
Ad Hoc Networks 9 (2011) 497–513
Contents lists available at ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier .com/locate /adhoc
Foresighted tree configuration games in resource constrained
distributed stream mining sensors

Hyunggon Park a,⇑, Deepak S. Turaga b, Olivier Verscheure b, Mihaela van der Schaar c

a Department of Electronics Engineering, Ewha Womans University, Seoul, Republic of Korea
b IBM T.J. Watson Research Center, Hawthorne, NY, United States
c Electrical Engineering Department, University of California, Los Angeles, CA, United States
a r t i c l e i n f o

Article history:
Available online 10 August 2010

Keywords:
Resource constrained stream mining
sensors
Tree configuration games
Myopic and foresighted strategies
Coalitions for distributed classifiers
Binary classifier trees
1570-8705/$ - see front matter � 2010 Elsevier B.V
doi:10.1016/j.adhoc.2010.08.007

⇑ Corresponding author. Tel.: +82 2 3277 3896; f
E-mail addresses: hyunggon.park@ewha.ac.kr

us.ibm.com (D.S. Turaga), ov1@us.ibm.com (O. Vers
ucla.edu (M. van der Schaar).
a b s t r a c t

We consider the problem of optimizing stream mining applications that are constructed as
tree topologies of classifiers and deployed on a set of resource constrained and distributed
processing nodes (or sensors). The optimization involves selecting appropriate false-alarm
detection tradeoffs (operating points) for each classifier to minimize an end-to-end mis-
classification penalty, while satisfying resource constraints. We design distributed solu-
tions, by defining tree configuration games, where individual classifiers configure
themselves to maximize an appropriate local utility. We define the local utility functions
and determine the information that needs to be exchanged across classifiers in order to
design the distributed solutions. We analytically show that there is a unique pure strategy
Nash equilibrium in operating points, which guarantees convergence of the proposed
approach. We develop both myopic strategy, where the utility is purely local to the current
classifier, and foresighted strategy, where the utility includes impact of classifier’s actions
on successive classifiers. We analytically show that actions determined based on fore-
sighted strategies improve the end-to-end performance of the classifier tree, by deriving
an associated probability bound. We also investigate the impact of resource constraints
on the classifier action selections for each strategy, and the corresponding application
performance. We propose a learning-based approach, which enables each classifier to
effectively adapt to the dynamic changes of resource constraints. We evaluate the
performance of our solutions on an application for sports scene classification. We show
that foresighted strategies result in better performance than myopic strategies in both
resource unconstrained and resource constrained scenarios, and asymptotically approach
the centralized optimal solution. We also show that the proposed distributed solutions
outperform the centralized solution based on the Sequential Quadratic Programming on
average in resource unconstrained scenarios.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

There are an increasing number of applications that re-
quire processing and classification of continuous, high vol-
ume data streams. These include photo and video
. All rights reserved.

ax: +82 2 3277 3494.
(H. Park), deepak@
cheure), mihaela@ee.
streaming services, online analysis of financial data
streams, real-time manufacturing process control, search
engines, spam filters, security, and medical services [1–5],
etc. These applications often consists of processing topolo-
gies of distributed operators (or sensors) [6–10] deployed
on large-scale stream mining systems in an ad hoc manner
[9,11–14]. Specifically, many stream mining applications
implement topologies (ensembles such as trees or cas-
cades) of low-complexity binary classifier node sensors to
hierarchically filter the data streams and jointly accomplish

http://dx.doi.org/10.1016/j.adhoc.2010.08.007
mailto:hyunggon.park@ewha.ac.kr
mailto:deepak@ us.ibm.com
mailto:deepak@ us.ibm.com
mailto:ov1@us.ibm.com
mailto:mihaela@ee. ucla.edu
mailto:mihaela@ee. ucla.edu
http://dx.doi.org/10.1016/j.adhoc.2010.08.007
http://www.sciencedirect.com/science/journal/15708705
http://www.elsevier.com/locate/adhoc

1 In this paper, we use a naive load-shedding approach, where stream
data is randomly shed at the input of each classifier (i.e., due to buffer
overflow). Advanced load-shedding approaches based on measures of burst,
desired Quality of Service (QoS) requirements, data value or delay
constraints [19–21] may also be used with our approaches.

498 H. Park et al. / Ad Hoc Networks 9 (2011) 497–513
the task of complex classification [2,15]. Using such tree
topology of classifiers, data of disinterest as well as low
confidence data can be filtered out (discarded), thereby
potentially increasing end-to-end accuracy, and decreasing
processing load on downstream classifiers.

Stream mining applications pose several interesting re-
search challenges. These include the optimal construction
and training of such topologies, as well as configuration
and management of individual classifiers to maximize
end-to-end performance – especially under dynamically
varying resource constraints and data characteristics. In this
paper, we focus on the classifier configuration problem for
tree topologies, i.e., determining an operating point from
Detection Error Tradeoff (DET) curves for each binary classi-
fier in the tree, in order to maximize the end-to-end classi-
fication performance [16]. In the considered tree topologies
with binary classifiers, individual classifiers can operate at
different performance levels by selecting a tradeoff be-
tween probability of detection and probability of false
alarm, i.e., operating point. For example, operating points
can be selected by determining decision thresholds for likeli-
hood ratio tests or for support vector machine (SVM) scores
[3,17], etc. Prior approaches model classifier tree configura-
tion as an optimization problem and use centralized tech-
niques such as Sequential Quadratic Programming (SQP)
[16] to solve it. Such approaches require centralized control
of all the classifiers, and the corresponding information and
data. Hence, they suffer disadvantages in terms of having a
single central point of control and associated failure, issues
with scaling and adaptation as the topology grows, and not
allowing large scale applications with capabilities distrib-
uted across multiple proprietary entities.

The main motivation of this work is to provide an ana-
lytical model to investigate the interaction among the clas-
sifiers in a stream mining application, and to design
completely distributed solutions that can stabilize the
application by enabling each classifier to adhere to its se-
lected operating point. Due to the informationally distrib-
uted nature, each classifier may not know how many
classifiers are present or connected to it, or it may have
only limited information about the operating points, objec-
tive functions (i.e., utility functions), available resources,
etc., of the other classifiers. In this case, each classifier
can decide an operating point that maximizes its local
objective (i.e., local utility) determined based on limited
available information. To capture this situation, we define
a game-theoretic model, which is referred to as a tree con-
figuration game. The tree configuration game is a class of
non-cooperative sequential game [18], and it enables indi-
vidual classifiers to find an equilibrium that achieves a
desirable end-to-end application utility. We design an
appropriate local utility function based on the end-to-end
misclassification penalty, and minimal amount of local
information exchange across classifiers. We then describe
how individual classifiers can select an optimal action to
maximize their local utilities. We analytically show that
there is a unique pure strategy Nash equilibrium in se-
lected actions for this game, and evaluate the application
performance at this equilibrium.

In the case where additional information at one or more
classifiers is available, we show that using the information
also leads to another unique pure strategy Nash equilib-
rium, which can further improve the end-to-end applica-
tion performance. Specifically, if a classifier has access to
information about some of its successive classifiers (e.g.,
available actions, local utility functions, etc.), it can select
an action that maximizes its coalition utility. The coalition
of a classifier includes the successive classifiers for which
information is available to the classifier. This action selec-
tion strategy is referred to as foresighted. This is unlike the
myopic strategy, where a classifier selects actions to maxi-
mize its own local utility without considering the impact of
its action selections on the other classifiers. We show that
a foresighted strategy can outperform the myopic strategy,
and analytically derive an associated probability bound on
the performance.

We also consider the impact of resource constraints on
the designed solutions, i.e., action selections for myopic
and foresighted strategies. We show analytically that the
optimal myopic actions do not change in the presence of
resource constraints, although we may need to use load
shedding to satisfy the constraints.1 In contrast, the optimal
foresighted actions are influenced by both the actions of
other classifiers and system resource division policies. We
propose a learning-based approach, where a foresighted
classifier iteratively estimates the impact of its actions on
the coalition utility without requiring additional informa-
tion exchange, and uses the learning to dynamically select
its optimal action.

We present simulation results on an application for
hierarchical semantic concept detection in sports images,
and evaluate the performance against prior centralized ap-
proaches in [16]. We examine the impact of varying mis-
classification cost coefficients as well as granularity of
the decision space (i.e., the available quantized DET curve
per classifier) under both resource constrained and uncon-
strained scenarios. We demonstrate that the foresighted
strategy outperforms the myopic strategy, and also show
that the foresighted strategies lead to utility that ap-
proaches the centralized optimal solution, as the coalition
size and the number of actions increase. An actual imple-
mentation of the proposed myopic strategy based on IBM
System S processing core middleware [7] was demon-
strated in [22].

This paper is organized as follows. In Section 2, we
introduce the model for individual classifiers and classifier
trees. In Section 3, we introduce the tree configuration
game, including the utility function definition, available
actions, etc. In Section 4, we describe the myopic and fore-
sighted strategies for classifier configuration. We provide
detailed analysis of the foresighted strategy and provide
probabilistic bounds on performance improvements over
the myopic strategy in Section 5. In Section 6, we study
the impact of the resource constraints on the proposed tree
configuration games, and the corresponding application
utilities. Simulation results are presented in Section 7.

Table 1
Summary of notation.

Notation Description

ci ð�ciÞ Yes (no) classification unit (CU) in classifier i
Ci Classifier i;Ci ¼ fci;�cig
Gi Coalition of ci (set of CUs)
ai Action of ci; ai ¼ ðpF

i ;p
D
i Þ

Ai Action set of ci

Ii Local information of ci

Ii Available set of information to ci

k [i ck is a preceding CU of ci

x̂ x for ci, or �x for �ci

CL (G) Set of leaf CUs in coalition G
pi Strategy of ci

Ui Utility of ci

kF
i ðkM

i Þ Cost coefficient for false alarm (missing) of ci

/i A-priori probability of stream to ci

ti (gi) Throughput (goodput) of input stream to Ci

I+i Information about successive CUs of ci

a�i Set of actions for precedent CUs of ci

i [d k ck is a successive CU with distance d from ci

Ki , tr/i �Ui True fraction of stream data that belongs to ci

H. Park et al. / Ad Hoc Networks 9 (2011) 497–513 499
We conclude with directions for future research in Section
8. The notation used in this paper is summarized in Table 1.

