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Model-Based Joint Source Channel
Coding for Subband Video

Mingshi Wang and Mihaela van der Schaar

Abstract—The objective of joint source channel coding (JSCC)
is to optimally allocate the available channel bandwidth between
source coding and channel coding in order to minimize the av-
erage distortion in the presence of packet losses. Unlike previous
research, which focuses on determining distortion-optimized
methods for JSCC using either assumptions about the rate-dis-
tortion (R-D) curve properties of source data (e.g., convexity)
or experimental R-D data, we explicitly employ the analytical
operational R-D model of a three-dimensional wavelet video coder
to solve the JSCC problem. Using this model, we formulated the
JSCC optimization as a nonlinear programming (NP) problem. By
expressing the NP problem in terms of a dynamic programming
equation, we derived the necessary conditions that facilitate the
search for global optimal solutions. In this letter, we focus on
finding the optimal JSCC problem for subband video coding and
not on deriving computationally efficient methods for JSCC.

Index Terms—Joint source channel coding (JSCC), nonlinear
programming (NP), operational rate-distortion (R-D) model,
three-dimensional (3-D) wavelet subband coding.

I. INTRODUCTION

THE GOAL of joint source channel coding (JSCC) is to
minimize the average distortion experienced by a com-

pressed bitstream in the presence of packet losses by optimally
allocating the total coding bit budget between source and
channel coding. A video packet is considered to be lost if trans-
mission errors are detected and cannot be corrected at the lower
layers of the protocol stack. In this letter, we assume that the
application-layer knows when a packet is in error based on the
information provided by lower physical and/or MAC retrans-
mission layer protocols. Let and denote the source and
channel coding bits for a three-dimensional (3-D) wavelet video
coding bitstream, subject to the constraint , and
let the incurred distortion be . It is well known that a
tradeoff exists between and . If more coding bits are de-
voted to , then the source coding distortion, i.e., the quantiza-
tion distortion, is reduced at the cost of increased probability of
packet loss, and vice versa. The objective of JSCC is to find the
optimal value of for which is minimized. We il-
lustrate this tradeoff in the example depicted in Fig. 1. In this ex-
ample, the Mobile sequence at CIF resolution was coded using
the 3-D ESCOT codec [8]. The rate-distortion (R-D) function
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Fig. 1. Example that plots the subband distortion D(R ;R ) as a function of
source coding bit-rate R subject to the constraint R +R = 2 (bits/coeff.).
The distortion is normalized to its maximum value. The optimal value of R
minimizes the average distortion D(R ;R ).

was plotted for the subband at the lowest resolution, which was
protected by a systematic Reed–Solomon code. The subband
distortion was normalized to the signal variance. The channel
was characterized by a packet loss rate of 9.97% and a burst
length of 9.57. These parameters were chosen to be consistent
with the simulations done in [4]. From the figure, it can be con-
cluded that the distortion is minimized when the source coding
rate is around 0.8 (bits/coeff.).

Unlike existing JSCC research that uses operational R-D
curve interpolated from experimental data [2], [5]–[7], [9], we
proceed from the explicit analytical operational R-D model
[12] to solve the JSCC problem as an NP problem. The source
coding bit-rate and distortion of a subband have been shown
to be functions of the quantization parameters and the signal
variances [12]. The corresponding subband signal varainces are
easily calculated during the encoding stage.

Besides giving insight into the properties of the JSCC solu-
tion, this approach has the advantage that, unlike the Lagrangian
multiplier method that is only limited to operating points on
the convex hull, the proposed dynamic programming solution
can use the overall operational R-D characteristics of subband
video coders. The dynamic programming is performed in terms
of both amplitude resolution (SNR scalability) and spatial/tem-
poral scalability. Hence, spatial-temporal subbands can be fully
discarded (i.e., not transmitted) and the bit-rate can be allocated
to the source or channel coding of alternative subbands based
on the result of the optimization.

By rewriting the NP problem in the form of dynamic pro-
gramming, we derive the necessary conditions for the global op-
timal solution, which is then used as the nonlinear constraint to
reduce the searching range. Note that our goal is not to deter-
mine a more computationally efficient solution for the JSCC of
3-D wavelet video but rather to derive an analytical solution for
this problem by using operational R-D models.
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The letter is organized as follows. In Section II, we formulate
and analyze the JSCC problem using our previously derived an-
alytical R-D model. Section III presents the simulation results,
and Section IV summarizes our conclusion and the future re-
search.

