð0; 1Þ the traffic
is stationary Poisson with probability 1� ! and taken from
the VBR trace with probability !. As ! increases, the traffic

becomes increasingly non-Markovian, which causes the

proposed algorithm to consume more power. Although the

delay increases slightly as ! increases, it does not vary
significantly from the delay constraint of four packets. In

other words, even in rapidly time-varying non-Markovian

environments, the proposed algorithm can successfully
adapt to satisfy the application delay constraint.

6.5 Summary of Results

The proposed virtual experience learning algorithm can be
adapted to tradeoff implementation complexity and con-
vergence time. It can converge up to two orders of
magnitude faster than PDS learning without virtual
experience, and up to three orders of magnitude faster
than conventional Q-learning. Moreover, virtual experience
learning can perform approximately as well as an optimal
RL algorithm within approximately 200 time slots (for
delay) and 3,000 time slots (for power). Under slowly time-
varying, nonstationary dynamics, the proposed algorithm
achieves 11-33 percent improvement in power consumption
for the same delay compared to the static threshold-k
policy. Under highly time-varying, nonstationary and non-
Markovian dynamics, which are characteristic of variable
bit-rate video traces, our solution performs well, and
consistently satisfies the delay constraint; however, it is
not provably optimal and occasionally performs worse than
the static threshold-k policy.

7 CONCLUSION

In this paper, we considered the problem of energy-efficient
point-to-point transmission of delay-sensitive multimedia
data over a fading channel. We proposed a unified
reinforcement learning solution for finding the jointly
optimal power-control, AMC, and DPM policies when the
traffic arrival and channel statistics are unknown. We
exploited the structure of the problem by introducing a
postdecision state, eliminating action-exploration, and
enabling virtual experience to dramatically improve per-
formance compared to conventional RL algorithms. Our
experimental results demonstrate that the proposed solu-
tion outperforms existing solutions, even under nonsta-
tionary traffic and channel conditions. The results also
strongly support the use of system-level power manage-
ment solutions in conjunction with PHY-centric solutions to
achieve the minimum possible power consumption, under
delay constraints, in wireless communication systems.
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Fig. 8. Sensitivity to nonstationary and non-Markovian packet arrivals. (a) Average power-delay performance of proposed solution (with virtual
experience updates in every time slot) compared to the average performance of the threshold-k policy for k 2 f3; 5; 7; 9; 11; 13; 15g. (b) Comparison of
power (left y-axis) and delay (right y-axis) performance of proposed solution for ! 2 ½0; 1�.

9. In fact, the group of pictures structure itself can be modeled as a
Markov chain by introducing additional states corresponding to the
different frame types [35]. In this way, we could convert the non-Markovian
VBR video trace to a Markovian VBR video trace. We could easily integrate
these new states into the proposed framework, however, that is beyond the
scope of the paper. Instead, we focus on the non-Markovian VBR trace so
that we can understand how the proposed algorithms perform when the
Markovian assumption is violated.



Importantly, the proposed framework can be applied to
any network or system resource management problem
involving controlled buffers. One interesting future direc-
tion is to apply it in a system with multiple users
(e,g. uplink or downlink transmission in cellular systems).
This could be easily achieved by integrating our single-user
optimization with one of the multi-user resource allocation
frameworks proposed in, for example, [30] and [31].
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