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Adaptive Topologic Optimization for
Large-Scale Stream Mining

Raphael Ducasse, Deepak S. Turaga, and Mihaela van der Schaar

Abstract—Real-time classification and identification of specific
features in high-volume data streams are critical for a plethora
of applications, including large-scale multimedia analysis, pro-
cessing, and retrieval. Content of interest is filtered using a
collection of binary classifiers that are deployed on distributed
resource-constrained infrastructure. In this paper, we focus on
selecting the optimal topology (chain) of classifiers, and present
algorithms for classifier ordering and configuration, to tradeoff
accuracy of feature identification with filtering delay. The order
selection is dependent on the data characteristics, system resource
constraints as well as the performance and complexity character-
istics of each classifier. We first develop centralized algorithms for
joint ordering and individual classifier operating point selection.
We then propose a decentralized approach and use reinforcement
learning methods to design a dynamic routing based order selec-
tion strategy. We investigate different learning strategies that lead
to rapid convergence, while requiring minimum coordination and
message exchange.

Index Terms—Classifier topology construction, large-scale
stream mining, multi-concept detection, optimization.

I. INTRODUCTION

T HE spread of computing, authoring and capturing devices
along with high-bandwidth connectivity has led to a pro-

liferation of streaming data including documents, e-mail, trans-
actions, digital audio, video and images, sensor measurements
etc. As a consequence, there is a large class of emerging appli-
cations for annotation, online search and retrieval, and knowl-
edge extraction that require the analysis of these high-volume
data streams in real-time. Examples of these applications in-
clude online financial analysis, fraud detection, photo and video
streaming, spam classification, medical services, search engines
[15], [17], [20], [24], etc. Each application can be viewed as a
processing pipeline that analyzes streaming data from a set of
raw data sources to extract valuable information in real-time.

The development of large-scale stream mining platforms [1],
[13] has enabled applications to be constructed as topologies
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of distributed operators deployed on a set of heterogeneous
processing resources. This has led to enhanced scalability,
reliability, and several performance-complexity tradeoffs—that
allow the achievement of desired performance goals. Specif-
ically, stream mining applications are constructed using a
topology of low-complexity binary classifiers, each performing
feature extraction and classification specific to different con-
cepts of interest. This allows successive identification of
multiple features in the data, and provides significant ad-
vantages in terms of reduced resource consumption through
appropriate dynamic data filtering.

In this paper, we focus on constructing and ordering such
classifier topologies tailored towards answering specific queries
of interest on data streams. These queries are posed as a set of
conjunctive filtering/classification operations, as is common in
search and knowledge extraction applications (e.g., find data
that has attribute A and attribute B but not attribute C) [14].
The focus of our work is on designing topologies that minimize
the end to end misclassification of data, while also minimizing
the end to end processing delay, in resource-constrained stream
mining settings.

This work lies at the intersection of research in large-scale
stream mining system configuration and analysis, and of the
linear topology ordering problems. Related work on stream
mining optimization [2], [6], [25], [26] is focused on resource
allocation and load-shedding approaches. There has also been
some work on optimizing fixed topologies of classifiers under
resource constraints [9], [21]. However, this related research
ignores the classifier ordering problem: the topology is assumed
fixed and determined a priori.

There has been some related work on ordering conjunctive
filtering operations on streaming data, as part of the broader
pipeline-ordering problem [5], [7], [11], [22] as well as the
classical set-cover problem [16], [30]. These approaches design
low-complexity algorithms to order a set of filters applied to
streaming data, to minimize the end-to-end processing time.
They use centralized greedy optimization techniques to derive
the appropriate order, and develop bounds on performance,
in terms of approximation factors to the utility of the optimal
solution. However, they always consider perfect classifiers,
i.e., classifiers that make no mistakes, and neglect computa-
tional and network resource constraints. Additionally, their
design does not support dynamic ordering for adaptation to
frequent and abrupt environment characteristics—inherent to
multi-query scenarios with asynchronous classifiers.

Instead, in this paper, we consider the problem of topology
construction for imperfect classifiers deployed on a resource-
constrained stream mining system. The key contributions of
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this paper areas follows. We formalize the topology construc-
tion problem for query optimization in stream mining systems
with imperfect classifiers. We formulate this as an optimization
problem with a joint objective to maximize the classification
accuracy and minimize processing delay. We develop a central-
ized Greedy Algorithm for order selection—with bounds on per-
formance—and a combined sequential quadratic programming
(SQP)-Greedy Algorithm for joint order selection and classi-
fier configuration. We then develop decentralized topology con-
struction algorithms, where classifiers make dynamic routing
decisions independently and asynchronously based on local in-
formation and objectives. We use reinforcement learning-based
methods to examine tradeoffs between algorithm convergence,
and solution optimality.

This paper is organized as follows. In Section II, we provide a
background on classifiers used for concept detection and under-
line the accuracy tradeoff between detection and false alarm. We
then extend these notions to networked topologies of classifiers.
In Section III, we formulate the order and operating point selec-
tion optimization problem. In Section IV, we propose a central-
ized solution and derive bounds on performance. In Section V,
we discuss the limitations of a centralized approach and present
our distributed optimization based approaches in Section VI and
Section VII. We present experimental results in Section VIII
and conclusions in Section IX. All proofs are included in the
Appendix A.

II. BINARY CLASSIFICATION

A. Modeling Binary Filters

A binary classifier labels input data into two classes
(class of interest) and . Data labeled as belonging to is for-
warded, while data labeled as belonging to is dropped. If input
data into the classifier is represented as , each classifier has a
a priori selectivity , i.e., the a priori probability
that the data belongs to the class of interest. Correspondingly,

. The a priori selectivities are computed
on a training and cross-validation data set. For well-trained clas-
sifiers, it is reasonable to expect that the performance on new,
unseen test data is similar to that characterized on training data.
In practice, there is potential train–test mismatch in behavior,
but this can be accounted for using periodic reevaluation of the
classifier performance (using potentially feedback on generated
results) [19].

The performance of the classifier is characterized by its de-
tection error tradeoff (DET) curve that represents tradeoffs be-
tween probability of detection and probability of false alarm

. We represent the DET curve as a function that
is increasing between, concave and lies over the first bisector.
As a consequence, an operating point on this curve is param-
etrized uniquely by its false alarm ratios . In practice, each
classifier has a fixed number of possible operating points ob-
tained by quantizing the DET curve.

The forwarded output of a classifier consists of correctly la-
beled data from class as well as false alarms from class .

We use to represent the goodput (portion of data correctly la-
beled) and to represent the throughput (total forwarded data,
including mistakes). For unit input rate, these may be derived as

(1)

We model the average time needed for a classifier to process
a stream tuple as (in seconds). The order of magnitude of
depends on the nature of the data, as well as the classification
algorithm, and can vary from microseconds (text classification)
to multiple seconds (for complex image classification).

B. Classifier Chain

Stream data analysis applications pose queries on data that
require multiple concepts to be identified. For instance, to
identify images containing scenes from people on a beach, it
may be necessary to identify the semantic concepts “ocean,”
“sand,” “people,” etc., with separate classifiers, and data of
interest needs to satisfy a conjunction of these classifiers. By
partitioning the problem into a set of classifiers and filtering
data (i.e., discarding data that is labeled as not belonging to a
class of interest) successively; we can control the amount of
resources consumed by each classifier in the ensemble. Hence,
the the “sand” classifier may be used to filter data before the
“ocean” classifier. This results in lower complexity processing,
because the “ocean” classifier needs only to process a subset
of images. In this paper, we focus on chain/linear topologies of
classifiers as these form the basic building blocks for several
other topologies (e.g., trees) and map directly onto conjunctive
filtering operations [14], [16]. We intend to extend this work
to consider arbitrary topologies, including trees and directed
acyclic graphs as part of future work. We now define the
throughput and goodput for a chain of classifiers.