2. System model – hierarchical binary classifier trees

We consider a stream mining system, which consists of
several binary classifiers in a tree topology. An illustrative
stream mining application [16] is depicted in Fig. 1. The
topology of classifiers in this example is used to identify
semantic concepts from sports image data using hierarchi-
cal filtering. Leaf classifiers in the application (e.g., classi-
fier 4, 8, 9, etc.) represent the actual classes of interest,
while intermediate classifiers (e.g., classifier 2, 3, 6, etc.)
assist in hierarchical filtering of data based on a semantic
hierarchy of concepts. We now describe our model for clas-
sifiers, classifier trees, and end-to-end application utility.

2.1. Configuration of binary classifier

A binary classifier filters input data into two classes, a
‘‘yes” class (denoted by Hy) and a ‘‘no” class (denoted by
Hn). Each classifier Ci may be modeled as two independent
classification units (CUs),2 corresponding to the ‘‘yes” CU ci

and ‘‘no” CU �ci, i.e., Ci ¼ fci; �cig. An illustration for Ci is de-
picted in Fig. 2a. We use notation i [k to denote that ci (or
�ci) is a preceding CU for ck (or �ck). Equivalently, ck (or �ck) is a
successive CU of ci (or �ci). The information about distance d,
in number of hops, between two CUs is denoted by i [d k.
For example, in Fig. 1, c1 is a preceding CU of c2, which is
denoted by c1 [c2 (or c1 [1 c2). Note that the topology al-
lows disambiguation between the two CUs per classifier.

2.2. Stream characteristics

The input stream for classifier Ci is characterized by
throughput ti and goodput gi, which represent total data rate
2 Independent CUs allow data to be labeled as both ‘‘yes” and ‘‘no”, or
neither.
and correctly labeled data rate, respectively. The average
fraction of the input stream data that represents true posi-
tive for ‘‘yes” CU ci is denoted by /i (see Fig. 2b). Note that
/i is pre-determined based on the classifier topology and
stream data characteristics. �/i is similarly defined for
‘‘no” CU �ci. Note that �/i ¼ 1� /i.

2.3. Performance measure of classifier

For a ‘‘yes” CU ci, we label the probability of detection as
pD

i , the probability of miss as pM
i pM

i ¼ 1� pD
i

� �
, and the

probability of false alarm as pF
i . Similarly, for a ‘‘no” CU �ci,

we label the probability of detection as �pD
i , the probability

of miss as �pM
i , and the probability of false as �pF

i . As in [16],
performance of cið�ciÞ is controlled by its tradeoff between
probability of false alarm pF

i
�pF

i

� �
and probability of detec-

tion pD
i

�pD
i

� �
. The two CUs are independent and may have

decoupled operating points, e.g., through the use of inde-
pendent thresholds (one for ‘‘yes” and one for ‘‘no”) for
score-based classifiers. The set of operating points
pF

i ; p
D
i

� �
(or �pF

i ; �p
D
i

� �
) represents the DET curve for ci (or �ci).

The DET curve is a non-decreasing concave function that
lies between (0,0) and (1,1).

2.4. Cost coefficients for misclassification

Misclassification cost coefficients kF
i

�kF
i

� �
and kM

i
�kM

i

� �
represent the cost/penalty per unit data rate of false alarm
and miss for CU cið�ciÞ. These coefficients are specified by
the application for leaf classifiers, since they represent
the classes of interest. As will be discussed in Sections
2.5 and 2.6, these coefficients are used to specify the
end-to-end application utility (or equivalently, application
cost).

For the proposed approaches, we define the misclassifi-
cation cost coefficients at intermediate classifiers, by
decomposing the end-to-end utility into local utilities.

We determine cost coefficients at intermediate classifi-
ers, by explicitly considering the tree topology as well as
the stream characteristics, and using backward propaga-
tion from the leaf coefficients. Specifically, as shown in
Fig. 2b, misclassification cost coefficients kF

i and kM
i of an

intermediate CU ci can be obtained by
kF
i ¼ /kk

F
k þ ð1� /kÞ�kF

k; and

kM
i ¼ /kk

M
k þ ð1� /kÞ�kM

k ; ð1Þ
where Ck is an immediately successive classifier of ci, i.e.,
i [1 k.

2.5. Input and output rates

A CU’s operating point controls output stream rates. For
a stream with throughput ti and goodput gi entering ci (and
�ci), the output rates t0i and g0i (correspondingly �t0i and �g0i)
may be derived as [16]

t0i
g0i

� �
¼ Ti

ti

gi

� �
; and

�t0i
�g0i

" #
¼ Ti

ti

gi

� �
; ð2Þ

1

2

3

4

5

6

7

8

9

10

11

Fig. 1. An illustrative stream mining application.

(a) Input-output rates in a classifier. (b) Misclassification cost coefficients.

Fig. 2. Classifier configuration.

500 H. Park et al. / Ad Hoc Networks 9 (2011) 497–513
where Ti and Ti are given by

Ti ¼
pF

i /iðpD
i � pF

i Þ
0 /ipD

i

" #
; and Ti ¼

�pD
i /ið�pF

i � �pD
i Þ

0 �/i�pD
i ;

" #
:

2.6. End-to-End application utility

Let S represent the set of all classifiers and CL (S) be the
set of leaf CUs in the application. Then, the end-to-end
cost/penalty for misclassification incurred by leaf classifier
cl(2CL(S)) may be expressed as

ðt0l � g0lÞk
F
l þ ðKl � g0lÞk

M
l ;

where Kl represents a true fraction of stream data that be-
longs to cl for input stream rate tr to the tree, defined as
Kl , tr/l �

Q
8k2fjjj,lg/̂k ¼ tr/l �Ul, with /̂k ¼ /k for ck and

/̂k ¼ �/k for �ck. We define the utility achieved by cl as the
negative end-to-end cost, or
Ul ¼ � ðt0l � g0lÞk
F
l þ Kl � g0l

� �
kM

l

� �
: ð3Þ

Similarly, Ul achieved by �cl can be expressed in terms of
coefficients �kF

l and �kM
l , i.e.,

Ul ¼ � ð�t0l � �g0lÞ�kF
l þ �Kl � �g0l

� �
�kM

l

� �
; ð4Þ

where �Kl may be defined similarly.
Thus, the end-to-end application utility US may be ex-

pressed as

US ¼
X

cl2CLðSÞ
Ul þ

X
�cl2CLðSÞ

Ul: ð5Þ
3. Tree configuration games

The goal of this paper is the optimized selection of oper-
ating points for individual CUs in order to maximize the

H. Park et al. / Ad Hoc Networks 9 (2011) 497–513 501
end-to-end application utility (or equivalently, minimizing
the end-to-end application cost). In this section, we define
a tree configuration game, which is a class of non-cooper-
ative sequential game [18]. The game is played by each
classifier that selects an operating point to maximize its
own local utility based on the available information. The
game is assumed to progress from the root to the leaf,
i.e., the root classifier configures itself before its children,
and so on. We formally define the tree configuration game
in the following sections.

3.1. Definition of tree configuration games

For a stream mining application S with N classifiers, the
tree configuration game consists of:

� a finite set of CUs (players): fCi ¼ ðci; �ciÞj1 6 i 6 Ng,
� for each CU ĉi, a nonempty set of actions: bAi,
� for each CU ĉi, a utility function: bUið�Þ, and
� for each CU ĉi, a strategy: p̂ið�Þ.

We use x̂ to represent x and �x as appropriate. For exam-
ple, ĉi represents ci for ‘‘yes” CU and �ci for ‘‘no” CU, respec-
tively. This notation is used in the rest of the paper. Each
element of the tree configuration games is described in
more detail.

3.1.1. Action set bAi

The action set bAi for CU ĉi is defined as

bAi ¼ fâi;kj1 6 k 6 bAig; ð6Þ

where âi;k ¼ p̂F
ik; p̂

D
ik

� �
is an action that involves selecting the

kth operating point among bAi ¼ jbAij available operating
points. This assumes a discrete set of operating points,
which are typically obtained by empirical measurement.
These operating points may be viewed as quantized ver-
sions of an underlying continuous DET curve – a differen-
tiable concave function f̂ : ½0;1� ! ½0;1�, defined as [16]:

p̂D ¼ f̂ ðp̂FÞ;

for 0 6 p̂F
6 1. In this paper, we assume uniformly distrib-

uted (result of uniform quantization) operating points;
alternative quantization schemes can also be used. Hence,
action âi;k corresponds to selecting operating point

k�1bAi�1
; f̂ i

k�1bAi�1

� 	� 	
, which is illustrated in Fig. 2a.

3.1.2. Local utility function bUið�Þ
Similar to (3), the local utility function for an intermedi-

ate CU ci(ci R CL(S)) can be expressed as

bUiðâiÞ ¼ � ð̂t0i � ĝ0iÞk̂F
i þ K̂i � ĝ0i

 �
k̂M

i

h i
; ð7Þ

where k̂F
i and k̂M

i are derived by the backward propagation
scheme shown in (1). We assume that the backward prop-
agation is performed at initialization, before the classifier
configuration. Note that each CU needs to exchange infor-
mation in order to identify cost coefficients and the local
utility function in (7). The minimum information that
needs to be exchanged across CUs is discussed in Section 4.
3.1.3. Strategy p̂i of CU ĉi

A strategy of a CU determines its optimal action in
the action set. This is determined as a function of the
available information. Hence, the strategy may be ex-
pressed as

â�i ¼ p̂iðbIiÞ 2 bAi; ð8Þ

where bIi represents the available information to ĉi. Various
types of available information will be discussed in Section
3.2, and their impact on the strategies will be studied in
Section 4.

3.2. Available information for CUs

In the tree configuration games, CU ĉi can have various
types of available information:

� local information bIi: information specific to ĉi such as
observed throughput, available actions, misclassifi-
cation cost coefficients, etc. Hence,
bIi ¼ t̂i; /̂i; k̂
F
i ; k̂

M
i ;
bAi

n o
: ð9Þ

The information about the available resources bRi can
also be included. We assume that the local information
is always available to each CU.
� information about successive classifiers bIþi : bIþi includes

local information of successive classifiers. Hence,
bIþi ¼ bIkji,k;8k
n o

: ð10Þ

Note that bIþi excludes bIi.
� information about preceding CU actions â�i: The set of

actions â�i taken by preceding CUs of ĉi is expressed
as
â�i ¼ fâkjk,i;8kg: ð11Þ
The impact of what information and how much infor-
mation on the performance of the application is investi-
gated in the next section. For simplicity, we only
consider a ‘‘yes” CU ci in the analysis, which also holds
for a ‘‘no” CU �ci. We explicitly discuss any differences
for the two types of CUs.

