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Abstract—Multimedia stream mining applications require the
identification of several different attributes in data content, and
hence rely on a set of cascaded statistical classifiers to filter and
process the data dynamically. In this paper, we introduce a novel
methodology for configuring such cascaded classifier topolo-
gies, specifically binary classifier trees, in resource-constrained,
distributed stream mining systems. Instead of traditional load
shedding, our approach configures classifiers with optimized
operating points after jointly considering the misclassification
cost of each end-to-end class of interest in the tree, the resource
constraints for every classifier, and the confidence level of each
data object that is classified. The proposed approach allows for
both intelligent load shedding as well as data replication based
on available resources dynamically. We evaluate the algorithm
on a sports video concept detection application and identify huge
cost savings over load shedding alone. Additionally, we propose
several distributed algorithms that enable each classifier in the
tree to reconfigure itself based on local information exchange.
We analyze the associated tradeoffs between convergence time,
information overhead, and the cost efficiency of results achieved
by each classifier for each of these algorithms.

Index Terms—Binary classifier tree, networked classifiers,
resource constrained stream mining.

I. Introduction

THE PROCESSING and classification of continuous, high
volume data streams is of paramount importance for

many applications, including online financial analysis, real-
time manufacturing process control, search engines, spam
filters, fraud detection, online photo and video streaming
sites, security, medical services [1]–[5], and so on. Dis-
tributed stream mining systems have been recently developed
to support stream processing applications that require com-
plex topologies of distributed operators [6]–[9]. Decomposing
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applications as topologies of distributed processing operators
has merits that transcend the scalability, reliability, and per-
formance objectives of large-scale, real-time stream mining
systems [9]–[12]. Specifically, many stream classification and
mining applications implement topologies (ensembles such
as trees or cascades) of low-complexity binary classifiers
to jointly accomplish the task of complex classification [3],
[13]. Such a structure enables the successive identification of
multiple attributes in the data, as well as provides significant
advantages in terms of reduced resource consumption through
appropriate dynamic data filtering, based on the incrementally
identified attributes. It has been shown that using a tree of
binary classifiers can achieve better performance compared to
other techniques such as support vector machines (SVMs),
rule-based techniques, and neural nets for some applica-
tions [4], [14], [15]. Furthermore, using classifiers operating
in series with the same model (boosting [10]) or classifiers
operating in parallel with multiple models (bagging [11]) has
resulted in improved classification performance.

A key challenge in distributed real-time stream mining sys-
tems arises from the need to cope effectively with system over-
load due to large data volumes and limited system resources.
For instance, consider a sample stream mining application that
is used to analyze real-time sports video to detect different
concepts, as shown in Fig. 1. The application is represented
as a classifier tree based on the natural hierarchy of concepts,
where each classifier identifies a different characteristic of the
sports scene. Likewise, similar hierarchies exist in different
types of video content (e.g., news, entertainment) as well as
other types of multimedia. There is a large computational
cost incurred by each classifier (proportional to the data rate)
that limits the rate at which the application can handle input
video, and in situations with overload it is non-trivial to decide
the optimal course of action. Commonly used approaches
to dealing with this problem in resource constrained stream
mining are based on load-shedding, where algorithms de-
termine when, where, what, and how much data to discard
given the observed data characteristics, e.g., burst, desired
quality of service (QoS) requirements [16]–[22], data value
or delay constraints [23]. While naive load-shedding performs
well for simple data management jobs such as aggregation,
this is generally not the case for jobs involving sophisticated
data classification. Recent work on intelligent and QoS driven
load-shedding [24] attempts to maximize certain local quality
of decision measures based on the predicted distribution of
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Fig. 1. Video stream mining: real-time sports scene concept detection.

feature values in future time units. The performance of such
local load-shedding can be highly suboptimal in terms of end-
to-end performance, as data discarded at one stage may be
essential for a downstream (later stage) classifier. There has
also been some work on operator scheduling for minimizing
memory/resource requirements [25]–[27] and resource aware
data mining [28], [29].

An alternate approach to resource constrained stream min-
ing involves constructing topologies of classifiers based on
hierarchical semantic concepts, and allowing individual classi-
fiers in the topology to operate at different performance levels
given the resources allocated to them. The performance level
is determined by a classifier operating point that corresponds
to the selected tradeoff between probability of detection and
probability of false alarm. Examples of operating points in-
clude decision thresholds for likelihood ratio tests, or for SVM
normalized scores, and so on. Hence, instead of deciding on
what fraction of the data to process, as in load-shedding based
approaches, such an approach determines how the available
data should be processed given the underlying resource al-
location. A solution, based on this approach, for configuring
filtering applications that employ binary classifier chains (lin-
early cascaded classifiers) was proposed in [30]. Nevertheless,
general binary tree topologies go significantly beyond linearly
cascaded classifiers by providing greater flexibility in data
processing, while also posing different challenges in terms of
resource constrained configuration. Specifically, while excess
load can be easily handled within the optimization framework
for a binary classifier chain, using a single operating point
for each classifier in a tree generates two output streams
with a total sum output rate that is fixed. Hence, it may not
be possible to simultaneously meet tight processing resource
constraints for downstream classifiers along both output edges
when using only one operating point.

In order to address this limitation, we propose configuring
each classifier with multiple operating points, one for each
output, e.g., with multiple overlapping and non-overlapping
decision thresholds for the different classes. This directly
enables intelligent discard of low-confidence data across out-
put edges of each classifier when resources are scarce. Fur-
thermore, this also allows the intelligent replication of low-
confidence data across both positive and negative edges when
excess resources are available, which can significantly reduce

the number of classification misses. This paper makes the
following contributions.

1) We define an end-to-end utility function for a tree of
binary classifiers based on application-specific misclas-
sification costs for each class of interest.

2) We formulate the problem of configuring individual
classifiers with multiple operating points to maximize
the end-to-end utility while satisfying resource con-
straints imposed by deployment on a distributed set of
processing nodes.

3) We propose an algorithm based on sequential quadratic
programming for configuring these classifiers with mul-
tiple operating points—to enable intelligent data discard
and replication.

4) We prescribe several simplified variations of our algo-
rithm, and analyze their performance on a real appli-
cation for classification of sports video into different
contexts.

5) We present distributed configuration algorithms that en-
able optimization to be performed separately by each
classifier based on local information exchanges. We
measure experimentally the performance, converge time,
and information overhead of each algorithm.

Note that in this paper we focus on configuring individual
classifiers with multiple operating points, but do not modify
the underlying classification scheme. As mentioned earlier,
operating points represent tradeoffs between the probability of
detection and false alarm, available as configurable parameters
for a majority of classification schemes, such as support
vector machines, k-nearest neighbors, maximum likelihood,
random decision trees, and so on. This paper is organized
as follows. In Sections II and III, we discuss our model for
binary classifiers and classifier trees. We formulate the end-
to-end utility maximization problem and present a centralized
solution in Section IV. We also include a discussion on the
convergence of this algorithm, and a proof of the assertion on
multiple operating point configurations outperforming single
operating point configurations. In Section V, we introduce sev-
eral distributed algorithms for reconfiguring the classifier tree.
We present experimental results in Section VI and conclude
in Section VII with directions for future research.

