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Abstract—Real-time multiuser multimedia applications, such
as surveillance or monitoring using multiple cameras, have
recently started to be deployed over flexible and low-cost
multihop wireless networks. In such multimedia systems, the
various sources (cameras) share the limited network resources
and collaboratively forward the captured video streams to a
remote central monitor. However, existing resource allocation
schemes often ignore the dynamic application-layer video and
network characteristics by focusing on the steady-state or worst-
case operating conditions. This may result in inefficient allocation
of the network resources. In this paper, we focus on determining
whether the resource allocation for wireless video surveillance
systems should be performed based on steady-state or worst-
case operating conditions, or whether perpetual adaptation to the
dynamically changing source and network conditions is desirable.
We analyze three different types of solutions that have different
information requirements: a centralized optimization approach,
a decentralized game-theoretic approach (which guarantees a
stable allocation), and a distributed greedy approach (which
perpetually adapts allocation based on the local information
exchanged among the neighboring nodes). We compare these
three approaches using the following four metrics: 1) the total
video quality; 2) the computational complexity; 3) the required
control information overhead; and 4) the timely adaptation to the
network and source variation. We show that in a static network,
the game theoretic resource allocation is only better than the
distributed greedy approach when the network transmission rates
are high. In a dynamic network, the distributed greedy approach
can outperform the other two approaches significantly in terms
of video quality (peak signal-to-noise ratio). This shows that
resource allocation solutions for multicamera wireless surveil-
lance networks need to explicitly consider both the dynamic
source characteristics and network conditions, rather than always
relying on stable, but predetermined, allocations.

Index Terms—Decentralized resource allocation, prioritized
congestion game, video surveillance.

I. Introduction

APLETHORA of existing and emerging surveillance and
monitoring applications can derive significant advantage

by acquiring real-time and accurate multimedia information

Manuscript received October 22, 2008; revised May 1, 2009. First version
published November 3, 2009; current version published April 2, 2010.
This work was supported by the National Science Foundation (NSF) Com-
puter and Network Systems 0 831 549, NSF Computing and Communication
Foundations 0 541 867, and the Office of Naval Research, under Grant
N000140810082. This paper was recommended by Associate Editor, S. Sull.

The authors are with the Department of Electrical Engineering, University
of California, Los Angeles, CA 90095 USA (e-mail: hpshiang@ee.ucla.edu;
mihaela@ee.ucla.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2009.2035837

about objects of interest. Multicamera surveillance systems are
deployed for several applications such as transportation moni-
toring, security systems, and tele-immersive environments, etc.
in order to collect videos or images (e.g., spectral data) [1]–[5].
These cameras can relay collected multimedia information
using a flexible multihop wireless infrastructure to a central
monitor [6]. While wireless mesh networks enable low cost,
convenient deployment, and reuse for different surveillance
applications by allowing reconfiguration for collecting mean-
ingful, reliable, and accurate data, they do not provide ad-
equate support for the quality of service (QoS) required by
the delay-sensitive and bandwidth-intensive multimedia data.
These limitations do not significantly impact delay-insensitive
data acquisition, but have significant consequences for the
aforementioned real-time surveillance or monitoring applica-
tions, since they often lead to unsatisfactory or unacceptable
measurements and erroneous event detection.

In this paper, we focus on how multiple cameras should
efficiently share the available wireless network resources and
transmit their captured information to a central monitor. The
network architecture is similar to the wireless multimedia
sensor networks which was recently introduced in [7]. How-
ever, in our system, we assume that the network deploys a
medium access control (MAC)/physical layer (PHY) protocol
similar to that of IEEE 802.11a/e [21], which enables packet-
based retransmission and polling-based time allocation, which
is better suited for multimedia transmission. We focus on
how the video streams should share the transmission time
over the links of the multihop wireless network in order to
maximize the video quality received by the central monitor.
Three main challenges associated with determining the opti-
mal resource allocation solution are the low-delay tolerance
of surveillance applications, the dynamic variations of the
video source characteristics and wireless network conditions,
and the distributed nature of the available information about
these dynamics. In this paper, we study how the following
three types of resource allocation solutions can address these
challenges.

1) Centralized optimization (CO) approaches, in which the
central monitor collects global information about the
video traffic and network statistics, and subsequently
makes the resource allocation decisions.

2) Game-theoretic approaches based on congestion game
(CG) modeling, in which the cameras (source nodes)
make autonomous decisions for their video stream and
compete for network resources with other cameras.
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3) Distributed greedy (DG) approaches, in which all the
network nodes (including the network relays) make
distributed, autonomous decisions to select the next relay
based on periodically exchanged local information about
the video traffic and network statistics.

A. Related Work of the Three Approaches

Research on multimedia transmission over multihop wire-
less networks has attracted significant attention in recent years.
In [9], [10], the authors assume that a central controller
acquires global network information and performs global
optimization to decide the actions of all the network nodes.
The centralized approach can be considered to achieve the
global optimal solution. However, these strategies can be
efficiently optimized only if accurate information about the
network conditions and the sources’ requirements is avail-
able. Moreover, since the bandwidth-limited, time-varying,
error-prone wireless network infrastructure introduces vari-
ous dynamics (such as variations in network load, losses
in network transmissions, and changing characteristics of
the application requirements), the optimization may need
to be performed repeatedly to ensure a certain level of
performance for the centralized approach. Due to the dy-
namic and informationally-decentralized nature of the mul-
tihop mesh networks, regularly performing such a global op-
timization requires excessive transmission overhead to timely
collect the necessary information. The complexity of the CO
also grows exponentially with the number of sources and
nodes in the network. The optimization can require a large
amount of time to process and the collected information may
no longer be accurate by the time transmission decisions
need to be made. Hence, distributed approaches need to be
considered.

In such distributed approaches [11], [12], [19], all the
network nodes interact with each other and autonomously
determine their actions in order to maximize the utility (ex-
pected delay, congestion, or the video quality) based on local
information about the network conditions. Such distributed
approaches can significantly reduce the computational com-
plexity and, more importantly, can effectively cope with the
informationally-decentralized nature of the wireless networks.
Note that the distributed approach makes decisions based on
repeated information feedback, thereby being able to adapt to
dynamic changes in traffic and network characteristics in a
timely manner. However, due to the varying decisions of the
neighboring nodes, the distributed allocation may not converge
to a stable set of path decisions in a general network topology
with only local information being exchanged.