4. Information availability and action selection
strategies

In this section, we investigate the impact of the avail-
able information on the strategies, and the corresponding
application utility. We assume first that there are unlim-
ited resources, i.e. no resource constraints.

4.1. Myopic strategy

A strategy pi for CU ci can determine an optimal action
a�i , such that

a�i ¼ piðIiÞ ¼ arg max
ai2Ai

UiðaiÞ

¼ arg min
ai2Ai

ðt0i � g0iÞk
F
i þ Ki � g0i

� �
kM

i

� �
: ð12Þ

502 H. Park et al. / Ad Hoc Networks 9 (2011) 497–513
The strategy pi in (12) determines an action that maxi-
mizes ci’s own local utility. However, it does not consider
the impact of the selected action on the utilities of its suc-
cessive classifiers, and the corresponding end-to-end
application utility. Hence, pi is referred to as myopic
strategy.

Note that local information Ii is insufficient to solve
the optimization problem shown in (12). Thus, informa-
tion exchange across multiple classifiers is needed to
determine Ii that enables ci to find its optimal action.
Proposition 1 identifies the minimum information needs
to be additionally exchanged across CUs for the myopic
strategies.

Proposition 1. For a CU ci, gi and Ui ¼
Q
8k2fjjj,ig/̂k is the

minimum additional information required to correctly deter-
mine an optimal action based on the myopic strategy.

Proof. Without loss of generality, we consider a ‘‘yes” CU
ci, which has its local information Ii ¼ ti;/i; k

F
i ; k

M
i ;Ai

�

. As

shown in the input–output relationship of ci in (2), t0i and
g0i can be expressed as
t0i
g0i

� �
¼

pF
i /iðpD

i � pF
i Þ

0 /ipD
i

" #
ti

gi

� �
: ð13Þ
Thus, information gi, in addition to Ii, is sufficient to specify
t0i and g0i. Moreover, since Ki is defined as Ki ¼ tr/i �Q
8k2fjjj,ig/̂k;Ui is sufficient to specify Ki. h

Based on Proposition 1, we can conclude that the infor-
mation Ii required for myopic strategy in (12) is Ii = {Ii, -
gi,Ui}. Hence, we require that information gi and Ui are
always forwarded with outgoing stream data. Note that
Proposition 1 implies that both the size of messages and
the number of messages that needs to be exchanged are
constant.

Since the number of available actions is finite (i.e.,
Ai <1), a CU ci can always determine a unique action
based on strategy pi(Ii) by comparing utilities achieved
by different actions. This may require a high search com-
plexity when the number of available actions is large.
However, if the underlying continuous DET curve of the
CU can be estimated (i.e., function fi), then using the con-
cavity of the local utility function (see Appendix A), the
optimal action can be efficiently determined with fixed
computational complexity independent of the action set
size.3 An algorithm for finding the optimal action for ci,
assuming the underlying DET curve is available or can be
estimated, is presented in Algorithm 1. This algorithm re-
quires the comparison of only two candidate actions to
determine the optimal action. Similarly, an optimal action
of a ‘‘no” CU �ci can also be efficiently and uniquely
determined.
3 Note that the underlying continuous DET curve can be estimated as the
convex hull of available actions [23] and the optimal solution can be found
using Lagrangian optimization technique [24]. This approach is commonly
used in several optimization problems such as rate-distortion optimization
in video compression [25].
Algorithm 1. Determining an Optimal Action of ci based
on Myopic Strategy

Givern Information Ii ¼ Ii ¼ fti;/i; k
F
i ; k

M
i ;Aig; gi;Ui

n o
,

and DET characteristic function fi.
1: Compute an operating point x�i ¼ pF

i 2 Ai

Compute x�i such that @fiðx�i Þ
@xi
¼ ðti�gi/iÞkF

i

gi/ik
M
i

// or

equivalently,
@UiðxiÞ
@xi
¼ 0

2: Find the best action in Ai

If x�i > 1or x�i < 0, then
a�i ¼ arg max

ai2fai;1;ai;Ai
g
½UiðaiÞ�// only need to

consider two extreme actions

else
a�i ¼ arg max

ai2fai;ðlR�1Þ ;ai;lR
g
½UiðaiÞ� // only need to

consider two nearest actions

Note ai;lR (includes pF
ilR

) is determined such that

pF
iðlR�1Þ < x�i 6 pF

ilR
.

We now show that the myopic strategy leads to a un-
ique pure strategy Nash equilibrium.
Proposition 2. If each CU determines its action based on the
myopic strategy, then there exists a unique pure strategy Nash
equilibrium in operating points.

Proof. Let ci 2 Ci be a ‘‘yes” CU, and it deploys the myopic
strategy pi given in (12) with available information
Ii = {Ii,gi,Ui}.

Since the local utility of ci is determined based on its
own action ai 2 Ai as well as the set of actions a�i of its
preceding CUs, the local utility function defined in (7) can
be explicitly expressed as Ui(ai,a�i). Since a�i is already
determined and fixed, we have

Uiða�i ;a�iÞP Uiðai;a�iÞ; ð14Þ
for all actions aið–a�i Þ 2 Ai. Similarly, the same argument
holds for a ‘‘no” CU �ci, i.e.,

Uið�a�i ; �a�iÞP Uið�ai; �a�iÞ; ð15Þ
for all actions �aið–�a�i Þ 2 �Ai. Since each CU can uniquely
determine its optimal action based on the myopic strategy,
there exists one pure strategy Nash equilibrium in operat-
ing points. h

The result drawn from Proposition 2 is consistent with
the fact that a pure strategy Nash equilibrium always ex-
ists in finite extensive form games [26,27]. Proposition 2
implies that the myopic strategy guarantees convergence.
Importantly, the convergence time increases only linearly
with the tree depth. Note that the performance achieved
at this Nash equilibrium can be improved by utilizing addi-
tional information, as discussed next.

4.2. Foresighted strategy for coalitions

If ci has information I+i about its successive classifiers,
then it can select an action while explicitly considering

Fig. 3. Illustrative myopic and foresighted CUs.

H. Park et al. / Ad Hoc Networks 9 (2011) 497–513 503
its impact on the utility of the successive classifiers. Specif-
ically, CU ci with I+i can form a coalition with its successive
classifiers, defined as follows.

Definition 1 (Coalition of a CU). A coalition Gi of a CU ci is a
set of successive classifiers for which the information is
available to ci.4

Then, the CU can select an action that maximizes the
coalition utility based on a foresighted strategy. Note that
the classifiers in a coalition do not simultaneously deter-
mine their actions. Rather, the foresighted CU decides its
action, while considering the actions that will be sequen-
tially determined by its successive classifiers in its coali-
tion, such that the jointly determined actions lead to the
maximum coalition utility. Therefore, this is still a non-
cooperative sequential game, where a local utility of a
foresighted CU is its coalition utility. Specifically, the fore-
sighted strategy pi(Ii) of ci with information Ii = {Ii,I+i}
determines an action:

a�i ¼ piðIiÞ ¼ arg max
ai2Ai

UGi
ðai; fðak; �akÞjCk 2 GigÞ; ð16Þ

where UGi
denotes the utility achieved by Gi, i.e., the sum of

utilities derived by the leaf CUs in coalition Gi. A CU ĉk 2 Gi

is a leaf CU of coalition Gi, if

ĉhjk,1h for all ĉh 2 S
�

R Gi;

i.e., none of its children are part of Gi. We denote the set of
leaf CUs in coalition Gi by CL(Gi).

For example, in Fig. 3b, leaf CUs in coalition Gr are ci

and �ci, and thus, CLðGrÞ ¼ fci; �cig. The coalition utility of
Gr is given by UGr ¼ Uf

i þ Uf
i . As an extreme case, if

C1 ¼ fc1;�c1g is the root classifier of an application and
it has the information about all of its successive classifi-
ers, then the coalition utility represents the application
utility defined in (5), i.e., UG1 þ UG1

¼ US. By definition,
if information about more successive classifiers is avail-
able to a CU, it can form a larger coalition. Note that
UGi

depends on the action ai of ci as well as the actions
of coalition members (i.e., fðak; �akÞjCk 2 Gig). However, ci

decides its action ai, based on the assumption that
fðak; �akÞjCk 2 Gig are myopically determined. This keeps
4 Similarly, a coalition of �ci is denoted by Gi .
the solution completely distributed, and allows the action
ai to be uniquely determined with low-complexity. Hence,
a foresighted action of a CU only indirectly controls the ac-
tion selections of successive classifiers. Since the fore-
sighted action can be uniquely determined by (16), and
the corresponding actions of successive CUs are also un-
iquely determined, an application that consists of several
foresighted CUs will also converge to a unique pure strat-
egy Nash equilibrium.
5. Foresighted strategies for coalitions and performance
improvement

In this section, we analytically show that foresighted
strategies for coalitions formed by intermediate CUs may
result in improved end-to-end application utility. As be-
fore, we focus on a scenario with no resource constraints.
In the following analysis, we consider an elementary sub-
tree shown in Fig. 3. In this example, the end-to-end appli-
cation utility is determined by Um þ Um for the myopic case
in Fig. 3a and Uf þ Uf for the foresighted case in Fig. 3b.

Our approach is as follows. We first analytically express
the utilities achieved by the myopic strategy Um þ Um and
the foresighted strategy Uf þ Uf in terms of known param-
eters. Then, we derive a lower bound for the probability
that Uf þ Uf P Um þ Um, i.e., when foresighted strategy
outperforms myopic strategies. Finally, we show that the
lower bound increases as the coalition utility based on
the foresighted strategy improves.

