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Abstract—Networks of classifiers are capturing the attention of
system and algorithmic researchers because they offer improved
accuracy over single model classifiers, can be distributed over a
network of servers for improved scalability, and can be adapted
to available system resources. In this paper, we develop algorithms
to optimally configure networks (chains) of such classifiers given
system processing resource constraints. We first formally define a
global performance metric for classifier chains by trading off the
end-to-end probabilities of detection and false alarm. We then de-
sign centralized and distributed algorithms to provide efficient and
fair resource allocation among several classifier chains competing
for system resources. We use the Nash Bargaining Solution from
game theory to ensure this. We also extend our algorithms to con-
sider arbitrary topologies of classifier chains (with shared classi-
fiers among competing chains). We present results for both simu-
lated and state-of-the-art classifier chains for speaker verification
operating on real telephony data, discuss the convergence of our
algorithms to the optimal solution, and present interesting direc-
tions for future research.

Index Terms—Nash bargaining solutions, networked classifiers,
resource management, stream mining.

I. INTRODUCTION

RECENTLY, there has been an emergence of a variety
of new applications (such as sensor networks, loca-

tion-tracking services and networking monitors) that require
operations such as classification, filtering, aggregation and
correlation over high-volume, unbounded and continuous data
streams. Streaming data has come to include documents, email,
instant messages, transactional data, digital audio, video and
images etc. Each application may be viewed as a processing
pipeline that analyzes streaming data from a set of raw data
sources to extract valuable information in real time [1]. Due to
the naturally distributed set of data sources and jobs, as well
as high computational burdens for the analytics, distributed
stream mining systems have been recently developed [2], [3].
These systems leverage computational resources from a set
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of distributed processing nodes and provide the framework
to deploy and run different stream mining applications on
various resource topologies [4]. In such systems, complex
jobs are decomposed into a network of operators performing
feature extraction, classification, aggregation, and correlation.
Decomposition into an ensemble of operators has merits that
transcend the scalability, reliability, and performance objectives
of large-scale, real-time stream mining systems. For instance,
it has been shown that, using classifiers operating in series with
the same model boosting [5]) or classifiers operating in parallel
with multiple models (bagging [6]) has resulted in improved
classification performance. In this paper, we focus on such
chains of networked classifiers,1 each processing data for a
registered job/query in the stream processing system.

A key research challenge [7], [8] in distributed stream mining
systems, is the management of limited system resources (e.g.,
CPU, memory, I/O bandwidth etc.) while providing desired
application performance. A majority of current stream mining
systems take a database-centric approach where relational
operators are applied to streaming data. Since relational oper-
ators are well-understood, the system can statically determine
the optimal operator order and placement over the available
resource topology. Although some systems like Telegraph
CQ [9] provide dynamic adaptation to available resources,
they do not factor in application knowledge to achieve the
best resource-to-accuracy tradeoffs. System S [4] makes an
attempt in this direction by additionally providing hooks for
applications to determine current resource usage so that they
can adapt suitably to the available resources. As the number
of stream processing applications is growing rapidly, this issue
must be addressed systematically.

Prior research on resource constrained stream mining ap-
plications falls into two broad categories. The first set of
approaches rely on load-shedding, where algorithms determine
a discard policy given the observed data characteristics e.g.,
burst, and the desired quality of service (QoS) requirements [8],
[10]. Several of these approaches are limited by their assump-
tion that the impact of load shedding on performance is known
a priori. Furthermore, they often only consider simple data
management jobs such as aggregation, for which the quality of
the job result depends only on the sample size. Recent work on
intelligent load shedding [11] attempts instead to maximize cer-
tain quality of decision (QoD) measures based on the predicted
distribution of feature values in future time units. The second

1We focus on binary classifiers for simplicity. Note though that this does not
limit the generality of our solutions, as any M-ary classifier may be decomposed
into a chain of binary classifiers.
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set of approaches [3], [12] formulate the resource managament
in terms of a filtering problem and the designed solutions filter
out unrelated data as early as possible, to conserve resources.

While the aforementioned approaches have advantages in
terms of simplicity of design and flexibility of implementation,
they also have several limitations. Firstly, most of them do not
explicitly consider the impact of load-shedding on application
performance. Those that do, e.g., the QoD-based load-shedding,
impose a significant overhead for computing these metrics.
Secondly, they often consider only locally available informa-
tion and metrics (e.g., data characteristics or accuracy or QoD
metric at a particular point in the system). This may lead to
suboptimal end-to-end performance when the data discarded at
one stage is essential for a downstream (later stage) classifier.
Finally, these solutions are primarily designed per applications,
and there is no consideration of their impact across different
competing (for resources) applications.

In order to overcome some of these limitations, we use an
alternate approach. Expressed simply, instead of deciding on
what fraction of the data to process, as in load-shedding based
approaches, we determine how the available data should be
processed given the underlying resource allocation. Hence,
we allow individual classifiers in the ensemble to operate at
different performance levels given the resources allocated to
them. The performance level of each classifier contributes to
the end-to-end utility of the chain. We define this utility in
terms of the accuracy, i.e., desired tradeoff between probability
of detection and probability of false alarm (other metrics,
such as QoD may also be used). Using this defined end-to-end
utility, our resource management problem may be formulated
as a network optimization problem (NOP) [13], [14]. Each job
requires the flow of data from source to destination along a
classifier chain and different jobs compete for computational
resources on distributed nodes. However, unlike traditional
NOPs, that determine a transmission rate per job, we configure
the performance level, in terms of the operating point, of each
classifier to meet system resource constraints while maximizing
the end-to-end performance. This simultaneous configuration
of multiple classifiers, makes our problem significantly more
complex than traditional NOPs. An additional difficulty is
caused due to the non-concavity of our utility function.

