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Resource Constrained Stream Mining
With Classifier Tree Topologies

Brian Foo, Deepak S. Turaga, Olivier Verscheure, Mihaela van der Schaar, and Lisa Amini

Abstract—Stream mining applications require the identification
of several different attributes in data content and hence rely on a
distributed set of cascaded statistical classifiers to filter and process
the data dynamically. In this letter, we introduce a novel method-
ology for configuring cascaded classifier topologies, specifically bi-
nary classifier trees, with optimized operating points after jointly
considering the misclassification cost of each end-to-end class of in-
terest in the tree, the resource constraints for every classifier, and
the confidence level of each data object that is classified. By config-
uring multiple operating points per classifier, we enable not only
intelligent load shedding when resources are scarce but also intelli-
gent replication of low confidence data across multiple edges when
excess resources are available. Using a classifier tree constructed
from support vector machine-based sports image classifiers, we
verify huge cost savings and discuss how different classifier place-
ments and costs can influence the gains obtained by various algo-
rithms.

Index Terms—Binary classifier tree, networked classifiers, re-
source management, stream mining.

I. INTRODUCTION

T HE processing and classification of continuous,
high-volume data streams is of paramount impor-

tance for many applications including online financial analysis,
real-time manufacturing process control, search engines, spam
filters, security, and medical services [4], [6], [7], etc. Due to
the naturally distributed set of data sources and jobs, as well
as high computational burdens for the analytics, distributed
stream mining systems have been recently developed [1], [3].
Many stream classification and mining applications implement
topologies (such as trees or cascades) of low-complexity binary
classifiers on such distributed systems to jointly accomplish
the task of complex classification [4]. It has been shown that
boosting trees of weak classifiers enables the successive iden-
tification and filtering of multiple attributes in the data, and it
leads to improved accuracy over single classifier systems [5],
[10].

Nevertheless, when voluminous data streams need to be
processed, resource constraints pose a major challenge for opti-
mizing the performance of cascades of classifiers. Recent work
proposes reconfiguring the operating point of each classifier
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in a linear cascade to ensure that resource constraints are met
at each classifier while maintaining high classification quality
[9]. However, tree topologies go significantly beyond linearly
cascaded classifiers by providing greater flexibility in data
processing while also posing different challenges in terms of
resource constrained configuration. Specifically, while excess
load can be easily handled within the optimization framework
for a binary classifier chain, using a single operating point for
each classifier in a tree generates two output streams with a
total sum output rate that is fixed. Hence, it may not be possible
to simultaneously meet tight processing resource constraints
for downstream classifiers along both output edges when using
only one operating point.

To address this issue, we propose configuring each classifier
with multiple operating points, one for each output, e.g., with
multiple overlapping and non-overlapping decision thresholds
for the different classes. This directly enables intelligent dis-
card of low-confidence data across output edges of each classi-
fier when resources are scarce, as well as intelligent replication
of low-confidence data across both positive and negative edges
when excess resources are available, which can significantly re-
duce the number of classification misses.

In Section II, we discuss our binary classifier tree model
and formulate the misclassification cost minimization problem
under resource constraints. In Section III, we present exper-
imental results for a sports image classification application
and discuss several derived insights. We conclude this letter in
Section IV and present directions for future research.

II. MINIMIZING MISCLASSIFICATION COST
IN BINARY CLASSIFIER TREES

A. Binary Classifier Tree Model and Misclassification Cost

Consider a set of binary classifiers numbered cas-
caded in a tree topology, an example of which, for , is
shown in Fig. 1. This topology of classifiers may be used to
identify data from three (in general ) end-to-end classes of
interest. Each binary classifier partitions input data objects
into two classes, a “yes” class and a “no” class , and for-
wards the classified data along respective output edges. For each
respective class, denote the probability of correct detection by

and and the probability of false alarms by
and . Note that when the classifier uses one operating
point (e.g., thresholding) to label each data item as or ,
we have the following relationships: and

. This coupling is, however, removed when
we have multiple operating points (e.g., a different threshold for
each output class).

Each end-to-end class is determined after a set of cascaded
local classifications. Class is characterized by the following:

—the number of classifiers that data from that class need
to pass through, —the sequence of classifiers in the path
(e.g., each component from the set of classifiers ),
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Fig. 1. Example of a depth-2 tree of classifiers with three terminal classes.