Among the decentralized solutions, game-theoretic solu-
tions have been proposed that allow autonomous agents (e.g.,
cameras) to negotiate a stable allocation of resources on the
established routes. For example, CG modeling [13] has been
successfully used in several applications such as routing [29],
[30], and load balancing [14], [15]. However, the previous
research mainly focuses on distributing the available network
resources to the agents without explicitly considering the
impact of the video flow characteristics on the multimedia
quality received by the monitor.

In this paper, we modify the conventional CG into a
prioritized CG for video streaming. This allows explicit con-
sideration of the distortion impact and delay constraints for
prioritized video flows. The advantage of modeling the video
transmission as a prioritized CG is to guarantee the conver-
gence to Nash equilibrium when each camera autonomously
selects the path to use to relay its video data. This implies
that the decentralized negotiation of camera agents trying to
maximize their achievable quality does eventually converge to
a set of stable streaming paths, without the specific control of
a central coordinator. However, such decentralized resource
allocation is merely a best-response decision that leads to
Nash equilibrium based on the actions of autonomous cameras,
which may not maximize the overall video quality received by
the central monitor. Moreover, although convergence to equi-
librium is guaranteed, the CG approach has the drawback that
it assumes a static source and network environment. In other
words, the game-theoretic approach cannot effectively adapt to
the source and network dynamics. In order to guarantee Nash
equilibrium, the restriction of the congestion game modeling
can induce significant performance degradation for delay-
sensitive applications. On the other hand, the DG approach that
does not have a stable allocation can also lead to performance
degradations depending on the required information exchange
overhead. In summary, it is important to study the pros and
cons of the three types of resource allocation approaches in
different networking scenarios.

B. Contributions and Organization of This Paper

1) Our main goal is to evaluate the performance of the
three types of resource allocation solutions in terms
of video quality, their computational complexities and
required control information overheads. Based on these
comparisons, we discuss how efficiently these various
approaches can cope with the dynamic source and net-
work variations, which are commonly incurred in wire-
less multimedia networks, such as surveillance networks.

2) Unlike the previous game-theoretic research that focuses
on achieving the equilibrium operating setting for delay-
insensitive traffic and ignores multimedia application
characteristics [14], [15], we consider the resource al-
location problem specifically for delay-sensitive appli-
cations. In order to guarantee the necessary QoS, we
design a prioritized CG model. This model takes into
consideration the inherent priorities and delay deadlines
of the captured video traffic. Unlike the prior research
[14] that assumes the players are anonymous, and thus
they cannot differentiate between traffic with various pri-
orities, the prioritized CG is played in individual quality-
layer subnets (QSNs), considering the characteristics of
the video streams.

3) To quantify what the desirable solutions are in different
network scenarios, we introduce a new metric referred to
as the price of convergence (PoC). The PoC is computed
based on the performance ratio of the CG equilibrium
and the DG approaches. This concept is parallel to
the well-known concept of price of anarchy (PoA)
[16], which is used to characterize the performance
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Fig. 1. Illustration of the wireless surveillance network framework.
(A) Active camera agent. (N) Nonactive camera agent. (R) Relay network
agent. (C) Central monitor.

degradation due to decentralized decision making. Based
on the PoC, we analyze whether stable resource alloca-
tions are desirable for video networking systems, such
as multicamera networks.

This paper is organized as follows. In Section II, we intro-
duce the considered wireless multicamera network system and
give a general problem formulation. In Section III, we discuss
the centralized approach for the multicamera video streaming
over wireless surveillance networks. In Section IV, we propose
the prioritized CG modeling for multimedia applications. In
Section V, we discuss the DG approach for video streaming
applications. In Section VI, we compare these three solutions
in terms of computational complexities and the information
overheads. The simulation results are shown in Section VII,
and Section VIII concludes the paper.

II. Resource Allocation Problem in Wireless

Surveillance Networks

We consider a surveillance system [1], [2] that consists of
multiple cameras that acquire and compress video data and,
subsequently, transmit their video traffic to a central moni-
tor using a low-cost and flexible wireless multihop network
G(N, E). N represents a set of nodes (network agents) and E
represents a set of links. An illustrative example for a wireless
surveillance network is shown in Fig. 1.

A. Network Agents

The network agents of the wireless surveillance network can
be categorized as follows.

1) Central Monitor (Node N c ∈ N): The central monitor
receives, decodes, and eventually processes the video data
captured by the various active sources (cameras).

2) Active Camera Agents (Nodes N a ∈ N): The ac-
tive cameras capture the videos of object(s) of interest
and send their video content at different spatio-temporal-
quality resolutions, resulting in different video classes with
various transmission bit-rates and delay deadlines (see
Section II-B).

3) Nonactive Camera Agents1: The nonactive cameras
can act as relay nodes and forward video traffic through the
wireless mesh network to the central monitor.

4) Relay Agents (Nodes N r ∈ N): The relay nodes without
camera capability can only forward video traffic through the
mesh network.

The wireless surveillance network can be modeled as a
collection of collaborative, but autonomous, agents that engage
in informationally-decentralized negotiations and interactions
in order to maximize the video quality received by the central
monitor. Unlike a multiuser video streaming setup, where the
traffic can be generated from any nodes in the network, the
relevant traffic in a surveillance network is often propagated
from a group of active cameras near an object of interest [4] in
a local area, and thus, this often results in increased network
congestion near the camera sources. Hence, designing efficient
resource allocation solution for such camera networks is of
paramount importance.

B. Application Layer Video Stream Characteristics

Assume that M cameras are activated, i.e., N a
i , 1 ≤ i ≤ M.

Since the network resource is limited, cameras cannot simul-
taneously transmit high-quality video to the central monitor
N c. To address this issue, we assume that each active camera
applies a scalable video codec to compress its captured video
data. Let Vi denote the compressed video stream from the
camera N a

i . The video stream Vi consists of several video
flows. Each flow is assumed to be classified in one of K

video classes (i.e., C = {C1, . . . , CK}). A video class Ck can
be characterized as follows.