Due to the potential competition for resources among appli-
cations, there are two essential issues that we need to explic-
itly consider during this optimization: 1) efficient utilization of
the computational resources and 2) fairness across different ap-
plication performance requirements. Traditional NOPs design
maximum sum of utility solutions (MSUS), i.e., mainly focus
on efficient resource utilization. Instead, we use a cooperative
game-theoretic framework to address fairness, and employ Nash
bargaining solutions (NBS) [15], [16] to formulate the optimiza-
tion. The NBS is Pareto optimal, which guarantees efficient re-
source utilization. The NBS also provides a precise mathemat-
ical characterization of fairness (defined in Section IV). Interest-
ingly, the NBS may be re-interpreted as providing proportional
fairness [17] for resource management after satisfying the min-
imum utility requirements of each user.

We first develop a centralized optimization using sequential
quadratic programming (SQP) to solve this problem. Such an

approach requires the knowledge of all resource information,
as well as data characteristics, and classifier operating points
at a central location. This makes it infeasible in real systems
with dynamic arrival and departure of applications, classifiers,
changing data characteristics etc. Hence, using duality theory
[18], we decompose the centralized NBS optimization into two
distributed subproblems, a per job classifier configuration and
a per-processing node resource optimization. We then develop
distributed algorithms to solve these problems, and provide in-
sights into their impact on physical resource allocation. In sum-
mary, we make the following contributions in this paper:

• we define utility associated with classifier chains by com-
bining end-to-end detection and false alarm probabilities;

• we formulate the classifier configuration problem as a NOP
and use NBS for efficient and fair solutions;

• we propose centralized and distributed solutions and pro-
vide insights into the system dynamics.

The paper is organized as follows. In Section II, we provide
a background on classifiers, and define utility and resource
consumption for individual classifiers. In Section III, we ex-
tend this to networked classifier chains. In Section IV, we
formulate the resource-constrained configuration as a Nash
Bargaining problem. We then provide the centralized solution
in Section V and a distributed optimization in Section VI
using duality theory. In Section VII we extend our solutions to
consider arbitrary topologies of classifiers, i.e., with arbitrary
sharing of classifiers across different chains. In Section VIII,
we present simulation results and discuss the convergence of
our algorithms. We conclude in Section IX with a summary of
our findings, directions for future research, and a discussion on
the application of these algorithms in conjunction with prior
approaches such as load-shedding.

II. CLASSIFICATION BACKGROUND:
BINARY FILTERING CLASSIFIERS

A binary filtering classifier classifies input data samples into
belonging to either class (class of interest) or class and
only forwards those samples that are classified as belonging to
class (discards samples classified as belonging to class ).
An example of such a filtering classifier is shown in Fig. 1.

The input data has a priori probability of belonging to
class and of belonging to class . This proba-
bility is assumed known or can be computed. The output of any
classifier contains correctly as well as incorrectly classified data.
Given and , the input and output of the classifier, the pro-
portion of correctly forwarded samples is captured by the proba-
bility of correct detection, , and the
proportion of incorrectly forwarded samples is captured by the
probability of false alarm . Clas-
sifier performance is characterized by a detection error tradeoff
(DET) curve, i.e., the set of operating points obtained
by tuning its parameters. For example, in a Maximum Likeli-
hood based classification scheme, different operating points are
obtained by modifying the threshold. DET curves are concave
and lie on or above the line , between (0,0) and (1,1)
[19]. A DET curve allows us to fully parameterize as a func-
tion of .



550 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 1, NO. 4, DECEMBER 2007

Fig. 1. Binary filtering classifier and example DET curves. (a) Binary filtering classifier. (b) Example DET curves.

The classifier performance is also heavily dependent on the
underlying model complexity. For instance, a Gaussian mix-
ture model (GMM) based parametric classifier’s performance
is likely to improve as , the number of Gaussians in the mix-
ture, is increased. Similarly, the performance of a -Nearest
Neighbor algorithm is also likely to improve with , the number
of neighbors. This improved performance comes at the cost
of increasing complexity, in terms of physical resources (CPU
time, memory, and I/O bandwidth) required from the system,
both for training and for online operation. In this paper, we as-
sume a fixed underlying model complexity for each classifier.

The output rate of such a binary filtering classifier may be
measured in terms of its throughput and goodput . The
throughput captures the total data output by the classifiers
(including both correctly and incorrectly classified samples),
while the goodput captures the correctly classified data. When
unit input data rate is processed by the classifier, the resulting
and may be defined as

(1)

(2)

where , , and are as defined earlier.
Utility derived from a data mining classifier is computed

by weighting and appropriately with the cost of missed
detection and the cost of false alarms specific to any applica-
tion. For instance, in the NIST evaluation of speaker verifica-
tion [20], the cost of missed detection is set to be ten times as
high as the cost of false alarms. Such a utility function may be
written as , where is the cost tradeoff
ratio. Large reflects the preference for low while small
reflects the preference for high . This performance metric has
been used in one form or the other (e.g., as a confusion ma-
trix, or as a receiver operating characteristic curve) in several
diverse data mining and classification applications using sev-
eral different types of classification algorithms. These diverse
applications include the NIST speaker verification, credit card
fraud detection, mining software for defects, intrusion detection
systems, etc. [21]–[23].

