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Efficient Resource Provisioning and Rate Selection
for Stream Mining in a Community Cloud
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Abstract—Real-time stream mining such as surveillance and
personal health monitoring, which involves sophisticated mathe-
matical operations, is computation-intensive and prohibitive for
mobile devices due to the hardware/computation constraints. To
satisfy the growing demand for stream mining in mobile networks,
we propose to employ a cloud-based stream mining system in
which the mobile devices send via wireless links unclassified media
streams to the cloud for classification. We aim at minimizing the
classification-energy cost, defined as an affine combination of
classification cost and energy consumption at the cloud, subject to
an average stream mining delay constraint (which is important in
real-time applications). To address the challenge of time-varying
wireless channel conditions without a priori information about the
channel statistics, we develop an online algorithm in which the
cloud operator can dynamically adjust its resource provisioning
on the fly and the mobile devices can adapt their transmission
rates to the instantaneous channel conditions. It is proved that,
at the expense of increasing the average stream mining delay, the
online algorithm achieves a classification-energy cost that can
be pushed arbitrarily close to the minimum cost achieved by the
optimal offline algorithm. Extensive simulations are conducted to
validate the analysis.

Index Terms—Energy efficiency, mobile cloud, real-time stream
mining, resource management, stochastic control.

I. INTRODUCTION

ITH the advent of ubiquitous wireless access and af-

fordable mobile devices, much of the Internet content
has seen a sheering shift towards user-generated content, as at-
tested by, for example, that millions of mobile users upload their
video clips onto video-sharing sites like YouTube [24]. Unless
appropriately processed (often with little delay), however, the
maximum value of exabytes of user-generated content may not
be realized. While computation capabilities of mobile devices
have improved significantly, they have yet to catch up with the
stringent resource requirement for locally performing computa-
tion-intensive real-time content processing (e.g., real-time video
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Fig. 1. Cloud-Based Multimedia Stream Mining System.

transcoding, wireless video surveillance). Resolving the con-
flicts between the soaring demand for seamless access to a large
pool of computational resources and the resource scarcity of
mobile devices calls for a new computing paradigm, for which
mobile cloud computing has been hailed as a promising candi-
date due to its capability of providing elastic and scalable com-
putational resources to mobile users.

Multiples types of cloud computing platforms coexist:
public cloud (which provides various computing services to
the general public on the Internet), private cloud (which is
operated solely for a single organization), and community
cloud (which provides computing services to several users
from a specific community with common concerns/interests
such as security). In this paper, we focus on a community cloud
that provides real-time stream mining services to multiple
users over a wireless network. Example applications include
wireless video surveillance, virtual multi-party games, medical
services, visual search, spam classification, mobile education,
and real-time media content analysis [2]. A block diagram
illustrating the cloud-based stream mining system is shown in
Fig. 1. Each user is equipped with an energy-constrained mobile
device that monitors scenes of interest (e.g., building, person)
and encodes the monitoring result into multimedia streams
(e.g., video/image sequences). Stream mining is computation
intensive, as it involves many mathematical operations and
sophisticated machine learning algorithms [4]. Further fueled
by the responsiveness and performance requirement, real-time
stream mining is therefore computationally prohibitive for
mobile devices. Thus, each user transmits the unclassified
multimedia streams via wireless links to the community cloud,
which then extracts valuable information out of the streams and
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returns the mining results to the users. Nevertheless, mining
multimedia streams requires the support from a large number of
servers, which thereby consume a significant portion of energy
in cloud computing [10].

In this paper, we consider the following three performance
metrics:

* Energy consumption: Energy consumption is a key per-

formance metric in cloud computing [9], [13].

* Classification cost: Errors (e.g., false alarm, missed detec-
tion) may occur in stream mining, resulting in classification
costs for the users [4].

* Queueing delay: In real-time stream mining applications
such as visual search, (average) queueing delay incurred
at the community cloud needs to be kept under a certain
threshold such that users can receive timely mining results
(2], [3], [4].

Optimizing these three performance metrics simultaneously
is not possible in practice.! Thus, depending on the specific
application environment, the cloud operator needs to have
the ability to perform a desired tradeoff, which, however,
is challenged by the fact that the environment in which the
stream mining system operates is randomly changing over
time and the distribution of the underlying stochastic process
is often unknown a priori. Specifically, the wireless channels
linking the community cloud and the users are time varying
with possibly unknown channel gain distributions. To address
these challenges, we develop an online computational resource
provisioning and rate selection algorithm to minimize the clas-
sification-energy cost (defined as an affine combination of the
classification cost and energy consumption) while satisfying
the average queueing delay constraint. The online decisions
are: (1) each user decides its transmission rate; and (2) the
cloud operator decides its computational resource provisioning
for stream mining. Both decisions are made based on online
information, i.e., instantaneous wireless channel conditions,
without the knowledge of channel statistics. It can be shown
that at the expense of increasing the average queueing delay, the
classification-energy cost can be reduced and pushed arbitrarily
close to the minimum cost achieved by the optimal offline
algorithm. We also extend the analysis to a profit-maximizing
cloud operator that can dynamically price its computational
resource.

The rest of this paper is organized as follows. Related work
is reviewed in Section II. Section III describes the model.
In Section IV, we develop a provably-efficient online re-
source provisioning and rate selection algorithm to minimize
the long-term average classification-energy cost subject to
queueing delay constraint and the average energy constraint
for each user. Simulation results are shown in Section V and
finally, concluding remarks are offered in Section VI.

II. RELATED WORK

In this section, we review the existing works related to ours
from three perspectives: stream mining, energy-efficient cloud
computing, and mobile cloud.

Providing a high classification performance subject to a stringent delay re-
quirement requires more computational resource, which in turn incurs more en-
ergy consumption.
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Conceptually, a multimedia stream mining system can be
viewed as a set of classifiers through which multimedia streams
are filtered. Various techniques have been studied to improve
the classification performance by optimally configuring net-
works of classifiers as well as their topologies. For instance,
the authors in [3] proposed a randomized distributed algorithm
that can iteratively yield the optimal configuration of classifier
chains maximizing the classification performance subject to
end-to-end delay constraints for real-time multimedia stream
mining systems. More recently, [4] studied the topology se-
lection for classifier chains and presented algorithms that can
efficiently order and configure the classifiers to tradeoff classi-
fication performance with processing delay. Besides optimizing
the classifier topology and configuration, other techniques have
also been proposed to improve multimedia stream mining
performance. By combining multiple musical properties based
on principal component analysis and a multi-layer percep-
tion neural network, [5] presented an efficient algorithm to
construct music descriptors for content-based music retrieval
and classification. By using salient objects (e.g., connected
image regions that capture the dominant visual properties) to
characterize the intermediate image semantics, [6] proposed
a framework for mining multilevel image semantics via hi-
erarchical classification. Moreover, the authors proposed an
algorithm, referred to as product of mixture-experts, to reduce
the size of training images and speed up concept learning for
learning more efficiently in high-dimensional feature space. To
provide flexible and reliable image retrieval and mining, [7]
proposed to utilize the scalability of peer-to-peer networks. In
[8] where video event/concept detection was considered, a sub-
space-based multimedia data mining framework was proposed
to deal with semantic gap and rare event/concept detection.