Proposition 3. Foresighted strategies can improve the appli-
cation utility with a higher probability bound.
Proof. Consider the elementary sub-tree shown in Fig. 3.
In Fig. 3a, cm

r determines its action based on the myopic
strategy, while cf

r decides its action based on the fore-
sighted strategy for its coalition Gr ¼ fcf

r ;Cig ¼ fcf
r ; ci; �cig

in Fig. 3b.
A foresighted action selected by cf

r guarantees Uf
iþ Uf

i P
Um

i þ Um
i , because the myopic strategy is a special case of

the foresighted strategy. This may be decomposed as

Uf
i � Um

i P Dui; and Uf
i � Um

i P �D�ui; ð17Þ

504 H. Park et al. / Ad Hoc Networks 9 (2011) 497–513
where Dui � D�ui P 0 for Dui P 0. Based on the input–
output relationship given in (2), the conditions in (17)
can be expressed as

Dt=Dg 6 ðkF
i þ kM

i Þ=k
F
i � Dui=ðkF

i DgÞ , RA; ð18Þ
D�t=D�g 6 ð�kF

i þ �kM
i Þ=�kF

i þ D�ui=ð�kF
i D�gÞ , RB; ð19Þ

where Dt , tf
j � tm

j ; Dg , gf
j � gm

j ; D�t , tf
k � tm

k , and D�g ,
gf

k � gm
k , respectively. Without loss of generality, we as-

sume that Dg > 0 and D�g > 0.5

Now, we derive conditions on when the foresighted
strategy of cf

r leads to a higher end-to-end utility, i.e., when
we have Uf þ Uf > Um þ Um. Consider the contradictory
case, i.e., Um þ Um P Uf þ Uf . This condition can be decom-
posed as,

Um � Uf P Du; ð20Þ
Um � Uf P �Du: ð21Þ

Based on the input–output relationship in (2), the condi-
tion in (20) becomes

x�j ðt
f
j � gf

j /jÞkF
j � gf

j /jfjðx�j Þk
M
j

n o
þ ð�f jðx̂jÞðtf

j � gf
j Þ

nh
þ /jx̂jg

f
j Þ�k

F
j � gf

j
�/j

�f jðx̂jÞ�kM
j

oi
� y�j ðtm

j � gm
j /jÞkF

j � gm
j /jfjðy�j Þk

M
j

n oh
þ ð�f jðŷjÞðtm

j � gm
j Þ þ /jŷjgm

j Þ�kF
j � gm

j
�/j

�f jðŷjÞ�kM
j

n oi
P Du:

ð22Þ

Since action y�j (or ŷj) instead of x�j (or x̂j) incurs higher
costs for cj (or �cj), the condition in (22) can be expressed as

y�j ðDt � Dg/jÞkF
j � fjðy�j ÞDg/jk

M
j þ ð�f jðŷjÞðDt � DgÞ

þ /jŷjDgÞ�kF
j � Dg�/j

�f jðŷjÞ�kM
j P Du;

which leads to:

Dt=Dg P QN
j =Q D

j þ Du=ðDgQ D
j Þ , RC ; ð23Þ

where Q N
j ¼ y�j /jk

F
j þ fjðy�j Þ/jk

M
j þ �f jðŷjÞð�kF

j þ �/j
�kM

j Þ � /jŷj
�kF

j

and Q D
j ¼ y�j k

F
j þ �f jðŷjÞ�kF

j . Similarly, the condition in (21)
can be expressed as

D�t=D�g P QN
k =Q D

k � Du=ðD�gQ D
k Þ , RD; ð24Þ

where QN
k ¼ y�k/kk

F
k þ fkðy�kÞ/kk

M
k þ�f kðŷkÞð�kF

k þ �/k
�kM

k Þ�/kŷk
�kF

k

and QD
k ¼ y�kk

F
k þ�f kðŷkÞ�kF

k . Based on (18), (19), (23) and
(24), we can conclude that:

Um þ Um P Uf þ Uf) RC 6 Dt=Dg 6 RA; and RD

6 D�t=D�g 6 RB: ð25Þ

Finally, (25) leads to a lower bound for the probability that
Um þ Um < Uf þ Uf , i.e.,
5 If Dg < 0, only the lower bound and the upper bound of the term
{RC 6 Dt/Dg 6 RA} in (26) are switched (i.e., it becomes {RA 6 Dt/Dg 6 RC}).
Hence, the conclusions drawn from this proposition still hold. Similarly, if
D�g < 0, the term fRD 6 D�t=D�g 6 RBg in (26) becomes fRB 6 D�t=D�g 6 RDg.
Pr Um þ Um < Uf þ Uf
n o

P 1� Pr RC 6
Dt
Dg
6 RA

� �
� Pr RD 6

D�t
D�g
6 RB

� �
: ð26Þ

Thus, as the difference in coalition utilities achieved by the
foresighted and myopic strategies increases, i.e., Dui be-
comes large or D�ui becomes small (thus, RA or RB have
smaller values), the lower bound for PrfUm þ Um <

Uf þ Uf g increases. h

Since a general tree topology can be formed by concat-
enating such elementary sub-trees, Proposition 3 applies to
any general tree topologies. Hence, if a foresighted strategy
leads to significant improvements in local coalition utili-
ties, it is also more likely to increase the end-to-end appli-
cation utility.

Note that since the impact of a CU’s foresighted decision
propagates across its successive classifiers and the applica-
tion utility is determined by the leaf classifiers, the actions
of a foresighted CU near a root classifier with a large coali-
tion may lead to higher improvements in utility. However,
there are overheads associated with building large coali-
tions, specifically in terms of information exchange etc.
In general, the size of a coalition may be determined by
measuring the marginal contribution [27] of each classifier
to the coalition utility. The marginal contribution for a
classifier represents the coalition utility improvement
when the classifier is added to the coalition. The coalition
can then be formed by selecting only those classifiers with
a high marginal contribution. This will be quantified using
simulation results in Section 7.

6. Tree configuration games with resource constraints

In this section, we investigate the impact of resource
constraints on the CU action selections for both myopic
as well as foresighted strategies, and the corresponding
application utilities.

6.1. Assumptions

6.1.1. Resource constraints
A processing node with a finite amount of resources can

be shared by several classifiers, and the resources need to
be divided and allocated to each classifier.6 The allocated
resource to a classifier Ci is denoted by Ri(<1). We model
the computational resource requirements Rreq

i for each
individual classifier as being directly proportional to the
total rate (throughput) of data entering it. Classifier Ci

(i.e., ci or �ci) has a resource consumption factor ai, which
is the amount of resource required per unit throughput
rate. Hence, Rreq

i ¼ ai � ti: The local information Ii of CU ci

thus also includes Ri and ai, i.e., Ii ¼ ti;/i; k
F
i ; k

D
i ;Ai;Ri;ai

�

.

6.1.2. Effective DET curve
We assume that each CU uses random load-shedding if

input stream data requires more resources than available
6 Note that the node can use any resource division policy to achieve
desired fairness criteria.

H. Park et al. / Ad Hoc Networks 9 (2011) 497–513 505
resources, i.e. Rreq
i > Ri. Random shedding leads to degrada-

tion in performance directly proportional to the amount of
discarded data. Specifically, for a DET curve pD

i ¼ fi pF
i

� �
;

0 6 pF
i 6 1

� �
for CU ci, the effective DET curve with load

shedding can be characterized by function C:[0,1]2 ?
[0,1]2, defined as

Cðx; fiðxÞÞ ¼ ðcix; cifiðxÞÞ; ð27Þ

where 0 6 x ¼ pF
i 6 1 and scaling factor ci, corresponding

to the load shed fraction, is determined by

ci ¼min 1;
Ri

Rreq
i

� �
: ð28Þ
6.1.3. Resource division policy
In this paper, we consider two policies that nodes use to

distribute resources among classifiers – equal resource
division and proportional resource division.

6.2. Resource constraints and myopic strategy

Under resource constraints, the myopic strategy needs
to consider the effective DET curve to determine an action.
For a ‘‘yes” CU ci with its available information
Ii ¼ Ii ¼ ti;/i; k

F
i ; k

D
i ;Ai;Ri;ai

�

; gi;Ui

�

, an action can be

determined based on a strategy pi such that the action
maximizes its local utility. Thus,

a�i ¼ piðIiÞ ¼ arg max
ai2Ai

UiðaiÞ

¼ arg min
ai¼ pF

i
;pD

ið Þ2Ai

ðti � gi/iÞ cip
F
i

� �
kF

i þ Ki � cip
D
i

� �
gi/i

� �
kM

i

� �
;

ð29Þ

where ci denotes a scale factor that specifies the effective
DET curve of ci, as shown in (27). Since a non-negative con-
stant does not change the convexity/concavity, a solution
a�i 2 Ai that maximizes Ui(ai) in (29) can be uniquely deter-
mined. In the following analysis, we show that the action
a�i is the same as the optimal action determined by the
myopic strategy in Section 4.1, which does not consider
the resource constraints.

Lemma 4. Input throughput and goodput scaled by a non-
negative constant do not change the optimal action of a
myopic CU.
Proof. Let ti and gi be incoming throughput and goodput
into a ‘‘yes” myopic CU ci. An action ai ¼ ðxi; fiðxiÞÞ ¼
pF

i ; p
D
i

� �
of ci results in outgoing t0i and g0i, expressed as

t0i
g0i

� �
¼ Ti

ti

gi

� �
¼

xi /iðfiðxiÞ � xiÞ
0 /ifiðxiÞ

� �
ti

gi

� �
:

The local utility derived by the action ai can be expressed
as a function of xi, i.e.,

UiðaiÞ ¼ � ðt0i � g0iÞk
F
i þ ðKi � g0iÞk

M
i

�

¼ � xiðti � gi/iÞkF

i þ ðKi � /ifiðxiÞgiÞkM
i

�

¼ � xiðti � gi/iÞkF

i � /ifiðxiÞgik
M
i

� �
�Kik

i
M

¼ UE
i ðxiÞ �Kik

M
i ;

where
UE
i ðxiÞ , � xiðti � gi/iÞkF

i � /ifiðxiÞgik
M
i

� �
: ð30Þ

Since Ui(ai) is concave function of xi, a unique optimal solu-
tion x�i can be determined, such that

@Uiða�i Þ
@xi

¼ 0() @fiðx�i Þ
@xi

¼ ðti � gi/iÞkF
i

/igik
M
i

; ð31Þ

if 0 6 x�i 6 1. If x�i < 0; x�i ¼ 0, and if x�i > 1; x�i ¼ 1. The cor-
responding maximum utility is thus UE

i ðx�i Þ � Kik
M
i . Note

that UE
i ðx�i ÞP 0, since UE

i ð�Þ is a concave function with
UE

i ð0Þ ¼ 0.
Consider a throughput bti and a goodput bgi, which are

ti and gi scaled by a non-negative constant b. Then, an
action ai = (xi, fi(xi)) of ci results in outgoing t0i and g0i,
expressed as

t0i
g0i

� �
¼ Ti

bti

bgi

� �
¼

xi /iðfiðxiÞ � xiÞ
0 /ifiðxiÞ

� �
bti

bgi

� �
:

The local utility derived by the action ai is expressed aseUiðaiÞ ¼ � ðt0i � g0iÞk
F
i þ ðKi � g0iÞk

M
i

�

¼ � bxiðti � gi/iÞkF

i þ ðKi � b/ifiðxiÞgiÞkM
i

�

¼ �b xiðti � gi/ik

F
i � /ifiðxiÞgiÞkM

i

� �
�Kik

M
i

¼ bUE
i ðxiÞ �Kik

M
i :

Since eUiðaiÞ is concave function of xi, a unique optimal
solution ~xi is determined, such that

@Uið~xiÞ
@xi

¼ 0() @fið~xiÞ
@xi

¼ ðti � gi/iÞkF
i

/igik
M
i

: ð32Þ

Since x�i and ~xi are unique and they are determined by (31)
and (32), we conclude that x�i ¼ ~xi. The corresponding max-
imum utility thus becomes bUE

i ðx�i Þ � Kik
M
i .

