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Abstract—In this paper, we discuss distributed optimization
techniques for configuring classifiers in a real-time, information-
ally-distributed stream mining system. Due to the large volume
of streaming data, stream mining systems must often cope with
overload, which can lead to poor performance and intolerable
processing delay for real-time applications. Furthermore, opti-
mizing over an entire system of classifiers is a difficult task since
changing the filtering process at one classifier can impact both the
feature values of data arriving at classifiers further downstream
and, thus, the classification performance achieved by an ensemble
of classifiers, as well as the end-to-end processing delay. To ad-
dress this problem, this paper makes three main contributions.
1) Based upon classification and queuing theoretic models, we
propose a utility metric that captures both the performance and
the delay of a binary filtering classifier system. 2) We introduce
a low-complexity framework for estimating the system utility by
observing, estimating, and/or exchanging parameters between the
interrelated classifiers deployed across the system. 3) We provide
distributed algorithms to reconfigure the system, and analyze the
algorithms based upon their convergence properties, optimality,
information exchange overhead, and rate of adaptation to non-
stationary data sources. We provide results using different video
classifier systems.

Index Terms—Multiagent systems, multimedia stream classifica-
tion, queuing theory, systems.

I. INTRODUCTION

ECENTLY, a variety of applications have emerged that
R require operations such as classification, filtering, ag-
gregation, and correlation over high-volume, continuous data
streams [1], [5], containing a variety of multimedia data, such
as digital audio, video, and images. Each application can be
viewed as a processing pipeline that analyzes streaming data
from a set of raw data sources to extract valuable information
in real time [1]. Due to spatially and proprietarily distributed
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datasets, as well as high computational burdens for the ana-
lytics, distributed mining systems have been recently developed
[2], [3], [18], [19]. These systems leverage computational re-
sources from a set of distributed processing nodes to deploy and
run different stream mining applications on various networked
topologies [3]. In such systems, stream processing jobs are
often decomposed into a network of distributed operators fea-
turing extraction, classification, aggregation, and correlation.
This decomposition has merits that transcend the scalability,
reliability, and performance objectives of large-scale, real-time
stream mining systems [5], [8], [19], [25].

A key challenge in distributed real-time stream mining
systems is how to cope effectively with system overload, while
maintaining high performance under resource constraints. A
commonly used approach is load-shedding, where algorithms
determine when, where, what, and how much data to discard
given the observed data characteristics, desired quality-of-ser-
vice (QoS) requirements [9]-[13], and delay constraints [14].
While naive load shedding performs well for simple data
management jobs such as aggregation, for which the quality of
job results depend only upon the sample size, this is generally
not the case for jobs involving classification of data.

While it has been shown that classifiers operating in series
(boosting) can result in improved classification performance [5],
recent works have additionally shown that a chain of classifiers
can be used to perform intelligent load shedding [16], [17]. By
placing a low complexity classifier in front of a higher com-
plexity classifier, a significant volume of stream data can be shed
prior to the successive operator. This concept is similar to recent
work on intelligent load shedding [15], where a load shedder
attempts to maximize certain quality of decision (QoD) mea-
sures based upon the predicted distribution of temporally-cor-
related feature values. However, the approach in [15] considers
information pertaining to only a single classifier. Without a joint
consideration of resource constraints at possibly multiple down-
stream classifiers in the chain, the joint classification perfor-
mance can be highly suboptimal, and the end-to-end processing
delay for a cascade of classifiers can become intolerable for
real-time applications [39], [40]. On the other hand, using an
ensemble of classifiers with explicit operating points (e.g., con-
figurable threshold, probability of false alarm) enables the entire
chain to jointly optimize based upon the quality of classification,
as well as the resource requirements and availabilities across uti-
lized processing nodes [16].

Nevertheless, existing solutions are based upon an analytical
model that requires classifiers to filter subset data from the pre-

1057-7149/$26.00 © 2010 IEEE



3036

Team
Sports Volleyball
Source Filtered
Stream Stream
(a)

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 11, NOVEMBER 2010

Outdoors Volleyball

Filtered
Stream

(®)

Source
Stream

Fig. 1. Chain of image classifiers with (a) subset filtering and (b) without subset filtering.

vious classifier in the chain or tree (e.g., the exclusivity prin-
ciple [16]). For example, as shown in an image classification
example in Fig. 1(a), a low complexity “team sports” classifier
can be used to filter out data that is not a team sport, thereby
shedding a significant volume before passing the stream to the
“volleyball” classifier. While this approach is viable for classi-
fiers trained at the same site, classifiers located across different
sites may be trained to detect different semantic high level fea-
tures that do not obey simple subset relationships, e.g., one site
trained to detect “outdoors” images, and the other “volleyball”
images, as shown in Fig. 1(b). Furthermore, many sites may
not be willing to share their proprietary datasets or analytics,
nor capable of providing a repository to store an entire collec-
tion of data across multiple sites [19], [42], which prevents the
construction of centralized models [22]-[24]. This presents a
major challenge to optimizing the performance of a delay-sen-
sitive stream mining application, as both the quality and delay
across a classifier chain cannot be analytically determined due
to informational constraints. In some prior works, classifiers use
state space models and Bayesian networks to estimate the un-
derlying stream data distribution as a function of classifier con-
figurations [20], [21]. However, forming accurate models may
require a large state space, and learning the parameters for these
models can take a long time, making this approach less suitable
for nonstationary, dynamic environments.

In this paper, we propose a novel, low-complexity solution for
optimizing the performance of a delay-sensitive stream filtering
application across a network of distributed classifiers. Our con-
tributions are as follows.

» We configure each classifier by choosing an operating point
to control its performance and throughput, as in [4]. Since
the stream data is usually transmitted over a network in-
frastructure, we model the stream traffic at each classifier
using Poisson models and introduce a utility metric for
real-time stream processing applications that captures the
tradeoffs between the throughput, classification accuracy,
and end-to-end delay of filtered streams.

* Weidentify akey challenge in optimizing over an ensemble
of classifiers. In particular, classifiers do not have sufficient
information to jointly configure their operating points due
to distributed analytics, since changing the operating point
of one classifier will affect the distribution of input data
to the next classifier in the sequence. To address this chal-
lenge, we introduce a method for decomposing the utility
function into a set of locally observable metrics that can be
calculated directly by each classifier. Each classifier can
then exchange these metrics with other classifiers to com-
pute the utility of the entire system for any fixed configu-
ration of classifiers.