As many megawatts of electricity is required to support the
soaring demand for cloud computing, there has been a growing
interest in reduce the computing energy consumption. In [9],
an online right-sizing algorithm which dynamically turns on/off
servers was proposed to minimizes the delay plus energy cost,
under the assumption that the electricity price is fixed over time.
[10] considered a similar problem but proposed to predict the
future service demand using a Markov chain to determine the
number of active servers. Later, [11] studied the problem by
taking the bandwidth cost into consideration, whereas the pro-
posed solution does not address the queueing delay require-
ment. [12] quantified the economic gains by scheduling work-
loads across multiple data centers, which is an empirical study
without providing analytical performance bounds on the pro-
posed resource management algorithm. Other studies explored
the opportunity of energy saving by executing jobs when and/or
where the electricity prices are low (e.g., [13]).

More recently, mobile cloud computing has been hailed as an
enabling solution to deliver elastic computing services to mo-
bile devices, the computation capabilities of which have lagged
far behind the soaring demand for ubiquitous digital services.
Many research proposals have been initiated with the objec-
tive of making mobile cloud computing more robust, secure,
and efficient. For example, to conserve energy for battery-pow-
ered mobile devices, [18] proposed an energy-optimal execu-
tion policy that can selectively offload some mobile applica-
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tions to the cloud for execution. Similarly, to augment the capa-
bility of resource-constrained mobile devices, [19] considered
the partition of a single mobile application into multiple com-
ponents (called weblets) and dynamic adaptation of weblet exe-
cution between a mobile device and distant cloud servers. Iden-
tifying wide area network delay as a major factor affecting the
mobile cloud computing performance, [20] proposed that mo-
bile devices can instantiate a “cloudlet” on nearby infrastructure
(achieved through dynamic virtual machine synthesis) and use
it via a wireless local area network. Reference [23] reviewed
computation offloading techniques for mobile devices and con-
cluded that energy overheads for privacy, security, reliability, as
well as data communication ought to be considered before of-
floading.

None of these works have considered cloud-based mobile
stream mining systems operating in random environments with
unknown distributions. Moreover, it remains an open problem to
achieve a flexible tradeoff among the energy consumption, clas-
sification performance and responsiveness of stream mining,
which are three important performance metrics that cannot be
optimized simultaneously. In this paper, we shall study a cloud-
based multimedia stream mining system and address these is-
sues.

III. SYSTEM MODEL

We consider a time-slotted system with time slots of equal
length indexed by ¢ = 0,1, . ... In practice, the actual duration
of a time slot depends on the specific application (e.g., every few
seconds or minutes for video surveillance applications). We now
describe the system implementation and the signaling between
the cloud operator and mobile users as follows.

Step 1 (Wireless channel estimation): The cloud operator
estimates the wireless channel condition and then sends
back the channel state information to the respective mobile
users.

Step 2 (Rate Selection and video transmission): The mo-
bile users determine their own transmission rates, update
their virtual power deficit queues, and then transmit the
captured video streams to the cloud for mining.

Step 3 (Resource provisioning and stream mining):
The cloud operator determines its provided computational
resource, performs classification tasks on the uploaded
streams following the first-in-first-out order, and then
updates the job queue.

Step 4 (Classification result notification): The cloud op-
erator notifies each mobile user of the mining result, based
on which the mobile user shall take appropriate actions.

In the following, we provide the modeling details of the cloud
operator and mobile users, as well as queue dynamics at the
community cloud. Key notations are listed in Table I.

A. Cloud Operator

The community cloud operates a cloud-based multimedia
stream mining system, which extracts real-time valuable infor-
mation out of unclassified video streams uploaded via wireless
links. The stream mining system can be viewed as a set of
classifiers/filters. We consider in this paper binary classifiers
for the convenience of analysis, while other classifiers can

TABLE I
LIST OF NOTATIONS

Notation | Description

s(t) Provided computational resource

e(s(t)) Energy cost

hi(t) Wireless channel gain between user ¢ and the cloud
ri(t) Transmission rate of user ¢

ci(t) Classification cost of user ¢

Q(t) Job queue length at the cloud

g(t) Classification-energy cost

B Classification-energy parameter

also be considered. A multimedia stream filtered through a
binary classifier may have two possible labels: “Positive” and
“Negative”. The classification result cannot be fully accurate,
producing two types of classification errors:

(1) Missed detection: The classifier misses positive data and
wrongly labels it as being negative. We denote the de-
tection probability by pp, and accordingly, the missed
detection probability is 1 — pp.

(2) False alarm: The classifier labels negative data as being
positive. We denote the false alarm probability by pp.

The performance of a classifier is usually characterized by a
two-element tuple (pp,pr), where pr can be expressed as a
function in pp(pp,r) where r > 0 is the user’s input bit rate
and indicates the quality of the input video/image to the classi-
fier. Given a fixed r, pr(pp, r) is increasing in pp € [0, 1] and
the actual shape of pr(pp,r) depends on the Detection Error
Tradeoff (DET) curve [4].2 Hence, given a fixed r, we can char-
acterize a classifier using a scalar pp € [0, 1]. In this paper, we
focus on only one binary classifier, and hence the overall classi-
fication performance can be conveniently characterized by one
parameter pp. Alternatively, multiple binary classifiers can be
combined and abstracted into one binary classifier that yields
the ultimate classification result of interest (e.g., whether a thief
enters a building). Focusing on the users’ rate selection, we as-
sume in this paper that the cloud operator uses a fixed detection
probability pp when classifying all the streams. Note, however,
that the false detection probability may not be constant as the
input quality varies over time.

When mining multimedia streams, the cloud operator incurs
various operational costs (e.g., processors and networking),
which increase with the classification complexity. In particular,
the computational resource needed to classify a multimedia
stream is increasing in the input bit rate [4]. In this paper, we
focus on processor energy consumption, which is a major cost
factor in cloud computing [9] and can be approximately cap-
tured by an increasing and convex cost function of the provided
computational resource. For example, given a fixed number
of servers and with dynamic voltage and frequency scaling
technique applied [14], the minimum energy consumption of
all the processors is incurred if all the processors are set at
the same frequency, and the resulting energy consumption is
convex in the processor frequency (i.e., provided computational
resource). Mathematically, we use s(f) > 0 to denote the total
provided computational resource at time # and e(s(%)) to denote

2The classification performance also depends on many other factors such as
training sets and contexts to be classified, which are beyond the scope of this

paper.
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the corresponding processor energy consumption in the com-
munity cloud. For the purpose of mathematical analysis, we
assume that e(0) = 0 and e(s(#)) is a differentiable, increasing
and convex function of s(¢). The community cloud houses a
limited, albeit possibly large, number of servers, each with a
maximum processor speed. For the convenience of analysis,
we consider homogeneous servers. The server availability
constraint naturally limits the total available computational
resource. Specifically, the total computational resource that can
be provided by the community cloud satisfies s(#) < $pyax, for
t=0.1,...