—the sequence of branch “types” in the path (class 0 or
1), and —the misclassification costs per miss and false
alarm in class . Assuming a (normalized) unit input data rate,
the misclassification cost for each class can be computed
from the total rate of data labeled as (throughput) , the total
rate of correctly labeled data in class (goodput) , and the a
priori probability of data belonging to class , by

(1)

where the first term denotes the cost of misses, and the second
term denotes the cost of false alarms for class . The total mis-
classification cost for the entire tree can be computed as

(2)

To determine and , we model the impact of filtering at
classifier on the received data stream at classifier by

a conditional a priori probability , where rep-

resents the four possible combinations (0,0), (0,1), (1,0), (1,1)
corresponding to the “yes” and “no” answers along the two suc-
cessive branches.1 The throughputs and goodputs

outputted by classifier can be computed from

and using a set of recursive relationships described by
the following transfer matrices:

(3)

where and are given in the following:

(4)

1For a tree topology, only one data stream enters each classifier. Hence, we
do not need to include � while parameterizing �.

Note that the “yes” (0) and “no” (1) output edges have different
transfer matrices due to classifier exclusivity. [9]2

The end-to-end throughput and goodput for class can
be computed as

(5)

and similarly, for the end-to-end a priori probability

(6)

B. Resource Consumption and Constraints

Due to the high-complexity operations that need to be per-
formed by each classifier on each data object, limited computa-
tional resources in the system impose a heavy constraint on the
performance of the classifier tree when the volume of the in-
coming data stream is large. Since each classifier generally per-
forms the same set of functions on each data object, we model
computational resource requirements for each individual
classifier as being directly proportional to the rate of data en-
tering it, i.e.,

where is the amount of resources required per unit rate for
classifier . Since some of the classifiers for each class overlap,
i.e., for multiple classes , we concisely denote the
entire tree configuration vector by indexing the configuration
for each output edge of each of the classifiers

and the resource consumption vector for each classifier

Suppose that each classifier is uniquely placed on one of
different processing nodes. Let be the binary node as-
signment matrix that maps each classifier onto a processing
node, with

if classifier is placed on node
otherwise.

(7)

Given that processing node has available resources, any
feasible joint configuration of classifiers needs to satisfy

where

Hence, the entire cost minimization problem can be given as

such that (8)

Due to the non-convexity of the cost function, discovering the
optimal solution may require trying different starting points for
convex programming algorithms such as sequential quadratic
programming (SQP) [2]. In practice, due to the sharpness of the

2Exclusivity in the classifiers implies � � �� � � �.
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DET curve, the global minimum can often be found by selecting
a starting point near the origin, .

C. Discussion: Single Versus Multiple Operating Points
Per Classifier

Recall that using multiple operating points decouples the two
output rates by configuring each output class separately, i.e.,
and are configured independently. This enables flexibility in
terms of allowing data to be intelligently discarded or replicated
across both branches based on the cost functions. For example,
suppose a classifier uses thresholding on the resulting data pre-
diction scores and forwards all data with scores above 0 across
the “yes” branch and all data with scores below across the
“no” branch. If , all data between and 0 are dropped
from both branches, leading to load shedding. If , all data
between 0 and are transmitted across both branches, leading
to replication.

On the other hand, when a classifier uses one threshold or
operating point, the sum of output rates for each classifier is
equal to the input rate entering it. Under tight resource con-
straints, such a strategy may not be feasible and may require
the downstream classifiers to discard input data using “arbi-
trary load shedding.” Arbitrary load shedding effectively moves
the operating point below the DET curve, towards the origin

. Using multiple operating points can always
outperform arbitrary load shedding, since for any point below
the DET curve on an output edge, moving the point leftwards
(until it intersects the DET curve) reduces the false alarm prob-
ability while maintaining the same detection probability, which
decreases the overall cost while also reducing the throughout for
the respective edge.

In Fig. 2, we introduce four algorithms for comparison.
• Algorithm A uses the equal error rate (EER) configuration

for each classifier, where the probability of false alarm, and
the probability of misses across both output edges of each
classifier, are equal. This may seem an intuitive approach
when the costs are equal for all classes.

• Algorithm B minimizes the overall cost without consid-
ering resource constraints. Whenever a classifier is over-
loaded, arbitrary load shedding brings the effective oper-
ating point below the DET curve.

• Algorithm C use a single operating point for each classifier
as in Algorithm B but jointly determines the point on the
DET curve, and the percentage of output load to shed (ran-
domly) across each branch, such that resource consump-
tion is feasible, and the overall cost is minimized.

• Algorithm D selects multiple operating points per classifier
to independently filter data across each output edge.