A slightly modified version of this utility function may be
written in terms of the actual rates and as

(3)

Given the DET curve, it is clear that this utility is concave in
. At the same time, the resources required by the classifier

may be conveniently modeled as a linear function of the input
rate, i.e., , where is the input rate, and is a factor that
captures the classifier model complexity, and also dependence
on the underlying system architecture, implementation etc. For
instance, for a GMM based classifier with Gaussians ,
as each data unit, requires units of computations.

III. CLASSIFIER CHAIN: UTILITY DEFINITION

AND RESOURCE CONSUMPTION

A. Binary Filtering Classifier Chain

Consider a typical data mining problem that requires keyword
(say “Hong Kong”) spotting for a specific user (say “Mary”)
from a stream of speech samples collected from a networked
microphone. We may partition this problem into a set of four
exclusive questions (classifiers) with yes/no (binary) answers.

• Is the data segment speech or silence?
• Is the data segment from a female speaker?
• Is the data segment from speaker Mary?
• Does the data segment contain the keyword Hong Kong?

Note that the exclusivity comes from the fact that the desired
set of data samples are only those with all four “yes” attributes.
By partitioning the problem into this ensemble of four classi-
fiers and filtering data (i.e., discarding data that is labeled “no”
by any classifier) successively we can control the amount of re-
sources consumed by each classifier in the ensemble. A chain of
such exclusive binary classifiers is de-
picted in Fig. 2. The classifier configuration problem involves
determining the operating point for each classifier given a set
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Fig. 2. Filtering classifier chain with N classifiers.

of resource constraints, such that the end-to-end utility is max-
imized.

B. Utility Definition for Binary Filtering Classifier Chain

Consider the exclusive classifier chain shown in Fig. 2. The
input for classifier is the filtered output from classifier .
This filtering modifies the rate entering , as well as the a
priori probability of the data belonging to either class. Given the
conditional probability relating
the two classifiers, and the throughput and goodput
for , it is straightforward to show that we can compute
and using a recursive relationship2 as

(4)

and

(5)

We may rewrite (4) and (5) using a matrix form as

(6)

where the matrix is the transfer matrix that is a function
of the operating point . We ignore in the above because,
the DET curve uniquely determines as a function of . For
further ease of notation, we also drop and use to denote
the transfer matrix. Note that . By recursing from

to 1, we have

(7)

where and represent the end-to-end throughput and
goodput from this chain, and hence, as discussed earlier the
end-to-end utility may be defined as

(8)

where is the operating point vector, i.e.,
, and , is a factor that trades off

with . Hence, the utility can be rewritten as

(9)

2Note that exclusivity implies P (X 2 H jX 2 H ) = 0. Please see
[24] for more details.

C. Resource Consumption of Binary Filtering Classifier Chain

Each classifier has a certain underlying model complexity
and consumes the rate-dependent resource, , per unit data.
Given, input data rate , the data rate entering becomes

. Accordingly, the resource, , consumed by clas-
sifier is . The throughput ,
entering depends on the selected operating points
(or equivalently only , given the DET curve) of all preceding
classifiers .

D. Properties of the Utility Function

The considered utility function has several nice prop-
erties that we wish to highlight

• The parameters are continuous, and the function is
differentiable.

• The minimum utility a classifier chain can receive is 0
(when all data is discarded). Hence any algorithm to deter-
mine the optimal configuration to maximize the utility
needs to search only the restricted subregion where .

• The utility is concave along each individual axis
inside the subregion where , i.e., for a set of fixed

, the utility is con-
cave inside this region. We can show this by rewriting (9)
as

(10)

Expanding these terms, we have

(11)

Since is a concave function of and , we
only need to show that to prove the concavity
of . Given that , we have .
Combining with the fact that and , we
can directly conclude that in this subregion.
Hence, is concave inside this subregion. It is im-
portant to note that despite this concavity along each indi-
vidual axis, this function is not necessarily concave in all
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directions (especially those not along any axis), i.e., it is
not multidimensional (MD) concave in general.

• We observe that the region contains a subregion
inside which is MD concave. This concave subregion
contains the origin, i.e., .

IV. PROBLEM FORMULATION: CONFIGURING RESOURCE

CONSTRAINED NETWORKED CLASSIFIERS

A. System Description

In distributed stream mining systems, there are often multiple
classifier chains concurrently competing for limited system
resources. By configuring (selecting the operating point pa-
rameterized by ) a classifier in the chain, we can control
the resource consumption of all other classifiers in the chain
downstream from it. At the same time, we also impact the
end-to-end utility. Furthermore, given that classifiers from
multiple chains may compete for resources (i.e., when they
coexist on common processing nodes) this configuration also
affects the resource consumption, and correspondingly utility,
of other classifier chains. This makes resource management
under shared infrastructure a challenging problem.

We consider a system with binary filtering exclusive clas-
sifier chains. Chain has classifiers with the

-th classifier denoted as . These chains are instantiated on
processing nodes , each of which has available re-

sources . We construct a location matrix,
for each chain, with if

is placed on processing node and 0 otherwise. Addition-
ally, we define the following notations:

• : the -dimensional vector3 of avail-
able rate-dependent resources;

• : the -dimensional vector of the re-
sources consumed per unit data rate for chain ;

• : the -dimensional false alarm
probability vector for chain . This represents the operating
points of each classifier in the chain;

• : the set of processing nodes that chain is located
on;

• : the set of classifiers of the chain located on pro-
cessing node ;

• : the -dimensional false
alarm probability vector aggregated across all the chains.