II. Modeling Binary Classifiers: Accuracy and

Resource Consumption

A. Model for a Binary Classifier

A binary classifier partitions input data objects into two
classes: a “yes” class, labeled H0 and a “no” class, labeled
H1. An arriving data object is modeled by a random variable
X, where X ∈ H0 if the object belongs to class H0 and
X ∈ H1 if the object belongs to H1. The output of any
classifier X̂ may be modeled as a probabilistic function of
the input X. The proportion of correctly classified samples in
class H0 is captured by the probability of correct detection,
p0

D = Pr
{
X̂ ∈ H0|X ∈ H0

}
. The proportion of samples that

are falsely classified in H0 can be given by the false alarm
probability, p0

F = Pr
{
X̂ ∈ H0|X /∈ H0

}
. These probabilities
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Fig. 2. Model for a single classifier.

can similarly be expressed for data from class H1 as p1
D and

p1
F , respectively.1

Classifier performance is characterized by a detection error
tradeoff (DET) curve, i.e., the set of operating points

(
pe

F , pe
D

)
with e = 0, 1 obtained by tuning its parameters. For example,
in a Maximum Likelihood based classification scheme, differ-
ent operating points are obtained by modifying the threshold.
DET curves are concave and lie on or above the line pe

D = pe
F ,

between (0, 0) and (1, 1). Note that a DET curve allows us to
fully parameterize pe

D as a function of pe
F .

The ground truth of the input data (i.e., whether it belongs
to class H0 or H1) is given by the a priori probability π0 for
class H0 and π1 = 1 − π0 for class H1. The classifier labels
data as either H0 or H1 and outputs two data streams, one
per class. We consider two different measures, the outgoing
throughput and goodput in each of these output streams. These
correspond to the resulting total data rate, and good (correctly
labeled) data rate in each stream, respectively. Given a unit rate
of input into the classifier, the throughputs t0, t1 and goodputs
g0, g1 for each output stream may thus be determined as

t0 = π0p0
D + π1p0

F (1)

t1 = π1p1
D + π0p1

F

g0 = π0p0
D

g1 = π1p1
D.

Data mining applications have a cost associated with each
error made in classification. This misclassification cost can be
modeled as a linear function of the cost of missed detection
per unit rate (for each class)

(
c0
M, c1

M

)
, and the corresponding

cost of a false alarm
(
c0
F , c1

F

)
[31]. Hence, the average cost

c incurred by an application per unit data rate entering it
can be computed by weighting the a priori probability with
the probability of misses and false alarms, together with the
various costs, that is

c = c0
Mπ0(1 − p0

D) + c0
Fπ1p0

F (2)

+c1
Mπ1(1 − p1

D) + c1
Fπ0p1

F

= c0
M(π0 − g0) + c0

F (t0 − g0)

+c1
M(π1 − g1) + c1

F (t1 − g1).

Finally, we model computational resource requirements for
the classifier as being directly proportional to the rate of
data entering it. This is a reasonable model as classifiers
often perform the same set of operations on each data object.

1Note that when the classifier uses one operating point to label each data
item as H0 or H1 we have p1

D = 1 − p0
F and p1

F = 1 − p0
D. This coupling

is removed when we have multiple operating points, which we discuss in
Section II-B.

Hence, for unit data rate, the resources r consumed by the
classifier may be computed as r = α, where α is the resource
consumption factor.

B. Discussion: Use of Multiple Operating Points per Classifier

Before moving on to topologies of classifiers, we make
an important remark about the operating points of classifiers.
If a classifier uses a single threshold or operating point to
label each data item into exactly one class i.e., as H0 or
H1, we have p1

D = 1 − p0
F and p1

F = 1 − p0
D, since what

is not detected in one class is falsely detected in the other
class. However, depending on the cost function, it may be
beneficial to set different thresholds for each output class. This
enables flexibility in terms of allowing data to be intelligently
discarded or replicated across both branches based on the cost
functions. For example, suppose a classifier uses thresholding
on the resulting data prediction scores and forwards all data
with scores above 0 across the “yes” branch, and all data
with scores below d across the “no” branch. If d < 0, all
data between d and 0 is dropped from both branches, leading
to load shedding. If d > 0, all data between 0 and d is
transmitted across both branches, leading to replication. The
use of independent operating points for each edge outperforms
arbitrary load shedding or replication, as it ensures that the
data forwarded is more likely to be correctly classified, or the
data dropped is less likely to be correctly classified (a sketch
of the proof will be provided in Section IV-C). In fact, it can
be shown that in extreme cases, forwarding or shedding the
entire load across both edges can be optimal.

1) When complete replication is optimal: Consider a clas-
sifier system where the cost coefficients are identical for
each class, with ck

M = 1 and ck
F = 0. Since there is no

cost for false alarm, it is better to allow all data objects
into all classes, such that the probability of miss is zero.

2) When complete shedding is optimal: Consider the case
ck
M = 0 and ck

F = 1. Since each miss incurs no penalty,
it is best to shed all load at the input, as this prevents
any chance of false alarms in either class.

More importantly, using a single threshold naturally implies
that the sum of output rates along each output edge of the
classifier is equal to the input rate entering it. As we will
see later for cascaded classifiers under tight system resource
constraints (i.e., when both downstream classifiers are severely
constrained), such a strategy may not be feasible, and may
effectively require the downstream classifiers to discard data
using “arbitrary” (or random) load shedding. Random load
shedding is often sub-optimal compared to intelligently filter-
ing low confidence data. Due to the apparent benefits of using
multiple thresholding, for the rest of our formulations, we will
assume that a classifier can have different configurations for
each output.

III. Modeling Binary Classifier Trees

A. Accuracy and Utility

Consider now a set of I binary classifiers numbered
1, · · · , I cascaded to construct a tree topology, an example
of which, for I = 2 is shown in Fig. 3.
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Fig. 3. Example of a depth-2 tree of classifiers with three terminal classes.

TABLE I

Notations and Definitions

k, k ∈ {1, 2, ..., K} End-to-end class index

ck
F , ck

M Cost of false alarms and misses
For each data object in class k

i, i ∈ {1, 2, ..., I} Classifier id
vk
n, n ∈ {1, 2, ..., Nk} id of the nth classifier

In path from source to class k

ek
n, e

k
n ∈ {0, 1} Value of the output edge of vk

n leading
To class k (0 for “yes,” 1 for “no”)

tkn Throughput (rate) across output
Edge ek

n of classifier vk
n

gk
n Goodput (rate of correctly classified data)

Across output edge ek
n of classifier vk

n

φk
n Conditional a priori probability that input

To classifier vk
n belongs to output edge ek

n

Tek
n

vk
n

Matrix for throughput-goodput calculation

Of data passing through classifier vk
n(

p
ek
n

F

)
vk
n

False alarm configuration for output

Edge ek
n of classifier vk

n(
p

ek
n

D

)
vk
n

Probability of detection for output

Edge ek
n of classifier vk

n

PF Set of (false alarm) configurations
For all classifiers and output edges

Pk
F Set of configurations for all classifiers

On the path to class k

PF,i Set of configurations for all classifiers
Connected to classifier i

pF Vector of (false alarm) configurations
For all classifiers

ri Resource consumption of classifier i,
αi Resource consumption per unit input data rate

y = (y1, ..., yM ) Resource constraints for
Processing nodes {1, 2, ..., M}

A M × I placement matrix/mapping for
Classifiers to processing nodes

The topology of classifiers in Fig. 3 may be used to filter
and identify data from three (in general K) end-to-end classes
of interest. Each end-to-end class is thus determined after a set
of cascaded local classifications. Class k is characterized by
Nk—the number of classifiers that data from that class need
to pass through, vk =

(
vk

1, ..., v
k
Nk

)
—the sequence of classifier

indices in the path from source to class k, ek =
(
ek

1, ..., e
k
Nk

)
—

the sequence of branch “types” in the path (i.e., the binary
vector, where ek

n indicates whether the corresponding output
branch of classifier vk

n is a “yes” or “no”), ck
M, ck

F —cost of
miss and false alarm, t̄k, ḡk—the throughput/rate and goodput

of data entering class k, respectively, and π̄k, the a priori
probability of source data belonging to class k.