B. User

There are N users/nodes gathering environment information
(e.g., monitor a building) and uploading unclassified multi-
media streams to the community cloud for classification. At
time ¢, each user senses the scene of interest and encodes the
sensing result into a video frame/image, and transmits it to the
community cloud using a wireless link. Note that, during every
time slot, the users transmit the same number of video/image
frames. While both sensing and encoding are energy con-
suming, the (expected) energy consumption associated with
sensing and video encoding is relatively stable over time. In
contrast, the power consumption of a wireless transmitter is
highly dependent on the time-varying channel condition. Thus,
we isolate the energy consumed by sensing and encoding from
our model and focus on the energy consumption by wireless
transmissions.

Denote the channel (power) gain at time ¢ between user ¢
and the community cloud by £;(t) € [himin, P max], Where
Pimin = 0and s max > A min are the minimum and maximum
channel gains, respectively, for¢ = 1,2,..., N. We consider
a block-fading channel, i.e., i;(¢) remains constant throughout
a frame but may vary across different frames. Without loss of
generality, we impose the following assumption on the channel
conditions experienced by the users.

Assumption 1: Each user experiences independent channel
conditions, and £;(t) € [hi min, Pi max] follows a certain i.i.d.
(but possibly unknown) distribution, for« = 1,2,..., N and
t=0,1,2,....

Each user can vary its stream quality by adapting its trans-
mission rate. We denote the transmission rate selected by user
i by ri(t) € [0, 7 max], Where 7 yax is the maximum trans-
mission rate supported by user ¢ (e.g., due to modulation con-
straint). The transmission power can therefore be written as
d;(t) = d;(h;(t), r;(t)), which is decreasing in h;(¢) but in-
creasing in r;(¢). A higher transmission rate r;(t) indicates a
higher stream quality.

Considering energy-constrained users (e.g., smart phones,
batter-powered sensors), we impose a long-term average power
constraint, denoted by D,, for each user ¢.3 Due to the im-
perfection of classifiers at the community cloud, there exist
classification errors and also classification costs for the users
depending on the input stream quality (as well as the classi-

3The power constraint is imposed for wireless transmission only. However,
as we have mentioned, our model can be easily extended to study joint source-
channel coding and take into account both sensing and encoding power con-
sumption.
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fier setting/topology, which is beyond the scope of our paper
and assumed to be fixed in our study). Assuming that the a
priori probability of user ¢’s stream being “positive” is ¢;, the
expected classification cost for user ¢ can be expressed as [4]

(1

where cj7; and cp; are user ¢’s missed detection cost and false
alarm cost, respectively. Clearly, user ¢ can acquire a better clas-
sification performance by transmitting at a higher rate (e.g., pro-
viding better video quality) to the community cloud. Note that
the classification cost is subject to many factors such as the
training set, classification algorithm, the specific context to be
classified, as well as the input quality. In general, there exists
no simple analytic expression of the classification cost in terms
of the input bit rate, although it is expected that a higher input
bit rate (i.e., better input quality) will generally result in a better
classification performance [15]. In this paper, we assume that
the classification cost ¢;{¢) = ¢;(v;(t)) > 0 is a decreasing
function of the input rate ().

¢i(t) = emihi(1 — pp) + cri(1 — ¢i)pri(pp, Ti(1)),

C. Queue Dynamics

A job queue is maintained at the cloud community to store the
unfinished or unclassified multimedia streams uploaded by the
users. As aforementioned, the computational resource required
to classify a stream is increasing in the input bit rate. Without
loss of generality, we use a non-negative and finite function
a;(t) = a;(r;i(t)), fori = 1,2,..., N, to represent the re-
quired computational resource for a stream with a rate of r;(¢).
Note that the specific form of a;(r;(¢)) depends on many factors
such as the processor architecture, application, and classifiers.
We can use a1 (1), as(t), . .., an(t) to quantify the input/arrival
rate to the job queue maintained at the community cloud, and use
the provided computational resource s(t) as the departure rate
of the queue (or service rate in the queueing system). Denote
Q(t) as the job queue length (i.e., the amount of computational
resource needed to complete all the classification tasks). Thus,
the queue length at the community cloud evolves over time fol-
lowing the dynamics specified by

QU+ 1) = max[Q() — 5.0+ Y ), @)

assuming that the initial queue is empty, i.e., @(0) = 0. Al-
though the uploaded streams may not necessarily be classified
instantaneously (i.e., within the same time slot as they are up-
loaded) by the community cloud, the classification cost depends
on the original transmission rate rather than the actual depar-
ture rate s(t), since the streams will still be classified according
to their transmission rates (which determine the stream quality)
after some queueing delay. To address the responsiveness in
real-time stream mining, we shall show later that the average
queue length, which is closely related to the average queueing
delay, is upper bounded and the queue length can be shortened
at the expense of increasing the classification-energy cost.

D. Remarks

Before proceeding with the analysis, we provide the fol-
lowing remarks regarding our model.
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Remark 1: While we assume in the basic model that A, (#) is
i.i.d. over time, it should be noted that, as shown in [27], more
general channel fading processes such as discrete-time Markov
chains and even an arbitrarily stochastic process can also be
considered without affecting the approach of analysis. Never-
theless, considering more general fading processes does not pro-
vide much additional insight, but only complicates the notations
and derivations.

Remark 2: We do not consider job queues at each individual
user, as we try to keep the mobile device and operation as
simple as possible. In other words, each user senses objects
of interest and transmits real-time streams to the community
cloud for stream mining without delay, although the community
cloud may defer the classification of some streams. It should be
noted that our analysis can be extended if we allow the streams
to be buffered at each user, which can then opportunistically
transmit its data to the community cloud only when the channel
is in good conditions to save energy consumption.

IV. DYNAMIC RESOURCE PROVISIONING AND RATE SELECTION

In this section, we first formulate the problem of dynamic
resource provisioning and rate selection subject to the average
power constraint for each user. Then, we develop a provably-ef-
ficient online algorithm, which can be implemented in a dis-
tributed fashion.