* We introduce a model-free, stochastic, multiagent learning
algorithm for reconfiguring classifiers in a distributed
fashion. This algorithm has very low complexity, and
requires little coordination across different sites. We show
that in stationary environments, the algorithm converges to
an optimal or near optimal system configuration with high
probability. Moreover, the fast convergence rate of the
algorithm enables the system to adapt quickly to dynamic
stream characteristics.

Note that in this paper we do not modify the underlying classi-
fication scheme, but rather focus on configuring operating points
of individual classifiers in a fixed processing sequence. This al-
lows the designed algorithms to be applicable to any available
type of underlying classification algorithms (e.g., support vector
machines, k-nearest neighbors, maximum likelihood etc.). The
paper is organized as follows. Section II introduces the model
used for classifiers and distributed stream processing systems,
and derives a utility function for stream mining applications.
Section III introduces estimation and modeling techniques for a
chain of classifiers, and proposes a framework for distributed al-
gorithms. Based upon this framework, a low complexity, model-
free algorithm is proposed in Section IV. Section V extends the
approach to a general networked topology of classifiers, and
discusses issues involving multiple streams sharing the system.
Section VI provides results of the performance of our algorithm
in different system environments, and Section VII concludes the

paper.

II. DISTRIBUTED STREAM PROCESSING SYSTEM MODEL

A. Characterizing Binary Classifiers and Classifier Chains

Consider the binary chain classifier topology shown in Fig. 2.
Each binary classifier v; processes an input stream by classi-
fying each stream data object (SDO) as belonging to a positive
class H;, or a negative class H;. Each SDO that is classified as
belonging to H; is forwarded from a classifier node v; to the
next classifier node v; 1 in the chain or, otherwise, the SDO is
dropped from the stream. SDOs generated by the source vy are
only received at the terminal vy if they are forwarded by every
classifier in the chain (i.e., they are relevant for the application).

Given the ground truth X; for an input SDO to classifier v;,
denote the classification decision on the SDO by X;. The pro-
portion of correctly forwarded samples is captured by the prob-
ability of detection PiD = Pr{)A(i € H; | X, € H;}, and the
proportion of incorrectly forwarded samples is captured by the
probability of false alarm PF = Pr{X; € H;|X; ¢ H;}.
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Fig. 3. Classifiers can be instantiated on multiple nodes and, therefore, each classifier is preceded and followed by multiple copies of the previous/next classifiers

in the processing chain. The dataflow and queuing model is shown here.

Suppose that the input stream to classifier v; has (conditional)
a priori probability (APP) m; of being positive. The probability
of forwarding an SDO to the next classifier can be given by

i =m PP+ (1 —m)Pf. M

Moreover, the probability of correctly forwarding data to the
next classifier is

p; = mPP. 2)

A filtering classifier is often designed such that the probability
of detection is maximized subject to a false alarm probability
constraint [28], [29]. Hence, by varying the false alarm con-
straint, different probabilities of detection can be obtained, and
different volumes of the stream can be forwarded. Assuming
that each classifier operates at a fixed complexity level, a detec-
tion-error-tradeoff (DET) curve, or a curve relating PP to PF,
can be obtained for each classifier v;. Hence, given the APP 7;
and the DET curve, /; and g; become deterministic functions of
PF.

B. Classifier System Model

In general, classifiers may be instantiated on multiple nodes
with different resource constraints and processing power. To
represent the dataflow and compute the end-to-end delay for
each received SDO (an important metric for many applications
[38]-[40]), each classifier v; is modeled as a G/G/1 queuing
facility, followed by stream filtering and splitting operations,
where each SDO is discarded with probability 1 — ¢; or for-
warded to one of several next-hop classifiers with probability

{; (see Fig. 3). The total SDO input rate, and the average
processing rate for classifier v;, are denoted by A; and p;, re-
spectively, and the set of previous-hop neighbors and next-hop
neighbors of v; as prev(v;) and next(v;), respectively. We
indicate the corresponding subscripts of nodes in prev(v;) and
next(v;) as prev(i) and next(i). Moreover, define the ancestors
of v; and descendants of v;, anc(z) and des(7), as the nodes
which have a path to v;, or to which v; has a path, respec-
tively. If v; has multiple previous-hop neighbors v, € prev(i),
we denote the arrival rate from each neighbor as A%, with
Zzeprev(i) Al = \;. When an SDO is forwarded, it is sent to
the next-hop neighbor vy, v, € next(¢), with path selection
probability 3¢ configured by the classifier v;. (If we require
that each SDO is forwarded to only one next-hop neighbor,
then }°, i) B = 1.) Therefore, the resulting arrival rate
at the next-hop neighbor v, from v; is \Y = BY4;\;.

C. Objective Function for a Stream Processing Application

The goal of a stream processing application is not only
to maximize the amount of processed data (the throughput),
but also the amount of data that is correctly processed and
received (the goodput). However, increasing the volume of
data processed also leads to an increased load on the system,
which increases the end-to-end delay for the stream and can
lead to extra misses. To capture the tradeoff between system
performance and the incurred delay, we construct a stream
utility function to be maximized by the system.

System Performance Metric: In prior works, the performance
of stream mining applications is evaluated based upon the prob-
ability of misclassifying input data. Depending upon the impor-
tance of true and false positives [37], the performance of the
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chain of classifiers can be specified by a cost associated with
misses and false alarms. For a simple chain of classifiers labeled
from 1 to n, where there is no splitting of streams after the fil-
tering process, the end-to-end cost per SDO can be given by

C=(r—p)+60({—p)
:ﬂ—HgOi-l-@ (H&-H@J
i=1 i=1 i=1

where 7 indicates the true APP of input data that is returned
by the entire chain, and # specifies the weight of false positives
relative to true positives. Since 7 depends only upon the stream
characteristics, we can regard it as constant and remove it from
the cost function, invert it, and produce a utility function F' =
[Timi i — 01— & — [Tz 00)-

Note that []"_, ¢; is simply the total fraction of stream data
forwarded across the entire chain. [, p; = [, m; PP, on
the other hand, is the fraction of data out of the entire stream
that is correctly forwarded across the entire chain, which is cal-
culated by the probability of detection by each classifier, times
the conditional APP of positive data at the input of each clas-
sifier v;. For example, in Fig. 1(b), the conditional probability
mo refers to the probability that the probability that input data
correspond to volleyball images, conditioned on the outdoor fil-
tering process by the first classifier.