For each classifier vk
n, we define (p

ek
n

F )vk
n

and (p
ek
n

D )vk
n

to be
the probability of false alarm and detection along its output
edge ek

n. Note that because classifiers have a DET curve that

completely parametrizes (p
ek
n

D )vk
n

in terms of (p
ek
n

F )vk
n
, we can

denote the configuration of classifier vk
n along output edge ek

n

solely by (p
ek
n

F )vk
n
. Hence, we can define the entire (ordered)

set of configurations for classifiers along the path to class k

by

Pk
F =

{(
p

ek
1

F

)
vk

1

,
(
p

ek
2

F

)
vk

2

, ·,
(
p

ek
1

F

)
vk

Nk

}
(3)

and the entire set of configurations for all classifiers in the tree
as

PF =
K⋃

k=1

Pk
F . (4)

Note that vk
n corresponds to a classifier indexed by integer i ∈

1, ..., I and occurs in the path of at least two end-to-end classes
of interest (e.g., classifier 1 in Fig. 3). The configuration of
classifier i should not depend on the class k of an incoming
data object, since it is not known prior to processing what class
the object belongs to. Hence, for notational convenience, the
elements in PF can also be expressed as a 2I-dimensional
vector pF

pF =
[ (

p0
F

)
1

(
p1

F

)
1 · · · (

p0
F

)
I

(
p1

F

)
I

]T
. (5)

Consider now two successive classifiers along the path to
class k, classifier vk

n−1 and classifier vk
n, where n denotes

the index of the element in the set. The impact of filtering
at vk

n−1 on the received data stream at vk
n may be modeled

using the conditional probability functions linking the two
classifiers2

φk
n = Pr

{
X ∈ Hek

n

vk
n
|X ∈ Hek

n−1

vk
n−1

}
(6)

where
(
ek
n−1, e

k
n

)
represents one of the four possible combina-

tions (0, 0), (0, 1), (1, 0), (1, 1) corresponding to the “yes” and
“no” answers along the two successive branches. For the very

first classifier in the tree, we define φk
1 = Pr

{
X ∈ Hek

1

vk
1

}
.

The throughput for output data from classifier vk
n to classifier

vk
n+1, tkn, and the corresponding goodput gk

n, can be computed
from tkn−1 and gk

n−1 using a set of recursive relationships.
We denote the source stream rate as t0, and set the initial
conditions to be gk

0 = tk0 = t0. In other words, prior to entering
through the tree, each data object in the source stream is
considered correctly “classified" by the source as belonging
to one of the K classes. For analytical purposes, in the rest
of this paper we will normalize the throughput to be t0 = 1.
The goodput for both the “yes” as well as the “no” output
branches can be computed by

gk
n = φk

ng
k
n−1 · (p

ek
n

D )vk
n
. (7)

2For a tree topology only one data stream enters each classifier. Hence, we
do not need to include vk

n while parameterizing φ.
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As opposed to the goodput, the throughput is computed
differently for two different types of edges. When an edge
consists of the forwarding from the “yes” output of classifier
vk

n, (i.e., ek
n = 1), the throughput can be computed as

tkn = tkn−1 · (
p0

F

)
vk

n

+ φk
ng

k
n−1

((
p0

D

)
vk

n

− (
p0

F

)
vk

n

)
. (8)

Note that in the above expressions we use classifier exclusiv-
ity [32] to simplify computations.3 Now, the throughput for a
“no” output edge can be computed as

tkn =
(
p1

D

)
vk

n

(tkn−1 − gk
n−1) + (1 − φk

n)gk
n−1

(
p1

F

)
vk

n

(9)

+φk
ng

k
n−1

(
p1

D

)
vk

n

.

The throughput expression in (9) consists of three separate
terms that correspond to different types of data: bad data from
classifier vk

n−1 that is correctly rejected by classifier vk
n, good

data from classifier vk
n−1 that is falsely rejected by classifier

vk
n, and good data from classifier vk

n−1 that is correctly rejected
by classifier vk

n. Note that φk
n here denotes the conditional a

priori probability of data being rejected by classifier vk
n, since

class k lies on a path that uses the “no" output branch. Hence,
for two classes j and k that share classifier vk

i , but use opposite
output branches, φj

n = 1 − φk
n.

We can rewrite the above expressions more concisely in
matrix vector notation based on a set of transfer matrices

[
tkn
gk

n

]
= Tek

n

vk
n

[
tkn−1
gk

n−1

]
(10)

where Tek
n

vk
n

is given by

T0
vk

n
=

[ (
p0

F

)
vk

n

φk
n

((
p0

D

)
vk

n

− (
p0

F

)
vk

n

)
0 φk

n

(
p0

D

)
vk

n

]

T1
vk

n
=

[ (
p1

D

)
vk

n

(
1 − φk

n

) ((
p1

F

)
vk

n

− (
p1

D

)
vk

n

)
0 φk

n

(
p1

D

)
vk

n

]
.

Using the above relationship, the throughput and goodput
t̄k = tkNk

, ḡk = gk
Nk

for class k can be defined as

[
t̄k

ḡk

]
=

(
Nk∏
n=1

Tek
n

vk
n

)[
t0
g0

]
. (11)

Similarly, the a priori probability π̄k that data belongs to class
k obeys the following relation:

π̄k =
Nk∏
n=1

φk
n. (12)

The average end-to-end cost of misclassification for class k

can thus be computed as

ck
tot = ck

M(π̄k − ḡk) + ck
F (t̄k − ḡk). (13)

3We assume exclusivity in the classifiers, i.e., Pr

{
X̂ ∈ Hek

n

vk
n
|X /∈ Hek

n−1

vk
n−1

}
=

0. See [32] for details.

Finally, the end-to-end cost of misclassification, per unit data
rate, for the entire tree may be computed as

C =
K∑

k=1

ck
tot . (14)

B. Resource Consumption and Constraints

Due to the different high complexity operations that need
to be performed by each classifier on each data object,
limited computational resources in the system impose a heavy
constraint on the performance of the classifier tree when the
volume of the incoming data stream is large. As mentioned
in Section II, we model computational resource requirements
for each individual classifier as being directly proportional to
the rate of data entering it. In other words, each classifier
vk

n has a resource consumption factor αvk
n
, i.e., the amount of

resources required per unit rate. The input rate corresponds
to the throughput rate tkn−1 from classifier vk

n−1. Hence, the
resources consumed by classifier vk

n is given by rvk
n

= αvk
n
tkn.

Note that this notation implies that rvk
n

= rvk′
n′

if vk
n = vk′

n′ , since
due to the tree structure, there is only a single input stream
per classifier that is shared by both end classes.

Note also that a significant portion of the computational
complexity is associated with feature extraction and prepro-
cessing. Using domain-specific features (e.g., motion vector
field model [33]) will lead to better performance (i.e., higher
DET curves) and therefore better utility that directly affects
the outcome of the configuration. However, as more and more
specialized features are used—potentially by each different
classifier, it is wasteful to gather all the feature extraction
into one common process. Instead, the feature extraction may
be distributed across the tree, separately for each classifier
(domain independent features can still be extracted jointly).
Hence, when domain-specific feature extraction is required,
each classifier incurs an additional computational complexity
based on the selected features. This complexity can be factored
into the complexity coefficients αvk

n
tkn without affecting the

framework or the solution. We can now write the resource
consumption vector as

r (PF ) =
[

r1 · · · rI

]T
.

Suppose now that each classifier is uniquely placed on one of
M different processing nodes. Let AM×I be the binary node
assignment matrix that maps each classifier onto a processing
node, with

Am,i =

{
1 if classifier i is placed on node m,
0 otherwise.

(15)

Given that processing node m has ym available resources, any
feasible configuration of classifiers in the tree needs to satisfy
the constraint

Ar (PF ) ≤ y (16)

where y =
[

y1 · · · yM

]T
.