A. Problem Formulation

Control decisions, i.e., the cloud operator’s computational
resource provisioning s(¢) and the transmission rate selection
ri(£) of user ¢, are made at the beginning of each time slot
t. In particular, the users will independently choose their own
transmission rates and then the cloud operator chooses the re-
source provisioning s(¢). For notational convenience, we use
w(t) = (ri(t),r2(t),...,rn(t), $(1)) to represent the control
decisions. Next, we formalize the performance metric. In our
study, we concentrate on a benevolent cloud operator that aims
at minimizing the long-term classification-energy cost.*

At time ¢t = 0,1,..., the classification-energy cost can be
expressed as

N

g(t) = > cilr{)) + Be(s(1)), (€))

i=1

where 3 > 0 is referred to as the classification-energy param-
eter indicating the relative importance of the energy cost of the
community cloud. The long-term average classification-energy
cost can therefore be written as

72 lim -3 Efg(r)]. )

where the expectation is taken with respect to the random
environment (i.e., wireless fading channels in this paper)
. . . .. — A
given the control decisions. Similarly, we define a; =
. t—1 — A g t—1

limyoc 1/t3 . Elai(7)], 5 = limpoo 1/ _ E[s(7)],

4Other objective functions, such as resource allocation fairness, can be con-
sidered as well without affecting the approach of analysis.

and d; 2 limy_ .. 1/t Zi;lo E [d;(7)], where d;(7) is the
transmission power of user ¢ at time 7. To minimize the
long-term classification-energy cost, we aim at developing a
control policy that solves the following problem

o n J—thigth[E 5)
s.t., D;<0,¥i=1,2,....,N, (6

d; —
N
Z )
1
5(t) € [0, smax], V1, (8)
[03 "‘i.max]s Vt, (9)

where the constraint (6) is the average power constraint for the
users, and (7) guarantees the mean-rate queue stability in the
long term (i.e., lim; o E [Q(%)]/t = 0). We assume throughout
the paper that the problem (5)—(9) is feasible unless otherwise
stated. Although the constraints on the maximum classification
cost for each user are omitted for brevity, they can be included
in our formulation using the same approach of analysis (i.e.,
adding virtual classification cost queues).

It can be shown based on Caratheodory’s theorem that
there exists a stationary and randomized offline control policy,
solving (5)—(9)[27]. Nevertheless, it requires the full knowledge
of channel statistics and is rather challenging, if not impossible,
to obtain the optimal control policy explicitly. Hence, we resort
to the development of a practical and online algorithm that is
provably-efficient compared to the optimal offline algorithm.

B. Algorithm Design

In this subsection, we develop a provably-efficient online re-
source provisioning and rate selection algorithm. The key idea
of the algorithm is as follows: for the queue stability constraint
in (7), we use the actual job queue length Q(#), which follows
(2), to guide the resource provisioning decision made by the
cloud operator. Specifically, when the job queue length is suffi-
cient large, the cloud operator will process some jobs to reduce
the queue length and avoid excessive delay. Similarly, for each
average power constraint in (6), we define a deficit virtual queue
and then use the virtual queue lengths to guide the user’s rate se-
lection decision. Using this approach, we can show that the on-
line resource provisioning and rate selection algorithm is prov-
ably-efficient in the sense that it can yield a long-term classifica-
tion-energy cost which is arbitrarily close to the minimum pos-
sible cost, while bounding the average job queue length at the
community cloud and satisfying the average power constraint
for each user.

We first define the power deficit queue for user ¢ as Z;(%),
which starts from Z;(0) = 0 and evolves as

Zi(t+ 1) = max [Z;(t) + di(t) — D;,0], (10)
where d;(#) is the power consumption of user  at time ¢ and D;
is the long-term average power constraint for user z. The virtual
queue Z;(t) is used to guarantee the average power constraint

for user . Specifically, it can be shown based on the sample path
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recursion and the queue dynamics (39) that, for any ¢ > 0, the
following inequality holds

(11)

Thus, by taking expectation and letting ¢ — oc, we see that if
the virtual queue Z;(%) is mean rate stable, the inequality (11)
becomes d; — D; < 0, guaranteeing that the average power
constraint for user 4 is satisfied.

Next, we combine the actual job queue at the community
cloud with the virtual power deficit queues. Specifically, in the
remainder of this paper, we shall use the vectorial expression
O(t) = [Q(t), Z1(t). Za(t), ..., Zx(t)] to conveniently repre-
sent the combined set of queues. To utilize the information of
queue lengths as a guidance for the resource provisioning and
rate selection decision, we define the following quadratic Lya-
punov function

L) £ JQ%(0) + Zzz (12)

where the constant 1/2 is added for the convenience of mathe-
matical derivations. Note that the quadratic Lyapunov function
in (12) is essentially a scalar representation of the actual job
queue length and virtual power queue lengths [27]. Next, we
define the one-slot conditional Lyapunov drift as follows

A(O(t) 2 E[L(O(t + 1)) — L(6(1)) |©(t)] .

Using the fact that max[g — b,0]? < (g — )2, it can be shown
following the Lyapunov optimization technique [27] that

(13)

AO@#) < B+ Z A - D; 6]
+Q(HE [Z ai(t) — s()|O®)|, (14)
where B is a finite constant satisfying
1 il 2
>3 2 B[l - D) 160
+5E (Z aim) (1) 16()
i=1
N
-E l(Z (Li(t)> -min [Q(E), s(1)] 9(15)] , (15)

forany £t = 0,1,....

Next, we choose a parameter V' > 0 as an indicator of how
close the long-term average profit achieved by the online al-
gorithm is to that by the optimal offline algorithm. By adding

E [g(t) | ©(f)] (where g(¥) is the classification-energy cost at
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time £) on both sides of (14), we can obtain the following in-
equality

A(O(1) + VE [¢(t) | O(2)]

< B+ VE[¢(t)|O(t) ]+Zz i(t) — D; | ©(t)]
+QE |3 aitt) — s(t)|O(1) (16)
i=1

where the left-hand side is the (one-slot) drift plus classifica-
tion-energy cost. Instead of directly minimizing the drift plus
cost which requires the knowledge of wireless channel statis-
tics, we minimize its upper bound shown on the right-hand side
of (16). The formal description of the algorithm is shown in
Algorithm 1.

Algorithm 1 Online Algorithm for Benevolent Operator

1: At the beginning of every time slot ¢, observe the channel
state information (hy(f), h2(t), ..., hx(¢)) and the current
virtual queue lengths Z(#)

2: Each user i chooses r;(t) €
Zi{(0)d: (1) + Vei(ri (1) + Q(H)as(t)

where the classification cost ¢;(v;(¢)) is defined in (1).

[0, 7 max] to minimize

(17

3: The cloud operator chooses $(¢) € [0, $max] to minimize

—Q)s(t) + VAe(s(t)) (18)

where e(s(t)) is the energy consumption associated with
providing s(¢) computational resource.

4: Update the job queue Q(#) and virtual queues Z(% + 1)
according to (2) and (39), respectively.

In Algorithm 1, the control decisions are chosen to minimize
the right-hand size of (16) based on the currently available in-
formation without knowing the distribution of the underlying
channel fading processes. The choice of transmission rate (as
well as maintaining the virtual power deficit queue lengths) can
be performed either by the community cloud or by each indi-
vidual user. The job queue at the community cloud will guide
the cloud operator to select its resource provisioning. As each
user only needs to observe its local information, Algorithm 1
can be easily implemented in a distributed fashion.

Now, let us explain the role of the parameter V' in controlling
the decisions. We first investigate the impacts of V' on the cloud
operator’s resource provisioning decision in Proposition 1.