1) Rk, the average source rate of each video flow in a class
Ck.

2) λk, the quality impact factor of the video class Ck. For
simplification, we assume that all the video flows in
a class have the same quality impact as in [19]. This
quality impact factor can be evaluated by measuring the
average distortion reduction when decoding the packets
of video class Ck. We define λkRk as the average
quality gain [e.g., peak signal-to-noise ratio (PSNR)
gain] when the flows of video class Ck with source rate
Rk are received and decoded by the central monitor. We
prioritize the video classes based on this parameter. In
the subsequent part of this paper, we label the K classes
(across all users) in descending order of their priorities,
i.e., λ1 ≥ λ2 ≥ ... ≥ λK.

3) Dk, the delay deadline of the video class Ck. Due
to the hierarchical temporal structure deployed in the
3-D wavelet video coders (see [17]), the lower priority
classes also have a less stringent delay requirement. This
is the reason why we prioritize the video bitstream in
terms of the quality impact. Otherwise, the prioritization
techniques need to jointly consider the quality impact
and delay constraints based on rate-distortion optimiza-
tion (see more sophisticated methods in, e.g., [18]).

4) Lk, the average packet length of a video class Ck.

1Since the nonactive camera agents act as relay nodes, we denote these
nodes using the same notation N r as the relay nodes.
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All video flows captured by the M activated cameras are
assumed to be classified in these K video classes. Denote the
video flows as fj, j = 1, . . . , J , where J represents the total
number of video flows. Let N

f

ik represent the number of flows
in class Ck for video stream Vi. Let Ci denote the subset of
classes for video stream Vi (i.e., Ci ⊂ C).

C. Lower Layer Model

We assume that each wireless link in E is a memoryless
packet erasure channel and a polling-based contention-free
MAC/PHY protocol (e.g., IEEE 802.11a/e [21]) is deployed
to access the channel. The optimal modulation and coding
scheme can be selected for each link depending on the channel
condition based on link adaptation [22]. We denote the packet
error rate over a link l for a flow in class Ck as pl,k, which
can be approximated using the sigmoid function [22], i.e.,
pl,k =

(
1 + eζk(xl−δk)

)−1
, where xl is the signal-to-interference-

noise ratio over the link l. ζk and δk are the empirical
constants corresponding to the modulation and coding schemes
for a given packet length Lk. Let Tl,k denote the maximum
transmission rate supported by the modulation and coding
scheme. Based on the packet-based retransmission and polling-
based time allocation, the effective transmission rate for a flow
fj over a link l can be calculated as Tl,k(1 − pl,k)tl,j , where
tl,j represents the time sharing fraction (i.e., the transmission
opportunity in IEEE 802.11a/e [21]) for video flow fj to
transmit over link l (tl,j = 0 indicates that the video flow fj

does not flow through the link l,
∑J

j=1 tl,j ≤ 1). In this paper,
we only focus on the time sharing problem to determine the
time sharing fraction tl,j for the video flows in the application
layer as in [32]. Other related cross-layer designs for the
transmission strategies in MAC and PHY layers are discussed
in [19], which is out of the scope of this paper.

D. Resource Allocation and the Resulting Video Quality

We define the allocation of a video flow fj as σj =
{tl,j, l ∈ E} ∈ A, where A is the allocation space. Let
σ = [σ1, σ2, . . . , σJ ] ∈ AJ be the joint allocation for all
J video flows. In this paper, we assume that each active
camera has established multiple potential transmission paths
to the central monitor and each flow is sent through a path
to the central monitor. Distributed approaches to establish
multiple paths from active cameras to the central monitor can
be found in [8], [23]. Dijkstra algorithm can be applied to
construct multiple paths in a centralized manner [26], [31].
After the path construction, the time sharing fractions tl,j are
the resources that need to be allocated for the video flows in
the network. Note that tl,j = 0 when the corresponding path is
not selected.

Let dj(σj) denote end-to-end delay for transmitting the flow
fj based on σj . The end-to-end delay dj(σj) for a flow fj

can be calculated by accumulating the effective transmission
time over the allocated links. Define ETTl,j as the effective
transmission time (ETT) [25] of the link l for the flow fj

ETTl,j =
Lk

tl,j × Tl,k

× ETXl,k, for fj ∈ Ck (1)

where ETXl,k is the corresponding effective transmission count
(ETX) [28], which can be defined as ETXl,k = 1

/
(1 − pl,k).

The end-to-end delay dj(σj) can be computed as dj(σj) =∑
l,tl,j>0 ETTl,j(σj).
The received video quality Qi for Vi can be expressed

as [19]

Qi(σ) =
∑
Ck∈Ci

N
f

ik∑
j=1

λk · Rk · αj · I(dj(σj) ≤ Dk) (2)

where I(·) is the indicator function. αj = {0, 1} denotes a
simple error concealment policy at the decoder.

Here, we assume that the client implements a simple error
concealment scheme, where the lower priority packets are
discarded whenever the higher priority packets are lost [17].
This is because the quality improvement (gain) obtained from
decoding the lower priority packets is very limited (in such
embedded scalable video coders) whenever the higher priority
packets are not received. For example, drift errors can be
observed when decoding the lower priority packets without
the higher priority packets. We consider the error concealment
scheme as follows:

αj =

{
0, if fj′ ≺ fj and αj′ = 0
1, otherwise

(3)

where fj′ ≺ fj denotes that the flow fj depends on the flow
fj′ . Specifically, if fj ∈ Ck and fj′ ∈ Ck′ are flows of the same
video stream, fj′ ≺ fj means k′ < k due to the descending
priority (λk′ > λk).

E. Optimal Resource Allocation in the Wireless Surveillance
Network

Based on the joint allocation σ, the proposed wireless
surveillance network paradigm can be formulated as a gener-
alized optimization problem. The objective function Utot can
be defined as the sum of the qualities, that is

Utot(σ) =
M∑
i=1

Qi(σ). (4)

The considered optimal resource allocation for the wireless
surveillance networks is

σopt(IS, IN ) = arg max
σ∈AJ

{Utot(σ, IS, IN )}

s.t.
J∑

j=1

tl,j ≤ 1, l ∈ E

dj(σj, IS, IN ) ≤ Dk, fj ∈ Ck, j = 1, ... , J

(5)

where the first constraint is the resource constraint for each
network link, and the second constraint is the delay constraint
for each video flow. Two types of information, the source
information IS and the network information IN , are defined
as follows.