• : the -dimensional input data rate vector
of all chains with being the input data rate to chain ;

• : the -dimensional resource
consumption vector for chain with

(12)

• : the -dimensional
utility vector of all the chains with the element
being the utility function of chain , computed as in (8).

In this paper, we assume that each classifier operates with
a certain fixed model complexity and the corresponding DET

3We use the symbol to represent transpose.

curve is known a priori (thereby allowing us to write all equa-
tions purely in terms of , ignoring ). Our optimization in-
volves configuring the operating points of individual classifiers
to maximize the utilities derived by each chain, given the re-
source constraints. Note that the minimum utility for any chain
is at least zero, obtained by setting ,
i.e., no resource consumption. Hence, the feasible configuration
(solution) set may be defined as follows.

Definition 1: Feasible Configuration Set: is the set of op-
erating points for all the chains, , which results in no viola-
tion of the resource constraints with utilities of all chains being
greater than zero, i.e.,

(13)

We assume that is nonempty (otherwise the problem has only
a trivial solution). For each possible configuration , we
can derive the corresponding utility (defined as in (8)) vector

. The feasible set of utility vectors derived from may
be defined as

(14)

B. Nash Bargaining Solutions

While optimizing the utility vector, we need a notion of ef-
ficiency of any configuration. We thus need formal optimality
criteria, and hence define Pareto optimality in the utility set as
follows:

Definition 2: Pareto Optimality: The feasible utility vector
is Pareto optimal if for each and , then

.
Intuitively, a Pareto optimal configuration is one for which

there are no other feasible utility vectors such that all chains
have strictly greater utilities, simultaneously. Pareto optimality
thus leads to an efficient utilization of the limited system re-
sources. However, in general, there are multiple Pareto optimal
points in the utility set. We thus need to select the right} Pareto
optimal point for the system to operate at. This may be deter-
mined by further requiring fairness in solution. Fair resource
allocation has been well understood in game-theoretic literature
and hence we may use axioms from game theory in this context
to formally define it. In this paper, we use the NBS [8] to achieve
fairness (in the utility space) and efficient resource allocation.

In order to define the NBS, we first introduce the notion of a
disagreement point. The disagreement point is defined as

, with the -th element representing the minimum
utility agent (chain) receives if it is involved in the resource
allocation game. The bargaining problem consists of the feasible
utility set [(14)], and the disagreement point , as well as be
a function: that maps them into a particular
utility allocation with the following properties.

Definition 3: Nash Bargaining Solution: The utility point
is an NBS if the following axioms are satisfied

[16].
1) Individual rationality: .
2) Feasibility: .
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3) Pareto optimality: is Pareto optimal.
4) Independency of irrelevant alternatives: if and

, then .
5) Independence of linear transformations: for any linear

scale transform : .
6) Symmetry: if is invariant under all exchanges of agents,

then for all , where
and are the utility set and disagreement point when

are interchanged.
Items 1, 2, and 3 ensure that the NBS satisfies the minimum
utility requirements, is Pareto optimal, and is reachable. Items
4, 5, and 6 address fairness issues. The independency of irrele-
vant alternatives states that the NBS is not affected by enlarging
the utility set if the solution is found in a smaller domain. The
independence of linear transformations leads to scale invariance
of the NBS. Finally, the symmetry of the NBS ensures that the
solution does not depend on underlying labels.

It has been shown that there exists a unique NBS, , that
satisfies the above six axioms and this NBS is the solution of the
following optimization problem [16]:

(15)

Our classifier configuration problem, involves solving the op-
timization problem in (15) for . As stated earlier, any chain
can get zero utility without being involved in the configuration
game. Hence, the disagreement point in this paper is assumed to
be . Additionally, since the function is monotoni-
cally increasing over the range , the optimal configuration

for the NBS may equivalently be obtained as the solution
to the following optimization problem:

(16)

Note that the solution to the above optimization also leads to
proportional fairness, i.e., resource allocation in a way that pro-
portionally increases utilities of the different chains.4 In sum-
mary, we may write out the constrained optimization problem
we wish to solve as

(17)

Note that while we explicitly mention the search space con-
straint in the above formulation, the use of

automatically makes this constraint superfluous.
Hence, we drop it in the rest of the paper.

4While in this paper we do not explicitly consider priorities or “weights” asso-
ciated with different chains, they may easily be introduced into the formulation
as multiplicative factors to ln(u ). Furthermore, our designed algorithms are
directly applicable to scenarios with different priorities.

V. CENTRALIZED OPTIMIZATION FOR NBS

This optimization in (17) may be solved using SQP [25].
The basic idea behind SQP lies in modeling the nonlinear
optimization problem at each iteration by an approximate
quadratic programming subproblem. The solution to the ap-
proximate quadratic subproblem , is then used to construct
a better approximation at the -th iteration, . This
procedure is repeated to create a sequence of approximations
that converge to the optimal solution . It is important to
note that the SQP algorithm may converge to a locally optimal
solution. Although the SQP has been extensively discussed in
literature [18], [25], we present the procedure for our problem
at each iteration here, for completeness. We first define a new
Lagrangian function as

(18)

where corresponds to the inequality ,

corresponds to the inequality and

corresponds to the inequality .
At iteration , the objective function of (17) is approximated

by a quadratic function and the constraints are linearized around
the current approximation . In particular, the quadratic sub-
problem has the following form:

(19)

where is the search direction of . The matrix is a pos-
itive definite approximation of the Hessian matrix of the La-
grangian function in (18). can be updated by any of the
quasi-Newton methods, e.g., the BFGS method [26]. The th
approximation is then computed as

(20)

where the step length parameter is determined by an ap-
propriate line search procedure so that a sufficient decrease in a
merit function is obtained.