Since this property holds for a ‘‘no” CU (this can be
shown using Ti with the same argument), we conclude that
an action determined based on the myopic strategy does
not change by a throughput and a goodput scaled by a non-
negative constant. h

We can deduce the following corollary.

Corollary 5. If the optimal myopic action of CU ci achieves a
maximum local utility UE

i ðx�i Þ �Kik
M
i for incoming throughput

ti and goodput gi, then CU ci can achieve its maximum local
utility bUE

i ðx�i Þ �Kik
M
i for b-scaled (b P 0) throughput b ti

and goodput bgi using the same optimal action.

Based on the above two observations, we can state the
impact of resource constraints on the myopic strategy as
follows.

Proposition 6. An action determined by the myopic strategy
is not altered by a random load-shedding scheme.
Proof. Let ti and gi be incoming throughput and goodput
into a classifier Ci ¼ fci; �cig. Let a�i ¼ ðx�i ; fiðx�i ÞÞ be an opti-
mal action of ci determined by the myopic strategy, and
the corresponding utility be denoted by UE

i ðx�i Þ �Kik
M
i . A

random load-shedding scheme of ci with allocated
resources Ri results in an effective DET curve, determined
by a mapping C(xi, fi(xi)) = (cixi,cifi(xi)), where ci ¼min

506 H. Park et al. / Ad Hoc Networks 9 (2011) 497–513
f1;Ri=Rreq
i g. Then, an action ai = (xi, fi(xi)) leads to output

stream rates t0i and g0i, expressed as

t0i
g0i

� �
¼ cixi /iðcifiðxiÞ � cixiÞ

0 /icifiðxiÞ

� �
ti

gi

� �
¼ xi /iðfiðxiÞ � xiÞ

0 /ifiðxiÞ

� �
citi

cigi

� �
: ð33Þ

Note that (33) is equivalent to the case, where ti and gi are
scaled by a constant ci. As shown in Lemma 4, constant-
scaled throughput and goodput do not change an optimal
action determined by the myopic strategy. Thus, we con-
clude that the random load-shedding scheme does not
change the action determined by the myopic strategy,
and thus, the optimal action under resource constraints is
still a�i ¼ ðx�i ; fiðx�i ÞÞ. Note that the corresponding local
utility of ci is ciU

E
i ðx�i Þ � Kik

M
i as shown in Corollary 5. The

same argument holds for �ci. h

Therefore, Algorithm 1 can also be used to efficiently
find the optimal action under resource constraints. Finally,
since each CU can always determine its own actions, Prop-
osition 2 still holds, implying that there is an equilibrium
in operating points among the CUs.

6.3. Resource constraints and foresighted strategy

Foresighted CUs need to determine their actions while
considering the impact on resource allocations for succes-
sive classifiers in the coalition, as well as the corresponding
coalition utilities. This is because the action of a classifier
modifies resource requirements for all successive classifi-
ers, thereby potentially modifying their available re-
sources. We summarize the effect of resource constraints
on the coalition utility in Lemma 7.

Lemma 7. If an action ai of a foresighted CU ci results in a
coalition utility UE

kðx�kÞ �Kkk
M
k at a leaf CU ck in its coalition

under no resource constraint, then the same action ai results
in the coalition utility

Ukðx�kÞ ¼
Y

8j;i,j;j,k

cj

 !
UE

kðx�kÞ �Kkk
M
k ; ð34Þ

under resource constraints, where cj represents the load shed
fraction in CU ĉj defined in (28).
Proof. As shown in Proposition 6, random load-shedding
does not change the actions determined by the myopic
strategy. However, due to the resource constraints, the
outgoing stream rates of CU j are scaled by cj for all j,
i [j and j [k. Since a branch consists of cascaded CUs
ĉj, the coalition utility becomesY
8j;i,j;j,k

cj

 !
UE

kðx�kÞ �Kkk
M
k ;

using Corollary 5. h

Lemma 7 clearly shows that the derived utility from
each leaf CU ĉk in coalition Ci depends on all cj such that
i [j and j [k. Since cj is determined based on CU ĉj’s re-
source requirements and the allocated resources from a
node, it depends on the actions taken by other CUs sharing
the same node as well as the resource division policy of the
node. Thus, each action of the foresighted CU ci may result
in different distributions for cj. Note that in distributed sys-
tems, information about the resource division policy
(which may be different per node) or classifier placement
may not be available to each classifier. Hence, foresighted
CUs need to observe the outcomes of their actions and iter-
atively learn the mapping between cj and their actions.
This learning involves determining the probability mass
function (pmf) of cj for each action. In this paper, we use
a simple learning strategy that estimates the pmf of cj

based on empirical frequency measurement. Different
learning strategies [28,29] may be used for this task, and
may easily be incorporated into our designed foresighted
strategy.

Based on the estimated pmf of cj for each action, a fore-
sighted strategy pi of ci for its coalition Gi determines an
action a�i that maximizes expected coalition utility, defined
as
a�i ¼ piðIiÞ ¼ arg max
ai2Ai

E UGi
ðaiÞ

� �
¼ arg min

ai2Ai

X
ĉk2CLðGiÞ

E Ukðx�kÞ
� �

¼ arg min
ai2Ai

X
ĉk2CLðGiÞ

Y
8j;i,j;j,k

Efcjg
 !

UE
kðx�kÞ �Kkk

M
k

" #
;

ð35Þ
where utility Ukðx�kÞ of leaf CU ĉk in Gi is defined in (34). Our
proposed algorithm is shown in Algorithm 2.

Algorithm 2. Foresighted Decision Process based on cj

Estimation using Empirical Frequency

Given: granularity level ni;U
E
kðx�kÞ for all leaf CUs ĉi in

Gi; ĉk 2 CLðGiÞ;Kk; k
M
k .

1: Initialization

Hai
j ¼ ½H

ai
j ð1Þ; . . . ;Hai

j ðniÞ� ½1;0; . . . ;0�
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{1�ni

for all

ĉj 2 Gi and for all ai 2 Ai.

Prfcj ¼ ð2r � 1Þ=2nig Hai
j ðrÞ=

Pnj

h¼1Hai
j ðhÞ for

r = 1, . . . ,ni.
while stream data ingested do
2: Find and take a foresighted action a�i

Find a�i using (35).

3: Update H
a�i
j

Observe cj that corresponds to a�i for all ĉj 2 Gi

if (r � 1)/ni 6 cj < r/ni, then

H
a�i
j ðrÞ H

a�i
j ðrÞ þ 1

4: Update Probability Mass Function
Prfcj ¼ ð2r � 1Þ=2nig Hai

j ðrÞ=
Pnj

h¼1Hai
j ðhÞ for

r = 1, . . . ,ni.

H. Park et al. / Ad Hoc Networks 9 (2011) 497–513 507
7. Simulation results
7.1. Simulation Set-up

To evaluate the performance of the proposed ap-
proaches, we consider a semantic concept detection appli-
cation [16] for sports image in Fig. 1. This application is
built using IBM’s Multimedia Analysis and Retrieval
Searching (IMARS) [30] classifiers. Incoming images of sev-
eral different types are classified into six classes of inter-
est: Little League Baseball, Basketball, Cricket, Skating,
Skiing and Tennis, each of which corresponds to a specific
type of sport. By introducing a set of additional intermedi-
ate concept detectors, we then construct a hierarchical
topology of classifiers. The Team Sports classifier filters data
relevant to the Little League, Cricket and Basketball classifi-
ers. The Winter Sports classifier filters data relevant to the
Skating and Skiing classifiers. Finally, the Racquet Sports
classifier filters data relevant to the Tennis classifier. The
mutually exclusive nature of concepts Team Sports, Winter
Sports and Racquet Sports allows identifying them in series,
i.e., passing only data that does not belong to a class to the
next class. For simplicity of notation, each classifier is enu-
merated as shown in Fig. 1, and thus, our application is de-
noted by S = {C1,C2, . . . ,C11}. Misclassification cost
coefficients are assigned to leaf CUs, CLðSÞ ¼ fc4; �c4; c5; �c7;

c8; �c8; c9; �c9; c10; �c10; c11; �c11g. Misclassification cost coeffi-
cients for intermediate classifiers are assigned based on
the proposed backward propagation scheme given in (1).
Each classifier operates on low level image features such
as color histograms, color correlograms, etc. and uses an
SVM based classification strategy [31]. The DET curves, a-
priori probabilities as well as computational requirements
for individual classifiers were experimentally measured on
a set of 20,000 test images. The measured a-priori proba-
bilities /i for each classifier in our application are shown
in Table 2. We evaluate the myopic and foresighted strate-
gies, and compare them against a centralized approach
(based on SQP) previously proposed in [16]. In this section
results are presented in terms of the application cost – neg-
ative of the utility defined in (3) and (4). By definition,
maximizing the application utilities is equivalent to mini-
mizing the application costs.

7.2. Impact of action granularity and backward propagation
scheme for cost coefficients

To highlight the impact of the number of available ac-
tions, the proposed backward propagation scheme for cost
coefficients, and the foresighted strategies on the applica-
tion cost, we consider an elementary sub-tree of our appli-
cation with classifiers 1, 2, and 3, shown in Fig. 4a. In this
Table 2
A-priori probabilities in application.

Classifier Team sports Baseball Little league
/i 0.2371 0.2071 0.2132

Classifier Ice sports Skating Skiing
/i 0.0392 0.0358 0.6951
sub-tree, C2 and C3 are leaf classifiers, and we set
kF

l
�kF

l

� �
¼ kM

l
�kM

l

� �
¼ 1 for l = 2, 3. Based on this, we derive

kF
1

�kF
1

� �
and kM

1
�kM

1

� �
using the backward propagation scheme

in (1). We consider different levels of quantization granu-
larity, i.e., increased numbers of available actions Ai = 20,
40, 80, 160 for i = 1, 2, 3. We set the incoming stream rate
tr = 1. The resulting misclassification costs for different
numbers of actions and different degrees of foresighted-
ness (i.e., different coalitions) are shown in Fig. 4b.