1) The public network condition information IN includes
the packet loss rate pl,k and the transmission rate Tl,k

over each link l ∈ E to compute the end-to-end delay
dj in the wireless surveillance network.
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2) The private multimedia traffic information IS induced
from the video sources (e.g., flow priority λk, source
rate requirement Rk, and delay deadline Dk). We refer
the interested reader to [17] for more details on how this
information can be extracted.

Note that solving (5) in reality is not simple since the source
and network information can vary over time and, moreover,
the information may not be available to the central monitor to
solve this optimization problem.

F. Information Constraints in the Wireless Surveillance
Network

From (5), we know that information gathering is required for
making the resource allocation decisions. We assume that an
overlay infrastructure [32] is deployed to convey the necessary
information about the network status across multiple agents.
Importantly, the variation and the availability of the above-
mentioned information exchange can significantly impact the
resource allocation decisions.

In the wireless surveillance network, the following three
different approaches are considered to solve the resource
allocation problem in (5), which differ in terms of their
information about the video source and network dynamics.

1) The CO approach assumes that all the information IS

and IN is available to the central monitor. The central
monitor is the decision maker in this approach.

2) The game-theoretic approach assumes that only the
network information IN is exchanged by all the net-
work relays to the source (camera) nodes. The private
information IS of each video Vi is already known by the
source nodes. The decision makers are the source nodes
(as in [13], [14]).

3) The DG approach assumes that the network information
is only locally exchanged νN ⊆ IN (local network
information of node N ), and the private information IS

is encapsulated in the video packet header (where Vi

flows through node N ). Hence, all the agents include the
source nodes and the network relays can make decisions
for reserving the resource of the next relay (as in [11],
[19], [22], [24]).

In Fig. 2, we show how different information availabilities
can result in different allocations in the wireless surveillance
network. These various types of resource allocation solutions
will be discussed in the subsequent sections.

III. Centralized Optimization Approach

for Resource Allocation

The CO in (5) can be performed by the central monitor,
which determines the resource allocation for the various flows.
Based on the network information IN and private multime-
dia traffic information IS about the entire camera network
(i.e., all the camera sources and network links), the central
monitor performs an exhaustive approach to determine the
optimal set of paths and time allocations (i.e., all possible
time sharing combinations of paths are considered) for the
wireless surveillance network. Note that this CO approach is

considered as a global optimal solution and will be considered
as a “theoretical” upper bound for the other proposed solutions
for the case when the information exchange is entirely known
to the central monitor. However, since the total number of
flows and the corresponding possible paths can be very large,
an exhaustive search can be prohibitively expensive in terms of
computational complexity and incurred information overhead.
The computational complexity for the CO approach increases
exponentially with the number of flows and network size and,
more importantly, it cannot consider the source and network
dynamics in a timely manner (see Section VI). To cope with
these challenges, we next discuss the decentralized approaches.

IV. Congestion Game Modeling Approach

for Resource Allocation

In this section, we investigate a decentralized resource
allocation approach for the considered wireless surveillance
system, which is based on CG models. Unlike the CO ap-
proach, the decision makers of the game-theoretic approach
are the source nodes (i.e., the active camera agents N a

i ). The
private multimedia traffic information of a video Vi needs not
to be exchanged among the source nodes, but each source node
needs to gather the public network information IN across the
network.

Definition 1: Game-Theoretic Resource Allocation in Wire-
less Surveillance Networks: The game theoretic resource al-
location is defined in a tuple

〈{N a
i }, {σi}, {Qi}

〉
, where {N a

i }
is the set of the source nodes. σi = {σj, ∀fj ∈ Vi} represents
the resource allocation for all the flows of video Vi. Denote
σ−i = {σj, ∀fj /∈ Vi} as the resource allocation for the flows
of the other videos except Vi. Given the network information
IN , each source node N a

i applies the following optimization:

σ
opt
i (IN ) = arg max

σi∈A
{Qi(σi, σ−i, IN )}

s.t.
J∑

j=1

tl,j ≤ tl,k, l ∈ E, fj ∈ Ck

dj(σj, IN ) ≤ Dk, fj ∈ Ck, Ck ∈ Vi

(6)

where tl,k represents a predetermined time fraction reserved
for transmitting class Ck traffic over link l.

In this paper, we assume that the CG modeling is applied
for solving (6) at each activated camera. The motivation for
using the CG modeling is summarized as follows.

1) The CG modeling guarantees the existence of a Nash
equilibrium [27]. The Nash equilibrium is a globally
stable operating condition to which the agents converge
over time and where no single agent has a unilateral
incentive to deviate from its decision. Hence, no further
information exchange is required, once the allocation
reaches the equilibrium.

2) The CG modeling is a decentralized approach for au-
tonomous agents to maximize their own utility Qi.
Therefore, this reduces the computational complexity
compared to the CO problem in (5).
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Fig. 2. Different resource allocation solutions in wireless surveillance networks under various information constraints.

A. Congestion Games for Resource Allocation in Surveillance
Networks

Congestion games were defined by Rosenthal [13], [14].
Although the existing CG formulations (e.g., in [14]) are
able to provide a stable resource allocation solution, it cannot
capture the different characteristics of the video traffic and
their priorities in terms of their impact on multimedia quality.
In the considered surveillance system, there are K different
video classes. In other words, players (video flows) are not
identical2 when sharing a link. Hence, a new type of CG
is needed, which we refer to as the prioritized congestion
game. The game is designed to be played first by the flows
in the highest priority class and then utilize the remaining
resource for the remaining flows in the lower priority classes.
To successfully model our problem as a CG for delay-sensitive
multimedia applications, we assume that the two types of
subnets are predetermined before the games are played.