Queries and Classifier Chain: Consider a query that
is answered as a conjunction of a set of classifiers

. As an example, these classifiers
may be arranged into a chain where the output of classifier

feeds the input of classifier and so on.
Conditional a priori Selectivity: We define the a priori pos-

itive selectivity as the conditional probability of data belonging
to classifier ’s class of interest, given that it belongs to the
class of interest of the previous classifiers

Similarly, we define the negative a priori selectivity as the con-
ditional a priori probability of data belonging to the class of
interest for classifier given that it does not belong to the class
of interest for at least one of the preceding classifiers:

. Note that these a priori
selectivities are inherent to the data features and to the relation-
ships between concepts; they do not depend on the operating
point for individual classifiers.

Throughput and Goodput: Let and denote the
throughput and goodput of classifier . As in [27], [28],
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Fig. 1. Classifier chain.

the throughput and goodput of the stream is computed by each
classifier recursively as follows:

(2)

where , ,
and . Details of this derivation can be found in
Appendix A, Result no 1.

Independent Classifiers: For a set of independent classifiers,
the positive and negative a priori selectivities are equal:

. As a consequence, the transition matrix is
diagonal, i.e., .

C. Ordered Classifier Chain

Let represent the set of bijections of
such that .

Definition: Classifier Order: An order of a set of classifiers
is a permutation such that input

data flows from to .
Throughout this paper, we will generically use the index to

identify a classifier and to refer to its depth in the chain of
classifiers. Hence, will mean that the th classifier
in the chain is . To illustrate the different notations used, a

-ordered classifier chain is shown in Fig. 1.
With the a priori conditional selectivities , and

, as defined earlier, the throughput and goodput of
classifier are given by .

End-to-End Characteristics of an Ordered Chain of Classi-
fiers: Recursively from classifier to , the a priori
probability of satisfying a query and the end-to-end throughput
and goodput are given by

(3)

III. PROBLEM FORMULATION

In this section, we formulate a general optimization problem
in terms of simultaneously minimizing a global misclassifica-
tion penalty and a processing delay, by jointly selecting the order
of classifiers within the chain as well as operating point for each
individual classifier. We then analyze the properties of the de-
fined utility function, and discuss the underlying subproblems
of ordering and operating point selection.

A. Cost Definitions

Traditional data mining system minimize a misclassifica-
tion cost defined as a combination of both a cost for missing
query-answering tuples and a cost for wrongly accepting stream
tuples which do not correspond to the query. However, since

stream mining systems require delivering real-time results, we
also need to monitor the delay between the moment data enters
the stream mining system and the moment it comes out. The
total cost is therefore a weighted sum of misclassification cost
and delay cost.

• Misclassification cost. The misclassification cost, or error
cost, may be computed in terms of the two types of accu-
racy errors—a penalty per unit rate of missed detec-
tion, and a penalty per unit rate of false alarm. These
are specified by the application requirements. Hence, the
total misclassification cost is

(4)

• Processing delay cost. Delay may be defined as the time
required by the chain of classifiers to process a stream
tuple. Let denote the expected processing time
of the th classifier . For an order , the average
time required by the th classifier to process a stream
tuple is given by , where denotes
the fraction of data which has not been rejected by the
first classifiers and still needs to be processed
through the remaining classifiers of the chain. Recursively,

. Hence, the expected
end-to-end processing time for a -ordered chain is

(5)

B. Optimization Problem Analysis

The utility function may be defined as the negative weighted
sum of both the misclassification cost and the processing delay
cost

(6)
The parameter controls the tradeoff between misclassification
and delay and corresponds to the Lagrange multiplier of the dual
objective maximization of ) [3]. Physically, is the price of
delay in misclassification units. This price parameter is adjusted
by the system operator depending on its empirical requirements.
Means to determine will be made explicit in Section VIII-A.
The utility is a function of the throughputs and goodputs of the
stream within the chain, and therefore implicitly depends on the
following.

1) The order in which the classifiers are arranged: Dif-
ferent linear topologies lead to different delay penalties
since the order impacts the total amount of data to be pro-
cessed by the stream mining system. Furthermore, when
classifiers are not independent, different orders lead to dif-
ferent misclassification penalties.

2) The operating point selected by each classifier: We
will characterize the choice of the operating point of clas-
sifier on the DET curve by , where

. We will refer to the vector of operating points
as .
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Not all terms in the utility function depend on the order
and the operating point selected. In particular, is a

constant and, since transition matrices are upper triangular,
the goodput does not depend on the order of classifiers. Further-
more, when classifiers are independent, the transition matrices

are diagonal and therefore commute. As a consequence the
end throughput and goodput are independent
of the order. However, intermediate throughputs do depend
on the ordering—leading to varying expected delays for the
processing.

Canonic Optimization Problem: We may define the opti-
mization of the utility in (6) as

subject to (7)

where and
, respectively, represent the relative price of wrongly clas-

sifying a tuple and the relative price of classifier delaying
the answer to the query, relatively to missing data. Detailed de-
scriptions of intermediate steps leading to this formulation are
included in Appendix A, Result no 2.

Our optimization problem consists of two related subprob-
lems.

• Ordering: Selecting the optimal order of the classifiers
chainbelongs to theset-coverproblemclass [22]. Ingeneral,
there exist different orders with a priori no relationship
between their utilities. Hence, any search space increases
combinatorially with . This problem is exacerbated under
dynamic settings where the optimal order has to be updated
online, or in case of multiple queries, where each query has
to be matched with a specific optimal order.

• Operating point selection: This problem has been well
studied in [9] and [21], where solutions were designed
using sequential quadratic programming to obtain local op-
tima.

In the following sections, we first present a centralized ap-
proach to solve this twofold optimization problem and discuss
the limits of such an approach. We then present decentralized
algorithms that enable adaptation to dynamic environments
through reinforcement learning techniques.

IV. CENTRALIZED APPROACH

In this section, we first solve the ordering subproblem through
a Greedy Algorithm, with a performance that can be bounded
analytically. We also extend the Greedy Algorithm to allow
dynamic adaptation to time-varying characteristics of data and
classifiers. We then present a joint optimization strategy which
combines ordering with operating point selection strategies.

A. Centralized Ordering

For fixed operating points, the end goodput is independent
of the classifier order. As a consequence, we can simplify the
formulation in (7) as

maximize (8)

B. Greedy Algorithm

The Greedy Algorithm is based on the notion of ex-post
selectivity. For a given order , we define the ex-post selectivity
as the conditional probability of classifier labeling a
data item as positive given that the previous classi-
fiers labeled the data as positive,1 i.e., .
The throughput at each step can be expressed recursively
as a product of ex-post selectivities:

. The system utility can then be
rewritten as , where is defined as

. The

Greedy Algorithm then involves ordering classifiers in in-
creasing order of . This intuitively corresponds to selecting
classifiers with lower selectivity and smaller computational
complexity earlier in the chain. We can then build an iterative
solution as follows.

