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Abstract—Due to the high bandwidth requirements and strin-
gent delay constraints of multi-user wireless video transnssion
applications, ensuring that all video senders have sufficig
transmission opportunities to use before their delay deadhes
expire is a longstanding research problem. We propose a nolve
solution that addresses this problem without assuming detked
packet-level knowledge, which is unavailable at resource lla-
cation time (i.e. prior to the actual compression and trans-
mission). Instead, we translate the transmission delay delfines
of each sender’s video packets into a monotonically-decreang
weight distribution within the considered time horizon. Higher
weights are assigned to the slots that have higher probabiyi
for deadline-abiding delivery. Given the sets of weights othe
senders’ video streams, we propose the low-complexity Dgta
Aware Resource Allocation (DARA) approach to compute the

optimal slot allocation policy that maximizes the deadlineabiding L ; ; ; :
delivery of all senders. A unique characteristic of the DARA and thus ensure sufficient video quality at the receiver.side

approach is that it yields a non-stationary slot allocationpolicy This problem is becoming partlcular_ly pertinent today W_'th
that depends on the allocation of previous slots. This is in the emergence of the Internet-of-Things (IoT) and machine-
contrast with all existing slot allocation policies such agound- to-machine (M2M) communications that are expected to bring
robin or rate-adaptive round-robin policies, which are stationary g disruptive change in the way people access real-time senso
because the allocation of the current slot does not depend dhe 4445 flows across the globe [T][2]. This is because new stan-
allocation of previous slots. We prove that the DARA approab is .

optimal for weight distributions that are exponentially decreasing dards such as the IE'_EE 302'1_5'46 at the medium access control
in time. We further implement our framework for real-time  (MAC) layer [3] (as finalized in 2012) and 6LoWPAN at the
video streaming in wireless personal area networks that are network layer[[4] now pave the way for a unified IPv6-based
gaining significant traction within the new Internet-of-Things network layer between wireless visual sensors and arpitrar

(IoT) paradigm. For multiple surveillance videos encoded \ith - ; e
H.264/AVC and streamed via the 6tisch framework that simulaes destinations across the Internet (see Figure 1). Withith suc

the loT-oriented IEEE 802.15.4e TSCH medium access control a paraglig_m the challenging part for delay-coqstrained wide
our solution is shown to be the only one that ensures all video transmission is the IEEE 802.15.4e-enabled wireless patso

bitstreams are delivered with acceptable quality in a deadhe- area network (WPAN). Such WPANs are based on a central
abiding manner. coordinator that also serves as the gateway to the broader
Index Terms—wireless video sensor networks, resource alloca- Internet and is thus called the low power border router (LPBR
tion, non-stationary policies, IEEE 802.15.4e, Internebf-Things  [3]. The functionality of the LPBR is two-fold [1][2][3]: fstly
to coordinate the timeslots provided to each sensor duhieg t
. INTRODUCTION network active time and secondly to aggregate all received
Multi-user wireless resource allocation for multiple vide Stréams and forward them to the destination IPv6 addresses

bitstream transmitters is a longstanding research probléki[2l[3]. Efficient allocation of timeslots to each visusénsor
[O][L3]-[L8]. One of the major challenges in such communi$ crucial to the success of real-time video streaming dutsto
cations systems is how to allocate transmission resourees %h bandwidth requirements and stringent delay conggain
timeslots) in a manner that allows all video senders to seffpreover, the allocation should be done without detailed
sufficient amount of packets prior to their deadline exjorat Knowledge about the distortion impact and delay deadlines
of each video packet, which tends to be unavailable or overly
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Fig. 1. Video streaming over loT-oriented standards.
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for each sensor, which represent the sensors’ discounfing o

T 3 T 15
) | frame ) ~— PandBframes the value of future transmission opportunities. These ftsig
25 ? P and B frames 2% ' \ depend on only some statistical information of the sensors’
%g 1 éfg 05 video content, video application requirements and video en
58 58 coding/decoding techniques (e.g. the H.264/AVC temporal
> 9012345678910 ° 0 0123456780910 prediction structure) but not the specific packet-levebinf
fime imenal x 100 ms fime imenal x 100 ms mation. Since earlier timeslots will satisfy sensors’ gela
15 requirements more easily, the only constraint is that wsigh
«— Pand B frames