Definition 2: [QSN and game subnet (GSN)] We define the
graph G(Nk, Ek), Nk ⊆ N, Ek ⊆ E, for a priority class Ck

and denominate it QSN, denoted as QSNk. The QSN is
predetermined by setting the time fraction tl,k reserved for
transmitting the flows in class Ck over link l ∈ Ek. Moreover,
we define GSNk = G(N′

k, E′
k) as the GSN associated with a

priority class Ck. The residual game subnet (RGSN), denoted
as RGSNk, is defined as the residual network resource (the
unused nodes and links) that is available in GSNk after the
game is played by the flows in class Ck. The GSNs is
determined by QSNs and RGSNs as follows (C1 is the highest
priority class):

GSN1 = QSN1

GSNk+1 = QSNk+1 ∪ RGSNk for k ≥ 1. (7)

The K prioritized CGs are played consecutively from the
highest priority to the lowest priority in the corresponding
GSNs.

For example, suppose that related video streams are clas-
sified in three classes (C1, C2, and C3). The central monitor
determines the corresponding three layers, QSN1, QSN2, and
QSN3. First, the flows in C1 play the CG in GSN1. After a

2 Note that a CG with weighted players is not desirable for the prioritized
video flows, since the Nash equilibrium cannot be guaranteed in this type of
game [14].

stable routing path (Nash equilibrium) is reached, GSN2 =
QSN2 ∪ RGSN1 can be formed based on (7).

Definition 3: Prioritized Congestion Game Model for
Surveillance Networks: Assume the GSN G(N′

k, E′
k) is used

to transmit the class Ck traffic, the prioritized CG is defined
as a tuple

〈{fj ∈ Ck}, σk, E′
k, {uj}

〉
.

1) Players: the video flows in the class Ck, i.e., ∀fj ∈ Ck.
2) Strategies: the decisions σj of the video flows fj ∈ Ck.

Let σk = [σj|fj ∈ Ck] represent a vector of σj for the
video flows fj ∈ Ck.

3) Facilities: all the links of the GSN, i.e., ∀l ∈ E′
k.

4) Cost functions of the facilities: the cost function cl(nl,k)
of the link l is a function of number of players (video
flows) nl,k using the facility (link l).

5) Utility functions of the players: the utility function uj

of a player fj is defined as

uj(nl,k) =
∑

l

cl(nl,k(σk)). (8)

B. Equal Resource Allocation Policy to Enforce the Prioritized
Congestion Games in Surveillance Networks

In this section, we show that the game-theoretic resource
allocation problem can be modeled as a set of prioritized CGs
that will converge to a Nash equilibrium.

Definition 4 (Equal Resource Allocation (ERA) Policy):
The equal resource allocation policy is defined as follows:

tl,j = tl,k × 1

nl,k

, for fj ∈ Ck. (9)

The ERA policy allocates an equal amount of time resources
to each video flows over each link.

Claim 1: Convergence of the prioritized CG using ERA pol-
icy: By applying the ERA policy, the game-theoretic resource
allocation becomes a prioritized CG with

cl(nl,k) = ETTl,k(nl,k, GSNk) =
Lk × ETXl,k

tl,k
1

nl,k
Tl,k

. (10)

Proof: We rewrite the received quality Qi of each video
Vi as

Qi(σk, GSNk) =
∑
Ck∈Ci

Qik(σk, GSNk) (11)
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Qik(σk, GSNk) = λkRk

N
f

ik∑
j=1

αjI(dj(σk, GSNk) ≤ Dk)

= λkRkN
f

ikγik(σk, GSNk)

(12)

where γik denotes the ratio of the flows of video Vi in
class Ck being received successfully at the central monitor.
Note that γik × N

f

ik is the successfully received number of
flows by the central monitor in the game GSNk, which
depends on the decision σk and the corresponding end-to-
end delay dj(σk, GSNk) of a flow fj . Therefore, maximizing
the video quality is equivalent to maximizing the number
of high priority flows received at the central monitor, in
other words, maximizing γik(σk, GSNk) in each GSNk [see
(12)]. Note that in a prioritized CG with a GSNk and a
fixed Dk, maximizing γik(σk, GSNk) is equivalent to min-
imizing the end-to-end delay dj(σk, GSNk) for the players
(video flows) of the game. Finally, the utility function can be
expressed as

uj = dj(σk, GSNk) =
∑

l

ETTl,k(nl,k(σk), GSNk). (13)

From (8) and (13), the cost function is purely a function
of nl,k. Based on the ERA policy, the video flows in the
highest priority class C1 form a CG that provides a stable
allocation solution for these flows, the resulting RQSN1 can
be determined once the equilibrium is reached. Based on the
definition of the GSN subnet, the resource allocation problem
given a specific GSNk can also be formulated as a CG, given
that the ERA policy is applied.

C. Procedures of the Congestion Game Approach

In this section, we provide the procedures of the CG
approach as follows.

1) Step 1: Collect network information IN to the source
nodes.

2) Step 2: Form the QSNs and GSNs based on the prede-
termined time fraction tl,k.

3) Step 3: Starting from the highest priority class, the
source nodes construct the CG by using the ERA policy.
Obtain the Nash equilibrium

σ∗
k =

[
t∗l,j =

1

n∗
l,k

, fj ∈ Ck, ∀l ∈ E′
k

]
.

4) Step 4: Send the time sharing fraction t∗l,j to the corre-
sponding relay nodes in the network.

5) Step 5: Set k = k + 1. Form GSNk based on (7) and go
back to Step 3.

6) Step 6: After all the flows have their transmission
time allocation, send the video flows according to their
priorities and time sharing fractions.

Fig. 3 illustrates how the CG approach based on the priori-
tized CG is performed.

D. Price of Anarchy

To assess the performance of that Nash equilibrium de-
termined by the CG approach, we can compare the final

Fig. 3. Per-class CG played by individual flows with different GSNs.

video quality induced based on the Nash equilibrium with
the centralized solution. Similarly, in [16], a measure called
PoA was determined for quantifying the performance of the
obtained Nash equilibrium, which is defined as the ratio of the
worst case Nash equilibrium cost to the social optimum cost.
The socially optimal cost is defined as a global measure of
performance in [27]. In our paper, the social optimal solution
is assumed to be obtained based on the CO approach. We
define the PoA in terms of video quality. We can express the
PoA in terms of video quality PoAQ as

PoAQ =

∑
i Q

CG
i∑

i Q
∗
i

(14)

where QCG
i and Q∗

i denote the final video quality based on
Nash equilibrium obtained from the CG approach and the
optimal solution from the CO approach, respectively.