Delay Penalty: Because many multimedia applications are
delay sensitive, we consider a function H (D) to capture the
loss of utility as a function of the processing delay of D [39],
[40]. For example, embedded and multirate systems often have
a hard delay deadline A before the next interval [41]. The frac-
tion of data that is useful to the system would be given by
H(D) = Pr{D < A}, which is the probability that the delay
on a processed data object meets the hard deadline. For such an
application, any data that is retrieved after the delay deadline can
be regarded as a miss (as it is dropped or no longer useful), while
false alarm data that is retrieved after the deadline is ignored (re-
garded as a true negative). Note that in practice, this probability
can be estimated analytically if an accurate model (e.g., M/M/1)
for the arrival and service times are used, or else it can be ob-
tained by time stamping the processed SDO packets. This effec-
tively leads to a single objective function F' - H (D), which sat-
isfies the concept of fairness between accuracy and delay imple-
mented by the Nash product [49].! Hence, the system attempts
to configure the false alarm probabilities of each classifier v;,
PF, and the path selection parameters (3; ,, y € next(i), to
maximize the average utility as follows:

3)

x Q(PY,B)=>"ByH(Dy)
9

)

€9 1€ 1€

IThe generalized Nash product provides a tradeoff between misclassification
cost [37], [17] and delay depending upon the exponent attached to each term '
and H(D)(*~=2), respectively. In practice, we observed through simulations
that for the considered applications, an equal weight o« = 0.5 provided the best
tradeoff between classification accuracy and delay.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 11, NOVEMBER 2010

st. 0<PF<1

> By=1,8y>0 “)
2

where PT = (P[| ... PE) is the vector of false alarm prob-
abilities for all N classifiers in the system, B is a vector of all
path selection probabilities 3} for classifiers v; and a next-hop
neighbors vy, By denotes the probability that an SDO is sched-
uled to take an end-to-end path 1 (or to be filtered by the respec-
tive classifier chain given by #), ¢ € ¢ indicates that classifier
v; is a node along path 4}, and Dy the end-to-end delay across
that path. Note that the condition A\; < p; must hold in order
for the average delay to be finite; otherwise the utility is always
0. The overall utility is the sum of path utilities weighted by the
probability of choosing that path. Note that the parameters con-
figured by each classifier to optimize (4) include both its own
false alarm probability, and its next-hop path selection probabil-
ities. In the subsequent sections of this paper, we will represent
these parameters as actions that are taken by each classifier over
repeated, distributed interactions [42].

D. Discussion of Stream Utility Maximization

Before proposing any solutions, a fundamental question is
whether all the necessary information can be gathered to solve
the utility maximization problem in (4). In particular, the ob-
jective function relies on obtaining the terms g;, ¢;, and the
end-to-end delay D, which are all functions of the conditional
APP 7;, the false alarm configuration PL»F , and the detection
curve PP across different classifiers. While classifiers may be
willing to provide information about Pf and PP, note that
the conditional APP =; at every classifier v; is, in general, a
complicated function of the false alarm configurations of all
previous classifiers, i.e., m; = m;(PL )zeanc(i)- Importantly,
m # [[;, m, since setting different thresholds for the false
alarm probabilities at previous classifiers will also affect the
ground truth input data distribution to classifier v;. (Note that
this differs from prior work [16], [17] in that the exclusivity as-
sumption makes ; purely a function of the stream characteris-
tics, and not the configurations of previous classifiers.) As dis-
cussed before, if the analytics are not shared between classifiers,
and if constructing a joint classification model by inference re-
quires intolerable time and complexity, then the objective func-
tion Q(P¥, B) cannot be computed directly.

To address this challenge, in the rest of this paper, we pro-
vide a low complexity, distributed approach for obtaining the
utility for fixed configurations based upon this informational
constraint, and construct algorithms for maximizing the utility.
Our distributed algorithm is motivated by limiting the amount
of information that needs to be exchanged between classifiers,
lowering computational complexity, and improving the conver-
genceldynamic adaptation rate. Ultimately, we show that by pe-
riodically exchanging small amounts of information throughout
the system, an algorithm with very low complexity and fast con-
vergence rate can be constructed. We then provide simulations
to verify the proposed solution in Section VI.
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Fig. 4. Various parameters in relation to v;.
TABLE 1
SUMMARY OF PARAMETER TYPES AND A FEW EXAMPLES
Type of parameter for v; : Description: Examples:
Static Parameters: Fixed parameters, exchanged during initialization s
Observed Parameters: Can be measured/stamped by the last classifier v, D
Exchanged Parameters: Traded with other classifiers ©is
Configurable Parameters: Configured by classifier v; PP

III. DISTRIBUTED FRAMEWORK FOR A SINGLE-PATH TOPOLOGY

A. Distributed Utility Estimation Approach

In the single-path binary classifier chain topology (Fig. 2),
the stream utility maximization problem can be simplified as
follows:

max  Q(PF) = max C(¥)
PrVYv, eV Pr
st. 0<PF<1
9 =1{1,...,n} 5)

While the utility cannot be explicitly formulated as a function
of P due to informational constraints, the utility at any given
time instant can still be estimated as follows: each of these pa-
rameters in (5) can be easily obtained by at least one classifier,
as displayed in Fig. 4. First, the goodput and throughput ratios
p; and /; are functions of both the configuration Pf and the
(conditional) APP ;. The configuration is set by the classifier
and therefore known. The only unknown element, the APP, can
still be estimated from the input stream, as will be shown in
the following subsection. Finally, H (D) can be determined by
the final classifier in the chain by time stamping data objects.
Hence, for every parameter in (5), there exists a classifier that
can easily estimate the value of that parameter based upon lo-
cally observable data and its own configuration. By exchanging
these locally obtained parameters and configurations across all
classifiers, each classifier can then estimate the overall cost for
that given time instant. Table I lists the various parameter types,
their descriptions, and specific examples in our problem.