VI. DISTRIBUTED ALGORITHM FOR NBS

We label our formulation in (17) as the primal problem, using
optimization theory terminology. Instead of solving the primal
problem directly, we instead use duality theory [18] to define
the dual problem, present its properties, and design a distributed
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solution for it. As we will show, the dual problem has several
advantages over the primal problem [27]. Firstly, unlike the
primal problem, the dual may be solved using convex pro-
gramming techniques. Secondly, since the objective function
and part of the constraints use summations, the optimization
problem is separable, enabling a distributed algorithm. Finally,
the dual problem is computationally more feasible than the
primal problem, as it deals with a smaller number of variables
at one time, especially when the number of chains is greater
than the number of processing nodes .

A. Dual Problem

The constrained optimization in (17) may be rewritten as a
Lagrangian as

(21)
where with being the La-
grange multiplier associated with the resource constraint on pro-
cessing node . Using duality theory, we may then write the
dual problem as

(22)

where is computed as

(23)

It can be easily shown that is a convex function of
[18], and the dual problem has a set of convex constraints on

. Hence, the dual problem can be solved efficiently if we can
compute .

It can be shown that when an appropriate Lagrange multi-
plier is selected, the optimal solution of the dual problem ap-
proaches the optimal solution of the primal problem. In general
though, the dual solution overestimates the primal solution, by
an amount referred to as the duality gap. We will discuss the
duality gap for our problem in Section VIII-D.

B. Decomposition of Dual Problem

The Lagrangian in (21), may further be rewritten as

(24)

Hence, the dual problem in (22) and (23) can be modified as

(25)

where

(26)

Note that, with this modification, the combined maximiza-
tion for is decomposed into independent maximiza-
tions, each corresponding to a different classifier chain (appli-
cation). This is the key property that leads to the design of a dis-
tributed algorithm. The dual problem can now be decomposed
into a master problem and subproblems. The master problem
involves solving for the optimal Lagrange multiplier and is
defined as

(27)

The independent subproblems5 involve solving for the optimal
operating points , given the multiplier , and may be
written as:

(28)

In the following sections we describe the distributed algorithm
to solve these problems.

C. Solution to the Master Problem

Although the master problem in (27) is convex, the objective
function may not always be differentiable. Hence, we cannot use
traditional gradient-based algorithms to solve the problem. In
order to deal with this non-differentiability, we need to introduce
the theory of subdifferentials [18].

Definition 4: Subgradient: A vector is labeled a
subgradient of the convex function at if

(29)

Definition 5: Subdifferential: The set of all subgradients of
the convex function at is called the subdifferential of

at , and is denoted as .
It has been proven that the subgradient (subdifferential) has

the following properties.
1) If is differentiable at with the gradient , then

is the unique subgradient at .
2) If a sequence converges to and for

all , then the sequence is bounded and each of its
limit points is a subgradient of at .

5Recent work [15], [27] in communication networks has used similar ap-
proaches for network resource allocations.
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3) maximizes the convex function over a convex set
if and only if there exists a subgradient

such that .
Using this theory of subdifferentials, we re-examine the dual
problem of (27).

Proposition 1: For a given , suppose that ,
minimizes the subproblems in (28), then one of the

subgradients of the dual function is given by

(30)

Proof: The proof is fairly standard, and we omit it here due
to space limitations.

We may now design a subgradient method based solution to
solve the master problem. The subgradient method [18] based
solution is similar to a gradient descent iterative algorithm, ex-
cept that we use the subgradient instead of the gradient. Hence,
at the -th iteration, we update the multiplier as

(31)

where , denotes the pro-
jection of the vector onto the set , and is a positive
scalar step size. In order to ensure convergence of this iterative
algorithm, the step size needs to be selected with the fol-
lowing properties [18]:

(32)

An example of that satisfies these properties is

(33)

We use this step size sequence as it is simple and has been
shown to work for a many types of problems. We do not com-
pare against other sequences, but there has been some work on
designing step size sequences to accelerate the convergence of
the subgradient method [28]. Note that the multiplier may
be interpreted as a cost incurred for resources at iteration , with

being the cost of a unit resource on processing node . It
is clear that the update of the cost for the node is deter-
mined only by the operating points of classifiers located on that
node. Hence, the combined update may be decomposed into
independent cost updates (one per processing node)

(34)

where represents the set of classifiers of chain lying
in the processing node . This multiplier update per processing
node clearly reduces any message exchange overhead among
the processing nodes.

D. Solution to the Subproblem

As mentioned earlier, the subproblem may be defined for
chain as

(35)

This optimization may then be solved independently per classi-
fier chain, and may be physically interpreted as maximizing the
utility for chain after deducting the cost incurred to acquire
resources at different processing nodes. Note that the optimiza-
tion for chain requires information on resource cost only from
those nodes on which one or more of its classifiers are located,
i.e., the set of nodes .

In order to solve each of these nonlinear differentiable opti-
mization problems (defined in (35)), we again employ SQP [25].
We omit details here, given the discussion in Section V.