250 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 21, NO. 3, MARCH 2011

IV. Configuring Classifier Topologies

In this section, we present and solve the problem of con-
figuring the classifier tree with multiple operating points per
classifier to minimize the end-to-end cost of misclassification
while meeting the system imposed resource constraints.

A. Problem Formulation

The objective of the classifier system is to minimize the total
cost of misclassification subject to system resource constraints.
By negating the total cost from (13) and (14) and considering
resource constraints, we obtain the following utility maximiza-
tion problem:

maxpF
U (pF ) =

K∑
k=1

ck
M

(
ḡk

) − ck
F

(
t̄k − ḡk

)︸ ︷︷ ︸
uk(Pk

F )

(17)

s.t. Ar (PF ) ≤ y and 0 ≤ pF ≤ 1

where we drop the term
∑K

k=1 ck
Mπ̄k in the objective function

as it depends only on stream characteristics and application
cost functions, and not on the classifier configurations. Note
that the terms t̄k and ḡk can be computed using the recursive
relationships defined in (11).

B. Solution via Convex Programming

In this section, we present a solution to (17) using sequential
quadratic programming (SQP). SQP is a well-known, iterative
optimization technique that models the nonlinear optimization
problem as an approximate quadratic programming subprob-
lem at each iteration [34], and ultimately converges to a locally
optimal solution. SQP requires calculating the Lagrangian of
the primal problem. The Lagrangian L(pF , λ, ξ, ν) is given by

L(pF , λ, ξ, ν) = U(pF ) − ξT (pF − 1)

+νT pF − λT (Ar(PF ) − y)

where λ ∈ �M , ξ, ν ∈ �I correspond to the inequalities
Ar(PF ) ≤ y, pF ≤ 1, and pF ≥ 0, respectively. At each
iteration (j), SQP approximates the Lagrangian function by a
quadratic function, and linearizes the constraints

maxz
1
2 zT �(j)z + ∇ (

U
(
(pF )(j)

))T
z

s.t. ∇ (
Ar

(
(PF )(j)

) − y
)T

z + Ar
(
(PF )(j)

) ≤ y (18)

(pF )(j) + z ≤ 1, and (pF )(j) + z ≥ 0

where z is the search direction given the current configuration
approximation (pF )(j). The matrix �(j) is a positive definite
approximation of the Hessian matrix of the Lagrangian func-
tion and can be updated using any quasi-Newton method, e.g.,
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [35].
The (j + 1)(th) approximation is then computed as

(pF )(j+1) = (pF )(j) + γ (j)z (19)

where the step length parameter γ (j) is determined by an ap-
propriate line search procedure such that a sufficient decrease
in the merit function is obtained. The algorithmic implemen-
tation of our solution based on SQP (see Algorithm 2) is
presented in Algorithm 1.

Algorithm 1 Maximize Utility
(
G, A, ck

M, ck
F , r, y

)

Set termination threshold ε, maximum number of iterations
J , and starting configuration (pF )(0)

for j = 0 to J do
Compute tkn, gk

n for all 1 ≤ n ≤ Nk, 1 ≤ k ≤ K

Compute rvk
n

(
(PF )(j)

)
:= αvk

n
∗ tkn−1.

Compute y := Ar
(
(PF )(j)

)
Compute U

(
(pF )(j)

)(
(pF )(j+1) , �(j+1)

)
= SQP

(
(pF )(j) , �(j),U, r

)
if ‖ (pF )(j+1) − (pF )(j) ‖< ε then

break;
end if

end for
return (pF )(j+1)

Algorithm 2 SQP (pF , �,U, r)

Retrieve placement matrix A.

Retrieve resource constraints vector y.
Update Hessian approximation �new.
Compute search direction z using (17).
Compute step size γ .
Update (pF )new := (pF ) + γz
return

(
(pF )new , �new

)

Because of the gradient descent nature of the SQP algo-
rithm, the convergence may only be locally optimal, as it is
not possible to guarantee convergence to the global optimum.
However, the SQP algorithm can be initialized with multiple
starting configurations in order to find a better local optimum
(or even the global optimum). Since the number and size
of local optima depends on the shape of the various DET
curves of each classifier, a rigorous bound on the probability of
finding the global optimum cannot be proven. However, certain
start regions are more likely to converge to better local optima.
For example, the operating point where

(
p

ek
n

F

)
vk

n

= 0 for all

classifiers is a saddle point, and when starting near this point,
the SQP algorithm tends to choose the steepest slope in terms
of utility. Moreover, the slope of the DET curve is often very
steep near

(
p

ek
n

F

)
vk

n

= 0, such that high detection probabilities

can be obtained under low false alarm probabilities near the
origin. Hence, the global optimum often lies along this low(
p

ek
n

F

)
vk

n

region. While starting near the origin does not guar-

antee that the point of convergence is the global optimum, intu-
itively, near optimal solutions can be found by starting the SQP
near the origin. The starting point and solution convergence
will be discussed in more detail in the experimental section.

C. Why Multiple Operating Points Always Outperform Single
Operating Points

An important issue to consider is whether using multiple
operating points is indeed intelligent in the sense that it
performs at least as well as using a single operating point
per classifier, and then relying on “arbitrary” load shedding.
In this subsection, we show that this is always true.
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Fig. 4. Operating region for classifier (Si).

The impact of “arbitrary” (or random) load shedding on
classifier performance may be modeled equivalently as moving
the operating point of the classifier below the DET curve, as
shown in Fig. 4. The blue curve represents the DET curve,
while the black dotted line indicates regions accessible through
random load shedding given a fixed configuration. When some
processing is involved using the DET curve, and some fraction
of the output load is randomly shed (or randomly forwarded),
the operating point will lie somewhere within the convex
region given by the DET curve (blue), and the line pF = pD

(red), as indicated by the black dots. When the entire load
is shed, the operating point is (0, 0). When the entire load is
forwarded without processing data objects (e.g., in the case of
“arbitrary” replication), the operating point is (1, 1). Note that
the use of one operating point couples the probabilities for the
two classes as p1

D = 1 − p0
F and p1

F = 1 − p0
D, and therefore

the entire optimization problem may be formulated purely in
terms of p0

D and p0
F . In this case we cannot parameterize pD

in terms of pF as the selected point no longer lies on the DET
curve. Instead, pD can be seen as an independent variable that
has constraints coupled with the corresponding pF , where the
point (pF, pD) must lie above pF = pD and below the DET
curve. We denote this feasible set for each classifier i by S0

i

and S1
i for ((p0

F )i, (p0
D)i) and ((p1

F )i, (p1
D)i), respectively.

Hence, we propose the following effective optimization
problem for random output load shedding:

max
pF

K∑
k=1

uk
(
Pk

F ,Pk
D

)
(20)

s.t. Ar
(
Pk

F ,Pk
D

) ≤ y((
p0

F

)
i
,
(
p0

D

)
i

) ∈ S0
i and

((
p1

F

)
i
,
(
p1

D

)
i

) ∈ S1
i ∀i.

It can be shown that regardless of the configurations of other
classifiers, the utility unilaterally increases in the direction of
the DET curve for each classifier configuration (See Appendix
A). Consequently, the optimal solution must lie on the DET
curve of each classifier, i.e., U∗

Mult ≥ U∗
Sing, where U∗

Mult is
the optimal utility obtained using a multiple-threshold config-
uration without random load shedding, and U∗

Sing the optimal
utility using a single-threshold configuration with random load
shedding.