B. Estimating Parameters in Stationary and Nonstationary
Environments

We now discuss several low complexity methods to update
observed parameters. While parameters such as the arrival rate
A; can be directly measured from the incoming SDOs, param-
eters such as the APP 7; are not directly observable and must

be estimated. For example, since the classifier function is fixed,
a lookup table can be precomputed for discrete data values,
and the APP extrapolated based upon the actual value of the
input data. Another method could be to use a model. For ex-
ample, Gaussian mixture models (GMMs) have been shown to
be accurate for classifying color and texture features in images
[26]. Suppose that for classifier v;, the training data set obeys a
Gaussian model, with a random variable N (d, o) representing
the distribution for positive SDOs, and N'(—d, o) representing
the distribution for negative SDOs. The maximum a posteriori
(MAP) estimation can be used to determine the APP for each
SDO observation o;
erfc (%)

) +orte (224)

Note that in order to perform MAP estimation, an operation sim-
ilar in complexity to classification must be performed. This op-
eration can be relatively cheap or expensive depending upon the
complexity feature extraction, which needs only be performed
once per image prior to classification and/or APP estimation.
In the case where classification is nonnegligible compared to
feature extraction, it would be useful to limit the frequency at
which the APP is computed. For example, the workload can be
mitigated by randomly computing the APP for only 10% of the
images that are classified.

Because the APP prediction for a single SDO does not accu-
rately capture the average APP over a time period (or control
interval), the estimated APP must be averaged over all observa-
tions in the control interval, or possibly over multiple intervals
when the arrival rate is small. For simplicity, we normalize the
control intervals to be [0,1),[1,2),[2,3),..., such that the be-
ginning of each interval corresponds to an “iteration.” During
each iteration, we allow each classifier to adapt its configuration
based upon updated information over the prior control interval.

A simple approach to update the estimated APP is to average
all observed values within a time interval, i.e., if N APPs are

(6)

fri[Oi] - —o0,—d
o2V2

d—o;

01\/5

erfc (
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computed within the control interval [t—1, t), then the estimated
APP is

1 N
7iJobs[t — 1,1)] _NZ (7)

where o0;(n) indicates the value of the nth arriving SDO. In order
to update the estimated APP for iteration ¢, 7;(¢), over a history
of observations, we choose a sequence of values a;, 0 < oy <
1, and update 7;(¢) recursively

7i(t) := apmifobs([t — 1,6))] + (1 —ay)mi(t — 1).  (8)

For example, in a stationary environment where the APPs are
fixed, a time-averaging value for 7;(¢) converges to the expec-
tation E[7;] as t — oo and can be given by a; = 1/t. In a
nonstationary environment, a discounted average can be utilized
as in [34]. The discounted average weighs the observations of
the interval associated with the current iteration ¢ using a unit
weight, while observations from past iterations ¢’ are scaled by
e=?(t=t") where ¢ is inversely proportional to the amount of av-
erage “memory” allocated to prior observations, i.e., ¢ should
be increased in more dynamic environments in order to update
the APP more frequently. The discounted estimation of the APP
is given by

7~T,(t) ~ (1 — e_“") (fr,[obs(t)]

+ i em =t . 7;[obs(t )])
~ (1 — e™?)m;[obs(t)] + e~ #m;(t — 1). )

Note that regardless of the choice of values «;, efficient im-
plementations of (7) and (8), which are simple add-multiply op-
erations, require only a constant space complexity of a couple
scalars. Hence, updating observed parameters, and calculating
the local metrics during each iteration requires negligible com-
plexity.

C. Summary of the Proposed Distributed Framework

Next, we summarize our proposed algorithmic framework for
estimating the overall cost and reconfiguring the classifiers.
Distributed Framework for Maximizing Utility
1) Initialize the configuration PF (0) and exchange static pa-
rameters.

Each classifier v; sets Pf(0) to an initial configuration.

2) For each iteration (or integer time) ¢, measure/estimate
the arrival rate \;(¢) from the last elapsed control interval
[t —1,1).

The arrival rate from the previous-hop, ;\i(t), is obtained by ob-
serving either the number of arrivals at classifier v; during the
interval [t — 1, 1), or forming an estimate based upon time-aver-
aging, discounting, etc. of previous measurements, as discussed
in Section III-B.

3) Estimate the APP via MAP 7;(¢) from past time inter-
vals.
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Based upon the location of the a posteriori points of arriving
SDOs during time interval [t — 1, ¢), find the APP of each SDO
and update 7;(t) based upon time-averaging, discounting, etc.
(see Section I1I-B.)

4) For each classifier v;,v;, j # ¢, exchange local metrics p;
and /; with all other classifiers just prior to time ¢ to obtain
an estimate of the Q.

5) Based upon empirical analysis, modeling, experimenta-
tion, etc., choose the best configuration P/ (¢) to maximize
the following:

PE(t) = arg max E[Q'T(PT)] (10)
Pr

where (10) is the predicted stream utility at time ¢ + 1. Since the

PF'(t) affects the performance in the following interval [¢, t+1),

solving (10) gives the (predicted) optimal configuration.

Note that in this framework, we did not specify here how pa-
rameters are predicted for the next time interval (i.e., step 5), as
different prediction schemes can be used. For example, in [15],
a Markov model was used to predict feature values (e.g., APPs)
of SDOs based upon short-term temporal correlations. How-
ever, modeling stream behavior requires building, estimating,
and updating unknown parameters, which increases both the
complexity and the convergence time. Moreover, because we
allow other classifiers to change configurations during each iter-
ation, the resulting APPs and arrival rates often behave in non-
stationary manners. Hence, a predictive Markov model is not
well suited for the problem that we are studying.

IV. DISTRIBUTED LEARNING ALGORITHM FOR THE
SINGLE-PATH TOPOLOGY

A. Safe Experimentation for Discrete Configuration Sets

In this section, we introduce a low-complexity, model-free
learning approach called safe experimentation [44] for choosing
the best configuration for classifiers (i.e., Step 5 of the dis-
tributed framework). Safe experimentation was first proposed
for large, distributed, multiagent systems, where each agent is
unable to observe the actions of all other agents (due to infor-
mational or complexity constraints) and, hence, cannot build a
model of other agents. The agent therefore adheres to a “trusted”
action at most times, but occasionally “explores” a different ac-
tion in search of a potentially better action. Essentially, safe
experimentation does not require coordinating actions between
agents, or in our case, between autonomous classifier sites.