II. ANALYTICAL SOLUTION FOR JSCC BASED

ON OPERATIONAL R-D

A. Formulation of JSCC Problem

Assume a video sequence is compressed in spatial-tem-
poral subbands, and let be the
index of these subbands. Denote the quantization param-
eter and channel code as ,

, respectively, where
is the admissible channel code family for subband . Let

be the JSCC policy, i.e., , where
. The following analysis assumes

3-D embedded subband coding [8], where the coefficients in
different subbands are coded and packetized independently to
preserve the spatial-temporal scalability. The subband coding
distortion is independent of each other, and therefore, the
expectation of the overall distortion is

(1)

where is the fraction of the total number of wavelet
coefficients in subband , is the synthesis gain, and

is the distortion per coefficient in subband ,
which is a function of the source statistic characteristics ,
the quantization parameter , and the associated channel code

. The expectation of subband distortion can be evaluated
by taking the average on its conditional expectations

(2)
In the above equation, denotes the effective packet loss
rate under the protection of channel code . represents
the ratio of unrecoverable packets after decoding and hence is
different from the channel packet loss rate. is
the source coding distortion due to the quantization noise; is
the variance of , which is equal to the distortion if the whole
packet is lost in the transmission.

The total coding rate for the subband is the sum of the source
coding bits and the channel coding bits. If the source coding rate
equals , then the total coding rate equals

(3)

where is the code rate of . Given the overall rate budget
, the JSCC problem can be formulated as

(4)

B. Properties of the JSCC Solution for Subband Video

Clearly, the JSCC in (4) is an NP problem, which becomes
very complicated, especially when the number of subbands in-
creases. Therefore, it is necessary to reduce the possible solu-
tions search space by using specific properties of the optimal
solutions. Problem (4) can be solved using the Lagrange multi-
plier, as proposed in [6]. However, in this letter, we will deter-
mine the solution using dynamic programming (as in [5]). For
this purpose, we rewrite (1) and (3) recursively in terms of the
partial summation

(5)

It should be noted that the subscript in the above equation is
instead of , since is the index of the subbands, while
denotes the number of subbands that appear in the partial

summation, i.e., and
. Equation (5) implies

that the solution to the optimum JSCC problem (4) contains
the solutions to the optimum subproblems, as expressed by the
following theorem.

Theorem 1: Let be the optimal
policy such that reaches the infimum subject to the
constraint

(6)

Then satisfies the following dynamic programming
equation

(7)

The proof is straightforward and will not be given here. The
distortion function is always a convex monotonically de-
creasing function. The property of convexity of the R-D function
can be derived from its definition in terms of the mutual infor-
mation between the source and its approximation. Based on this
property, the following corollary can be derived.

Corollary 1: Assume is the
optimal policy in order to minimize subject to the constraint

; then the optimal value satisfies the following dif-
ferential equations:

(8)

with the constraint

(9)
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for , where .
Proof: Let be the optimal policy to mini-

mize the quantity in the right-hand side bracket of (7); then
and must satisfy the following equations:

(10)

(11)

Substituting (2) into (10) and (11) yields the constraint (9), from
which we can solve the optimal values . Differ-
entiating both sides of (7) with respect to and substituting ,

into it gives the final result (8).
Corollary 1 reveals that in the optimal JSCC design, all the

partial summations have equal slopes with respect to the
total coding bit-rate . This also implies that each single sub-
band has an equal slope with respect to its coding rate. The con-
clusion is consistent with previous R-D research results where
an optimization problem is decomposed into independent sub-
problems, which have equal Lagrangian multipliers at the op-
timum point. For example, the optimal rate allocation scheme
states that when the overall source coding distortion is mini-
mized under the coding bit-rate constraint, the distortion for all
the subbands should have the same slope [8], [11]. Our contri-
bution is that we have arrived at this conclusion using dynamic
programming equations.