III. EXPERIMENTAL RESULTS

A. Application Scenario: Classifying Sports Images

We performed experiments by applying our algorithms to a
tree topology of classifiers constructed for a sports image re-
trieval system [8]. Based on the natural hierarchy in data char-
acteristics, we constructed a classifier tree of the form given in
Fig. 3. Each classifier is implemented as a support vector ma-
chine (SVM) trained specifically to the characteristic it detects,
and each one uses up to 82 features, with complexity on the
order of 4000–21 000 support vectors. The DET curves for in-
dividual classifiers were measured by testing the classifier on a
set of images disjoint from the training set. We observed that

Fig. 2. Pictorial representations of configuration choices in algorithms A–D.

Fig. 3. Structure of a hierarchical sports image classifier system.

TABLE I
COMPLEXITY PER IMAGE FOR EACH CLASSIFIER. � IS GIVEN BY SECONDS

TO PROCESS EACH IMAGE, TIMES THE PROCESSOR SPEED

the complexity of processing one image is approximately pro-
portional to the number of support vectors. In Table I, we list the
approximate amount of processing complexity (normalized) per
image for different classifiers. The test image set consists of ap-
proximately 20 000 sports image scenes that are streamed at a
data rate of one image per second.

B. Effect of Resource Constraints on
Classifier Configurations

We tested the four algorithms for three different types of
system conditions and placements under equal cost for misses
and false alarms. The first assumes system resources are abun-
dant, and hence, rate constraints do not need to be considered
while configuring classifiers. The second involves placing clas-
sifiers on heavily resource constrained processing nodes in a
manner that reduces cross-talk between nodes, i.e., traffic across
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TABLE II
COSTS OF ALGORITHMS UNDER DIFFERENT RESOURCE

CONSTRAINTS AND CLASSIFIER PLACEMENTS

TABLE III
COST SAVINGS UNDER DIFFERENT COST FUNCTIONS

Fig. 4. Placement of classifiers (a) to minimize cross-talk between nodes and
(b) to ensure some level of failure resiliency. Note that different nodes have
different processing constraints. The constraints are measured in terms of the
processor speed (in cycles/second).

the network. The third involves placing classifiers on nodes hier-
archically to enable fault tolerance, where more important (up-
stream) classifiers are placed on more reliable nodes. The place-
ments for types 2 and 3 are shown in Fig. 4.

To evaluate our algorithms, we ran Algorithms B–D using
SQP from 50 different randomized starting points and provided
the minimum costs incurred by the application over all trials in
Table II. Note that Algorithms B and C show significant reduc-
tion in cost over the seemingly intuitive EER configuration for
all scenarios. In the non-resource constrained case, the cost of
EER was approximately 2.5 times that of Algorithms B and C.
For resource constrained cases, the cost of EER was 40%–50%
greater than Algorithms B and C, which demonstrates that the
structure of the tree and resource constraints need to be con-
sidered jointly in order to optimize a tree of classifiers. Finally,
in all cases, enabling multiple operating points (Algorithm D)
saves 6%–12% in cost over the Algorithms B and C due to in-
telligent filtering and replication.

C. Effect of Unequal Costs on Classifier Configurations

To further highlight the benefit of multiple operating points,
we considered two cost functions: 1) for all
classes and 2) for all classes. The experi-
ments were performed under loose resource constraints to high-
light the effects of cost.

Table III depicts the gains derived for each type of cost metric.
For high costs of false alarms, we discovered significant sav-
ings when load shedding at the output was considered (Algo-
rithm C). The reason for this large gain is that, unlike Algorithm

B, which always keeps the entire output load from each classi-
fier, Algorithm C can completely shed the output load whenever
the quality of decision (e.g., goodput to throughput ratio) falls
below a certain threshold. In our simulations, the load was com-
pletely shed by Algorithm C at the edges going into classifiers
“Winter Sports” and “Cricket.” Nevertheless, using multiple op-
erating points performed the best because rather than shedding
the entire load down certain branches, it could shed only data
objects of lower confidence.

For high costs of misses, a huge cost saving resulted from
using multiple operating points (approximately 21%) due to the
intelligent replication of data, which reduces the probability of
miss for each class. For example, we discovered that approxi-
mately 18% of the data from “Team Sports,”, 10% from “Base-
ball,” and 9% from “Winter Sports” was replicated.

IV. CONCLUSIONS AND FUTURE WORK

In this letter, we introduced the paradigm of jointly con-
figuring binary classifier trees to minimize misclassification
costs under resource constraints. By using multiple thresholds
for each classifier, significant cost savings can be achieved
through the intelligent filtering and replication of data. Future
work can consider more general processing topologies, such as
directed acyclic graphs, and classifiers instantiated on multiple
nodes, where many thresholds can be used to multicast “yes”
and “no” output data to downstream classifiers based on their
respective resource constraints. Joint classifier placement and
configuration under resource constraints can also be explored.
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