Our stream processing system falls under such a category and
is equivalent to a common interest game [45], where distributed
classifiers (i.e., agents) want to configure themselves (i.e., per-
form actions) to maximize the same utility function. The safe
experimentation algorithm for reconfiguring classifiers is given
as follows.

1) Initialization: Atiteration t = 0, each classifier randomly
selects a configuration P (0) from a discrete action set A;,
which is set as the baseline configuration P/**(1). After ex-
changing information about the derived local utilities from the
initial configurations, each classifier’s baseline utility at itera-
tion 1 is initialized as u®(1) = Q(P¥(0)).
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2) Configuration Selection: At each subsequent iteration,
each classifier selects his baseline configuration with proba-
bility (1 — &;) or experiments with a new random configuration
with probability e,. Hence, PF (t) = P*"(t) with probability
(1 — &), and PF(t) is chosen uniformly over A; with proba-
bility ;. €; is denoted the exploration rate at iteration ¢.

3) Baseline Configuration and Baseline Utility Update:
Each classifier compares the utility received, Q(P¥'(t)), with
his baseline utility u°(t), and updates his baseline configuration
and utility as follows:

b [P, QEPF() > ()
P = {Pﬁb(w, oPr() <ui)y
ul(t+ 1) = max (ul(t), QPF (1)) . (12)

4) Returnto Step 2 and Repeat: The reason why this learning
algorithm is called “safe experimentation” is because the base-
line utility is nondecreasing with respect to time (or the number
of iterations) and, hence, the performance of the algorithm only
improves over time. We now provide a sufficient condition for
finding the optimal solution.

Theorem 1: The following two conditions for the exploration
rate e, are sufficient to guarantee that the safe experimentation
algorithm for common interest games converges to the global
optimal solution with probability 1
13)

lime; =0
t—o00

. - Er Er Er
gy [1 - <m) (m) <mﬂ =009

Proof: The proof is similar to the proof for Theorem 3.1 in
[44]. We provide a short sketch of the proof to highlight prop-
erties of the exploration rate. First, the exploration rate must
converge to 0 as ¢ — oo, as indicated by (13), such that the
algorithm will play its baseline configuration with probability
1. Moreover, note that each multiplicative term in (14) repre-
sents the probability that the joint configuration played at time
T is not the optimal joint configuration, or all classifiers exper-
imented at time 7. Hence, the left-hand side of (14) forms an
upper bound on the probability that the optimal joint configura-
tion is not played before time ¢. Thus, (14) provides a sufficient
condition for the optimal joint configuration to be eventually
played with probability 1. ]

Note that we have shown (14) to be a sufficient condition
on the exploration rate for convergence to an optimal solution,
but only for a discrete action set. Moreover, the proof provides
no bounds for the convergence time of safe experimentation.
In general, the method converges very slowly, and the expected
time for finding the optimal solution can be bounded below by
|A| = |A1]|As2]| ... |An]|, which is the expected time for finding
the optimal solution via i.i.d. uniform sampling (i.e., e; = 1, Vt)
of the action set. Because the action set for each classifier can be
large when configurations are finely quantized, safe experimen-
tation becomes impractical for dynamic environments where
good configurations are promptly needed. To address this limi-
tation, in the next section, we will provide an alternative to safe
experimentation for continuous configurations.
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B. Combining Safe Experimentation With Randomized Local
Search

To reduce the convergence time as compared to the discrete
safe experimentation algorithm, we propose a simple stochastic
algorithm that fits within the framework of two-phase methods
highlighted in [46]. In this approach, we combine a uniform
random search for a baseline configuration over a continuous
feasible set, and we perform a randomized local search algo-
rithm around the baseline configuration. Unlike pure safe exper-
imentation, which uses random sampling over the entire con-
figuration space, the local search procedure take advantage of
smoothness and continuity properties that exist in the global
utility function, thereby allowing classifiers to converge to lo-
cally optimal points near their baseline configurations. The al-
gorithm is given by modifying step 2 of safe experimentation as
follows:

Modified 2) Configuration Selection: At each subsequent it-
eration, each classifier selects its baseline configuration with
probability (1 — &¢) or experiments with a new random config-
uration with probability ;. If the baseline configuration is se-
lected, it is perturbed by a small random variable (e.g., Gaussian,
uniform, etc.) Z;(t). Hence, PF (t) is chosen uniformly over the
feasible configuration space with probability e, andPf (t) =
PP (t) + Zi(t) with probability (1 — &;), where Z;(t) is a
zero-mean random variable, with lim;_, ., Z;(t) = 0.

If the size of the local search random perturbations do not
decay too quickly (e.g., E[|Zi(t)|?] = K/t?, where K > 0O is a
constant), it can be shown that (in a stationary setting) the local
search algorithm converges to a local maximum with probability
1 [47]. Moreover, if the exploration rate is sufficiently high, the
algorithm will converge to the globally optimal point with prob-
ability 1.

C. Summary of Algorithms, and Nonstationary Dynamics

In Table II, a summary comparing the different algorithms
is provided. For the combined safe experimentation and local
search algorithm, it is impossible to provide useful sufficient
conditions to guarantee both fast and sure convergence in a
dynamic environment to a global maxima for arbitrary utility
functions. However, it is useful to have a very high exploration
rate at the beginning of the algorithm, such that a good baseline
configuration can be found as a starting point for local search.
During later iterations, a very low exploration rate is preferable,
such that the local search algorithm can perform “refined” ex-
ploration around a good baseline point until stream characteris-
tics change again.