Centralized Algorithm 1 Greedy ordering

• Calculate the ratio for all classifiers.
Select as the classifier with lowest weighted
non-conditional selectivity . Determine .

• Calculate the ratio for all remaining
classifiers. Select as the classifier with lowest
weighted conditional selectivity . Determine .

• Continue until all classifiers have been selected.

Theorem IV.1 (Performance of the Greedy Algorithm): The
value of the utility obtained with the Greedy Algorithm’s
order is at least 1/4th of the value of the optimal order

with

The proof of this theorem is given in Appendix A, Result no
3. The approximation factor corresponds to a system
with infinite number of classifiers [30]. In practice, this constant
factor is smaller. Specifically, we have 2.35, 2.61, 2.8 for 20,
100, or 200 classifiers, respectively.

C. Adaptive Greedy Algorithm

Over time, conditional selectivities and and input rate
of the stream or classifiers processing complexities may

vary. Therefore, the order selection of classifiers may need to
be performed dynamically. In this case, we derive an adaptive
Greedy Algorithm which enables dynamic maintenance of the
best classifier order without having to perform the complete re-
ordering at each time step. The adaptive Greedy Algorithm, or
A-Greedy is based on the following notion of greedy invariant.

Greedy Invariant: Let represent the order obtained by
the Greedy Algorithm. satisfy the greedy
invariant if and only if we have

. This is a condition on of the ex-post conditional

1Observe that for a perfect classifier (� � � and � � �), the a priori
conditional probability � and the ex-post conditional probabilities �
are equal.
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selectivities corresponding to the set of classifiers. The adaptive
Greedy Algorithm then consists of the following two steps.

— Profiler: Update on-the-go the conditional selec-
tivities of the greedy invariant.

— Re-optimizer: If the greedy invariant is violated, switch the
order of the two classifiers that violated it.

We refer the interested reader to [22] for further details on the
adaptive Greedy Algorithm. However, notice that updating the
ex-post selectivities requires strong coordination between clas-
sifiers. A first solution would be for classifiers to send their
choice of operating point to a central agent (which
would also have knowledge about the a priori conditional se-
lectivities ) and would compute the ex-post conditional se-
lectivities. A second solution would be for each classifier to
send their rates and to the classifiers which have not
yet processed the stream for them to compute . In both cases,
heavy message exchange is required, which can lead to system
inefficiency (cf. Section V-C). We will propose in Section VI
a decentralized solution with limited message exchanges, as an
alternative to the centralized approach.

Convergence of A-Greedy: In accordance with [22], we say
that the stream and classifier characteristics have stabilized
when the following three conditions hold over a long interval
of time. 1)The data distribution of stream tuples is constant. 2)
For every subset of classifiers , the data
distribution of input tuples passing all of the classifiers in the
subset is constant. 3) The values of for each classifier are
constant. Under such stable conditions, it can be proved [22]
that the adaptive Greedy Algorithm converges and has the same
error bound as the Greedy Algorithm.

We can now build a joint algorithm to solve simultaneously
the ordering and operating point selection problem.

D. Joint Order and Operating Point Selection

Operating Point Selection for a Fixed Order of Classifiers:
Consider a fixed order of classifiers. Resource-constrained
operating point selection for fixed topologies has been well
studied [9], [21], [27]. The solutions proposed involve using
iterative optimization techniques based on sequential quadratic
programming (SQP) [3]. SQP is based on gradient-descent,
and models a nonlinear optimization problem as an approx-
imate quadratic programming subproblem at each iteration,
ultimately converging to a locally optimal solution.

In our setting, selecting the operating point for a fixed
order can be done by applying the SQP-algorithm to the
Lagrangian function of the optimization problem (7)

Because of the gradient-descent nature of the SQP algorithm,
it is not possible to guarantee convergence to the global max-
imum and the convergence may only be locally optimal. How-
ever, the SQP algorithm can be initialized with multiple starting
configurations in order to find a better local optimum (or even
the global optimum). Since the number and size of local optima
depend on the shape of the various DET curves of each classifier,

a rigorous bound on the probability to find the global optimum
cannot be proven. However, certain start regions are more likely
to converge to better local optimum.2

SQP-Greedy Algorithm for Joint Ordering and Operating
Point Selection: Given this SQP-based solution for operating
point selection, we can combine it with our iterative greedy
order selection to build a joint order and operating point selec-
tion strategy. This iterative approach is summarized as follows.

Centralized Algorithm 2 SQP-Greedy algorithm

• Initialize .
• Repeat until Greedy Algorithm does not modify order.

1. Given order , compute locally optimal
through SQP

2. Given operating points , update order
using (A-)Greedy algorithm.

Each step of the SQP-Greedy algorithm is guaranteed to
improve the global utility of the problem. Given a maximum
bounded utility, the algorithm is then guaranteed to converge.
However, it is not possible to bound the performance gap
between the SQP-Greedy and the optimal algorithm with a con-
stant factor, since the SQP only achieves the local maximum.

V. ANALYSIS FOR MULTI-QUERY SETTINGS

A. Simultaneous Processing of Multiple Queries

Until now, we concentrated our efforts on the processing
of one single query and considered the problem of se-
lecting the order and configuration of the set of classifiers

to achieve the best performance in
terms of accuracy and delay. The methodology proposed
could be extended to the identification and processing of data
streams belonging to different queries by
performing Greedy Algorithms in parallel for each query .

However, a stream mining system must not only be seen as a
query-centric processing system aiming to identify which subset
of data answers a given set of queries. Instead of defining the set
of classifiers on the basis of the set of queries ,
we can determine what are all the queries which can be an-
swered given a set of classifiers . In-
deed, classifier design is often expensive and feature extraction
by each classifier should therefore be leveraged as much as pos-
sible. Hence, the set of available classifiers should be reused
across as many queries as possible.

Such classifier-centric approach leads to an explosion of the
number of queries that can be processed: a set of binary clas-
sifiers can potentially process different queries.
As a consequence, we must design ordering and configuration
selection algorithms capable of processing simultaneously data
stream belonging to a large set of queries .

2For example, since the operating point � � � corresponds to a saddle point
of the utility function, it would achieve steepest utility slope. Furthermore, the
slope of the DET curve is maximal at � � � (due to concavity of the DET
curve), such that high detection probabilities can be obtained under low false
alarm probabilities near the origin.
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B. Requirement for Algorithms to Meet Time Constraints

We mentioned in Section IV-C the need for algorithms to
take into account the system dynamics, both in terms of stream
characteristics’ evolutions and classifiers’ processing time
variations. This time-dependency is yet all the more true in a
multi-query context, because the overall data stream processed
is not homogeneous. Such plurality of queries can lead to abrupt
changes over small intervals of time: two consecutive tuples
could belong to two different streams corresponding to two
different queries, each with its specific selectivities, processing
time and, most importantly, with its specific set of classifiers
to go through. These dynamics require rapid adaptation of the
order and operating points, often even at the granularity of one
tuple. Hence, any optimization algorithm needs to provide a
solution with a time granularity finer than the system dynamics.
Denote by the amount of time required by an algorithm to
perform one iteration, i.e., to provide a solution to the order
and configuration selection problem. The solution given by
an algorithm will not be obsolete if where
represents the characteristic time of significant change, and
represents a safety factor to account for smoothing of burstiness
in data volume, and dynamic variations in resource availability
that affect the time taken to process individual tuples.