C. Solutions to JSCC Problems Using Operational R-D Model

The solution to the optimal JSCC problem is now obtained
given the analytical expression of the operational R-D function

and . It is already known that
the ac subbands can be modeled as Laplacian sources, whereas
the dc subband is modeled as a Gaussian source [3]. Based on
this fact, the operational R-D model can be formulated by the
following equations [12]:

(12a)

(12b)

for ac subbands, and

(13)

for the dc subband. In the above equations

(14)

is the subband quantization distortion normalized to the signal
variance ; and are both constants;

for Gaussian source and for images with
smooth textures [1]. The statistic characteristics of the subband

source is captured by the signal variance . This is only
a first-order approximation to ease the computation complexity,
since is generally represented by the histogram of the
subband coefficients.

When refers to the ac subband. Com-
bining (12) and (13) with (8) and (9) yields the following re-
sults:

(15)
When refers to a dc subband, and
refers to the ac subbands, the above equation remains the same,
except for , which is

(16)
In the above two equations, is a constant;

; ; and is the quantization param-
eter normalized to the signal variance. In the above derivation,
we have used the approximate equality [12],
and (16) is obtained by using Lagrange multipliers.

By examining corollary 1, we concluded that in order to min-
imize the total coding distortion, the quantization parameter
and channel code should be chosen such that the right-hand
side of (15) and (16) is equal to a constant. Therefore, the JSCC
problem can be reformulated by the following corollary.

Corollary 2: Let the subband JSCC problem be described by
(4), and denote as the optimal policy; then the JSCC problem
is equivalent to the following nonlinear constraint optimization:

(17)

subject to the nonlinear inequality constraint

(18)

and the nonlinear equality constraint

(19a)

when

refers to ac subband (19b)

when

refers to dc subband (19c)

Using the analytical expression of given in [10], it is
found that is a monotonically increasing function of the
coding rate . Combining this observation with the con-
straint (19) demonstrates the tradeoff between the source coding
rate and the channel coding rate. Meanwhile, the search range
for the global optimal solution is significantly reduced by the
constraint (19).
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Fig. 2. JSCC example for the Akiyo sequence. (a) Comparison of the R-D performance for our algorithm, EEP, and NEP. (b) Assignment of channel code rate r
for different subbands after JSCC optimization.

III. EXAMPLE OF JSCC BASED ON OPERATIONAL R-D MODEL

We applied the proposed JSCC solution to the 3-D ESCOT
coder [8] for the Akiyo video sequence at CIF resolution.
The packet loss rate for the channel is 9.97%. However, a
thorough investigation of the JSCC performance of this coder
is beyond the scope of this letter, which was solely aimed
at deriving analytically the optimal JSCC solution. In our
example, the Daubechies 5/3 filters were used to decompose
the video sequences temporarily and spatially. Specifically, we
first performed the three-level dyadic temporal decomposition,
followed by a four-level 2-D spatial decomposition within
each temporal subband. The total number of subbands equals
52. Similar results could have been derived for alternative
decomposition structures and filter types. The subbands are
packetized and protected by the systematic Reed–Solomon
code. The simulation results are shown in Fig. 2(a), where the
R-D performance after JSCC optimization by the method in
this letter was compared against that for equal error protection
(EEP) and no error protection (NEP). For the EEP scheme,
all the subbands are protected with an equal channel code
rate of 0.9, and for the NEP scheme, all the subbands are left
unprotected. It is seen that the optimal JSCC achieves a gain of
approximately 1.5 dB over the EEP scheme and more than 2 dB
over the NEP scheme. The resulting optimal channel code rate
assignment for subbands is plotted in Fig. 2(b), together with
the channel code rate assignment for EEP and NEP schemes.
The total bit-rate budget is 870 (kbps). The subbands are
indexed from the coarsest in the lowest temporal band to the
finest in the highest temporal band.

IV. CONCLUSION AND FUTURE RESEARCH

Based on the analytical R-D model, the optimal JSCC
problem is formulated as a nonlinear optimization problem
that can be solved using dynamic programming. The properties
of the optimal JSCC solution are derived from the dynamic
programming equation and utilized to restrict the search range

so that the possibility of finding global optimal solutions is
enhanced. Since solving nonlinear optimization problems
usually entails heavy computations, quantifying the complexity
of this approach and finding efficient algorithms constitute an
important topic for our future research.
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