Proposition 1: The cloud operator’s resource provisioning
decision s(t) has the following properties:

sty =0, ifQ(t) < by -
s(t) € (0, $ppax), ifb -V < Q(t) < by -V, (19)
${t) = Smax; itQ(t) > by V,

where by = Fe’(0) and by = Se'(s8max).
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Proof: Tt can be proved by taking the first-order derivative
of —Q(#)s(t) + VPBe(s(t)) with respect to s(t). Specifically,
when Q(#) < by - V, the first-order derivative of —Q(#)s(#) +
VBe(s(t)) is always positive and thus, s(#) = 0 minimizes
—Q(t)s(t) + VBe(s(t)). The other two cases can be similarly
proved. ]

Proposition 1 highlights the impact of the job queue length
Q(#) on the cloud operator’s resource provisioning decision:
the cloud operator will choose to perform classification tasks
if and only if a sufficiently large number of jobs exist, i.e., Q(#)
is large enough. Nevertheless, following this strategy will in-
evitably result in deferment of classification tasks, which may
not be desirable in some real-time stream mining systems. We
see from Proposition 1 that by decreasing V', the cloud operator
tends to increase the energy consumption while decreasing the
queue length. A more rigorous statement about the tradeoff be-
tween the cost and queue length will be given Proposition 3 in
the next subsection.

Since we have only considered monotonicity of d;(r;),
a;(r;), and ¢;(r;) without specifying the convexity or differ-
entiability, it is difficult to show structural properties of user
1’s rate selection. Nonetheless, with more assumptions, we can
show the following structural property with respect to when
user ¢’s should transmit and when it should transmit at the
maximum rate.

Proposition 2: Assume that d;(r;), a;(r;) and ¢;(r;) are
twice differentiable and convex with respect to r; € [0, 7 max].
User ¢’s transmit rate has the following structural property

L(t) = () if vV S Q(t)bl,q + Zi(t)bl,z,;,:

7.
TL(t) = Ti,max; if vV 2 Q(t)blq + Zi (t)bZ,z,;,: (20)
ri(t) € (0,7 max), otherwise,

where  5b1 4 = —d'(r=0)/d(r=0) > 0,

by -, = =zl r=0)/dr=0 > 0, b, =

_d/(T = Ti,max)/cl(r = Ti:max) ()3 and b2,:i -

z
—2(" = Tinax) /(T = Tinax) >
derivatives are respect to r.
Proof: In the second step of the proposed online algorithm,
each user ¢ chooses 7;(%) € [0, 7; max]| to minimize
Z.L'(t)di (t) + VCi(Ti(t)) + Q(l‘)(h (t), 21
which by assumption is a twice differentiable and convex func-
tion of 7;(#) € [0,7i max]. Thus, (20) can be proved by the
first-order optimality condition. ]
Given a fixed value of # > 0, Proposition 2 shows that when
V' > 0 increases, the users will tend to care more about their
classification costs and less about the queue length, and hence,
they will choose positive rates even though there is already a
long job queue in the community cloud and/or the power deficit
queue is quite long.

C. Algorithm Analysis

This subsection proves that the developed online resource
provisioning and rate selection algorithm can achieve a prov-

5The derivative of the transmission power with respect to the transmission
rate also depends on the channel condition.

ably “good” performance in terms of average classification-en-
ergy cost by appropriately tuning the control parameter V' > 0,
as formalized in the following proposition.

Proposition 3: Under Assumption 1, the following state-
ments hold:

a. The long-term average classification-energy cost satisfies

(22)

where g°P" is the minimum average classification-energy
cost that can be obtained by using any possible control
policies (including those that have the knowledge of the
channel gain distributions).

b. All queues Q(¢) and Z;(#) are mean rate stable (i.e., the
constraints (6)—(7) are satisfied).

c. The average job queue length at the community cloud

satisfies
—1
o1 B+V.-D
tllﬁ}glo sup ZO E[Q(7)] < — (23)

where D = g(¢) — g°f%, in which g(e) > 7°P* is an
average classification-energy cost such that Z;l a; <
§ — ¢ for some ¢ > 0 (i.e., Slater’s condition).

Proof: See Appendix. ]

Proposition 3 shows that, by tuning the control parameter
V', the developed online algorithm can achieve an arbitrarily
close-to-minimum average classification-energy cost at the ex-
pense of increasing the queueing delay at the community cloud
while satisfying the average power constraints for each user.
Thus, by appropriately selecting the control parameter V', we
can achieve a desired tradeoff between the classification-energy
cost and queueing delay. Such a tradeoff is very important, es-
pecially for real-time stream mining applications which require
various levels of interactivity/responsiveness.

We conclude this subsection by noting that in general,
appropriate values of V' and § need to be determined on a
“trial-and-error” basis. Nonetheless, due to the fact that V' and
[ “monotonically” determine the resulting system performance
(e.g., increasing V' will reduce the average classification-en-
ergy cost while increasing the average queue length), we can
efficiently identify the appropriate values of V and § using
bi-section methods.

D. Profit-Maximizing Cloud Operator

In this subsection, we briefly discuss the case of a profit-max-
imizing (i.e., “rational”) cloud operator that dynamically sets
prices for its stream mining service. We concentrate on uni-
form pricing, i.e., a uniform price is charged to all the users.
We denote the price (per unit of computing) at time ¢ by p(t) €
[0, 7], where p is the maximum price that can be charged. Users
are charged on a usage basis, which conforms to the common
pricing model “pay as you go” in cloud computing services [25].
We can write the cloud operator’s profit at time ¢ as

N

(1) = () 3 aalt) — - e(s(1),

i=1

(24
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where a;(¢) is a function of r;(¢) and also an implicit function
in terms of p(#) (which affects user ¢’s decision r;(t)), and « is
the electricity/energy price.6

Considering rational and price-taking users, we assume that
each user chooses its own transmission rate to minimize the
weighted sum of its classification cost and payment made to the
community cloud. Specifically, r;(#) is determined by solving
the following minimization problem

min

ci(t) + na:(T)p(t)],
rl_(t)e[ovmm][ (t) + miai(t)p(t)]

ri(f) = arg (25)
where 7; > 0 is the tradeoff parameter indicating the relative
importance of classification performance and monetary cost,
and ¢;(t) is the classification cost as a function of r;(¢). It is
clear that the optimal r;(¢) solving (25) depends on the price
p(t) charged by the cloud operator and hence, to emphasize the
dependency of r;(t) on p(t), we use r;(t) = r;i(p(¢)) without
causing ambiguity. Note that (25) is actually equivalent to
solving a utility maximization problem, which is a classic
approach to determining the demand in economics literature.

Next, we formulate the problem of maximizing the commu-
nity cloud’s long-term profit as

t—1 N
. 1
o B LS ED Y i)~ o))

(26)
subject to (6)—(9), where r;(¢) is determined by user i by solving
(25). Following the analysis for a benevolent cloud operator, we
develop an online algorithm (formally described in Algorithm
2), whose performance analysis is similar to Proposition 3 and
hence omitted for brevity.