Another important consequence of this analysis is that
the utility function does not have any local maxima in the

interior of the feasible region. Hence, optimization solutions
that consider both random load shedding/replication options
and intelligent load shedding/replication options will always
choose purely intelligent schemes (i.e., schemes that operate
on the DET curve only). In other words, by allowing the use of
multiple operating points, optimization solutions will always
choose feasible solutions without random load shedding.

V. Distributed Optimization for Classifier

Cascades

While solving a centralized SQP problem is tractable for
small classifier trees, since only a few classifier configura-
tions need to be optimized, the complexity both in terms
of informational and computational overhead can be very
high for a large system with many classifiers, especially
when the system needs to be reconfigured frequently in a
dynamic environment. Moreover, centralized algorithms have
a single point of failure, such that if the central controller
fails, the system can no longer adapt to time-varying data
streams or nodal resource constraints. As a practical alternative
to the centralized approach, we propose several distributed
approaches to enable classifiers in the tree to iteratively adapt
to locally optimal configurations based on local information
exchanges and low complexity operations.

A. Distributed Optimization Without Resource Constraints

To keep the formulation simple, we will first ignore resource
constraints. Recall from (17) that the objective for the classifier
tree is to maximize the utility over all branches, U(PF ) =∑K

k=1 uk(Pk
F ). In the distributed algorithm, each classifier i

requires knowledge of the configurations (across the relevant
branches) of its predecessors as well as successors in the tree.
We denote this information as

PF,i =
⋃

k:∃n,i=vk
n

Pk
F . (21)

This configuration information is then used to compute clas-
sifier i’s local utility function, given by

U i
(
PF,i

)
=

∑
k:∃n,i=vk

n

uk
(
Pk

F

)
(22)

We denote U i
(
PF,i

)
as the local utility function for classi-

fier i, which is a partial sum of the global utility function
U(PF ). Hence, U(PF ) can also be regarded as a potential
function [36], where unilaterally increasing U i

(
PF,i

)
by re-

configuring classifier i also increases U(PF ) by the same
amount. In other words, by reconfiguring to optimize the
local utility, the classifier also improves the overall utility.
Since the potential function is upper bounded, e.g., a loose
upper bound is

∑K
k=1

(
ck
F + ck

M

)
, it can be proven that such

a sequence of unilaterally reconfiguring each classifier in the
tree is guaranteed to converge to a Nash equilibrium [36],
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Fig. 5. Coloring for simultaneous classifier reconfiguration. (a) Information
dependence. (b) Minimal coloring scheme.

Algorithm 3 Distributed Potential-based Algorithm for Utility Max-
imization (DP)

Set initial configuration p(0)
F , j = 1, and maximum number

of iterations J

repeat
for each independent set of classifiers i do

(p0
F )i, (p1

F )i := arg maxp0
F ,p1

F
U i

({
p0

F , p1
F

}
∪ (

PF,i − {
(p0

F )i, (p1
F )i

}))
for each classifier i′ ∈ PF,i − i do

Transmit ((p0
F )i, (p1

F )i) to update information at
classifier i′.

end for
end for
j ⇐ j + 1
Set (p0

F )(j)
i := (p0

F )i, (p1
F )(j)

i := (p1
F )i for all classifiers i.

until j≥J or
∣∣∣p(j)

F − p(j−1)
F

∣∣∣2
≤ ε

return
(
(p0

F )i, (p1
F )i

)(j)
for all classifiers.

which corresponds to a local optimal solution when resource
constraints are loose.4

Our local utility-based solution enables information to be
partially distributed, since information needs only be ex-
changed among local set of classifiers. Hence, classifiers that
are not part of each other’s local set can be simultaneously
reconfigured without affecting each other’s local utilities (i.e.,
information exchange is not needed). In other words, by draw-
ing a dependency graph with edges connecting classifiers that
are part of the same subtrees, the problem of configuring all
classifiers in a minimal number of iterations becomes a graph
coloring problem of independent classifiers. For example, the
two-level binary tree shown in Fig. 5 has two minimal coloring
schemes with three colors each, enabling all seven classifiers
to be reconfigured using only three intervals for information
exchange, thereby enabling the algorithm to converge faster.
Based on this observation, we derive the distributed potential-
based algorithm for utility maximization under no resource
constraints, as shown in Algorithm 3.

B. Distributed Optimization with Resource Constraints

When each classifier must be configured subject to resource
constraints, the potential-based Algorithm P may no longer
converge to a local optimum. This is because a classifier
may reconfigure unilaterally to maximize its local utility

4The Nash equilibrium implies that the partial first derivatives with respect
to the equilibrium point are zero. While this property exists at either a local
maximum or a saddle point, the probability of converging unilaterally to an
unstable saddle point is zero unless the starting point is intentionally picked
to ensure convergence to the saddle point.

Algorithm 4 Distributed Lagrangian-based Algorithm for Utility
Maximization (DL)

Set initial configuration p(0)
F , j = 1, and maximum number

of iterations J

repeat
Update λ(j) using (23).
Broadcast components of λ(j) to relevant classifiers.
for each independent set of classifiers i do

(p0
F )i, (p1

F )i := arg maxp0
F ,p1

F
U i

({
p0

F , p1
F

}
∪ (

PF,i − {
(p0

F )i, (p1
F )i

})) − (
λ(j)

)T
(Ar (PF ) − y)

for each classifier i′ ∈ PF,i − i do
Exchange (p0

F )i, (p1
F )i to update information at clas-

sifier i′.
end for

end for
Exchange throughput information with affected resource
nodes.
j ⇐ j + 1
Set (p0

F )(j)
i := (p0

F )i, (p1
F )(j)

i := (p1
F )i for all classifiers i.

until (j≥J or
∣∣∣p(j)

F − p(j−1)
F

∣∣∣2
≤ ε) and Ar (PF ) = R

return
(
(p0

F )i, (p1
F )i

)(j)
for all classifiers i.

Algorithm 5 Distributed Simultaneous Reconfiguration Algorithm
(DS)

Set initial configuration p(0)
F , j = 1, and maximum number

of iterations J

repeat
Update λ(j) using (23).
Broadcast components of λ(j) to relevant classifiers.
for all classifiers i do

(p0
F )i, (p1

F )i := arg maxp0
F ,p1

F
U i

({
p0

F , p1
F

}
∪ (

PF,i − {
(p0

F )i, (p1
F )i

})) − (
λ(j)

)T
(Ar (PF ) − y)

end for
Exchange new configurations globally.
Exchange throughput information with affected resource
nodes.
j ⇐ j + 1
Set (p0

F )(j)
i := (p0

F )i, (p1
F )(j)

i := (p1
F )i for all classifiers i.

until (j≥J or
∣∣∣p(j)

F − p(j−1)
F

∣∣∣2
≤ ε) and Ar (PF ) = R

return
(
(p0

F )i, (p1
F )i

)(j)
for all classifiers.

while making many resource constraints tight for downstream
classifiers, thus preventing other classifiers from reconfiguring
to improve performance of their local utility metrics. Under
such conditions, it is likely that a poor resource allocation
solution is obtained which is not a local maximum.

To overcome the problems introduced by resource con-
straints, we propose a distributed algorithm that iteratively
exchanges information between resource nodes and classifier
chains, until the solution converges. Instead of applying re-
source constraints, the algorithm makes use of a Lagrangian
multiplier vector λ for resource consumption. Based on the
value of λ(j) at each iteration j, each classifier reconfigures by
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solving the problem

(p0
F )i, (p1

F )i := arg max
p0

F ,p1
F

U i
({

p0
F , p1

F

} ∪ (
PF,i − {

(p0
F )i, (p1

F )i
})) − λT (Ar (PF ) − y).