C. System Constraints for Centralized Approach

The centralized approach exposed in Section IV imposes sev-
eral system constraints.

• System and Information Constraint: There needs to be
a central agent that collects all information, generates op-
timal order and operating points for each classifier, and dis-
tributes and enforces results on all classifiers. This creates
a bottleneck, as well as a single point of failure.

• Query Specificity: The order and operating points of clas-
sifiers depend on the nature of the query of interest: query

requires a specific set of classifiers , and has specific
utility parameters , and .

• Sensitivity to Dynamics: Centralized approaches are in-
efficient under highly dynamic environments. Indeed, the
solution provided by the algorithm in one iteration is obso-
lete if the time required by the central agent to compute the
optimal order and operating points (e.g., for SQP-Greedy)
is greater than the characteristic time of the environment
dynamics (i.e., stationarity holds on average for less than
this time): .

Two approaches, exposed in Fig. 2, could be envisaged to de-
termine the optimal order and operating point of a system with

different queries being performed simultaneously. A first so-
lution would consist in running the SQP-Greedy Algorithm for
each query. This solution, adequate for static system character-
istics, would however not be efficient in dynamic settings. In-
deed, since the computational requirement and the number of
message exchanges for the optimization increase proportionally
to the number of queries, the time required to compute a so-
lutions for each query would greatly increase and the solution
would arrive too late, i.e., for large . Another
option for determining the optimal order and operating point
of the stream mining system would be to solve the optimiza-
tion problem for the sum of weighted utilities across all queries.

Fig. 2. Centralized processing of multiple queries.

Fig. 3. Feedbacked information for decentralized algorithms.

However, this is likely to result in lower efficiency, since there
would only be a single common order for all queries.

In order to answer these issues, we propose a decentralized
approach which will simultaneously increase performance of
stream mining system, better comply with changing dynamics
in a broad sense and provide query-specific orders, while being
much more adaptable and “customizable” to specific settings.

Given a distributed setting, and processing variability, the
processing time of classifiers may vary from one classifier
to another. As a result, transmission from one classifier to an-
other is asynchronous. We will refer to the local time of clas-
sifiers using the subscript in reference to its local clock.
Nonetheless, as we will discuss in Section VI-B, we can im-
plement decentralized asynchronous algorithms that converge
under certain stationarity assumptions.

VI. DECENTRALIZED APPROACH

A. Decentralized Optimization Problem

As described in Section V-B, stream tuple characteristics can
vary significantly from one tuple to another. Hence, it may be
required to determine the best order per data tuple. The decen-
tralized algorithm proposed in the following section models the
topology construction as a dynamic routing problem, which is
then performed tuple by tuple. The key idea of the decentral-
ized algorithm is to replace centralized order selection by local
routing decisions, i.e., determining which classifier to forward
the stream to. To describe this, we set up a Markovian coop-
erative common interest game framework [12],
where:

— represents the set of classifiers;
— represents the set of states;
— represents the set of actions;
— represents the set of utilities.
Users of the Stream Mining System: Consider classifiers

. The classifiers are supposed to be au-
tonomous: unless otherwise mentioned, they do not communi-
cate with each other and they take decisions independently. We
recall that the th classifier will be referred as . We
will also refer to the stream source as .

States Observed by Each Classifier: The set of states can
be written as , where is the local state set of
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classifier at the th position in the classifier chain.
, with

, and .
represents the subset of classifiers through

which the stream still needs to be processed after it passes
classifier . This is required identification information that
can be included (as an overhead) along with each stream tuple
so that it is not sent to a classifier that has already processed
it. The estimated throughput-to-goodput ratio is the ratio
between the throughput and the goodput of the stream entering
classifier . It is a measure of the accuracy of the ordered set of
classifiers . Indeed, corresponds
to perfect classifiers , (with and

), while large imply that data has been either missed
or wrongly classified.

The state can be passed along from one classifier to the
next in the stream tuple overhead. Since classifier
can observe , it is equivalent to send . Notice that this
goodput value could also be computed recursively if knowledge
on classifiers is available.3

Since , the set of states is of infinite cardinality.
For computational reasons, we would require a finite set of ac-
tions. We will therefore approximate the throughput-to-goodput
ratio by partitioning into bins and ap-
proximate by some fixed value .

Actions of a Classifier: Each classifier has two indepen-
dent actions: it selects its operating point and it chooses
among its children the classifier to which it will transmit
the stream. Hence, , where

— corresponds to the operating point selected by
;

— corresponds to the classifier to
which will forward the stream. We will refer to
as the trusted child of classifier .

Note that the choice of trusted child is the local equivalent
of the global order . The order is constructed classifier by clas-
sifier, each one selecting the child to which it will forward the
stream: . This corresponds to
solving a dynamic routing problem to construct the topology in
a distributed manner.

Local Utility of a Classifier: We define the local utility of a
chain of classifiers by backward induction

(9)

with . The end-to-end utility
of the chain of classifiers can then be reduced to .

Proposition 1 (Local Utility): Each classifier
will globally maximize the system’s utility by autonomously
maximizing its local utility where the local

3Indeed, supposing a well-classified input data: � � � , using notation

� �
� �

� �
, the relationship � �� � � � � � � �� � �

�� �� ��� �� ���� �� � leads to � � � �� � �� �� � �

�� �� � �� �� �.

utility parameters are defined recursively

Proof: cf. Appendix A, Result no 4.
Markovian Property of the Game: The local utility of classi-

fier can be rewritten as

(10)

and the optimization may be rewritten as

Therefore, the decision of classifier only depends on its
operating point , on the state which it observes4 and on
the local utility parameters of its children classifiers

. The process of backward induction of
these local utility parameters, using feedback from children
classifiers, is shown in Fig. 3. Being provided with the utility
parameters of all its children, classifier can then uniquely
determine its best action, i.e., its operating point and its
trusted child in order to maximize its local utility.

This indicates that states at time only depend on the
actions taken at time . Indeed, denoting as the order of
classifiers at time , we have

, and ,

where .

B. Decentralized Algorithms

1) Distributed Ordering: At this stage, we consider clas-
sifiers with fixed operating points. The action of a classifier

is therefore limited to selecting to which classifier
it will forward the stream.

Exhaustive Search Ordering Algorithm: We will say that a
classifier probes a child classifier when it requests its
child utility parameters . Since the probed child requires
knowledge of its state to determine its utility parameter cor-
responding to its optimal decision, the parent classifier must
send it both the set of remaining children and
its throughput-to-goodput ratio . Observe that these messages
exchanges are very limited in size.

To best determine its trusted child, a classifier only requires
knowledge on the utility parameters of all its children. We can
therefore build a recursive algorithm as follows: all classifiers
are probed by the source classifier ; to computer their local
utility, each of them then probes its children for their utility pa-
rameters . To determine these, each of the probed children
needs to probe its own children for their utility parameter, etc.
The local utilities are computed in backwards order, from leaf

4� and � are not required since: ���	�
	 �
���	�
�	 �� � � ���
 ����� � �� � .



DUCASSE et al.: ADAPTIVE TOPOLOGIC OPTIMIZATION FOR LARGE-SCALE STREAM MINING 627

Fig. 4. Global Partial Search Algorithm.

classifiers to the root classifier . The order yielding the max-
imal utility is selected.