Fig. 4b shows that increasing the number of available
actions leads to a lower application cost for the proposed
approaches. On the graph, we also show the cost associated
with the centralized optimal solution. We observe a slight
performance gap between the myopic and the centralized
optimal solution, as CUs with the myopic strategy deter-
mine their actions individually with no consideration of
the impact on the end-to-end application cost. Moreover,
unlike in the centralized approach, only finite number of
(quantized) actions are available to each CU. However,
the foresighted strategies lead the application costs to ap-
proach the centralized optimal solution, while always out-
performing myopic strategies. This is because any actions
selected by the myopic strategies are always included in
the candidate actions for the foresighted strategies. The re-
sults also show that increasing the coalition size can lead to
a lower application cost. Specifically, coalition {C1,C2,C3}
achieves a lower cost than coalitions {c1,C2} and f�c1;C3g,
both of which outperform the myopic strategy. We also ob-
serve that the achieved costs (or utilities) from the same
size coalitions, i.e., {c1,C2} and f�c1;C3g, are different. This
is because the derived application costs depend on not only
the foresighted actions (a�1 and �a�1) but also their DET curves
and /̂l; l ¼ 2;3. Hence, forming coalition with CUs having
better DET performance or higher /̂l can result in lower coa-
lition cost (i.e., higher coalition utility).

Finally, instead of the backward propagation scheme, if
misclassification cost coefficients of C1 are determined ran-
domly or based on a heuristic average approach (e.g.,
kF

1 ¼ kF
2 þ �kF

2

� �
=2 and kM

1 ¼ kM
2 þ �kM

2

� �
=2), the resulting mis-

classification costs are 1.0108 and 0.8167 (for Ai = 80),
respectively. These are 139.5% and 112.7% of the cost
(0.7245) achieved by the proposed approach. The perfor-
mance degradation for these schemes is caused because
they do not consider stream characteristics.
7.3. Application performance under no resource constraints

In this section, we quantify the performance of the en-
tire application shown in Fig. 1 achieved by the proposed
tree configuration games. In this simulation, we use
Ai = 80, 16 i6 11, and each CU deploys the myopic strategy.
Basketball Cricket Winter sports
0.2370 0.0358 0.3674

Racquet sports Tennis
0.6374 0.4056

(a) (b)

Fig. 4. (a) Elementary sub-tree from our application, and (b) application costs for the elementary sub-tree.

Table 3
Achieved application costs (80 actions, myopic strategy).

Experiment Cases kF = kM kF = 4kM 4kF = kM

Centralized
(average)

0.587 (0%) 0.963 (0%) 1.373 (0%)

Distributed 0.536 (68.0%) 0.806 (86.3%) 1.187 (88.6%)
Centralized (best) 0.512 (100%) 0.781 (100%) 1.163 (100%)

1 1.5 2 2.5 3 3.5 4 4.5 5
0.5325

0.533

0.5335

0.534

0.5345

0.535

0.5355

0.536

0.5365

0.537

Experiment Cases (Different Coalitions)

En
d−

to
−e

nd
 S

ys
te

m
 C

os
t

yes CU 1 branch
no CU 1 branch
both branches

Fig. 5. Application costs.

508 H. Park et al. / Ad Hoc Networks 9 (2011) 497–513
We compare against the centralized solution using SQP in
[16]. As discussed in [16], since the gradient descent based
SQP does not guarantee a global optimal solution, we use
several different randomized starting points, and provide
the minimum (best) as well as the average cost (average).
The results are shown in Table 3.

It is clear that the proposed distributed approach based
on myopic strategy always outperforms the average perfor-
mance of centralized approach for different misclassifi-
cation cost scenarios i.e., (kF = kM = 1), (kF = 4, kM = 1), and
(kF = 1, kM = 4). These correspond to equal cost for false
alarms and misses, high costs for false alarms, and high
costs for misses respectively. Additionally, as the costs be-
come unbalanced, the distributed algorithm performance
increasingly approaches the optimal performance of the
centralized algorithms. These are reflected in the percent-
ages in the table, computed as ðCost�Costcent

avg Þ
ðCostcent

best�Costcent
avg Þ
� 100%.

In order to investigate the impact of the foresighted
strategies on application costs, we consider various coali-
Table 4
Experimental setup.

Experiment
Case

Coalitions in ‘‘yes” (c1)
branch

Coalitions in ‘‘no” ð�c1Þ
branch

1 {c1} (self coalition) f�c1g (self coalition)
2 G1 = {c1, C2} G1 ¼ f�c1;C3g
3 G1 = {c1, C2,C4} G1 ¼ f�c1;C3;C6g
4 G1 = {c1, C2,C5} G1 ¼ f�c1;C3;C7g
5 G1 = {c1, C2,C5},

G2 ¼ f�c2;C5; g
G1 ¼ f�c1;C3;C6;C7g
tion settings shown in Table 4. Again, we use Ai = 80,
1 6 i 6 11, and set kF

l
�kF

l

� �
¼ kM

l
�kM

l

� �
¼ 1 for leaf CUs. The

resulting application costs for various coalition settings
are shown in Fig. 5.

These results show that the foresighted decisions can
lead to a lower application cost (or equivalently, a higher
application utility). In Fig. 5, the largest application cost
(i.e., the minimum application utility) is incurred when
CUs select their actions based on the myopic strategies
(i.e., in Experiment Case 1, where no coalition is formed).
Moreover, we observe that the application cost reduces
(utility improves) as the coalition size increases. Interest-
ingly, the cost reduction becomes significant when classi-
fier 1 (i.e., the first classifier of this tree) starts to form its
coalitions. For example, in both branches in Fig. 5, the larg-
est cost reduction is achieved when classifier 1 forms coali-
tions with classifier 2 or classifier 3. However, the
improvement gained for enlarging coalitions diminishes
rapidly. These observations can be clearly quantified using
marginal contribution [27] to the application utility. The
marginal contribution DVĉk

ðGiÞ of ĉkðR GiÞ to coalition util-
ity UGi

is defined as

H. Park et al. / Ad Hoc Networks 9 (2011) 497–513 509
DVĉk
ðGiÞ ¼ UGþi

� UGi
;

where UGþi
and UGi

denote the application utilities achieved
by coalition Gþi and Gi, respectively, and Gþi denotes a en-
larged coalition of Gi with additional CU ĉk, i.e.,
Gþi ¼ Gi [fĉkg. For example, the marginal contribution of
C3 to the application utility achieved by f�c1g (self coalition)
is computed as

DVC3 ðf�c1gÞ ¼ Uf�c1 ;C3g � Uf�c1g ¼ ð�0:5345Þ � ð�0:5361Þ
¼ 0:0016:

However, the marginal contribution of C6 to the applica-
tion utility achieved by coalition f�c1;C3g is given by

DVC6 ðf�c1;C3gÞ ¼ Uf�c1 ;C3 ;C6g � Uf�c1 ;C3g

¼ ð�0:5342Þ � ð�0:5345Þ ¼ 0:0003;

which is approximately 20% of application utility improve-
ment compared to DVC3 ðf�c1gÞ. This confirms the observed
application utility result trends. The marginal contribution
can be used by foresighted CUs to determine their coalition
size. For example, a foresighted CU ci can include addi-
tional CU ĉk in its coalition Gi, only if its marginal contribu-
tion is more than a certain threshold hi, i.e., DVfĉkgðGiÞ > hi.

We also compare against the centralized solution in
[16], and present results in Table 5. The percentages in

the table are computed as ðCost�Costcent
avg Þ

ðCostcent
best�Costcent

avg Þ
� 100%. In the con-

sidered coalitions, the foresighted strategies for coalitions
{c1,C2} or f�c1;C3g enable the application to achieve approx-
imately 69% of centralized best solution. However, the
application can achieve 72% of centralized best solution
with the foresighted decisions for a larger coalition
{C1,C2,C3}, which is consistent to the result from Proposi-
tion 3. Note that a higher performance improvement can
be obtained by enlarging the coalitions, as discussed in
Section 7.2.
7.4. Performance of application with resource constraints

We consider two different resource division policies at
the nodes (i) equal allocation, and (ii) proportional alloca-
tion (proportional to each classifier’s processing require-
ments). The processing complexity for our different
classifiers (measured experimentally) is shown in Table
6. P is a normalization constant that normalizes the proces-
sor power (speed). The processing requirements for Ci are
determined as Rreq

i ¼ ai � ti and the corresponding c is
determined by (28).
Table 5
Achieved application costs (80 actions).

Experiment cases Application cost

Centralized (average) 0.587 (0%)
Myopic 0.536 (68.0%)
Foresighted (c1, C2) 0.535 (69.3%)
Foresighted ð�c1;C3Þ 0.535 (69.3%)
Foresighted (C1, C2, C3) 0.533 (72.0%)
Centralized (best) 0.512 (100%)
7.4.1. One foresighted CU with other myopic CUs
In this section, we consider two different cases, each

with only one foresighted CU in the application. In the first
case, we have foresighted CU c1 that forms coalition {c1,C2},
while in the second case, we have foresighted CU �c1 that
forms coalition f�c1;C3g. Foresighted classifiers use empiri-
cal frequency based learning (Algorithm 2) to estimate the
pmf of c. The 11 classifiers in the considered application
are distributed over 4 nodes as shown in Fig. 6: classifier
1 is located in node 1, classifiers 2 and 3 are located in
node 2, classifiers 4, 5, 6, and 7 are located in node 3,
and classifiers 8, 9, 10, and 11 are located in node 4.
The available resources for node NðN ¼ 1;2;3;4Þ are
RA
N ¼ 0:4P; 0:2P; 0:1P; 0:1P, respectively. We assume that

each Ai = 80, 1 6 i 6 11, and each node allocates its re-
sources based on proportional resource division policy,
which determines resource allocation Ri of Ci in a node
N such that

Ri ¼
Rreq

iP
h2NRreq

h

� RA
N; ð36Þ

where Ri and Rreq
i denote the allocated and requested re-

sources. The resulting application cost is presented in
Fig. 7. We also compare against a completely myopic solu-
tion, where all classifiers use myopic strategies.