After each classifier reconfigures, each component of the
Lagrangian multiplier λm corresponding to a specific resource
node m, is updated by

λ(j+1)
m =

[
λ(j)

m + β(j) (Amr (PF ) − ym)
]+

(23)

where [x]+ = max(0, x), Am denotes the mth row of placement
matrix A, and β(j) is a positive scalar sequence that has the
following properties:

β(j) → 0 as j → ∞ and
∞∑
j=1

β(j) = ∞ (24)

to guarantee convergence [37]. One sequence which works
well in practice is β(j) ∝ 1/j. The Lagrangian has the
following interpretation: the slope of each utility function is
increased or decreased depending on whether the demanded
resources at each node exceeds the available resources. This
drives each classifier to decrease its throughput accordingly
if certain resource nodes are overused. Note that while the
formulation in (23) is written as a function of the entire set
of configurations PF , the only information that is required
are the resource availabilities at all downstream classifiers in
PF , since the configuration of classifier i will not affect. We
now prove that the algorithm converges to a locally optimal
solution.

Proposition 1: There exists a distributed algorithm that uses
sequences of updates from (23) and (24) and converges to a
locally optimal solution.

Proof: The proof is a direct result of the fact that
repeatedly updating configurations via (23) achieves a Nash
equilibrium, or a local optimum, of the unconstrained prob-
lem [36]

max
PF

U (PF ) − λT (Ar (PF ) − y). (25)

Repeatedly solving (25) and updating the Lagrangian variable
using (25) is equivalent to the subgradient method, which has
been proven to converge to a local optimum [37].

The pseudocode for the Lagrangian-based distributed Al-
gorithm DL that alternates between primal (23) and dual (23)
updates is given in Algorithm 4. In general, one could also run
several iterations of (23) to ensure convergence to (25) before
updating the dual variable. Additionally, we may consider
another distributed approach shown in Algorithm 5, where
between each dual update, all classifiers are simultaneously
reconfigured based only on their local utility functions during
previous iterations. In other words, there is no information ex-
change used to update utility functions between dual variable
updates. Instead, all classifiers reconfigure simultaneously and
at the same time exchange their requirements with processing
nodes. During the following iteration, the processing nodes

update the Lagrangian cost and submit this information back
to the classifier elements. This algorithm is similar to the
nonlinear Jacobi algorithm, which has strict requirements
for convergence that may not be satisfied by the classifier
tree utility function [38]. In particular, simultaneously re-
configuring classifiers can have unpredictable results on the
utility, since reconfiguring one classifier changes the shape
of the utility function for other classifiers, thus shifting their
(unilaterally) optimal configurations. However, we will later
show experimentally that this approach can lead to a faster
adaptation rate under certain classifier placements.

VI. Experimental Results

A. Description of Classifiers, Concepts, and Complexity

To evaluate the performance of our proposed approach,
we performed experiments by applying our algorithms to a
set of sports video classifiers supplied by IBM’s Multimedia
Analysis and Retrieval Searching Service (MARVEL) [39].
Each state-of-the-art classifier is implemented as a SVM, and
is trained specific to the characteristic it detects. The classifiers
use up to 82 features, such as color, texture, and so on, which
are extracted from the key-frame images.5 The DET curves
for individual classifiers were experimentally measured by
testing the classifiers on a set of key-frames disjoint from
the training set. The number of support vectors (complexity
of the classifier) varied across different types of classifiers,
but was generally of the order of 4000–21 000. Based on
simulations, we observed that the complexity of processing
one key-frame (image) is approximately proportional to the
number of support vectors. In Table II, we list the approximate
amount of processing complexity (normalized) per image for
various different classifiers in our repository. In this table,
C is a normalization constant for the complexity of various
classifiers, given by the product of the average time of pro-
cessing each image, and the speed of the processor. The total
set consisted of approximately 20 000 training frames, as well
as 20 000 test frames, streamed at a data rate of 1 frame per
second through the system.6 Note that streaming 1 key frame
per second is likely to correspond to video with much higher
frame rates, since scene changes typically occur over several
seconds.

B. Motivating Example: Comparison of a Tree Topology
Against a Parallel Topology

To demonstrate classification quality under resource con-
straints, we consider an example application that detects
concepts Little League (subset of baseball), Basketball, and
Cricket from image frames. We consider for this application

5We note that each classifier used in our experiment is implemented based
on low-level features such as color correlogram, edge histogram, and so on.
While other higher-level, domain specific features can also be used to improve
the accuracy of individual classifiers [33], this is not the focus of this paper.
Our optimization approach however can be applied to any type of classifiers.

6We note also that key-frame extraction and a one-time step for 82-
dimensional feature extraction must be performed before classification. Since
extraction requires near constant complexity, it can be performed on a
given node, and the remaining resources on that node can be used for the
classification process.
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TABLE II

Processing Complexity per Image

Classifier Team Sports Baseball Little League
Complexity 0.3884 × C 0.1761 × C 0.1307 × C

Classifier Basketball Cricket Winter Sports
Complexity 0.0772 × C 0.2006 × C 0.3199 × C

Classifier Ice Sports Skating Skiing
Complexity 0.2223 × C 0.2403 × C 0.2608 × C

Classifier Racquet Sports Tennis –
Complexity 0.1276 × C 0.1720 × C –

Fig. 6. Motivating classifier topologies. (a) Sports concept detection in
parallel. (b) Sports concept detection with tree.

two possible topologies of classifiers placed on a single
processing node, as shown in Fig. 6. We assume that after
feature extraction, the remaining resources left for classi-
fication is 0.3C per second. The first scheme involves a
parallel placement of classifiers for little league (subset of
baseball), basketball, and cricket images, where the stream is
filtered separately across each of the three classifiers. Note
that because there are insufficient resources for processing
the entire stream, a significant fraction of the load must be
shed. For simplicity, we assume that data is randomly shed
at the input of each classifier (i.e., buffer overflow) if the
stream volume is too high. However, we mention that there
are smarter ways to perform load shedding under different
assumptions (e.g., temporally correlated data [24]).

The second scheme involves tree-based placement, where
we add in the baseball classifier to build a tree of interest and
allow classifiers in the tree to use multiple operating points,
such that data objects can be intelligently filtered subject
to resource constraints. In Table III, the resulting effective
probabilities of detection and false alarms for each class are
listed. Likewise, the cost of misclassification, as defined in
Section III, with cM = 1 and cF = 1 (i.e., equal cost of miss and
false alarm), is provided. The corresponding confusion matrix
for the tree-based topology is given in Table IV, where each
row corresponds to the true number of data objects belonging
to that class, and each column corresponds to the number of
data objects labeled as belonging to that class. Note that the
detection probability is low since a large fraction of the load
must be shed due to system resource constraints. Under such
constraints, the tree-based topology with multiple operating
points is able to achieve a comparable detection rate under
a much lower false alarm rate, as it is able to intelligently
discard low confidence data along paths of classifiers. Note
that while the detection rate of cricket is low in the tree-based
topology, this is attributed to the fact that the cricket classifier

TABLE III

False Alarm and Detection Probabilities

Class Parallel pF Parallel pD Tree pF Tree pD

Little League 1.86% 48.14% 0.52% 48.68%
Basketball 4.04% 45.96% 0.21% 58.68%
Cricket 5.15% 44.85% 0.08% 10.97%
Cost of Error 0.2236 0.0729

TABLE IV

Confusion Matrix for Tree-Based Topology

Little League Basketball Cricket None
Little League 111 0 0 3
Basketball 0 294 0 0
Cricket 0 0 53 5
None 102 38 14 269

has a lower DET curve than the other classifiers, and hence
it operates better at a steeper point of the slope where almost
no false alarms occur. From our evaluations we observe that
the improvements achieved by the tree configuration increases
with tightening resource constraints (reduced resources).