Observe that this decentralized ordering algorithm leads to
a full exploration of all possible orders at each iteration.
Achieving the optimal order only requires one iteration, how-
ever this iteration consists requires operations and may
thus take substantial time.5 For quasi-stationary input data, the
ordering could be performed offline and such computational
time requirement would not affect the system’s performance.
However, in bursty and heterogeneous settings, we have to en-
sure that the optimal order calculated by the algorithm would
not arrive too late and thus be completely obsolete. In partic-
ular, the time constraint , underlined in Section V-B,
must not be violated.

We therefore need algorithms capable of determining quickly
a good order, though convergence may require more than one
iteration. In this way, it will be possible to reassess the order of
classifiers on a regular time basis to adapt to the environment.

Global Description of the Partial Search Ordering Algo-
rithm: The key insight of the Partial Search Algorithm is to
probe only a selected subset of the orders at each iteration.
In other words, instead of probing all its children classifiers
systematically, the th classifier only probes a subset of its

children.
From a global point of view, one iteration can be decomposed

into three major steps, as shown in Fig. 4.
Step 1) Selection of the children to probe. A partial tree is

selected recursively (light gray on Fig. 4). A subset
of the classifiers are probe as first classifier of
the chain. Then, each of them selects the children
it wants to probe, each of these children select the
children which it wants to probe, etc.

Step 2) Determination of the trusted children. The order
to be chosen is determined backwards: utilities are
computed from leaf classifiers to the source clas-
sifier based on feedbacked utility parameters,
and at each node of the tree, the child classifier
which provides its parent classifier with the greatest
local utility is selected as trusted child (dark gray in
Fig. 4).

Step 3) Stream processing. The stream is forwarded from
one classifier to its trusted child (black in Fig. 4).

5This can take � � � minutes for seven classifiers, as will be shown in Sec-
tion VIII-B.

If we want to describe Step 1 more specifically, classifier
will probe its child with probability . As will be shown in
Section VII, adjusting the values of will enable the classifiers
to adapt the number of operations and the time required per
iteration: indeed, for low values of , few of the orders will
be explored; since each classifier only probes a small fraction
of its children, one iteration will be very rapid. However, if the
values of are close to 1, each iteration requires a substantial
amount of probing and one iteration will be long.

Local Description of the Partial Search Ordering Algorithm:
Observe that one classifier may appear at multiple depth and
position in the classifiers’ tree. Each time, it will realize a local
algorithm described in the following flowchart.

Decentralized Algorithm 3 Partial Search Ordering
Algorithm—for classifier

1) Observe state .
2) With probability , request utility parameters

for any of the
classifiers .

3) For each child probed, compute corresponding utility
.

4) Select the child classifier with the highest as trusted
child.

5) Compute the corresponding and transmit it to a
previous classifier who requested it.

2) Distributed Ordering and Operating Point Selection: In
case of unfixed operating points, the local utility of classifier

also depends on its local operating point —but
it does not directly depend on the operating points of other
classifiers.6 As a consequence, we can easily adapt the Partial
Search Ordering Algorithm into a Partial Search Ordering and
Operating Point Selection Algorithm by computing the maximal
utility (in terms of )for each child

(11)

6The utility parameters �� � � feedbacked from classifier� to classifier�
are independent of any classifiers’ operating points, through their determination
by classifier � required to optimally selecting its operating point � .
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To solve the local optimization problem (11), each classifier
can either use gradient descent if the DET curve function

is known, or search for optimal operating point using
a dichotomy method (since is concave), as in [21].

3) Robustness of the Partial Search Ordering Algorithm:
Message Exchanges: The Partial Search Algorithm requires
message exchange: a probed classifier must be sent the re-
maining set of classifiers and the throughput-to-goodput ratio
of its parent classifier and will send back its utility parameters.
If the amount of per tuple messages that need to be exchanged
exceeds the system’s capacity (which will especially be the
case if the depth of the tree is big), three solutions can be imple-
mented. 1) The optimization may be performed on a per-group
of tuples basis (which will be routed together), instead of for
one tuple. This will reduce the overhead. 2) We can adapt the
amount of probing by adjusting the parameter . This will
however reduce the speed of convergence. 3) Each classifier
can keep a memory of utility from past experiments: this will
be emphasized in Section VII-C.

Proposition 2 (Convergence of Partial Search Algorithm):
Under stable conditions the Partial Search Algorithm converges
and the equilibrium point corresponds to a Nash equilibrium of
the Markovian game.

For fixed operating point the Partial Search Algorithm con-
verges to the optimal order if .

Proof: cf. Appendix A, Result no 5. The main idea for
proving convergence is that the utility is by construction non-
decreasing. Indeed if a new probed route provides a lower utility
than the previously used route, it is this previous route which
will be kept and enforced (and the utility will remain the same
for this iteration).

In case of joint ordering and operating point selection, there
exist multiple Nash Equilibria, each corresponding to a local

minimum of the utility function. The selection of the Nash Equi-
librium among the set of possible Nash Equilibria depends on
the initial condition (i.e., order and operating points) of the al-
gorithm. To select the best Nash Equilibrium, we can perform
the Partial Search Algorithm for multiple initial conditions and
keep only the solution which yielded the maximum utility.

Convergence Speed: In practice, the stable input conditions
will not be verified by the stream mining system, since the
system’s characteristics vary at a time scale of . Hence,
rather than achieving convergence, we would like the Partial
Search Algorithm to reach near-equilibrium fast enough for
the system to deliver solution to the accuracy and delay joint
optimization on a timely basis.

In analogy to [8], we first discuss how payoff-based Safe Ex-
perimentation, a heuristic case of Partial Search Algorithm can
be used for decentralized stream mining and leads to a low-com-
plexity algorithm, however with slow convergence rate. Fortu-
nately, the convergence speed of the Partial Search Algorithm
can be improved by appropriately selecting the probing proba-
bilities . In Section VII, we will construct a model-based al-
gorithm which enables to control the convergence properties of
the Partial Search Algorithm, and lead to faster convergence.

C. Safe Experimentation

We will benchmark our results against Safe Experimentation
algorithms as cited in [8]. This low-complexity, payoff-based
learning approach was first proposed for large-scale, distributed,
multi-agent systems, where each agent is unable to observe the
actions of all other agents (due to informational or complexity
constraints) and hence cannot build a model of other agents [18].
The agent therefore adheres to a trusted action at most times, but
occasionally explores a different one in search of a potentially
better action.

Safe Experimentation is a reinforcement learning algorithm
where each classifier learns by observing the payoff with which
its past actions were rewarded. As such, it does not consider
the interactions between agents, or in our case, the actions of
other autonomous classifiers. In particular, there is no explicit
message exchange among classifiers required (i.e., no ex-
changed), though each classifier needs to know the reward of its
action.

Safe Experimentation Algorithm: The Safe Experimentation
algorithm is initialized by selecting an initial order of classi-
fier. will be referred as the “trusted” child of the th
classifier . At each time slot, will either forward the
stream to its “trusted” child with probability or,
with probability , will explore a classifier chosen randomly
among its children. In the case where a higher reward is achieved
through exploration, will become the new “trusted” child of

.
The name of Safe Experimentation comes from the fact that

the global utility achieved by the algorithm is non-decreasing
over time. Since utilities are upper-bounded, this ensures con-
vergence of the Safe Experimentation algorithm. Furthermore,
so long as , all possible orders will ultimately be explored,
such that Safe Experimentation converges to the optimal order
[8].