Fig. 7a and b show the selected actions and the corre-
sponding application costs for foresighted CUs c1 and �c1,
respectively. Action index â1;kð1 6 k 6 A1 ¼ 80Þ of CU ĉ1

represents kth operating point p̂F
ik; p̂

D
ik

� �
¼ k�1bAi�1

; f̂ i
k�1bAi�1

� 	� 	
,

as defined in (6). As discussed in Section 6.2, the actions
determined by the completely myopic solution are not af-
fected by resource constraints. Hence, in both Fig. 7a and b,
the selected actions based on the myopic strategy do not
change over time, and the resulting application costs are
constant. However, the actions selected by the foresighted
CUs vary over time until the c estimation based on Algo-
rithm 2 is completed. In this case, the algorithm shown
in Algorithm 2 guarantees a convergence of the foresighted
action. The maximum number of iterations required for
convergence is bounded by the number of available ac-
tions, i.e., A1 = 80 in this example.7 Note that c for each
CU sharing a node that deploys the proportional resource
divisions scheme is the same, because ci for ci (or �ci) is
determined by ci ¼minf1;Ri=Rreq

i g, and

Ri

Rreq
i

¼

Rreq
iP

h2N
Rreq

h

Rreq
i

¼ 1P
h2NRreq

h

; ð37Þ

for all CUs that share node N.

7.4.2. Foresighted CUs competing for resources
We now consider the case where two foresighted CUs

compete for resources on a shared node. In this experi-
ment, we assume that both c1 and �c1 are foresighted, with
coalitions {c1,C2} and f�c1; C3g, and both use empirical fre-
7 In practice, the actual number of iterations before convergence depends
on the DET curves and the first determined action.

Table 6
Processing complexity per image.

Classifier Team ports Baseball Little league Basketball Cricket Winter sports
Complexity 0.3884 � P 0.1761 � P 0.1307 � P 0.0772 � P 0.2006 � P 0.3199 � P

Classifier Ice sports Skating Skiing Racquet sports Tennis
Complexity 0.2223 � P 0.2403 � P 0.2608 � P 0.1276 � P 0.1720 � P

1
2

3

4

5

6

7

8

9

10

11

Node 1
(0.4P)

Node 3
(0.1P)

Node 2
(0.2P)

Node 4
(0.1P)

Fig. 6. Application placement and available resources in each node.

510 H. Park et al. / Ad Hoc Networks 9 (2011) 497–513
quency based learning (Algorithm 2) to estimate the pmf of
c. Other simulation settings are the same as in Section
7.4.1, and the results are shown in Fig. 8.

Since both c1 and �c1 are foresighted, their actions jointly
affect the resource allocations for classifiers C2 and C3,
which leads to different resulting application costs, num-
bers of iterations for the convergence, and the converged
optimal actions. Compared to the results in Fig. 7, we can
observe that the numbers of iterations required to con-
verge to their optimal actions are different: c1 requires
10 20 30 40 50 60 70 80
0.67
0.68
0.69

0.7
0.71

Number of Iterations

En
d−

to
−e

nd

Ap
pl

ic
at

io
n

C
os

t

myopic
foresighted

10 20 30 40 50 60 70 80
2
4
6
8

10

Number of Iterations

Se
le

ct
ed

 A
ct

io
ns

 (y
es

 C
U

 1
) myopic

foresighted

(a) Foresighted “yes” CU 1 (c1)

Fig. 7. Selected foresighted actions (over time)
more iterations while �c1 requires less iterations. Moreover,
the converged optimal actions are also different. Specifi-
cally, the converged foresighted action index of c1 in
Fig. 7 is a�1 ¼ a1;4, while a�1 ¼ a1;2 in Fig. 8. Moreover, the
converged foresighted action index of �c1 in Fig. 7 is
�a�1 ¼ a1;8, while �a�1 ¼ a1;10 in Fig. 8. Note that with increased
number of foresighted CUs, the resulting cost decreases
over the results in Fig. 7b.
7.4.3. Impact of resource division policies
Finally, we investigate the impact of different resource

division policies on the convergence. We use the same set-
tings as for previous experiments, however we allow node
2 (where classifiers 2 and 3 are placed) to use the two dif-
ferent policies – equal and proportional division. The equal
resource division policy allocates resources equally to all
classifiers placed on it, i.e.,

Ri ¼ RA
N=jNj; for all Ci placed on N; ð38Þ

where jNj denotes the number of classifiers in node N.
The resulting application costs are shown in Table 7.

The results in Table 7 show that the proportional re-
source division policy always leads to better performance
(lower application cost) than the equal resource division
policy. This is because the equal resource division policy
does not consider the resource requirements of the differ-
ent classifiers (that depend on input data stream character-
istics, processing costs etc.), while the proportional
resource division policy does.
10 20 30 40 50 60 70 80
0.6

0.65

0.7

0.75

0.8

Number of Iterations

En
d−

to
−e

nd

Ap
pl

ic
at

io
n

C
os

t

myopic
foresighted

10 20 30 40 50 60 70 80

20

40

60

80

Number of Iterations

Se
le

ct
ed

 A
ct

io
ns

(n

o
C

U
 1

) myopic
foresighted

(b) Foresighted “no” CU 1 (c̄1)

and the corresponding application costs.

10 20 30 40 50 60 70 80

2
4
6
8

10

Number of Iterations

Se
le

ct
ed

 A
ct

io
ns myopic

foresighted yes CU 1

10 20 30 40 50 60 70 80

20

40

60

80

Number of Iterations

Se
le

ct
ed

 A
ct

io
ns myopic

foresighted no CU 1

(a) Selected actions of foresighted CUs

0 20 40 60 80 100
0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Number of Iterations

En
d−

to
−e

nd
 A

pp
lic

at
io

n
C

os
t

myopic
foresighted

(b) Application costs

Fig. 8. Selected actions and application costs.

Table 7
Achieved application costs (80 actions, different resource division policies).

Equal resource
division policy

Proportional
resource division
policy

Myopic strategy 0.8243 0.6828
Coalition G1 = {c1, C2} 0.8175 0.6779
Coalition G1 ¼ f�c1;C3g 0.7885 0.6133

Coalitions fG1;G1g 0.7817 0.6015

H. Park et al. / Ad Hoc Networks 9 (2011) 497–513 511
8. Conclusions

In this paper, we focus on the optimization of stream
mining applications constructed as tree topologies of clas-
sifiers. We model the optimized configuration of these
classifier tree topologies as a tree configuration game. We
develop distributed approaches, where individual classifi-
ers configure themselves by selecting actions (from a set
of discrete available actions) that maximize their local util-
ities. We determine the minimum information that needs
to be exchanged across classifiers and propose a novel
scheme for determining the local utilities for intermediate
CUs, which are required to successfully design the tree
configuration games. We analytically show that the pro-
posed approach guarantees a convergence to a unique pure
strategy Nash equilibrium in operating points of each CU. If
information about successive classifiers is available to a
CU, then the CU can form a coalition for the successive
classifiers, and select a foresighted action that maximizes
the coalition utility. We analytically show that the fore-
sighted strategies can eventually improve the application
utility. Our simulation results, performed on a semantic
concept detection application for sports image analysis,
show that the performance of the proposed myopic ap-
proach is comparable to a centralized solution – outper-
forming the average performance. Specifically, the
myopic solution improves 68–88.6% (depending on the
misclassification costs) of the application utility compared
to the centralized SQP-based approach on average, and a
higher improvement can be achieved by deploying the
foresighted solutions. Moreover, if more actions become
available, a higher application utility is achieved. Fore-
sighted strategies that maximize coalition utilities lead to
a higher application utility than the myopic strategy. In
addition, the performance incrementally improves as the
coalition size increases. Future interesting research topics
may include how to configure the topology of classifiers
(or sensors) in tree or chain structures in an ad hoc manner
(i.e., ordering classifiers) and what are the impact of the
other resource division policies and load-shedding
schemes on the system performance in the resource con-
strained scenarios.

Acknowledgements

This work was supported in part by the Ewha Womans
University Research Grant of 2010 and in part by Basic Sci-
ence Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Edu-
cation, Science and Technology (2010-0009717). This work
was performed while the first author was with IBM T.J.
Watson Research Center, Hawthorne, NY, USA. The mate-
rial in this paper was presented in part at the Thirty-Fourth
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Taipei, Taiwan, April 2009.

Appendix A

We show that the local utility function defined in (7) is
concave if a DET curve is differentiable and non-decreasing
concave. A function Ui(x) is concave with respect to x if and
only if @2UiðxÞ

@x2 6 0.
Let fi be a differentiable and non-decreasing concave

function that characterizes the DET curve of CU ci, i.e.,
pD

i ¼ fiðpF
i Þ for 0 6 pF

i 6 1. Since function fi is concave, we
have

@2fiðxiÞ
@x2

i

6 0; ðA:1Þ

512 H. Park et al. / Ad Hoc Networks 9 (2011) 497–513
for 0 6 xi ¼ pF
i 6 1. Since pD

i can be completely parameter-
ized by pF

i and fi, the local utility function Ui(ai) for ai =
(xi, fi(xi)) can be expressed as a function of xi, i.e.,

UiðxiÞ ¼ �½ðti � gi/iÞxik
F
i þ ðKi � gi/if ðxiÞÞkM

i �:

The second derivative of Ui(xi) is given by

@2UiðxiÞ
@x2

i

¼ gi/i
@2fiðxiÞ
@x2

i

kM
i 6 0;

since parameters of gi, /i, and kM
i are non-negative con-

stants and @2 fiðxiÞ
@x2

i
6 0 as shown in (A.1).

References

[1] M.A. Shah, J.M. Hellerstein, S. Chandrasekaran, M.J. Franklin, Flux: an
adaptive partitioning operator for continuous query systems, in:
Proc. Int. Conf. on Data Engineering (ICDE ’03), 2003, pp. 25–36.

[2] R. Lienhart, L. Liang, A. Kuranov, A detector tree for boosted
classifiers for real-time object detection and tracking, in: Proc. Int.
Conf. on Multimedia and Expo (ICME ’03), 2003, pp. 277–230.

[3] A. Ntoulas, M. Najork, M. Manasse, D. Fetterly, Detecting spam web
pages through content analysis, in: Proc. Int. Conf. on World Wide
Web (WWW ’06), 2006, pp. 83–92.

[4] T.E. Senator, Multi-stage classification, in: Proc. Int. Conf. on Data
Mining (ICDM ’05), 2005, pp. 386–393.

[5] X. Gu, K. Nahrstedt, On composing stream applications in
cooperative peer-to-peer environments, IEEE Transactions on
Parallel Distributed Systems 17 (8) (2006) 824–837.