C. Description of Centralized Solutions Used for Comparison

Consider now a larger classification tree consisting of 11
end-to-end classes, as shown in Fig. 1 in the introduction.
The classes of images consist of little league, non-little league
baseball, basketball, cricket, other team sports (e.g., soccer),
figure skating, other ice sports (e.g., hockey), skiing, other
snow sports (e.g., snowboarding), tennis, other racquet sports
(e.g., badminton), and other miscellaneous sports (e.g., bik-
ing). In our experiments, we compared four different cen-
tralized solutions for configuring classifiers. The first three
solutions use a single operating point per classifier, while the
last solution allows for multiple operating points per classifier,
where data objects can be classified under multiple classes, or
dropped. The algorithms are described below.

1) Algorithm A uses the equal error rate (EER) configura-
tion for each classifier, i.e., the point where the DET
curve crosses the line pF = 1 − pD. This ensures that
the probability of false alarm, and the probability of
misses across both output edges are equal. This may
seem an intuitive approach when the costs are equal for
all classes.

2) Algorithm B jointly determines the operating point of
each classifier to minimize the overall cost (maximize
performance) without considering resource constraints.
Conventional probabilistic load shedding techniques are
then applied to overloaded classifiers. Hence, if a frac-
tion of stream data is shed at the input of a classifier, the
goodput and throughput are proportionally decreased,
and the effective operating point is brought below the
DET curve.

3) Algorithm C determines a single operating point for each
classifier in the same way as algorithm B, but jointly
determines the point on the DET curve, as well as the
percentage of output load to shed (randomly) across each
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Fig. 7. Placement of classifiers. (a) Minimized node cross-talk. (b) Failure
resilient.

output branch, such that the resulting resource consump-
tion is feasible, and the overall cost is minimized. This
solution is a simple extension of the algorithm in [30].

4) Algorithm D selects multiple operating points per classi-
fier to independently filter and replicate data across each
output edge.

D. Effect of Resource Constraints on Classifier Configurations

While the optimal placement of classifiers on nodes is
beyond the scope of this paper, various placements were
considered for practical reasons. Specifically, we considered
three different types of system conditions and placements. The
first type assumes system resources are abundant and hence
rate constraints (and placement) do not need to be considered
while configuring classifiers. The second type involves placing
classifiers on heavily resource constrained processing nodes
in a manner that reduces cross-talk between nodes, i.e., traffic
across the network. The third type involves placing classifiers
on nodes in a hierarchical fashion to potentially enable fault
tolerance, where the most important (upstream) classifiers
are placed on the most reliable nodes. The two different
placements for conditions in type 2 and 3 are shown in
Fig. 7. Note that while we have one node with four times
the processing power as the other three nodes, this is also
equivalent to instantiating the classifiers on four different
nodes with 10C processing power, configuring each instan-
tiation with equal operating points, and routing the results to
the same destination. Note that similarly, parallelizing across
multiple nodes can also be used to improve the bottleneck
associated with computationally intensive operations such as
feature extraction.

To evaluate the performance of our algorithms, we ran
Algorithms B-D using SQP repeatedly from 50 different
randomized starting points, and provided the minimum cost
incurred by the application over all trials in Table V. Note
that the performances of Algorithms B and C show significant
reduction in cost over the EER configuration for all scenarios.
In the non-resource constrained case, the cost of the EER was
approximately 2.5 times the cost of Algorithms B and C. For
the resource constrained cases, the cost of EER was 40-50%
greater than that of Algorithms B and C.

Note that under resource constraints, Algorithm C shows mi-
nor improvement over Algorithm B, since it explicitly config-
ures classifiers based on knowledge of the utility reduction as
a result of load shedding. However, when resource constraints

TABLE V

Misclassification Cost (Ck
M = Ck

F = 1, ∀k)

Algorithm No Resource Placement Placement
Constraints in Fig. 7(a) in Fig. 7(b)

A 0.8303 1.2971 1.3604
B 0.7742 0.9226 0.9442
C 0.7907 0.9158 0.8964
D 0.6959 0.8640 0.8419

are very loose, there is no real advantage in using Algorithm C
over Algorithm B, as they have the same global optimal point
under single threshold configuration per classifier. Finally, in
all cases, enabling multiple operating points (Algorithm D)
saves 6–12% in cost over the Algorithms B and C, since
each classifier can operate on the DET curve for its respective
output edge, leading to higher quality data filtering.

To provide a comparison of the accuracy and volume of data
processed using each algorithm, the corresponding average
false alarm and detection probabilities for the first place-
ment are given as follows: (12.69%, 11.08%) for Algorithm
A, (11.84%, 15.02%) for Algorithm B, (4.33%, 9.04%) for
Algorithm C, and (3.17%, 23.92%) for Algorithm D. Note that
Algorithm D achieves the highest detection rate at the lowest
false alarm rate.

E. Effect of Unequal Costs on Classifier Configurations

In this section we consider the effects of different cost
functions on the performance of each algorithm. In the first
scenario, we set the cost functions to be ck

M = 1, ck
F = 4

for all classes k. In the second scenario, we set the cost
functions to be ck

M = 4, ck
F = 1 for all classes. The experiments

were performed under loose resource constraints such that the
effect of the cost function on the resulting costs could be
highlighted. Table VI depicts the resulting costs achieved by
each algorithm.

For high costs of false alarms, we discovered significant
cost savings when load shedding at the output was considered
(Algorithm C). The reason is that, unlike Algorithm B, which
always keeps the entire output load from each classifier,
Algorithm C can completely shed the output load whenever
the quality of decision (e.g., goodput to throughput ratio)
falls below a certain threshold. In our simulations, the load
was completely shed by Algorithm C at the edges going into
classifiers “Winter Sports” and “Cricket.” Nevertheless, the
best solution using multiple operating points performed better
because rather than shedding the entire load down certain
branches, it could intelligently shed only the data objects with
lower confidence levels.

For high costs of misses, a 21% cost savings resulted from
using multiple operating points. This is due to the intelligent
replication of data, which reduces the probability of miss for
each class. For example, we discovered that approximately
18% of the data from “Team Sports” was replicated and
transmitted along both the “yes” and “no” output edges, while
10% of the data from “Baseball” was replicated, and 9% of
data from “Winter Sports” was replicated.
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TABLE VI

Misclassification Cost Under Different ck
M, ck

F

Alg. ck
M = 1, ck

F = 4 ck
M = 4, ck

F = 1
A 2.0757 2.0757
B 1.9356 1.9355
C 0.9655 1.9365
D 0.8703 1.5438

TABLE VII

Evaluation of Distributed Algorithms [Fig. 7(a) and b]

Algorithm L S P
Placement 7(a) 7(b) 7(a) 7(b) 7(a) 7(b)

Msg/interval 9.1 8.6 32 21.5 9.2 8.1
Conv. time 120 100 48 N/A 9 12

Tot msgs exch 1092 860 1536 N/A 83 97

ck
F = ck

M cost 0.852 0.847 0.854 0.857 0.868 0.847

4ck
F = ck

M cost 2.842 3.948 2.858 3.948 3.158 3.948

F. Evaluation of the Distributed Algorithms

We analyzed the misclassification cost at convergence, con-
vergence time and the amount of information exchanged for
distributed algorithms DL, DS, and DP presented in Section IV.
We measured convergence time of the distributed algorithms
in number of iterations, where an iteration corresponds to
a period between dual and primal updates, which may be
slightly different from the actual time required for computation
and information exchange in each of the three algorithms.
Table VII shows these results for two different cost functions
for the crosstalk-minimizing placement [Fig. 7(a)] and the
failure-resilient placement [Fig. 7(b)], along with the number
of messages exchanged per interval, the approximate con-
vergence time (time to obtain a configuration pF of within
Euclidean distance 10−4 of its limit point), and the total
number of messages exchanged before convergence. In all
of our experiments, each distributed algorithm starts iterating
from the point pF = 0 for all classifiers and branches, based
on our observations that this yields the minimal cost solutions.