E. Combined Solution to the Dual Problem

We may combine the solution to the master problem and sub-
problems into one iterative solution that can be implemented in
a distributed manner. In iteration , each classifier chain first se-
lects the operating point for all its classifiers simultaneously, by
maximizing the net utility in (35). After operating point selec-
tion for all the chains, each processing node updates its cost per
unit resource , as in (34). We summarize this iterative solu-
tion in Algorithm 1.

Algorithm 1 Combined Iterative Distributed Solution

Initialize for

Set termination threshold , and maximum number of iterations

repeat

for to do

Identify resource price for nodes on which
chain classifiers are located.

Solve the SQP to find the optimal operating point
.

Determine throughput entering each classifier
.

end for

for to do

Update using (34)

end for
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Fig. 3. Decoupling chains with shared classifiers using virtual classifiers. (a) Chains with shared classifiers. (b) Shared! virtual classifiers.

until

return , , and

VII. EXTENSION: NBS FOR CHAINS WITH

SHARED CLASSIFIERS

In previous sections we assumed separate (disjoint) classifier
chains for each application. However, this can be inefficient as
it may lead to duplication of functionally identical classifiers
across the system. Instead, it is much more efficient to reuse
such classifiers across chains, e.g., if two different applications
require data samples to be classified into speech and nonspeech,
one single classifier may be used to handle data for both. In this
section, we extend our designed classifier configuration algo-
rithms to include arbitrary sharing of classifiers across chains.
This allows us to consider much more general topologies of clas-
sifiers in a stream mining system.

In order to formulate the problem of configuring classifier
chains with arbitrary classifier sharing, we define a sharing ma-
trix for each chain . We first identify the number of pair-
wise shared classifiers, i.e., classifiers shared across each pair of
chains. A classifier shared by chains corresponds to pair-
wise shared virtual classifiers. Let the total number of pairwise
shared classifiers in the system be . We label the th pairwise
shared classifier as . For each classifier, we also store the in-
dices of the chains, across which the classifier is shared, using
a vector . We determine , and using Algorithm 2.

Algorithm 2 Sharing Matrix Construction

for to do

for to do

for to do

for to do

If , ,
and

end for

end for

end for

end for

Set

return , and .

Given these, the sharing matrix with size is defined
as follows:

and
and

.
(36)

It is easy to verify that

(37)

An example of a topology with shared classifiers is illustrated in
Fig. 3. For this chain, we have and the sharing matrices

, , and are

Using these defined sharing matrices, we can reformulate the
optimization with an additional set of constraints on shared clas-
sifiers as

(38)



FU et al.: CONFIGURING COMPETING CLASSIFIER CHAINS IN DISTRIBUTED STREAM MINING SYSTEMS 557

The key idea behind defining the formulation as above is
the decomposition of each shared classifier into multiple vir-
tual classifiers (each one corresponding to a separate chain that
shares this classifier). Adding the constraint
then ensures that all these virtual classifiers are configured to
the same operating point (as they correspond to the same un-
derlying classifier). We show an example of decomposing two
shared classifier into four virtual classifiers in Fig. 3.

As before, we consider the dual problem for this op-
timization by introducing another Lagrange multiplier

, to capture the sharing constraint. The
Lagrangian function is thus defined as

(39)

and the dual problem may be written as

(40)

where is computed as

(41)

We can then decompose this into a master problem and a sub-
problem. The master problem involves determing the Lagrange
multipliers and may be written as: , which is given by

(42)

The subproblem involves configuring the classifiers given the
multipliers, and may be written as

(43)

where

(44)
Again, we can design an iterative distributed solution that

may be summarized as follows. At iteration , all chains
first select their operating points for all their classifiers by max-
imizing (43) given a fixed . After operating point se-
lection, the servers update the cost per unit resource

as

(45)

where, and are as defined earlier Each server then
also updates the shared cost multiplier as

(46)

for all shared classifiers located on it.

VIII. SIMULATION RESULTS

We present four different sets of results to highlight the per-
formance of our classifier configuration algorithms given re-
source constraints. We first motivate the need for classifier cas-
cades under resource constraints, for a real speaker verification
application in Section VIII-A. We then examine the fairness
achieved by NBS as compared with a MSUS. We present results
for the centralized and distributed algorithms for an example
topology with multiple competing classifier chains and discuss
the convergence of these algorithms in Section VIII-C. Finally,
we present results of the algorithms designed for topologies with
arbitrary classifier sharing, in Section VIII-E. In all experiments,
we use the SQP solver from Matlab [29] to generate results.

A. Motivation for Classifier Cascade: Speaker Verification

In this subsection, we demonstrate the use of a classifier cas-
cade to benefit classification utility for a real speaker verification
application, under resource constraints. We consider a speaker
verification task, where we want to verify whether speech sam-
ples belong to a particular female speaker. We build a cascade
of two classifiers for this task, with being a gender detector
(i.e., forwards only female speech) and being the actual
speaker verifier (tries to verify whether speech belongs to the
specific speaker). These classifiers are trained on real Switch-
board telephony data with 176 female speakers, and 106 male
speakers using the IBM speaker verification system [30]. The
complexities of the classifiers are fixed at and

(equal to the number of Gaussians in the GMM
assuming a unit resource consumption factor), and the corre-
sponding DET curves are shown in Fig. 4.