V. DISTRIBUTED ALGORITHMS FOR A
MULTIPLE-PATH TOPOLOGY

Stream processing engines are generally distributed, not only
due to the localized (or private) nature of data, but also because
distributed systems are more robust toward changes in system
load and nodal failures [19], [25]. We will now consider dis-
tributed systems where several different nodes may perform the
same type of classification function. We refer to these classifiers
as siblings and use sib(7) to denote the set of all subscripts of
classifiers that are siblings of v;. Note that due to the distributed
nature of the system, not all siblings may be reachable from the
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TABLE II
SUMMARY COMPARING THE DIFFERENT ALGORITHMS AND THE VARIOUS CRITERIA

Algorithm Information Overhead Complexity Convergence/Dynamics
Discretized Safe Global exchange of local | Very low (random Slow, suboptimal
Experimentation utilities configuration, constant

memory usage)
Continuous Safe Global exchange of local | Very low (random Fast; optimality can vary
Experimentation with | utilities configuration, constant depending on experimentation
Randomized Local memory usage) frequency and decay rate of
Search local search

d
0 @ e @
Fig. 5. Example of a classifier trellis for the single-stream, multiple-path model.
same previous-hop neighbors. The paths that the stream may indicates the measured goodput and throughput factors across

take through the distributed system can therefore be represented  all paths ¥,,,(;) from the source vq through node v;, and
by a trellis, as in Fig. 5.

AN (pF Ny _ [~ ~
A. Distributed Framework for Global Utility Maximization G (Pin:BJ) = (65) Z Poaccis H Pz
in Multiple-Path Topologies Daec(s) #€Vdec(s)
In this subsection, we extend the distributed framework for T (Pg i Bg) = (4) Z B et H A
maximizing utility (Section III-C) to multiple-path topologies. Daec() 2€D e ()
Here, we decompose the multiple-path stream utility function a17)

in (4) into partial utilities of ancestors and descendants of each

hop in the processing topology. For a classifier v;, the hop-wise  jndjcates the measured goodput and throughput factors of all

decomposition can be given by paths from v; to the destination v . Note that the only part of
(15.) thgt is directly known .by classifier v; is (@, —0,(4; — §i )),
QP F B) = H(D)[(1 + 6) wh1fk}1115 parF c;lbeO. (Class1f}iler lv, Zapno;fpredzlc; th; del.all)){'of its
. P ; next-hop neighbors, since the load is affected by its siblings.)
X Z Gy (Po,j7 B0> Hence, to construct (16) and (17), the local metrics and path se-
jesib(i)u{i} lection probabilities for each classifier must be exchanged with
x Z fien (PqFN. BY ) every other classifier. The total information exchange overhead
yenext(§) e Y is O(N?), where N is the total number of classifiers in the

.. . system.

F

— 0 Z T3 (POJ ’ Bf]) In order to reduce the informational overhead, it is possible
jesib(i)u{i} to exploit the trellis structure of the networked system by multi-
X Z By T;\’ (Pg N B;;V ) (15) plying accumulated path selection probabilities and local utility
yEnext(§) / parameters, and propagating the result down each path. Both a
forwards and backwards propagation of O(dn) overhead, where
where d is the average in-degree/out-degree of each classifier node, are

needed to distribute the information to each~classiﬁer. The re-
cursive formula for forward propagation of Qg (Pg;, Bj) is

é% (Pg:] B{))

(@]) Z /819,1716(1-) H Qo

Panc(s) €V anc(j) G{J (POF,J'?BS) = (@ﬂ Z ﬂrbég (POF,szé)
zEprev(i)
7§ (PE,BY) = (@) Y Boy | II 2] 16 7§ (P5;.B) = (0) Y B, Ts (PEL.BE) (8)

Panc(s) €D anc(s) Dane(j)
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Fig. 6. Chain of classifiers for car images that do not include mountains, nor are related to sports.

and the recursive formula for backward propagation of
Q?’(PfN,Bﬁv) is:

GY (PIy.BY) = (6:) Y. BiuGy (Pyn.BY)

y€Enext ()

TN (PIy.BY) = () Y BT} (Pyn.BY).
yEnext(z)

19)
Multiplying corresponding terms of (18) and (19) together (and
dividing by the redundant term) gives the average goodput and
throughput ratio of SDOs passing through classifier v;, but not
its siblings. (Note that from (15), the sum of Q7 (PF,BN) over
all j € {i}Usib(i) is the global utility Q(P¥, B).) Hence, while
the reduced information exchange does not enable classifier v;
to capture the state of the entire system, it captures information
about the path directly affected by (or directly affecting) classi-
fier v; using low informational overhead.

Based upon this information exchange, the safe experimen-
tation algorithm with local search may be performed by each
classifier v;, which requires optimization over both the false
alarm configuration P/ and the path selection probabilities
(Bi.y)yenext(s)- The performance of this algorithm will be
discussed in more detail in the simulations section.

B. Handling Multiple Streams and Multiple Paths

In this section, we briefly discuss how to extend the proposed
solution to a system with multiple streams. First, an appropriate
objective function must be constructed. For example, should the
system maximize the sum of utilities, or should it employ a fair-
ness scheme? While the system objective function is ultimately
the system designer’s choice and is beyond the scope of this
paper, to highlight possible approaches, we provide two exem-
plary utility functions. First, consider maximizing a social wel-
fare function, defined by a (weighted) sum of utilities [48]. For
simplicity, assume that each stream requires the system to per-
form the same type of classification. The maximization problem
may be given by

M
m)(pF B
ggE;Q (PF.B)
st. 0<PF<1
Z Byemy = 1, Byemy >0 (20)
9Cm)

where )\((]m) is the rate of SDO generation from the source of

stream m, 19, is a path taken by an SDO of stream m, By(m)
is the probability that an SDO arriving at the terminal of stream

m took path ¥, and pgm), H,Em), ng), (™) are the parameters

and values associated with stream m (and classifier v;). Because
maximizing the sum of utilities may be unfair, since streams
that gain little utility per resource will also be allocated little
resources, we may also define a fairness objective function that
maximizes a (weighted) product of utilities [49], i.e.,

M
we 1] @7 B)
st. 0<PF<1
> By =1,8s>0. @
9

In the same way as for the single stream case, by trading infor-
mation across classifiers about the local utilities derived for each
stream, one can apply the same distributed learning algorithm to
configure the system and optimize the global objective.