V. DG Approach for Resource Allocation

In this section, we introduce a distributed approach that en-
ables both the source and the relay agents to make autonomous
resource allocation decisions based on local available
information.

A. Distributed Optimization with Local Information

Due to the informationally-decentralized nature of the wire-
less surveillance network, the information availability can
be limited to neighboring network relays rather than to the
resource nodes. For instance, the optimal solution in the cen-
tralized approach depends on the delay incurred by the various
packets across the hops, which cannot be timely relayed to the
central controller. Instead, a fully distributed solution can be
deployed, where each agent (source nodes and also network
relays) individually optimizes the various video transmissions.
The private multimedia traffic information IS can be extracted
from the video packet header for the parameters such as the
quality impact λk, and the delay deadline Dk. At each agent
N , denote σN = {tl,j|l is directly connected to node N , ∀fj}
as the resource allocation for the agent N .

Definition 5: Distributed Resource Allocation in Wireless
Surveillance Networks: Given νN , the local network infor-
mation available from the other agents to the agent N , the



512 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 4, APRIL 2010

distributed optimization for an agent N is defined as

σdis
N (νN ) = arg max

σN ∈AN
{E[Utot(σN , νN )]}

s.t.
J∑

j=1

tl,j ≤ 1, l around N

E[dN
j (σN , νN )] ≤ Dk − dcur, fj ∈ Ck. (15)

Denote dcur as the current time and E[dN
j (σN , νN )] as the

expected delay from node N to the central controller N c.
Due to the unavailability of the global information, the

agent can only maximize the expected utility E[Utot(σN , νN )],
based on the available local information νN . The time al-
location constraint on each link l is also considered only
around the node N . A greedy algorithm is proposed for
this distributed resource allocation problem in [19]. The DG
approach requires local network information νN to perform
successive local optimization in (15). The greedy algorithm
first sorts the packets at agent N according to their quality
impact λk, and then allocates the σN for the flow fj with
the maximum λk by selecting the next relay that provides
the largest E[Qi], fj ∈ Vi. From (4) and (2), the following
simplification is applied to (15) [19]:

σsub
N (νN ) = arg max

σN ∈AN
{E[Qi(σN , νN )]}

= arg min
σN ∈AN

E[dj(σN , νN )]

= arg min
σN ∈AN

E[dN
j (σN , νN )]

for fj with the largest λk.

(16)

As long as the resource allocation for the scheduled packet
(with maximum λk) of the flow fj does not violate the
constraints in (15), the packet is considered to be transmitted
through the relay N with the minimum expected delay from
the relay N to the destination, i.e., the minimum E[dN

j ]. Note
that the distributed approach constantly relies on the varying
network information νN to perform a "local" optimization.
Since we apply the greedy algorithm based on the local
information, the result is suboptimal and may not converge
to a stable set of paths in a general network topology.

B. Price of Convergence

The performance of a DG approach is significantly impacted
by the amount of required information overhead. Assume
that χ(G, P(ω,η)) represents the required network resource for
the frequently required information overhead, which depends
on the network settings G (including the network topology,
available resource, network variation characteristics), and the
protocols adopted for the DG approach (including the fre-
quency ω of the interactions across the agents, the percentage
of transmission bandwidth η that is devoted to the information
exchange).

Definition 6 (Price of Convergence): We defined the PoC
as the ratio of the performance of the corresponding DG
approach and the performance of the CG approach. In terms
of the received video qualities, we define the PoCQ as

PoCQ(χ(G, P(ω, η))) =

∑
i Q

CG
i∑

i Q
DG
i (χ(G, P(ω,η)))

(17)

where QDG
i denotes the corresponding video quality based

on the mentioned DG approach. Based on the PoC, we can
identify in what situation it is worth applying the prioritized
CG for the delay-sensitive video applications to guarantee the
convergence.

VI. Comparison of the Various Resource

Allocation Approaches

A. Computational Complexity

In this section, we first analyze the computational com-
plexities of the three approaches in terms of the number of
selectable paths when making the allocation decisions.

1) Complexity of the CO Approach (Exhaustive Search):
Assume that we have a total of K classes in an H-hop network.
Let us assume that the maximum number of intermediate
nodes that can be selected as a relay for a class Ck flow at the
hth hop is Ck,h. The maximum number of possible end-to-end
paths is then

∏H
h=1 Ck,h. Thus, the total complexity (in terms

of the number of path combinations) of an exhaustive search
can be up to

∏K
k=1

∏H
h=1 Ck,h.

2) Complexity of the CG Approach: Since the maximum
number of possible end-to-end paths is

∏H
h=1 Ck,h for the class

Ck flows, the total complexity of playing the K CGs in their
corresponding GSN is approximately

∑K
k=1

∏H
h=1 Ck,h.

3) Complexity of the DG Approach: In the distributed
approach, the relay selection complexity is Ck,h for a packet
(of class Ck) at an agent at the hth hop (i.e., Ck,h is the number
of relays that can be selected in the next hop). Thus, the
complexity for the packet over H hops is

∑H
h=1 Ck,h. Then, the

total complexity by considering all the video classes equals∑K
k=1

∑H
h=1 Ck,h.

B. Information Overhead

Next, we discuss the required information overhead of the
three approaches in an H-hop network. Various information
exchange parameters lead to different transmission overheads.
As mentioned in Section II-E, there are two types of informa-
tion exchanges. The public (network condition) information
exchange IN conveys the channel condition and the expected
number nl,k of flows in the CG. The private information
exchange IS includes the video characteristics information.
We assume that the information feedback units are IN

u and IS
u

for the two types of information exchanges, respectively. We
perform a worst-case analysis by assuming that the average
number of relays per hop is R and thus, the total number of
links per hop is approximately R2.