We assume that the classifiers are located on one processing
node, and we use corresponding to the cost-tradeoff
between misses and false alarms in NIST testing scenarios [20].
We vary the rate-dependent resource constraint on the pro-
cessing node from 50 to 150 and compare the performance of
this cascade against using only the single classifier (speaker
verifier) for this task. The utilities under different resource
constraints for the cascade and the single classifier are shown
in Fig. 4. As the resource constraint tightens, ,
the speaker verifier cannot process the incoming data by itself
thereby leading to zero utility. As against this, the low-com-
plexity gender detector in the cascade may be used to filter
out irrelevant data samples early, thereby allowing the speaker
verifier to process data even under tight resource constraints,
thereby providing positive utility. Hence, under resource con-
straints, a classifier cascade (even with such independently
trained classifiers), may be used to achieve better performance
than a single classifier.
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Fig. 4. DET curves and comparison of classifier chain versus single classifier. (a) DET curves. (b) Single classifier versus cascade.

Fig. 5. Topology: three classifier chains, three processing nodes.

B. Fairness Issues: Comparison of NBS With MSUS

The MSUS is obtained as 6

(47)

We consider a topology with three classifier chains (each with
three classifiers) located across three processing nodes (Fig. 5).
The parameters for the chains, including the complexities of
each classifier , the conditional probabilities , the rate
entering each chain , and the desired end-to-end
tradeoff are listed in Table I. The DET curves for the clas-
sifiers are generated using a standard parametric form for a con-
cave curve

(48)

where and are the parameters of the curve that may be tuned
to adjust its shape. The modeled DET curves for this example
are shown in Fig. 6. The total rate-dependent resource constraint

6As with the NBS, this discussion also holds for a weighted sum of utilities,
given different priorities for the different chains.

TABLE I
CLASSIFIER CHAIN PARAMETERS

TABLE II
UTILITY COMPARISON: NBS VERSUS MSUS

is set to on each of the three processing nodes. The NBS
and MSUS are obtained using centralized SQP optimization,
and the obtained utilities for all three chains are listed in Table II.

Also shown in Fig. 6 are the optimal operating points selected
for each classifier by the two different optimizations.

As is clear, with the MSUS, most of the utility is provided to
Chain 1 (that has small ), with zero utility provided to Chain 3.
Instead, with the NBS, all chains get nonzero utility, providing
a greater level of fairness among the chains.

C. Optimality and Convergence of the Distributed Algorithm
for NBS

In this section, we compare the obtained utilities after classi-
fier configuration using the centralized optimization (solving the
primal problem) with those obtained using the distributed opti-
mization (solving the dual problem). We show that distributed
algorithm does indeed converge to the centralized solution (both
converge to the optimal solution), and we discuss the rate of
convergence, as well as provide the intuition behind this con-
vergence. For this simulation, we consider a more complicated
topology of networked classifiers, shown in Fig. 7.
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Fig. 6. DET curves and classifier configuration NBS versus MSUS. (a) Chain 1. (b) Chain 2. (c) Chain 3.

Fig. 7. Classifier topology: four chains, three processing nodes.

TABLE III
CLASSIFIER CHAIN PARAMETERS

Fig. 8. DET curves for experiments. (a) Chain 1. (b) Chain 2. (c) Chain 3. (d) Chain 4.

The parameters associated with the classifiers (with
for all chains) are shown in Table III and the DET curves are
shown in Fig. 8.

The classifiers are distributed across three processing nodes
with balanced available resources on each node, and
balanced input rates for all the chains. The
combined log-utility (for the NBS) obtained by the centralized
and distributed algorithms is the same, i.e., ,
indicating that there is no duality gap. The utilities provided to
the individual chains are also similar for both algorithms, and

TABLE IV
UTILITIES WITH SQP AND DISTRIBUTED ALGORITHM

are listed in Table IV. We further verified that this is indeed the
optimal solution.
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Fig. 9. Utility gap between distributed and centralized algorithm: balanced and unbalanced scenarios. (a) Utility gap: balanced scenario. (b) Utility gap: unbalanced
scenarios.

In order to highlight the convergence rate of the distributed al-
gorithm, we also show the variation of the combined log-utility
as a function of the iteration number in Fig. 9. In the figure, we
plot , where is the optimal utility (for
the Primal problem) and is the utility of the distributed al-
gorithm (Dual problem) with being the iteration number. It is
clear that as . In fact, the con-
vergence rate is rapid, with the gap approaching zero within the
first 15 iterations.

We also repeated this experiment for unbalanced rates as well
as unbalanced resource constraints under three scenarios, as
shown in Table V. Scenario 1 has unbalanced input rates across
the four chains, Scenario 2 has unbalanced resource constraints
across the three processing nodes, and Scenario 3 has both
unbalanced rates, as well as unbalanced resource constraints.

Again, we find that the distributed algorithm converges
rapidly to the solution of the centralized algorithm, with the
resulting gap as a function of the iteration number shown in
Fig. 9. As we can see from the figure, for Scenario 1 and 3 the
convergence happens within the first 15 iterations, while it is a
little slower for Scenario 2. The resulting utilities for individual
chains with the distributed and centralized solutions are also
within 0.5% of each other.