Algorithm 2 Online Algorithm for Profit-Maximizing Operator

1: At the beginning of every time slot £, observe the channel
state information (hq(t), ha(t),..., hx(t)) and the current
virtual queue lengths Z (%)

2: The cloud operator chooses $(¢) and p(¢) to minimize
N
—Qs(h) + Y Zilhydi(t) - V1), @27)
i=1

where II(¢) is defined in (24).
3: Update the job queue () and virtual queues Z (¢ + 1)

V. PERFORMANCE EVALUATION

This section presents simulation studies to evaluate the per-
formance of our proposed online resource provisioning and rate
selection algorithm. We conduct three sets of simulations:
* Online resource provisioning and rate selection algorithm
to minimize classification-energy cost with different V;

* Online resource provisioning and rate selection algorithm
to minimize classification-energy cost with different values
of f3;

6Time-varying electricity price can be considered as well by abstracting it
into part of the random environment.
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e Algorithm 1 versus another two algorithms (i.e., “Equal”
“Always” and “Water-filling”, which we shall specify
later).”

In the following, we first discuss the simulation setup and then

analyze the results from the simulations in details.

A. Setup

We consider a community cloud serving 10 mobile users. For
illustration purposes, the numerical values have been normal-
ized without carrying units wherever applicable.

e Cloud: The function that relates the provided computa-
tional resource to the energy consumption is determined
as e(s) = s? + 10s, where the scaling constant is omitted.
The maximum value of s(#) is set as 100, which in prac-
tice is related to processor architecture and the number of
servers housed in the community cloud.

e Users: The average transmission power for each user is
normalized to 1, and the maximum transmission rate for
each user is 8 bits/symbol. We assume that the wireless
transmission from each user to the cloud experiences (inde-
pendent) Rayleigh fading. Based on [21], [22], we instan-
tiate the wireless transmission power function as d;(t) =
di(hi(t),m;(1)) = T; [27:® — 1] /h;(t), where d;(t) is the
transmission power of user 4, 4;(t) is the channel power
gain for the wireless link between user ¢ and the cloud op-
erator,and I'; > 1 captures factors (e.g., overhead, channel
coding) which reduce the actual transmission rate. Note
that our analysis also applies to other transmission power
models such as the one studied in [16]. As aforementioned,
the actual classification cost depends on many factors such
as training set, classification algorithm, the specific con-
text to be classified, the missed detection cost, and false
alarm cost. For simplicity and to limit the number of free
parameters, we assume a synthetic classification cost func-
tion in terms of the transmission rate, expressed as ¢;(t) =
277 fori = 1,2,...,10 and t = 0,1,2,.... More-
over, for illustration purposes, we consider a;(r;) = r;,
i.e., the computational resource required for stream mining
increases linearly with the transmission rate.

B. Main Results

In this subsection, we discuss three sets of simulation results.

1) Different Values of v: We show in Fig. 2 the average en-
ergy cost, average classification cost, and average queue length
at the community cloud, given different values of V. Note that
throughout the simulation, the “average” number at time 7 in all
the figures is calculated by summing up all the past values (up
to time ¢) and then dividing the sum by £ 4 1. We see in Fig. 2
that as V' increases, both the average energy cost and classifica-
tion cost decrease, whereas the average queue length at the com-
munity cloud increases (i.e., average queueing delay increases).
This is because, by increasing V', the cloud operator tends to
reduce the energy consumption by queueing up the jobs until

7As we have proved that the classification-energy achieved by our online
algorithm can be arbitrarily close to that by the optimal offline algorithm (at
the expense of increasing the average delay of stream mining) and a flexible
tradeoff among classification cost, energy consumption, and queueing delay can
be achieved, we do not show the performance comparison against other algo-
rithms such as prioritized algorithms.
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Fig. 3. Average classification-energy cost and average queue length under dif-
ferent V- 3 = 0.01.

the queue length exceeds a certain threshold, which inevitably
increases the waiting queue length. The results in Fig. 2 also
verify Proposition 3, which shows the flexible tradeoff between
the classification-energy cost and the queue length. Next, we
show in Fig. 3 the average classification-energy cost and av-
erage queue length given different values of V' € [1,101]. The
result highlights again the role of V' in governing the tradeoff be-
tween the classification-energy cost and queue length, thereby
validating Proposition 3.

2) Different Values of 3: The classification-energy param-
eter (3 governs the relative importance of energy cost compared
to the classification cost. In particular, when [ increases, the
community cloud tends to care more about its power consump-
tion. Thus, by choosing a larger value of /3, we expect that
the average energy cost will decrease. The result in Fig. 4(a)
shows that when /3 increases, the average energy cost is signif-
icantly reduced while the average classification cost increases.
Thus, the proposed algorithm provides a flexible tradeoff be-
tween the energy cost and classification cost. By appropriately
tuning the value of 3, we can achieve a desired performance
balancing the energy consumption and classification cost. With
e(s) = 52 +10s for s € [0, 100], we can see from the third step
in the online algorithm that the optimal s(¢) is chosen as s(t) =
min[100, max[Q(¢)/2V -5, 0]]. Thus, the actual queue length

is related to the control parameter 3, as shown in Fig. 4(b).
In particular, when /3 increases, we notice from the decision
s(t) = min[100, max[Q(t)/2V 3—5, 0]] that the cloud operator
tends to process fewer jobs each time slot, thereby increasing the
average queue length.

3) Comparison With “Equal”, “Always” and “Water-
Filling”: Next, we compare our proposed resource pro-
visioning and rate selection algorithm against three other
algorithms, i.e., “Equal” “Always” and “Water-filling”.

* “Equal”: In the “Equal” algorithm, the users split their
power budgets equally over time. In other words, all the
users transmit using their respective average powers, re-
gardless of the instantaneous channel gains. The commu-
nity cloud, however, applies “Step 3” to determine its re-
source provisioning.

+ “Always”: In the “Always” algorithm, all the users
transmit using their respective average powers, regardless
of the channel gains, and the community cloud always
tries to finish processing the jobs without any queueing
delay. This is essentially a myopic greedy algorithm.

o “Water-filling”: All the users employ the classic “water-
filling” power allocation algorithm, which has been shown
to be rate maximizing [17].8 The community cloud applies
“Step 3” to determine its resource provisioning.

We expect that “Equal” outperforms “Always” in terms of

the average classification-energy cost, as the community cloud

8«Water-filling” maximizes the average rate rather than minimizing the av-
erage classification cost.
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tries to delay processing the workloads to save energy con-
sumption. Fig. 5 shows that “Equal” achieves a less classifi-
cation-energy cost than “Always”, while increasing the queue
length at the community cloud.® Since “Water-filling” maxi-
mizes the (average transmission rate), it induces a lower classifi-
cation cost and hence reduces the average classification-energy
cost compared to “Equal” and “Always”. Nevertheless, under
“Water-filling”, the users transmit at higher rates, which in turns
results in a longer job queue at the cloud operator. Fig. 5 also
shows that our proposed resource provisioning and rate selec-
tion algorithm achieves a much less classification-energy cost
than “Equal”, “Always” and “Water-filling”, although it has a
larger queueing delay than “Always”. Since a flexible tradeoff
between the classification cost and energy consumption can be
achieved by appropriately tuning the parameter 3, the proposed
online algorithm can also outperform “Equal”, “Always” and
“Water-filling” in terms of the classification cost given an ap-
propriate 3. The result is similar to Fig. 5 and hence, is omitted
for brevity. Moreover, if the stream mining performance (i.e.,
defined as the sum of classification cost in this paper) is a major
concern, the proposed online algorithm can still achieve an ar-
bitrarily close-to-optimal stream mining performance at the ex-
pense of increasing the queueing delay and energy consump-
tion at the community cloud. The minimum classification-en-
ergy cost, which requires the information of channel statistics
to compute in practice, is not shown in Fig. 5, as it has been
proved that our proposed algorithm can achieve an average clas-
sification-energy cost arbitrarily close to the minimum value by
increasing the value of V.