1) Information Overhead of the CO Approach: Since the
network information is fed back from the whole network to
the central monitor for the global optimization, the information
overhead from the relays that is h hops away from the central
monitor is h ·R2 · IN

u . Thus, the network information overhead
is H(H−1)/2·R2 ·IN

u . The remaining two required parameters
are across the H hops and may be different for various video
classes. Thus, the total information overhead is H(H − 1)/2 ·
R2 · IN

u + K · H · IS
u .
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TABLE I

Video Characteristics

Coastguard Ck λk

[dB/(kb/s)]
Rk(kb/s) Dk(s)

f1,f2,f6,f7 C1 0.0105 250 0.533
f3,f8 C2 0.0064 300 0.533
f4 C3 0.0048 300 0.533
f5 C4 0.0042 400 0.533

2) Information Overhead of the DG Approach: For the DG
approach, the allocation can be constantly adjusted to improve
the received video qualities. Since the network information is
fed back per hop to enable the link adaptation as well as to
facilitate the polling control signaling, the network information
overhead in terms of the information feedback unit is R · IN

u

for each agent. The number of all the nodes in the network
is approximately HR, and hence the network information
overhead is HR·R·IN

u . Note that the DG approach is performed
repeatedly. Assume that the information is exchanged for md

times over the measured experiment time window Wt (i.e.,
the interaction frequency ω = md

/
Wt). The total information

overhead is md · HR2 · IN
u .

3) Information Overhead of the CG Approach: For the CG,
assume that the K games will converge to the equilibrium
in at most mc iterations. The total information overhead is
mc · H(H − 1)/2 · R2 · IN

u . In conclusion, if the CGs converge
fast enough (i.e., mc � md), the required information overhead
of the CG approach can be much less than the DG approach.

VII. Simulation Results

We simulate two active cameras in wireless surveillance
networks. We consider two different topologies shown in
Fig. 4. The Coastguard video sequence (16 frames per
group of picture at a frame rate of 30 Hz) is compressed
using the video codec [20]. The compressed video packets
are categorized into five flows in four classes as given in
Table I (see [17] for more details on how to determine the
parameters). The video V1 captured by the camera N a

1 has a
better resolution video V1 = {f1, f2, f3, f4, f5} than the video
V2 = {f6, f7, f8}, captured by the camera N a

2 . We compare
the proposed CG approach with the CO approach (optimal)
and the DG approach [19] with various network efficiency
Tm. The various efficiency levels are represented by varying
the available time fraction for the contention-free period in
the polling-based MAC protocol as in [19], which induces the
various transmission rates for the video flows over the links. In
addition, under the same testing conditions, we also compare
these solutions with another distributed approach [22], referred
here as the reactive QoS routing approach (RQ).

For the CO approach, we assume that the global information
is available to the central monitor at the beginning of the
session (video transmission). Hence, the central monitor can
exhaustively search for the paths that provide optimal video
quality over wireless surveillance network regardless of the
high computational complexity involved in the optimization.
For the CG approach, each video flow is transmitted based on

Fig. 4. Considered topologies for the wireless surveillance network. (a) Grid
network. (b) Mesh network.

the equilibrium resource allocation of the prioritized CGs. For
the DG approach, each network node applies the described
DG optimization approach [19]. For the RQ approach [22], a
path discovering period τ is required for conveying the path
probing information among across the network nodes before
the video streaming with a certain path, which directly impacts
the delay deadline of the video transmissions.

A. Simulations Over Wireless Networks Under Static Channel
Assumption

First, we simulate these four approaches using the grid
network topologies shown in Fig. 4(a). Fig. 5 shows the PSNR
of the two video streams versus the network efficiency Tm from
1 Mb/s to 4 Mb/s. As the network efficiency increases, the
PSNR of both videos increase. All approaches can achieve
the upper bound, i.e., the CO approach, when the network
efficiency is high enough. Note that the input source rate Rk

is fixed, hence the video quality will saturate when the video
is 100% received by the central monitor when the network
efficiency is high. We can see that the CG approach has worse
performance when the network efficiency is low, since the CG
approach is based on the ERA policy that limits the flexibility
of obtaining different transmission rates over a transmission
link. However, the performance of the CG approach increases
rapidly when the network efficiency increases. Fig. 6 shows
the PoC and PoA of the CG approach as the network efficiency
increases [using (14) and (17), respectively]. The results show
that the CG approach slightly outperforms the DG approach,
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Fig. 5. Quality performance of the four approaches for various network
efficiencies in the grid network. (a) Video 1. (b) Video 2.

i.e., PoCQ ≥ 1, when Tm is high enough (Tm ≥ 2 Mb/s) and
the information exchange overhead is small enough (η = 5%).
This is because the inefficiency of the ERA policy is alleviated
when the network efficiency is high.

Next, we simulate using the mesh network topologies shown
in Fig. 4(b). Fig. 7 shows the PoC and PoA of the CG
approach in the mesh network in Fig. 4(b). Note that in
Fig. 7(a) when N r

5 is off, PoCQ ≥ 1 is available even the
information overhead is extremely high (η = 30%). However,
when N r

5 is on, the DG approach is shown in Fig. 7(b) to
always outperform the CG approach, since the additional relay
significantly improves the DG approach, which is optimized
hop by hop [19]. The simulation highlights that the merit
of the game-theoretic equilibrium highly depends on: 1) the
network topologies; 2) the network efficiencies; and 3) the
information exchange overheads. The convergence brought by
the CG approach can benefit the video quality only when the
network efficiency is high enough to alleviate the disadvantage
of ERA policy.

B. Simulations Over Dynamic Networks With Topology
Changes

In the previous simulation, we considered an idealized
setting where the network is static. However, the wireless
environment is time-varying, and thus, both the link conditions
and the network topology may change over time. Hence, we
simulate a dynamic network case that the network topology
changes in the middle of the simulation time. Our simulation
was performed using the mesh network topology in Fig. 4(b).

Fig. 6. PoC and PoA of the prioritized CG versus network efficiency in the
grid network.

Fig. 7. PoC and PoA of the prioritized CG versus network efficiency in the
mesh network. (a) N r

5 is off. (b) N r
5 is on.