First, note that for both the crosstalk-minimizing and failure-
resilient placements, Algorithm DL always provides the best
cost value upon convergence (and is in fact within 0.01 of
the centralized solution). However, the convergence time is
long, since it needs to update the Lagrangian parameters as
well as exchange configuration information between different
classifiers. On the other hand, Algorithm DS has a significantly
lower convergence time than Algorithm DL for the crosstalk-
minimizing placement, but it does not always converge for
the failure-resilient placement. Finally, Algorithm DP had the
quickest convergence time (an order of magnitude less than
both Algorithm DL and Algorithm DS), since the Lagrangian
vector, which constantly modifies the shape of the utility func-
tion for the other algorithms, does not need to be considered.
However, Algorithm DP is not guaranteed to converge to an
efficient solution under resource constraints.

Algorithm DS had a higher information exchange overhead
than Algorithm DL due to frequent communication between
classifiers and nodes. However, the tradeoff is that Algorithm

DS can adapt more quickly than Algorithm DL, although it
may not always converge precisely. In terms of performance,
we showed experimentally that for the crosstalk-minimizing
placement, where classifiers along the same branch share
resource constraints, Algorithm DP can lead to about 10%
higher costs than Algorithm DL and Algorithm DS. However,
for the failure-resilient placement, Algorithm DP converges to
the same local optimum as Algorithm DL. This is largely due
to the way the resource constraints affect the global utility.
For example, the hierarchical placement in Fig. 7(b) enables
the root classifier to reconfigure and redistribute resources
across the tree using its multiple thresholds. Based on the
configuration of the root classifier, downstream classifiers can
then reconfigure to locally optimize the metrics along their
subtrees. This type of reconfiguration, however, is not possible
with the placement scheme in 5(a) due to the coupled nature
of classifiers that share resources as well as (local) utility
functions. Importantly, our results suggest that Algorithm DP
can be used as an efficient method to quickly adapt to dynamic
environments. However, its optimality is highly dependent
on the placement of classifiers on shared resource nodes.
Hence, the choice of an appropriate distributed algorithm is
based largely on both classifier placement, as well as system
requirements (e.g., the system may require a highly cost-
efficient solution in steady state, or a quick suboptimal solution
for adaptation in highly dynamic environments).

VII. Conclusion

In this paper, we introduced a paradigm for configuring
binary classification trees using multiple thresholds for each
classifier to minimize the cost of misclassification under
resource constraints. We demonstrated that, depending on the
cost of false alarms and misses for each class of interest,
not only does a joint consideration of an entire topology of
classifiers significantly reduce the cost of misclassification,
but by enabling multiple thresholds per classifier, intelligent
load shedding and replication can provide further substantial
savings. We also proposed various distributed algorithms and
provided insight into how different placement schemes and re-
source constraints can affect their performances, convergence
times, and information overhead. The algorithms prescribed in
this paper, as well as the insights obtained from experimen-
tation, can guide both application programmers and system
designers on how to jointly configure classifiers and allocate
limited resources, such that the performance of a distributed
tree topology of binary classifiers is optimized.

In particular, with the growth of image sharing applications,
and sites like Flickr, there is a significant demand for appli-
cations that support automated image annotation and retrieval
on large-scale image sets [40]. We are building a service for
such automated image annotation, by implementing a large
set (spanning over 200 semantic concepts) of MARVEL [39]
classifiers in conjunction with our dynamic configuration al-
gorithms, on System S [7]. A preliminary description of our
system is available in [41]. Moreover, we are in the process of
a comprehensive evaluation of the performance, latency, and
scaling of the system and our deployed algorithms using a
large-scale distributed cluster of machines.
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Fig. 8. Three conditions where the optimal operating point lies on the DET
curve.

There are several directions for future research. One inter-
esting extension involves dynamic and domain-specific fea-
ture extraction at each classifier—i.e., the classifier decides
dynamically which feature(s) it wants to use given utility-
complexity tradeoffs. This requires joint optimization of the
classifier operating point with the desired feature extraction
complexity, and is a complex combinatorial problem that
changes as the fraction of stream data in each class changes
over time. This will also involve examining the more general
tree construction and placement problem. Other directions
for future work include design of optimization algorithms
for more generic topologies, such as using multiple classifier
trees in parallel, combining parallel and serial processing
topologies, configuring directed acyclic graph structures, and
instantiating classifiers on more than one processing node.
Finally, we are building infrastructure and applications to
benchmark the performance of the algorithms on large scale
datasets.

Appendix

Lemma 1: Given the option of arbitrary load shedding or
replication, a local maximum always lies on the DET Curve.

Proof: Since utility is a linear function of
(
p0

F

)
i

and(
p0

D

)
i
, the DET curve will be optimal as long as the following

two conditions never simultaneously hold:

∂U
∂
(
p0

D

)
i

< 0 and
∂U

∂
(
p0

F

)
i

> 0.

If the two conditions simultaneously hold, the optimal
achievable operating point would be to mirror the DET curve
across the pD = pF line, thereby purposely sending data along
the opposite edge. Note however that this will never be the
case if the condition does not hold, since the operating point
will be configured to (0, 0) when ∂U

∂(p0
D)i

≤ 0, or (1, 1) when
∂U

∂(p0
F )i

≥ 0. A graphical representation of the three conditions
where the optimal operating point lies on the DET curve is
shown in Fig. 8.

For the “yes” output edge of classifier i, unilaterally increas-
ing the probability of false alarm keeps the goodput fixed,
but increases the throughput (and this effect propagates to the

end-to-end throughput and goodput for all classes on whose
paths classifier i sits). Since the utility for each class is a
weighted difference between the throughput and the goodput,
unilaterally increasing the probability of false alarm can only
hurt the performance. Hence, ∂U

∂(p0
F )i

≤ 0. Likewise, for the

“no” output edge, ∂U
∂(p1

D)i

≥ 0, and hence the optimal point
always lies on the DET curve.
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U. Çetintemel, Y. Xing, and S. B. Zdonik, “Scalable distributed
stream processing,” in Proc. 2nd Biennial CIDR, Jan. 2003.

[10] R. E. Schapire, “A brief introduction to boosting,” in Proc. 16th Int.
Joint Conf. Artif. Intell., vol. 2. 1999, pp. 1401–1406.

[11] A. Garg, V. Pavlovic, and T. S. Huang, “Bayesian networks as ensemble
of classifiers,” in Proc. 16th ICPR, 2002, pp. 779–784.

[12] M. Balazinska, H. Balakrishnan, S. Madden, and M. Stonebraker, “Fault
tolerance in the borealis distributed stream processing system,” in Proc.
Int. Conf. Manage. Data (SIGMOD), Jun. 2005, pp. 13–24.

[13] Y. Mao, X. Zhou, D. Pi, Y. Sun, and S. T. C. Wong, “Multiclass cancer
classification by using fuzzy support vector machine and binary decision
tree with gene selection,” J. Biomed. Biotechnol., vol. 2005, no. 2,
pp. 160–71, 2005.

[14] S. Pang, “SVM classification tree algorithm with application to face
membership authentication,” in Proc. Int. Joint Conf. Neural Netw.,
vol. 1. Jul. 2004.

[15] J. R. Smith, Y. Wu, and B. Tseng, “Ontology-based multi-classification
learning for video concept detection,” in Proc. ICME, 2004, pp. 1003–
1006.

[16] B. Babcock, S. Babu, M. Datar, and R. Motwani, “Chain: Operator
scheduling for memory minimization in data stream systems,” in Proc.
SIGMOD, 2003, pp. 253–264.
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