C. Others

In this subsection, we briefly provide numerical results for
a practical stream-mining system and for a profit-maximizing
cloud operator.

9The queue length associated with “Always” is almost zero all the time. Thus,
we do not show its queue length in Fig. 5.
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1) Application to a Real System: We now apply our on-
line algorithm to a real-time stream mining system, which has
been used extensively in the past to evaluate various classi-
fier topology configuration algorithms (e.g., [4]). In particular,
given an optimally configured stream mining system with four
binary classifiers, we rescale classification costs to the interval
[0,1] for our purpose. For wireless channels, we consider a
correlated Rayleigh fading channel model (with a normalized
Doppler frequency shift of 0.02) simulated based on the Jake’s
model [26]. The energy cost function of the community cloud
is still e(s) = s% + 10s for s € [0,100]. The simulation
results are shown Fig. 6 which illustrates the average classi-
fication-energy cost and average queue length under different
V' € [1,101]. Fig. 6 validates our analysis regarding the role
of V: as V increases, the average classification-energy cost de-
creases whereas the average queue length increases. Other re-
sults are also similar to those we have obtained using synthetic
settings, and thus they are omitted for brevity.

2) Profit-Maximizing Cloud Operator: Here, we provide nu-
merical results to illustrate the impact of V' on the average profit
and queue length at the cloud. It can be seen from Fig. 7 that as
V increases, the average profit obtained by the cloud operator
also increases (at the expense of increasing the queue backlog
at the cloud), which validates our analysis. The other numer-
ical results (e.g., heterogeneous networks) are omitted, as they
are similar to the results obtained for a benevolent cloud oper-
ator which aims at minimizing the average classification-energy
cost.

VI. CONCLUSION

In this paper, we considered a community cloud performing
real-time stream mining for multiple users over a wireless
network, and studied the problem of dynamic resource provi-
sioning and rate selection without knowing the distribution of
wireless fading channel gains. We developed an online resource
provisioning and rate selection algorithm that can achieve an
arbitrarily close-to-minimum average classification-energy cost
while satisfying the average power constraint for each user.
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It was shown that a desired tradeoff among the classification
performance, energy consumption, and queueing delay of
stream mining can be achieved by appropriately choosing the
relevant control parameters. The simulation result validated
our analysis and also showed that the proposed algorithm
outperforms other algorithms (that do not dynamically perform
resource provisioning and/or rate selection) in terms of the
average classification-energy cost.

APPENDIX
PROOF OF PROPOSITION 3

First, we note that at every time slot# = 0,1, 2, ..., Algo-
rithm 1 essentially minimizes the right hand side of the upper
bound on the Lyapunov drift plus the classification-energy cost.
Thus, for every time slot £, we have

A(B(1)) + VE[g(2) |O(1)]
< B+VE[g*(1)[6(1)]

+ Z Zi(t)E [d:(t) — D; |O(#)]
N

+QUE |Sal()) - 5" (1) |0(1)|

i=1

(28)

where a}(t) and s*(1) are the input rate to the job queue and
resource provisioning under any alternative control policies, re-
spectively, and g*(#) and d (¢) are the resulting classification-
energy cost and energy consumption, respectively. We consider
a stationary and randomized offline control policy Z, which
minimizes the classification-energy cost. In particular, given the
control policy Z, we have

Elg"()|©(1)] = E[g"(1)] = 5", (29)

E[d;(¢)|©(t)] = E[d](t)] < D; (30)
N

E | ai(t)—s*(t)|0)| <0 (31)

Then, by substituting Z and (29)—(31) into the right hand side
0f(28), we obtain
AO) +VE[g(t)|O®)] < B+Vg™.  (32)

Then, by taking the expectation on both sides of (32) with re-
spect to ©(%), we obtain

E[L(O(t + 1) -E [L(O(t)]+VE [y(t)] < B+Vg™". (33)

Thus, by summing up (33) from 0, 1, ..
sum by V', we have, for any ¢ > 0,

..t and by dividing the

1 —opt B E[L(©(0 |EL6t+l
;;mg(t)]sfl v Oy HW< )] [<V<t )]

By taking £ — o0, we prove part a of Proposition 3.
By summing up (33) from 0, 1, . .., #, it follows directly that

EL(O(t+ 1))] < E[LOO)] + [B+V (3 — gua)] - 1.
(35
where gy satisfies gmin < E [9(2)] and g, exists due to the
boundedness condition. Then, by the definition of L(6(t)) =
1/2Q%(t) + 1/2 % | Z2(t), we can derive

E[Z2(1)] < 2B [LOO)] +2 [B+V (57" = gumin)] -
(36)
fori = 1,2,..., N. However, because the variance of | 7Z;(t)]

is always non-negative, we have var(|Z;(t)|) = E [Z2(t)] —
E[|Z;(t)]]” > 0. Hence, for any ¢ > 0, we have

E[Zi()]] < V2ELOO)] +2[B + V (57 — guin)] - L.
(37)
Therefore, by dividing both sides of (37) by ¢ and taking the
limit £ — oo, we prove
E[1Z:®)]

lim
t—oc

<0 (38)
which is equivalent to lim;_, E [Z;(#)]/t = O (i.e., mean-rate
stable). Recall that the virtual power deficit queue Z; () evolves
following

Zi(t+ 1) = max [Z;(t) + di(t) — D;,0], (39)
starting from Z;(0) = 0. Hence, Z,(t) satisfies
Zi(t + 1) — Z[(IL) > (ll‘(t) — DL (40)

By the basic sample path property and dividing the sum by ¢,
we have, for any £ > 0, we obtain

Zi(t)  Z(t)  Zi(0) | 1
e Zgg)d,(t)sz (41)

Then, by taking the limit £ — 0, we obtain d; — D; <
lim;_ o E [Z;(%)]/t = 0, which means that the average power
constraint is satisfied for user z = 1,2,..., N. Other parts of
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Proposition 3 can be proved similarly, following the Lyapunov
optimization technique [27]. The details are omitted for brevity.
|

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A.

Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M.

Zaharia, Above the Clouds: A Berkeley View of Cloud Computing,

UC Berkeley, 2009, Tech. Rep. UCB/EECS-2009-28.

B. Girod, V. Chandrasekhar, R. Grzeszczuk, and Y. A. Reznik, “Mobile

visual search: Architectures, technologies, and the emerging MPEG

standard,” IEEE Multimedia, vol. 18, no. 3, pp. 86-94, Jul.—Sep. 2011.