This simple setup allows us to investigate the impact of
specific path selections. During the experiment time window
(at the 10th second), the network relay N r

5 disappears due
to relay breakdown for half of the simulation time. Fig. 8
shows the time plot of the PSNR and path selection for the
two video streams when Tm = 2 Mb/s. Since the resource
allocation of the CG approach cannot adapt to the network
changes as fast as the DG approach, its path selection remains
the same within the simulation time window based on the CG
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TABLE II

Complexity and the Required Information Overhead of the Three Appraoches

Different Approaches One-Time Computational Complexity Required Information Overhead
CO CG DG CO CG

mc
∼= 10

DG
md

∼= 300
N r

5 on 180 27 10 29IN
u +22IS

u 41mcI
N
u 13mdIN

u

N r
5 off 60 16 10 24IN

u +22IS
u 27mcI

N
u 10mdIN

u

Fig. 8. Video qualities and the selected path of the DG approach and CG
approach (Tm = 2 Mb/s). Only the paths of the most important flows of the
two videos are shown.

equilibrium. The simulation shows that the CG approach has
even more performance degradation because of its inability to
timely adapt to the network changes.

In Fig. 9, we plot the time average PSNR under different
network efficiencies. We can see that unlike the DG approach
and the RQ approach, the decision maker(s) of the CO ap-
proach (the central monitor) and the CG approach (the source
cameras) cannot timely adapt to such network changes and
hence, they result in erroneous decisions made at the beginning
of the experiment. In such cases, the results show that the
DG approach and the RQ approach outperform all the other
approaches.

C. Computational Complexity and Required Information
Overhead

In Table II, we provide the results of the computational
complexity and the required information overhead of the three
approaches as discussed in Section VI with the mesh network
topology shown in Fig. 4(b). We can see that the CG ap-
proach has significantly lower information exchange overhead
than the DG approach, since the convergence is guaranteed
for the CG approach. However, as in the previous simulation,
the benefit from the convergence is limited in a dynamic
environment. The fixed resource allocation performed at Nash
equilibrium (convergence) can lead to significant performance
degradation. In addition, although the CO approach can also be
performed repeatedly for an adaptive optimal solution, this is

Fig. 9. Quality performance of the four approaches for various network
efficiencies in the dynamic mesh network.

often undesirable in practice due to the exponentially increased
complexity required by the CO approach.

D. Qualitative Analysis of the Three Approaches

Table III provides a qualitative comparison of the three
approaches, which highlights the following aspects.

1) In large-scale wireless surveillance networks, the CO
approach is not suitable, due to its high complexity and
its inadaptability to the source and network dynamics.

2) The CG approach significantly reduces the complexity
and the information overhead required for transmitting
the video information from the camera sources. How-
ever, its performance considerably decreases when the
network efficiency is low, since the CG approach is
based on the ERA policy, which limits the flexibility of
obtaining different transmission rates over a transmission
link.
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TABLE III

Comparisons Among the CO, CG, and DG Approaches

CO CG DG
Decision maker Central monitor Active camera agents Active camera agents and relay agents

Decision on the resource allocation σ = {t
l,j

, ∀l, ∀fj} σk =
{t

l,j
, ∀l, ∀fj ∈ Ck, ∀l ∈ E′

k
}

σN =
{tl,j |l adjacent to N , ∀fj}

Video quality
performance in a static network

Optimal Suboptimal Suboptimal

Video quality
performance in a dynamic network

Poor Poor Acceptable due to the adaptability

Adaptability to network and source dynamics Low Medium High
Flexibility of assigning the transmission bandwidth to the
video flows

High Low (due to the ERA
policy of the game)

High

Computational complexity (one-time operation) High Medium Low
Required information overhead Medium Low High

(constantly required)
Public network information availability Global Global Local
Private multimedia information exchange Required Not required Not required

3) Since the DG approach allows each network node to
make autonomous decision based on local information,
the decisions of the neighboring nodes are coupled.
Hence, periodic local information exchanges are needed
to provide the nodes the available information for
making their resource allocation decisions that maximize
the video quality received by the monitor. In a more
static network, the required information overhead of the
DG approach can be significantly larger than the CG
approach. This high information overhead leads to a
worse performance for the DG approach than the CG
approach, when the information exchange overhead η is
large (see the PoC in Fig. 7).

4) In a dynamic network, although the CG approach pro-
vides stable allocation results that reduce the required
information overhead, the performance degradation is
much higher than the DG approach (which also has
performance degradation due to large information over-
head). This shows that resource allocation solutions in a
dynamic wireless surveillance network need to explicitly
consider the dynamic source and network characteristics,
rather than rely on static allocation results.

VIII. Conclusion

We considered a surveillance system, aimed at capturing and
transmitting the videos of several distributed cameras in real-
time, over a wireless multihop network, to a central monitor.
Our focus in this paper was on comparing three different
types of resource allocation solutions, where the decisions
are made by the central monitor, the autonomous cameras,
or the autonomous cameras and the relay nodes, respectively.
To allow the camera agents to perform their decisions in an
autonomous manner, while explicitly considering the distortion
impact of their gathered video content, we modeled the wire-
less surveillance network as a prioritized CG played among the
multiple cameras. The primary advantage of the CG modeling
is that it guarantees convergence to a Nash equilibrium, i.e.,
a stable allocation is determined and no information needs
to be exchanged. To evaluate the performance of the CG

approach compared with the DG approaches in a realistic
network setting, we introduced a new performance metric, the
PoC. Based on this, we are able to identify the cases when
playing the CG modeling in order to guarantee convergence
is desirable for the cameras. Based on our simulations, we
determined that the CG modeling outperforms the distributed
approach in a static network, where the information exchange
overhead η is large. Besides the video quality performance, we
also compared the CG modeling with the centralized optimized
approach and DG approach in terms of the computational
complexity, the required information overhead, and the adapt-
ability to the network and source variation. It is shown that
the proposed prioritized CG modeling can effectively reduce
the complexity and the required information overhead in the
considered surveillance application, but suffers from a poor
performance when the network transmission efficiency is low.
In such cases, performing the DG approach will result in
a much better performance. This is also the case when the
network dynamically changes over time. Summarizing, the
study presented in this paper provides multimedia system
designers with the tradeoff possible when implementing such
a system in terms of performance, complexity and information
overheads for different usage scenarios.
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