[6] C. Olston, J. Jiang, J. Widom, Adaptive filters for continuous queries
over distributed data streams, in: Proc. Int. Conf. on Management of
Data (SIGMOD ’03), 2003, pp. 563–574.

[7] L. Amini, H. Andrade, F. Eskesen, R. King, Y. Park, P. Selo, C.
Venkatramani, The stream processing core, Tech. Rep. RSC 23798,
IBM T.J. Watson Research Center, November 2005.

[8] Y. Xing, S.B. Zdonik, J.-H. Hwang, Dynamic load distribution in the
borealis stream processor, in: Proc. Int. Conf. on Data Engineering
(ICDE ’05), 2005, pp. 791–802.

[9] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U.
Çetintemel, Y. Xing, S.B. Zdonik, Scalable distributed stream
processing, in: Proc. Conf. on Innovative Data Systems Research
(CIDR), 2003.

[10] D. Kossmann, The state of the art in distributed query processing,
ACM Computing Surveys 32 (4) (2000) 422–469.

[11] M. Balazinska, H. Balakrishnan, S. Madden, M. Stonebraker, Fault
tolerance in the borealis distributed stream processing system, in:
Proc. Int. Conf. on Management of Data (SIGMOD ’05), 2005, pp. 13–
24.

[12] A. Garg, V. Pavlovic, T.S. Huang, Bayesian networks as ensemble of
classifiers, in: Proc. Int. Conf. on Pattern Recognition (ICPR ’02), 2002,
pp. 779–784.

[13] T. Repantis, X. Gu, V. Kalogeraki, QoS-aware shared component
composition for distributed stream processing systems, IEEE
Transactions on Parallel Distributed Systems 20 (7) (2009) 968–982.

[14] A. Gavrilovska, S. Kumar, S. Sundaragopalan, K. Schwan, Platform
overlays: enabling in-network stream processing in large-scale
distributed applications, in: Proc. Int. Workshop on Netw. and
Operating Systems Support for Digital Audio and Video (NOSSDAV
’05), 2005.

[15] Y. Mao, X. Zhou, D. Pi, Y. Sun, S.T.C. Wong, Multiclass cancer
classification by using fuzzy support vector machine and binary
decision tree with gene selection, Journal of Biomedical
Biotechnology 2005 (2) (2005) 160–171.

[16] D.S. Turaga, B. Foo, O. Verscheure, M. van der Schaar, Configuring
topologies of distributed semantic concept classifiers for continuous
multimedia stream processing, in: ACM Multimedia 2008, 2008, pp.
289–298.

[17] S. Pang, SVM classification tree algorithm with application to face
membership authentication, in: Proc. Int. Joint Conf. on Neural
Networks, vol. 1, 2004, pp. 431–436.

[18] D.M. Kreps, R. Wilson, Sequential equilibrias, Econometrica 50 (4)
(1982) 863–894.

[19] B. Babcock, S. Babu, M. Datar, R. Motwani, Chain: operator
scheduling for memory minimization in data stream systems, in:
Proc. Int. Conf. on Management of Data (SIGMOD ’03), 2003, pp.
253–264.
[20] N. Tatbul, U. Çetintemel, S.B. Zdonik, Staying fit: Efficient load
shedding techniques for distributed stream processing, in: Proc. Int.
Conf. on Very Large Databases (VLDB ’07), 2007, pp. 159–170.

[21] S. Viglas, J. Naughton, Rate-based query optimization for streaming
information sources, in: Proc. Int. Conf. on Management of Data
(SIGMOD ’02), 2002, pp. 37–48.

[22] D.S. Turaga, H. Park, R. Yan, O. Verscheurerh, Adaptive multimedia
mining on distributed stream processing systems, in: Proc. IEEE Int.
Conf. on Data Mining (ICDM 2009), 2009.

[23] F. Provost, T. Fawcett, Robust classification for imprecise
environments, Machine Learning 42 (3) (2001) 203–231.

[24] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge
University Press, New York, NY, 2004.

[25] A. Ortega, K. Ramchandran, Rate-distortion techniques in image and
video compression, IEEE Signal Processing Magazine 15 (6) (1998)
23–50.

[26] J. Nash, Equilibrium points in n-person games, in: Proc. of the
National Academy of Sciences, vol. 36, 1950, pp. 48–49.

[27] M.J. Osborne, A. Rubinstein, A Course in Game Theory, The MIT Press,
1994.

[28] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, The
MIT Press, Cambridge, MA, 1998.

[29] D. Fudenberg, D.K. Levine, The Theory of Learning in Games, MIT
Press, Cambridge, MA, 1998.

[30] J.R. Smith, IBM multimedia analysis and retrieval system (MARVEL),
<http://mp7.watson.ibm.com/marvel/>.

[31] M. Campbell, A. Haubold, M. Liu, A. Natsev, J.R. Smith, J. Tesic, L. Xie,
R. Yan, J. Yang, IBM Research TRECVID-2007 video retrieval system,
in: TRECVID Workshop, Gaithersburg, USA, 2007.

Hyunggon Park received the B.S. degree in
Electronics and Electrical Engineering from
the Pohang University of Science and Tech-
nology (POSTECH), Pohang, Korea, in 2004,
and the M.S. and Ph.D. degrees in Electrical
Engineering from the University of California,
Los Angeles (UCLA), in 2006 and 2008,
respectively. Currently, he is an Assistant
Professor at the Department of Electronics
Engineering, Ewha Womans University, Seoul,
Korea. His research interests are game theo-
retic approaches for distributed resource

management (resource reciprocation and resource allocation) strategies
for multiuser systems and multiuser transmission over wireless/wired/
peer-to-peer (P2P) networks. In 2008, he was an intern at IBM T.J.Watson

Research Center, Hawthorne, NY, and he was a Senior Researcher at the
Signal Processing Laboratory (LTS4), Swiss Federal Institute of Technology
(EPFL), Lausanne, Switzerland, in 2009–2010. Dr. Park was a recipient of
the Graduate Study Abroad Scholarship from the Korea Science and
Engineering Foundation during 2004–2006 and arecipient of the Electri-
cal Engineering Department Fellowship at UCLA in 2008.

Deepak S. Turaga received the B.Tech. degree
in Electrical Engineering from Indian Institute
of Technology, Bombay in 1997 and the M.S.
and Ph.D. degrees in Electrical and Computer
Engineering from Carnegie Mellon University,
Pittsburgh in 1999 and 2001, respectively. He
is currently a Research Staff Member in the
Exploratory Stream Processing department
at the IBM T.J. Watson Research Center in
Hawthorne. He was at Philips Research during
2001–2003 and with Sony Electronics in
2003–2004. His research interests lie primarily

in statistical signal processing, multimedia coding and streaming, machine
learning and computer vision applications. In these areas he has published
over 50 journal and conference papers and one book and two book chap-

ters. He has also filed over 20 invention disclosures, and has participated in
MPEG standardization activities. He received the CSVT 2006 Transactions
Best Paper Award (with M. van der Schaar and B. Pesquet-Popescu), and is a
coauthor for the 2006 IEEE ICASSP Best Student Paper (with H. Tseng, O.
Verscheure and U. Chaudhari). He is an Associate Editor of the IEEE
Transactions on Circuits and Systems for Video Technology, andan
Associate Editor for the Hindawi Journal for the Advances in Multimedia.

http://mp7.watson.ibm.com/marvel/

H. Park et al. / Ad Hoc Networks 9 (2011) 497–513 513
He was an Associate Editor of the IEEE Transactions on Multimedia during
the period 2006–2008. He is also currently an Adjunct Associate Professor
in the Electrical Engineering Department at Columbia University.

Olivier Verscheure received a B.S. degree
from the Faculté Polytechnique de Mons,
Belgium, in 1994, a M.Sc. degree from the
Swiss Federal Institute of Technology, Lau-
sanne (EPFL), in 1995, both in electrical engi-
neering, and a Ph.D. degree in computer
science from the Institute for Computer
Communications and Applications, EPFL, in
June 1999. Dr. Verscheure manages the
Exploratory Stream Analytics Research Group
at the IBM T. J. Watson Research Center,
Hawthorne, NY, and has worked at IBM in the

areas of distributed systems, multimedia networking, data mining and
signal processing for over 10 years. His current research interests include
stream and data mining, signal processing, and data stream management.

He has been and continues to be a member of the Program Committee for
several top-tier conferences in these areas. Dr. Verscheure is a coauthor of
the 2004 IEEE International Performance Computing and Communica-
tions Conference Best Paper Award (with L. Amini and G. Paleologo) and a
coauthor for the 2006 IEEE ICASSP Best Student Paper (with H. Tseng, D.
Turaga, and U. Chaudhari).

Mihaela van der Schaar is Professor in the
Electrical Engineering Department at Univer-
sity of California, Los Angeles. She received in
2004 the NSF Career Award, in 2005 the Best
Paper Award from IEEE Transactionson Cir-
cuits and Systems for Video Technology, in
2006 the Okawa Foundation Award, in 2005,
2007 and 2008 the IBM Faculty Award, and in
2006 the Most Cited Paper Award from
EURASIP: Image Communications journal. She
was an associate editor for IEEE Transactions
on Multimedia, Signal Processing Letters,

Circuitsand Systems for Video Technology, Signal Processing Magazine
etc. She holds 33 granted US patents and three ISO awards for hercon-
tributions to the MPEG video compression and streaming international

standardization activities. Her research interests are in multimedia
communications, networking, processing and systems and, more recently,
network economics and game theory. She is a Fellow of IEEE.

	Foresighted tree configuration games in resource constrained distributed stream mining sensors
	Introduction
	System model – hierarchical binary classifier trees
	Configuration of binary classifier
	Stream characteristics
	Performance measure of classifier
	Cost coefficients for misclassification
	Input and output rates
	End-to-End application utility

	Tree configuration games
	Definition of tree configuration games
	Action set ?
	Local utility function ?
	Strategy ? of CU ?

	Available information for CUs

	Information availability and action selection strategies
	Myopic strategy
	Foresighted strategy for coalitions

	Foresighted strategies for coalitions and performance improvement
	Tree configuration games with resource constraints
	Assumptions
	Resource constraints
	Effective DET curve
	Resource division policy

	Resource constraints and myopic strategy
	Resource constraints and foresighted strategy

	Simulation results
	Simulation Set-up
	Impact of action granularity and backward propagation scheme for cost coefficients
	Application performance under no resource constraints
	Performance of application with resource constraints
	One foresighted CU with other myopic CUs
	Foresighted CUs competing for resources
	Impact of resource division policies

	Conclusions
	Acknowledgements
	Appendix A
	References