B. Foo and M. v. d. Schaar, “Distributed classifier chain optimization

for real-time multimedia stream mining systems,” in IS&7/SPIE Mul-

timedia Content Access, Algorithms and Systems 1I, Jan. 2008.

[4] R. Ducasse, D. Turaga, and M. v. d. Schaar, “Adaptive topologicopti-
mization for large-scale stream mining,” JEEE J. Select. Topics Signal
Process., vol. 4, no. 3, pp. 620-636, Jun. 2010.

[5] J. Shen, J. Shepherd, and A. H. H. Ngu, “Towards effective con-
tent-based music retrieval with multiple acoustic feature combination,”
IEEE Trans. Multimedia, vol. 8, no. 6, pp. 1179-1189, Dec. 2006.

[6] J. Fan, Y. Gao, H. Luo, and R. Jain, “Mining multilevel image seman-
tics via hierarchical classification,” IEEE Trans. Multimedia, vol. 10,
no. 2, pp. 167-187, Feb. 2008.

[7] J.J. Chen, C. J. Hu, and C. R. Su, “Scalable retrieval and mining with
optimal peer-to-peer configuration,” /[EEE Trans. Multimedia, vol. 10,
no. 2, pp. 209-220, Feb. 2008.

[8] M. L. Shyu, Z. Xie, M. Chen, and S. C. Chen, “Video semantic
event/concept detection using a subspace-based multimedia data
mining framework,” IEEE Trans. Multimedia, vol. 10, no. 2, pp.
252-259, Feb. 2008.

[9]1 M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska, “Dynamic
right-sizing for power-proportional data centers,” in Proc. IEEE In-
focom, 2011.

[10] B. Guenter, N. Jain, and C. Williams, “Managing cost, performance
and reliability tradeoffs for energy-aware server provisioning,” in Proc.
IEEE Infocom, 2011.

[11] N. Buchbinder, N. Jain, and 1. Menache, “Online job migration for re-
ducing the electricity bill in the cloud,” I/FIP Netw., 2011.

[12] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs, “Cut-
ting the electric bill for Internet-scale systems,” in Proc. ACM Sig-
comm, 2009.

[13] Z. Liu, M. Lin, A. Wierman, S. Low, and L. H. Andrew, “Greening
geographical load balancing,” in Proc. ACM Sigmetrics, 2011.

[14] J.R. Lorch and A. J. Smith, “Improving dynamic voltage scaling algo-
rithms with PACE,” in Proc. ACM Sigmetrics, 2001.

[15] X.Zhuand X. Wu, “Class noise vs. attribute noise: A quantitative study
of their impacts,” Artif- Intell. Rev., vol. 22, pp. 177-210, 2004.

[16] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani,
“Energy consumption in mobile phones: A measurement study and
implications for network applications,” in Proc. ACM/USENIX In-
ternet Measurement Conf-, 2009.

[17] A. Goldsmith and S.-G. Chua, “Adaptive coded modulation for fading
channels,” IEEE Trans. Commun., vol. 46, no. 5, pp. 595-602, May
1998.

[18] Y. G. Wen, W. W. Zhang, and H. Y. Luo, “Energy-optimal mobile ap-
plication execution: Taming resource-poor mobile devices with cloud
clones,” in Proc. IEEE Int. Conf. Computer Commun., 2012.

2

—

3

—_—

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 15, NO. 4, JUNE 2013

[19] X. W. Zhang, A. Kunjithapatham, S. Jeong, and S. Gibbs, “Towards an
elastic application model for augmenting the computing capabilities of
mobile devices with cloud computing,” Mobile Netw. Applicat., vol.
16, no. 3, pp. 270-284, Jun. 2011.

[20] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
VM-based cloudlets in mobile computing,” IEEE Pervasive Comput.,
vol. 8, no. 4, pp. 14-23, Oct.—Dec. 2009.

[21] C.-H. F. Fung, W. Yu, and T. J. Lim, “Precoding for the multiantenna
downlink: Multiuser SNR gap and optimal user ordering,” I[EEE Trans.
Commun., vol. 55, no. 1, pp. 188-197, Jan. 2007.

[22] S.Jagannatha and J. M. Cioffi, “Optimality of FDMA in Gaussian mul-
tiple-access channels with non-zero SNR margin and gap,” in Proc.
IEEE Globecom, 2006.

[23] K. Kumar and Y. H. Lu, “Cloud computing for mobile users: Can of-
floading computation save energy?,” IEEE Comput., vol. 43, no. 4, pp.
51-56, Apr. 2010.

[24] V.K. Singh, R. Jain, and M. S. Kankanhalli, “Motivating contributors

in social media networks,” in Proc. ACM SIGMM Workshop on Social

Media, 2009.

[Online]. Available: http://aws.amazon.com/ec2/pricing/.
New York, NY,

[25]

[26] W.C.Jakes, Jr, Microwave Mobile Communications.
USA: Wiley, 1974.

[27] M. 1. Neely, Stochastic Network Optimization with Application to
Communication and Queueing Systems. San Rafael, CA, USA:
Morgan & Claypool, 2010.

Shaolei Ren (M’12) received the B.E., M.Phil., and
Ph.D. degrees, all in electrical engineering, from
Tsinghua University, Beijing, China, in July 2006,
Hong Kong University of Science and Technology
in August 2008, and University of California, Los
Angeles, CA, USA, in June 2012, respectively.

Since August 2012, he has been with School of
Computing and Information Sciences, Florida Inter-
national University, Miami, FL, USA, as an Assis-
tant Professor. His research interests include network
economics and cloud computing, with an emphasis
on energy-efficient scheduling for delay-sensitive services.

Dr. Ren received the Best Paper Award from IEEE International Conference
on Communications in 2009.

Mihaela van der Schaar (F’10) is Chancellor’s Professor in the Electrical Engi-
neering Department at the University of California, Los Angeles, Los Angeles,
CA, USA. Her research interests include multimedia systems, networking, com-
munication, and processing, dynamic multi-user networks and system designs,
online learning, network economics and game theory.

Prof. van der Schaar is a Distinguished Lecturer of the Communications
Society for 2011-2012, the Editor-in-Chief of the IEEE TRANSACTIONS ON
MULTIMEDIA and a member of the Editorial Board of the IEEE JOURNAL ON
SELECTED TOPICS IN SIGNAL PROCESSING. She received an NSF CAREER
Award (2004), the Best Paper Award from IEEE TRANSACTIONS ON CIRCUITS
AND SYSTEMS FOR VIDEO TECHNOLOGY (2005), the Okawa Foundation Award
(2006), the IBM Faculty Award (2005, 2007, and 2008), and the Most Cited
Paper Award from EURASIP: Image Communications Journal (2006). She was
formerly an Associate Editor for the IEEE TRANSACTIONS ON MULTIMEDIA,
SIGNAL PROCESSING LETTERS, IEEE TRANSACTIONS ON CIRCUITS AND
SYSTEMS FOR VIDEO TECHNOLOGY, Signal Processing Magazine, etc. She re-
ceived three ISO awards for her contributions to the MPEG video compression
and streaming international standardization activities, and holds 33 granted US
patents.