DUCASSE et al.: ADAPTIVE TOPOLOGIC OPTIMIZATION FOR LARGE-SCALE STREAM MINING 629

Instead of considering a fixed exploration rate , we can
consider a diminishing exploration rate . In this way,
the algorithm will explore largely for first iterations and
focus on exploited orders near convergence. and

are sufficient conditions for
convergence, typically verified for .

Limits of Safe Experimentation: Slow convergence: One it-
eration of Safe Experimentation is very rapid , since
only one order is experienced. However, the expected number
of iterations required to converge to optimal order is bounded
below by (corresponding to uniform search: .) As
a consequence, the time required to reach the optimal solution
might be infinitely long, since the optimal order could be exper-
imented after an infinitely large number of iterations.

General approach: The slow convergence of Safe Experi-
mentation is due to the fact that it does not leverage the problem
structure, and supports probing (i.e., requesting the utility pa-
rameters) only one child classifier at each stage of the search. In
general, the ability to probe multiple child classifiers simulta-
neously and selecting from among them is likely to increase the
rate of convergence. In the following section, we build a parame-
terized approach that can improve the convergence rate through
the appropriate selection of a probing probability .

VII. PARAMETRIC PARTIAL SEARCH ORDER AND OPERATING

POINT SELECTION ALGORITHM

In this section, we construct an algorithm that trades off con-
vergence rate with the utility (7) by appropriately determining
the search probabilities of the Partial Search Algorithm. De-
fine an experiment as classifier ’s action of probing a
child classifier by requesting its utility parameter .
Performing an experiment can lead to a higher utility, but will
induce a cost in terms of computational time.

— Denote by the expected additional utility
achieved by the stream mining system if the experiment

is performed under state .
— Let represent the expected amount of time required

to perform an experiment. This computational time will
be assumed independent of the classifiers involved in the
experiment performed and the state observed.

Then, the total expected utility per iteration is given by
and the time required for one

iteration is , where represents the
expected number of experiments performed in one iteration of
the Partial Search Algorithm. The probing probabilities then
need to be determined to maximize the total expected utility
within a certain time

maximize

subject to
(12)

We consider three important tradeoffs that control the search:
1) how much to search? 2) how deep to search? 3) where to
search? Based on these, we construct a parametric learning al-
gorithm. We will show that the probability that the th classifier

probes its children , given that it received data

with throughput-to-goodput ratio can be expressed in
terms of control parameters as

how much

cf Section VII-A

how deep?

cf. Section VII-B

where?

cf. Section VII-C

A. How Much to Search—Efficiency Versus Flexibility

In this section, we determine the average probability of search
. This parameter is used to arbitrate be-

tween rapid but inflexible search and slower but system-com-
pliant search. Its value will impact the time required per itera-
tion and it needs to be selected small enough in order to ensure
that .

Performance of Algorithm for Random Search: Consider a
random search: any classifier probes its children with the
same probability . corresponds to algorithms
which seldom perform new search and probe only a few
branches of the search tree at each iteration. Hence, reaching
the optimal order requires on average iterations,
each with complexity . corresponds to al-
gorithms which probe nearly all the branches of the search tree
at each iteration. Hence, reaching the optimal order requires
on average slow iterations, each with complexity

.
For a given , the average number of children that classifier

probes is

The average number of orders explored per iteration is thus
while the processing time is

, which is
increasing on [0 1].

Speed of Search: Since the utility expected from a set
of experiments cannot be determined analytically, we
focus on optimizing the speed of search , defined as the av-
erage number of orders explored in a certain amount of time.

This
choice corresponds to the assumption that expected utility is
proportional to the speed of search. Hence, the optimization
problem in (12) becomes

maximize

subject to
(13)



630 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 4, NO. 3, JUNE 2010

Since both the objective function and the constraint function are
increasing in , the optimal average probing will be obtained
by saturating the time constraint: . Hence, the
optimal average probe probability for random search may be
determined as . Note that a constant probe
probability ignores the different impact of each classifier on the
end to end utility. In the following sections, we determine probe
probabilities as a function of the depth of the classifier in the
tree.

B. How Deep to Search—Speed Versus Exhaustiveness

In this section, we examine the tradeoff between speed of con-
vergence and exhaustiveness of search. We start by allowing
classifiers to have different probe probabilities depending on
their depth in the chain (correspondingly search tree). Suppose
that the th classifier searches through all its children

with the same probability . We want to construct
a weight vector such that , where
represents the random search probability introduced previously.

, thus controls how the probe probability of the th classifier
deviates from the average value . Under the condition

that is the average value of all , we have .
We can show that the average number of children probed by

classifier then becomes . Then the
iteration processing time is given by

. As proved in Appendix A, Result no 6, the weight which
minimizes the processing time for fixed may be expressed
as

if
if
if

where and . This ba-
sically translates into increasing amount of search at increasing
depths of the tree.

The corresponding probing probability is
.

Therefore, if we use these probing probabilities, the first
classifiers will remain unchanged. As a consequence,

the Partial Search Algorithm will not converge to the optimal
solution, since some orders will never be explored. To avoid
this scenario, ensure a minimal quality of service and impose
that the search is exhaustive and considers all orders, we need
to approximate the weight vector by a “smoother” vector
with strictly positive elements. Plotting reveals a
quasi-threshold function. We choose to approximate this curve
by a sigmoid . The corresponding
approximation of can then be expressed as

(14)

where is a normalization coefficient such that
. The control parameter is a refinement parameter, which

TABLE I
CLASSIFIER CHARACTERISTICS

dictates how much more extensive search should be performed
with increasing depth. As goes from 0 to , it corresponds
to searching only higher depths (as without smoothing) to
searching all depths uniformly.

C. Where to Search—Exploration Versus Exploitation

In this section, we discuss the tradeoff between exploitation
of tested actions (previously probed children) and exploration
of new actions (probing new children). Until now, we focused
on the number of orders explored. However, the real variable of
interest is the number of new orders explored.

Learning From Prior Experiments: Given an average search
probability , we can encourage probing unexplored chil-
dren or exploit already-visited orders, by weighting the propen-
sity of classifier to probe one of its children classi-
fier , based on reward from previous experiments.

— The algorithm can exploit the available orders to select the
latest best—known—order by allocating large values of

to children that provided high utility in the past.
— The algorithm can explore new orders by allocating large

values of to non-visited children or children which
brought lower local utility.

Unlike traditional learning scenarios [10], our algorithm can
base its exploration versus exploitation decision based on im-
mediate feedback in terms of the achieved utility—hence, explo-
ration does not hurt performance, as we can test orders without
selecting them.

State-Based Learning Algorithm: At this stage, the th clas-
sifier probes any of its children with a probability

independent on the child considered. Yet, forwarding the
stream to some of these children might have resulted, in the past,
in higher local utility, rather than forwarding the stream to some
other children. To monitor past local experiments’ impact on its
utility, classifier needs to keep record of the latest local utility

it achieved when it transmitted the stream to classifier .
Since the choice of orders depends on the throughput-to-

goodput ratio observed by each classifier, we can refine
learning by keeping track of the latest utility achieved
by classifier when it performed experiment with a
stream with . As before, we use a discretized state
space using nonuniform quantization techniques (with bins)
for reduced storage and computational requirements. We can
thus define a three-step algorithm as follows.