D. Discussion: Duality Gap

As we can see from the results, the distributed and central-
ized algorithms converge to the same solution for a diverse sets
of classifier parameters, unbalanced rates and constraints etc.
In every such case, this identical solution necessarily implies
convergence to the global optimum, and a duality gap of zero.
Hence, for most practical scenarios that we encounter, we can
easily verify the absence of this duality gap. In general, though,
it is very involved to provide rigorous proofs on the convergence
of the algorithms, and bounds on the duality gap, especially due
to the non-concave utility function, and the non-convex set of

constraints. While we do not provide a rigorous proof of the
global convergence and the zero duality gap, we provide some
intuition behind the observed experimental convergence of our
algorithms. We believe that the absence of the duality gap is
driven by the underlying geometry of the problems, and we refer
to the discussion in [18] to explain this. Specifically, rewriting as
the dual problem allows us to decompose our optimization into
a master problem and a set of separable subproblems (one per
classifier chain). This separable form allows us to not only solve

simpler minimization problems, but also causes the duality
gap to be relatively small, with the gap diminishing to zero rela-
tive to the optimal primal value, as increases. This is because,
in the case of separable problems the set of constraints-utility
pair may be written as a vector sum of sets. Generally, a set
that is the vector sum of a large number of, possibly non-convex,
roughly similar sets “tends to be convex”, in the sense that any
vector in the convex hull of may be closely approximated by
a vector in . As a result, the duality gap tends to be relatively
small and can often be shown to diminish to zero relative to the
optimal primal value, as increases. This discussion is based
on a theorem by Shapley and Folkman, and it has been shown
[31], that under some reasonable assumptions the duality gap
is bounded by a non-negative scalar (depends on the structure
of the underlying utility functions, and the constraint set). The
above argument also indicates that these algorithms are likely
to scale well, and may be used in large-scale real stream pro-
cessing systems, where several such classifier chains compete
for resources.

E. Results: Multiple Chains With Arbitrary Classifier Sharing

In this section, we present results of classifier configuration
for a topology as shown in Fig. 10.

The DET curves and parameters for the classifiers in this case
are selected as a subset of those in Fig. 8 and Table III. The
resource constraints and the input rates are chosen as for the
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TABLE V
SCENARIOS WITH UNBALANCED RATES AND RESOURCE CONSTRAINTS

Fig. 10. Topology and algorithm convergence: shared classifiers. (a) Topology: shared classifiers. (b) Algorithm convergence.

TABLE VI
UTILITIES WITH SQP AND DISTRIBUTED ALGORITHM: SHARED CLASSIFIERS

Balanced Scenario in the previous Section. The utilities for the
individual chains obtained using the centralized and distributed
algorithms are shown in Table VI.

The convergence of the algorithm in terms of the gap
, is shown in Fig. 10. While the distributed

algorithm converges within 50 iterations, it does not converge to
the optimal solution ( and ).
We believe that the additional sharing constraint causes the op-
timal solution to lie outside the MD-concave subregion, thereby
not following our earlier intuition. A detailed investigation of
these convergence issues for topologies with shared classifiers
forms part of our future work.

IX. CONCLUSION

In this paper, design algorithms for the optimal configuration
of competing chains of classifiers distributed across a resource
constrained stream mining system. Specifically, we decompose
queries into chains of binary exclusive classifiers, and define a
unified performance metric for each chain by trading off the
end-to-end probabilities of false alarm and detection (in terms
of throughput and goodput). Furthermore, in order to design ef-
ficient as well as fair algorithms, we use NBS from game theory.
We formulate the classifier configuration problem as a NOP,
and design both centralized algorithms (using SQP), as well as

distributed algorithms (using duality theory). We then consider
arbitrary topologies of classifier chains, with classifier sharing
across competing chains, and show that by decomposing each
shared classifier into a set of virtual classifiers, we may directly
extend our previous algorithms to design appropriate solutions
(similar optimization with modified resource constraints).

We present several experimental results to highlight the per-
formance of our algorithms. We first show the advantages of
using a classifier cascade instead of a single classifier under re-
source constraints, for a speaker verification application with
real telephony data. We then illustrate the fairness of the NBS as
compared against a maximum sum of utility-based solution. We
analyze the performance of our centralized and distributed algo-
rithms on an application with four competing classifier chains,
under both balanced as well as unbalanced rate and resource
constraints. We show that the two algorithms converge to the
same optimal solution, with no duality gap between them. While
we do not provide a rigorous proof of the global convergence
and the zero duality gap, we provide several intuitions behind
the observed experimental convergence of our algorithms. Fi-
nally, we present results for scenarios with classifier sharing
across chains. In this case, we observe a duality gap between
the centralized and distributed algorithms (with overall utility
difference of 12%), and we propose to investigate the causes for
this as part of future work.

There are several other directions for future research. We
would like to extend these ideas for arbitrary topologies of clas-
sifiers, going beyond topologies of classifier chains, and also
consider the problem of constructing such topologies, i.e., or-
dering classifiers, distributing them across nodes, etc. Further-
more, we are interested in investigating the interaction of our ap-
proaches with load-shedding based approaches using a careful
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analysis of the underlying data characteristics, system resource
constraints, and the nature of data queries. Specifically, the im-
pact of shedding load at a point in the network (before clas-
sifier ) may be directly captured in terms of modifying the
corresponding DET curve for this classifier, and as a result the
throughput and goodput derived at the output of the classifier.
The algorithms designed in this paper allow us to tune the clas-
sifier operating point (and also as a result the load-shedding
strategy if incorporated into the classifier DET curve) in terms
of maximizing the end-to-end utility. This goes significantly
beyond the local measurements used when designing current
load-shedding strategies. Finally, we are also examining the per-
formance of these schemes in dynamically varying scenarios
where the system resources, data characteristics, and classifier
performance change with time.
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