VI. SIMULATION RESULTS

A. Application: Classification of TV Video Data

Our proposed algorithm is tested using classifiers and videos
provided by IBM’s TRECVID 2007 project (see [27] for more
details.). By extracting features such as color histogram, color
correlogram, and co-occurrence texture, the classifiers are
trained to detect high-level features, such as whether the video
shot takes place outdoors, or in an office building, or whether
there is an animal or a car in the video. The classifiers are
SVM-based and can therefore dynamically set detection thresh-
olds for the output scores for each image without changing the
underlying implementation. Based upon the set of video images
used, we chose to construct a chain out of classifiers to detect
images that contained cars, but did not include mountains and
were not sports related, as this includes a sizable fraction of
images from the total set (113 images from a total of 18000),
and also requires heavy filtering of images at each classifier.
The arrangement of classifiers is shown in Fig. 6.

We considered two system scenarios for comparing the re-
sults of our algorithms: a) when resources are sufficient and
the application is not delay sensitive, and b) when resources are
scarce (the available resources constitute approximately 1/10 of
the resource required by the classifiers), and application delay
deadline is fixed at 10 s. (This delay deadline can be varied de-
pending upon the system/application context [40], [41].) Note
that the delay can be obtained by time stamping the processed
data objects, but to save time in our simulations, we computed
the delay analytically using an M/M/1 model, which is highly
relevant to network traffic modeling [32], [35]. Hence, data ob-
jects arrive with exponential interarrival times, and classifiers
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TABLE IIT
DETECTION AND FALSE ALARM TRADEOFF FOR THE ENTIRE CHAIN AFTER GLOBAL CONVERGENCE OF ALGORITHMS
Safe Exp Safe Exp with Optimal classifier configuration
local search with “random load shedding”
High resources (pd, pf) 0.7742,0.3126 0.7742, 0.3096 0.7742, 0.3096
Low resources (pd, pf) 0.1129, 0.0050 0.1129, 0.0048 0.0060, 0.0025
Avg delay (no deadline, 10 sec deadline) Inf, 5.4415 Inf, 5.0701 6.06
Safe Expenmentatlon Safe Exp with Local Search
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Fig. 7. Evolution of utility without delay penalty for (a) safe experimentation without local search, and (b) safe experimentation with local search.
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Fig. 8. Evolution of utility without resource constraints and delay deadline of 10 s for (a) safe experimentation without local search, and (b) safe experimentation

with local search.

process data with exponentially distributed times with mean ser-
vice time 1/p;.

B. Safe Experimentation Results for a Chain of Classifiers

We configured the operating points (thresholds) of the chain
classifiers based upon different classifier service rates and dif-
ferent application delay sensitivities. The video shots (i.e., key
frames) are extracted and input into the system at an average
rate of 100 per s. The initial “car” classifier is given enough
processing resources to process all images (If insufficient pro-
cessing resources exist, the false alarm and detection rate would
be scaled down proportionally to the fraction of data objects
shed at the input, in order to reduce the load to a tolerable

level for the application.) To test system cases a-b, the “moun-
tain” and “sports” classifiers are placed on nodes with ample
processing power, and very limited processing power. The re-
sulting false alarm and detection rates are shown in the top row
of Table III, compared against an optimal fusion of SVM classi-
fier scores without explicitly considering resource constraints.2
In this case, the load shedder simply drops from a heavily loaded
queue the data objects with the highest delay timestamps, such
that the average load on each classifier is 0.7. Simulations were

2Note that this is in fact the optimal approach when analytics are distributed
and have proprietary restrictions. If it were possible to combine the datasets
across these sites, one could construct a single classifier that fully optimizes over
the three high-level features. The purpose of our algorithm is not to demonstrate
that this approach outperforms a single classifier with shared analytics, but to
solve the distributed problem under resource constraints and delay requirements.
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Fig. 9. Evolution of expected delay for safe experimentation with local search under a delay deadline of 10 s.

Fig. 10. Simulated multipath topology with normalized service rates listed on each classifier node.
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Fig. 11. Tllustrative view of the utility of safe experimentation with local search used for a topology with two routes.

performed multiple times for each algorithm using the same
random generator seeds for a more accurate comparison.

In Fig. 7(a), we show the evolution of the utility function
under safe experimentation using an experimentation decay rate
of t=(1/3) where t is the iteration, as well as the resulting prob-
ability of detection versus false alarm rate after 2000 iterations,
when the application is not delay sensitive. The corresponding
safe experimentation with local search algorithm is compared
against this in Fig. 7(b). Note from Table III that the local search
algorithm can achieve a slightly lower false alarm rate by dis-
covering a better configuration within the neighborhood.

For the resource constrained, delay-sensitive setting, we de-
termined the average service rate for the “mountain” and “car”
classifiers to be approximately mo = 10, and m3 = 8 images
per second, respectively. The same plots are shown in Fig. 8

when a delay deadline of 10 s is set for processing, and the
final detection and miss probabilities shown in the bottom row
of Table III. Note that under a stringent delay deadline and low
resource availability, each classifier will configure its operating
point to discard a significant volume of data. Hence, the detec-
tion rate, which is around 10%, accounts for the 90% of images
that would have been shed by the system given the resource con-
straints, regardless of the algorithm used. Compared to the result
obtained by an optimal fusion of classifier scores and random
load shedding, the proposed resource-aware algorithms achieve
a detection rate approximately 15 times higher, and an average
delay about 2 s lower, under similar false alarm rates and average
delays. For a qualitative comparison, note that if a hard delay
deadline of 5 s is fixed for the application, the decreased loading
in the resource aware configuration significantly reduces the
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TABLE IV
PERFORMANCE COMPARISON OF SPEECH DATA PROCESSING ACROSS THE MULTIPATH TOPOLOGY
shedding safe exp. without path selection | safe exp. with path selection
Path Selection (0.5,0.5) (0.5,0.5) (0. 0.6915,0.3085)
DET values (pd, pf) 0.0064, 0.0024 0. 1129, 0.0048 0.1048, 0.0023
Average delay 0.0729 0.1194 0.1122
Utility 0.0035 0.0292 0.1081
Safe Exp with Local Search
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Fig. 12. Dynamic adaptation results with constant experimentation rate of 1/10.
Safe Exp with Local Search Safe Exp with Local Search
= - - 6 F 13 % =
o
O. 1 “‘:‘ ““ " ““ “’ "‘\ IW\” I ‘\‘\” “‘ “\" ”” ‘”‘ ‘” \‘“y “\‘y “\ “ “\ W ‘:“‘ ”\\ ”‘ ‘”\‘“ \‘ /I ”‘ | H i v‘,’ ““‘\‘“‘"’" -8
b / | |
@ il 1l
2 “;‘ 1\0 |
.3‘ ‘ > | M | \\‘ { (T
= 0.05 I 1N Ml | I\
o 4/ |
o))
S |®
Or e i
- - - - - < 3 - - - - -
0 500 1000 1500 2000 0 500 1000 1500 2000
Iterations lterations