Step 1: Children selection. If the throughput-to-goodput
ratio for classifier falls into the th bin: ,

will probe its child with probability
.
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TABLE II
COMPARISON OF ORDERING ALGORITHMS

Step 2: Utility update. Denote by
the probed children. Based on

their parameters, the utility matrix is updated as

, .

Step 3: Stream processing. The stream is then forwarded to
the child which that results in the highest utility.

In practice, the weight assigned to a child classifier based on
its past reward can be determined using any increasing func-
tion . Using is motivated by the
analogy of a classifiers utility to an energy [23]. In this case,

represents the equilibrium probability of being at
an energy level . As such, the parameter can be interpreted
as the inverse of a temperature, i.e., it governs the amount of ex-
citation of the system. As goes from 0 to , it corresponds to
going from random exploration to full exploitation.

D. Comparison of Proposed Algorithms’ Behaviors

As a summary, we propose the following analysis of algo-
rithms. We benchmark our result on random order and config-
uration selection. We then compare the Greedy Algorithm (cf.
Section IV-A), Safe Experimentation (cf. Section VI-C) and our
proposed Partial Search Algorithm (cf. Section VII).

Table VII-D and VII-D compare the performance of the or-
dering algorithms and joint ordering and operating point algo-
rithms based on essential criteria.

VIII. EXPERIMENTAL RESULTS

Our experiments were performed in Matlab on a MacBook
with 2.4-GHz Intel Core 2 Duo Processor and 2-GB 667 MHz
DDR2 SDRAM. The following experimental results illustrate
the three major tradeoffs presented in our discussion. In a first
part, we show the impact of cost parameters , , and on the
order and operating point selected. We then compare the perfor-
mance and the time required to perform the different algorithms
presented in this paper. Finally, we discuss the learning trade-
offs concerning the decentralized algorithm.

A. Accuracy Versus Delay Tradeoff Analysis

Upper Bound of Delay Cost : Given that the objec-
tive function of the stream mining optimization problem (6)
is a tradeoff between misdetection, misclassification, and pro-
cessing delay, we can expect the order and operating point se-
lected to vary depending on the values of the tradeoff parameters

, , and .
Since we can bound the utility by

, we can show (cf. Appendix A, Result no 7.)

that for , the stream
should not be processed: the first classifier would then be the one
with minimal processing cost and would drop all tuples.

Impact of Cost Parameters: We consider classifiers
with different processing costs and different DET

curves, characterized by a specific area under graph (AUG). We
quantize the DET curve and keep four operating points

, , , and .
For this experiment, we use classifiers with increasing and
decreasing , as shown in Table I, and fix equal a priori
selectivities and .

With this choice of parameters, we expect classifiers to be
ordered increasingly for high relative delay penalty or decreas-
ingly for high accuracy weight. Indeed, since for high relative
value of the delay cost should be minimized, the classifiers
with the lowest processing time should be processed first. In
this way, classifiers with highest processing time will only need
to process a fraction of the stream, corresponding to the tuples
which have not been dropped by the previous classifiers. At the
opposite, for low relative value of , classifiers with highest ac-
curacy (i.e., highest AUG) should be positioned first, in order to
limit error propagation.

In Tables II–IV, we show how both the optimal order of
classifiers and the optimal operating points individually selected
changeforvarying tradeoffparameters , , andfixed .
The results are obtained by computing the utility achieved for
every order and operating point and keeping the optimal setup.

If delay is not taken into account , classifiers are or-
dered with decreasing accuracy: indeed error propagation should
be avoided. However, for and , we
verify that classifiers with lowest transmission cost are used
first. Furthermore, we observe that for , the delay
cost becomes too important and the stream is not processed (this
means that the optimal policy is for the classifier , with lowest
processing cost , to drop all tuples).

The condition and corresponds to a tradeoff
situation, where classifiers are ordered according to both their
accuracy and their transmission cost. The first classifier is
selected on the basis of its delay, with a low processing time.
However, the last three classifiers are chosen based on their ac-
curacy to limit error propagation. One explanation to this would
be that since throughput are rapidly decreasing ,
the delay penalty can be approx-
imated to . However, the misclassification penalty

only depends on the final
throughput and goodput. Therefore, selecting a classifier with
high processing time will lead, as a first approximation, to a
high delay cost, while the impact of selecting a classifier with
low precision would have a more limited impact. However,
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TABLE III
COMPARISON OF ORDERING AND OPERATING POINT SELECTION ALGORITHMS

TABLE IV
OPTIMAL ORDER AND OPERATING POINT FOR VARYING OBJECTIVE PARAMETERS � AND �

TABLE V
UTILITIES AND COMPUTATIONAL TIME ACHIEVED FOR DIFFERENT ORDERING ALGORITHMS

for the last classifier, the impact of to the total delay is less
important and classifiers are ordered based on their accuracy to
limit error propagation.

Finally, we can notice that as the misclassification cost be-
comes more important, classifiers choose operating points with
low probability of false alarm: as expected, classifiers choose
their operating point where they will incur least penalty.

B. Comparison of the Performance and Processing Time
Required by Different Algorithms

Heuristic Algorithm: It is intuitive to place classifiers with
high accuracy and low processing time as early in the chain
as possible. This limits error propagation, as well as reduces
the average processing time per data item. One metric that cap-
tures the accuracy performance of a classifier is the Area Under
Graph (AUG) of the DET curve. The AUG of a classifier goes
from 1/2 for weak classifiers to 1 for perfect classifiers [4].
The delay performance of a classifier is captured by its pro-
cessing complexity coefficient . Based on these measures we
design a heuristic algorithm where we order classifiers in de-
creasing order of . We benchmark our results based on
this heuristic algorithm.

Order Selected by Various Classifiers for Different Ordering
Algorithms: The performance of the different ordering algo-
rithms are shown in the Table V for 7 classifiers and fixed oper-
ating points per classifiers.7

7Classifier’s characteristics �� � � �, �, and � were generated randomly.
� � ��, � � �, � � ���. � � 	 was selected to normalized optimal
utility to 100.

As expected, centralized methods do not lead to the optimal
order, yet, they require very little computational time. Heuristic
method results in a 12% performance decrease. Decentralized
algorithms converge to the optimal order, given that they ulti-
mately browse through all the possible order, but in longer com-
putational time. However, as will be shown in the next para-
graph, convergence to a near-optimal order requires only a few
iterations. Parametric Partial Search Algorithm (here with 0,
1, and converges quicker than Safe Experimen-
tation (here with 0, 1), to the optimal order. This will be
discussed in more details in Section VIII-C.

System Compliance of Various Ordering and Operating Point
Selection Algorithms: For ordering and operating point joint
optimization, the optimal order cannot be achieved in a timely
fashion. Indeed, for queries, with classifiers with op-
erating points each, iterations are required to de-
termine the optimal order and operating points. Even though the
joint algorithms exposed can only be proved to converge to local
optima (due to non convexity of utility function), they enable to
obtain a suboptimal order and operating points within a fixed
amount of time.

To cope with the stream mining environment, algorithms
must update their results on regular time basis: we are thus
interested in the amount of time required by one iteration of the
algorithm, shown on Table VI for 20 classifiers, each having
100 operating points.8

8Classifier’s characteristics �� � � �, �, and � were generated randomly.
� � ��, � � �, � � ���.



DUCASSE et al.: ADAPTIVE TOPOLOGIC OPTIMIZATION FOR LARGE-SCALE STREAM MINING 633

TABLE VI
UTILITIES AND COMPUTATIONAL TIME ACHIEVED FOR DIFFERENT ORDERING ALGORITHMS

Fig. 5. Joint algorithms comparison.

In a multi-query context, SQP-Greedy needs to be performed
for every query, while decentralized algorithms are performed
by each classifier on-the-go by observation of their input data
characteristics. Hence, to be able to compute orders in a fixed
amount of time , corresponding to the stream
mining typical evolution characteristic time, the SQP-Greedy
algorithm can only be performed for a fixed number of queries.
For example, if the order must be reactualized every
second, the SQP-Greedy algorithm performed for the system
previously described can only process different
queries. However, seven classifiers could process up to 2186
different queries. As a consequence, centralized algorithms are
unadapted to multi-query context, since they can only process
0.25% of all possible queries. However, they can be used for
systems requiring only one or a few queries. This limitation of
SQP-Greedy in terms of number of queries simultaneously pro-
cessable explains the need to vest in decentralized algorithms.

C. Decentralized Convergence Rate

Fig. 5 compares the utility achieved by the Safe Experimenta-
tion and the Partial Search algorithm for and
actions.9 To be able to adapt within a time of a second, Safe Ex-
perimentation was performed with an exploration rate
and Partial Search was performed with parameters ,

, and .
Both algorithms achieve increasing utilities over time. Yet,

the Partial Search Algorithm achieves an approximately twice

9Classifier’s characteristics �� � � �, � and � were generated randomly.
� � ��, � � �, � � ���.

as quick convergence rate than the Safe Experiment Algorithm.
This can be explained by the fact that Partial Search can probe
multiple children within one iteration and can therefore learn
more rapidly than Safe Experimentation, which only tries one
order at each iteration.

IX. CONCLUSION

In this paper, we design adaptive algorithms to determine the
optimal linear topology, and operating points, for a set of clas-
sifiers to trade off filtering accuracy and processing delay. Or-
dering the chain of classifiers through a proposed centralized
Greedy algorithm leads to a close-to optimal utility but does not
allow timely adaptation to system dynamics. In order to cope
with these requirements, we proposed a decentralized approach
where classifiers can make decisions autonomously with lim-
ited message exchanges. We examine several tradeoffs between
the optimality of the solution and the convergence time. Specif-
ically, we propose a Parametric Partial Search Algorithm, with
control parameters on sampling the search space (all possible or-
ders) combined with a reinforcement learning based technique
that adapts exploration versus exploitation, i.e., much to search,
how deep to search and whether to explore the tree or exploit
known orders. We evaluate the performance of these algorithms
in terms of determining the optimal order, as well as conver-
gence time. There are several directions for future research,
including extension of the approach to consider more generic
topologies (e.g., trees, directed acyclic graphs, etc.), handling
uncertainty in the information about classifier operating charac-
teristics, data statistics, and resource variability. We are also in
the process of implementing these algorithms on a large-scale
distributed stream mining system [29].

APPENDIX

Result No 1: Recursive Goodput and Throughput Relation-

ship: , with

, , and .
Proof: Introduce the notation .

The output is a probabilistic function of input . The
proportion of correctly classified samples in is captured by

, while the proportion of falsely
classified samples in is . Define

. Using Bayes’
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formula

We can similarly derive , , and . Finally, we have
, and .

Result No 2: Canonic Optimization Problem Formulation:
The optimization problem (6) can be reformulated as

subject to , where and
.

Proof: represents the probability of satisfying
all classifiers and is therefore independent of the order,

and the operating point selection. Developing

leads to

, which is independent
of the order. However, depends on the order and thus de-
pends on and . Since is proportional to , it also depends
on the order and operating points . We can develop the
utility (6) as

Hence, the optimization problem becomes:
.

Result No 3: Performance of the Greedy Algorithm: The
value of the utility obtained with the Greedy Algorithm’s
order is at least 1/4th of the value of the optimal order

with

Proof: We prove this by showing equivalence with a greedy
4-approximation algorithm for pipelined set-cover, as in [22].

After normalizing the coefficient of the objective
function by , the utility function (8) can be expressed
as

. The problem defined in [22]

where

adapts to our setting by identifying and
. This finishes the proof.

Result No 4: Local Utility Expression: Each classifier
will globally maximize the system’s utility by au-

tonomously maximizing its local utility

where the local utility parameters are defined recur-
sively

Proof: By induction:
—

—

Result No 5: Partial Search Algorithm Convergence: Under
stable conditions the Partial Search Algorithm converges and the
equilibrium point corresponds to a Nash equilibrium of the Mar-
kovian game. also, for fixed operating point the Partial Search
Algorithm converges to the optimal order if .
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Proof: We consider a stable input stream, i.e., with non
varying characteristics. Each iteration of the Global Partial
Search Iteration will be indexed by the superscript by .
Under such assumption, we will keep track of the solution
provided by the Partial Search Algorithm at each iteration: let

and .
As a first step, we show that each iteration of Partial Search

provides global utility improvement. We consider the th
iteration taking place. A subset of the overall trees has been se-
lected, corresponding to probed children selection. the corre-
sponding throughput and goodput values entering each node of
the trees are computer.

We first consider the action of a classifier at penul-
timate position in this tree. This classifier has only one child ,
which he will thus select as trusted child. Locally, de-
termines the operating point which will maximize
its local utility by solving the optimization problem

Doing so, it ensures that .
A classifier at th position has two po-

tential children and . It will probe each of them with
probability and and accordingly compute

the corresponding point and , leading

to utility and . If one of the probed
children brings classifier a local utility greater than its
previously achieved utility, (for example, if both children are
probed, if , it
will be the new trusted child at time . By construction, we
have .

Recursively, we derive similarly that ,
and in particular, this is true for the source classifier. Given that

, this implies that , i.e., the Partial
Search Algorithm is at global scale a best response algorithm
and utilities are increasing over time. We insist on the fact that
this is true only in the case of stable input characteristics, since
the trusted child and operating point selection updates must al-
ways bring improved local utilities, which would not neces-
sarily be the case in the case where stream characteristics vary.
A consequence of this, the equilibrium point corresponds to a
Nash equilibrium of the Markovian game, since by construc-
tion, for these stream characteristics, each classifier cannot find
a better operating point nor forward the stream to a child classi-
fier, without having a loss of utility.

We also want to prove that in case of fixed Operating Point,
the algorithm will always converge to the optimal order. Let

For any classifiers the Partial

Search Ordering Algorithm converges

We want to prove by induction the proposition .
Clearly, , since there is only one order for one classi-

fier. Suppose , and consider a set of classifiers.
Denote by the order provided by the algorithm at time and

the optimal order of this chain of classifiers. Then

s.t.

s.t.

s.t.

s.t.

s.t.

s.t.

But by
induction. Furthermore,

s.t.

Since , s.t. and thus
.

Result No 6: Depth Coefficient Determination:

if
if
if

where and , and is
obtained by saturating the constraint .

Proof: Since

, the low weights should be put on ,
since it is a common factor in the expression of then , etc,
while the high weights should be put on the deeper classifiers.
Hence, the first classifiers should have a nul weight while
the last will be fixed maximal weight . is
determined as the largest number such that , hence

. Finally, is the remaining weight

.
Result No 7: Utility Bounds:

.
Proof: Choosing leads to ,

and therefore a utility of . In this case, the data
injector will prefer not to send any input stream . As
a consequence, . Given that
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Then, , which de-
fines the upper bound for .
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