Fig. 13. Dynamic adaptation results of frequent early experimentation, and local search thereafter.

fraction of data results that are returned past the deadline. Fi-
nally, note that with local search, a near optimal configuration
is found within 50 iterations, compared to safe experimentation
alone which requires over 600 iterations, since the small random
perturbations enables the classifiers to discover better configura-
tions within their local neighborhoods. The evolution of delay is
depicted in Fig. 9. Note that the delay converges approximately
with some variation due to local search perturbations.

C. Performance Comparisons for a Multipath Topology

Consider now the topology shown in Fig. 10, where a stream
can take two possible paths to the destination. Note that the
top path consists of a second classifier that has about 1.6 times
the service rate of the second classifier in the bottom path. The
utility plot of one particular realization of safe experimenta-
tion with local search is shown in Fig. 11, which shows that
approximately 500 iterations are required to find the near op-
timal point. Shown in Table IV are the results of different con-
figuration schemes. Without information exchange, the initial
classifier node will always transmit SDOs along each path with
equal probability. However, as indicated by Table IV, the safe

experimentation algorithm with information exchange outper-
forms the other algorithms, since the classifier learns that one
path is better than the other. To view the impact of path selec-
tion on the overall utility, we also performed safe experimenta-
tion as in the single chain case, while fixing the path selection
probabilities to be (0.5, 0.5). This choice is based upon the local
utility-based algorithm, where the first classifier considers only
the delay caused by the next-hop neighbor, and therefore fails to
identify the resource bottleneck that occurs downstream. Nev-
ertheless, the local utility-based algorithm performs almost op-
timally with respect to the proposed utility function, with only
slightly worse average delay and probability of detection. Note
that the proposed resource-aware algorithms both outperform
the random load shedding approach by approximately 20 times
in terms of detection rate under similar false alarm rate and
delay.

D. Dynamic Reconfiguration for Changing Stream
Characteristics

In order to analyze how the algorithm performs as stream
characteristics change, we analyze the single path scenario
again, but this time letting the APP vary over time. To
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simulate a dynamic stream, we let each incoming image
be selected uniformly from the a priori positive and nega-
tive datasets with the probabilities of picking positive data
varying according to a Martingale, using the following rule:
m = max(min(m_; + X,1),0), where X = =+s with
probability 1/2. Here, we let s = 0.05, such that there is an
approximate 5% change in APP per interval. Note that this is
significant, since over 10 intervals, the APP can vary as much
as 16% based upon properties of the binomial distribution
[33]. Since each interval is attributed to filtering approximately
20000 images (the sample size) at a rate of 100 images a
second, each interval corresponds to 200 s, or just under 4
min. Extrapolating from this, significant changes in stream
characteristics (above 10%) would occur on average every 15
min. Due to the high cost of the APP estimation (which is
comparable to the classification cost), we only re-estimate the
APP once every 100 intervals. The experimentation rate is set
to a constant 10%, in order to ensure that configurations outside
the local neighborhood are explored approximately every 10
intervals.

Shown in Fig. 12 are the dynamic adaptation results from a
particular realization. Note that the actual utility does not re-
main constant due to changing APP. However, approximately
every 10 intervals, experimentation is used to look for a new
optimal point. Because safe experimentation requires multiple
iterations to discover a near optimal point, the first 160 iterations
are shown to yield poor utility. However, once a good configura-
tion is discovered, due to the slow varying rate of the APP, local
search enables the algorithm to adapt to the gradually changing
optimal configuration. In fact, it would seem that frequent ex-
ploration is only needed during the first 200 iterations, and then
local search can be used afterwards. To determine whether this
intuition is correct, we attempted to use pure random exper-
imentation for the first 20 iterations, and local search there-
after. Shown in Fig. 13 is the result, which demonstrates that in
the context of gradually changing stream characteristics, local
search is a useful method to maintain high (although not nec-
essarily optimal) utility. Due to dynamic stream characteristics
but infrequent APP estimation, the average delay would vary
between 3 and 5 s. Overall, this method produced a detection
probability of 10.48%, and false alarm rate of 0.48%, compa-
rable to safe experimentation in the static scenario.

VII. CONCLUSION

In this paper, we proposed a delay-sensitive, stream pro-
cessing utility metric, and provided a distributed algorithmic
framework for configuring a networked classifier topology.
We showed that by exchanging local performance metrics
between classifiers, each classifier can run a low complexity,
model-free distributed algorithm that converges quickly to
an optimal or near optimal system configuration, even when
the utility function cannot be analytically characterized. We
also provided insights into the tradeoffs between information
availability, complexity, convergence rate, and dynamics in a
classifier system, and confirmed these insights using classifiers
trained for high-level concept detection. Most importantly,
the proposed optimization framework can also be extended

3047

to other informationally-distributed (or informationally-re-
stricted) multimedia networks or parallel computing systems
where individually configurable entities have, as a common
goal, optimizing the system performance.

An orthogonal but related direction of research involves
optimizing the ordering of classifier filtering elements [51], and
utilizing more general topologies, such as parallelization of
some filtering elements, to improve performance [50]. Further-
more, while we have considered independent configuration of
identical classifier elements over multiple distributed nodes, the
instantiation of multiple classifier elements on each node can
also yield interesting challenges with respect to shared resource
constraints (i.e., time-sharing on a CPU). Future work could
consider how safe experimentation would work for resource
allocation to classifier elements on a shared processing node.
The mixed continuous and discrete optimization problem of
ordering, placement, resource sharing and operating point con-
figuration would be a very challenging and interesting problem
to explore.
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