< — PandB frames are monotonically decreasing in time. Given the weights of
: each sensor, we propose an efficient approach to perform
\ MAC-layer resource allocation for multi-camera WPANS,
calledDelay-Aware Resource AllocatidDARA). The DARA
012345678910 ® 012345678910 approach assigns each sensor with a single index that cap-
. | fmeimenalx1ooms time intenal x 100 ms tures three important aspects for its resource (i.e. tiotes!
i e o e e - allocation: () the distance from the target timeslot aban

second interval) that has transmission deadline after taekeud time. (i) the benefit of allocating a timeslot to a sensor; ang (jii
video resource allocation in IEEE 802.15.4e WPANs undgf€ discounted sum of remaining transmission opportumitie
the newly-standardized time synchronized channel hoppiFRj a sensor in the same slotframe. It allocates the current
(TSCH) MAC [1][2][3], which allows for synchronization timeslot to the sensor with the largest current index and the
and contention-free and interference-mitigated transions UPdates each sensor’s slot indices. Hence, a sensor with: (i
without the use of complex collision avoidance mechanisndger distance from the target; (i) a larger current berefd

[3]. Even though we validate our slot allocation solutiom foliii) fewer discounted remaining transmission opportigsif

this particular setting, because it provides ways to codi is more likely to be assigned with the current timeslot. For
users with delay preferences using only limited informatio €xPonentially-decreasing weight distributions that weenend

our proposal is applicable to many other resource allopatié® characterize well the observed deadline distributiohs o
problems in many other settings, such as IEEE 802.1fal video traces, we prove that our approach achieves the

WLANS, video streaming over 3G/LTE cellular networks, etc@Ptimal performance. We also show via numerical experisient
A. Problem Description and real-world video streaming over the 6tisch simulator of

the IEEE 802.15.4e TSCH MAC_[1][2] that h
The importance of timeslots (in expectation) is highly re © © [L][2] that our approac

. o . : significantly outperforms existing solutions.
lated to thter:r position - tfhle_ee_at[rlger_tthe Slit Itotecome_s apmlaa_c: A unique characteristic of the proposed DARA approach is
a sendsor, N mlorgtu?e ltjhls(; Odll's packet ransr?'?l_s'?f;n that it yields a non-stationary slot allocation policy. Wefide
brovides more faxity for the deadline requirement. 10 Wae o 5ti0n of a (non-)stationary allocation below.
this, Figure 2 presents deadline distributions calculdtad

four_different video bitstreams within the same slotfram Definition. A deterministic or probabilistic slot allocation
) S o 7 rocess is stationary if each slot assignment depends onl
interval (which is set to one second). Within this interva y 9 P y

ST . . ) on the available (finite) set of selection states and the user
these distributions .present th_e sizes of the video blhstrg references and does not depend on time. Otherwise, a slot
of each sensor with transmission deadline after the ti

. . flocation is non-stationary.
marked in the horizontal aflsThe upp_erl—leftgraph (s_ensor 1) Examples Round-robin allocation is stationary and so is
demonstrates a sharp peaktat 0 as it includes an intra (l)

: . . random slot allocation with fixed probability for each slot.
frame, while all other three graphs only include predictel (A weighted round-robin allocation, with the weights depend
and bidirectionally predicted (B) frames within the spexcifi '

) . : ..~_"'ing on the user preferences (e.g. average bitrates and dela
slotframe interval. Evidently, under the strict transruss 9 P e.g 9 y

. - . : eadlines) but not on time, is also stationary. A random slot
deqdllne O.f 100 ms, providing 'V'AC"ayeT timeslots In‘fj?roundgllocation with each slot having time-varying probabiliy
robin fashion to these four sensors will not be optimal a

; T . eing assigned to a video sender is non-stationary.
for example, sensor 1 requires significantly more timeslots . e
) As we shall see, under an appropriate optimization frame-
at the first 100 ms of the slotframe (to accommodate the |- . . .
. work, non-stationary allocations can better adapt to tfferdi
frame deadline) than sensors2 that have a much smoother , . . .
: s Lo : C ent users’ resource requirements over time and hence, gield
deadline distribution. This indicates that using weighaswked ) o .
. o . : ) much better performance [25]. We discuss this in more detalil
by such deadline distributions will automatically incorate a in the following subsection
measure of the expected quality of the received video bastr 9
corresponding to the slotframe interval under considenati C. Review of State-of-the-art in Video Streaming over \&&®|

B. Contribution and Paper Organization Networks

In this paper we model the value of different MAC-layer Existing wireless video streaming solutions that could po-

timeslots to visual sensors by assigning weights to slatentially fit into IEEE 802.15.4e-enabled networks can be
N _ _ broadly divided into three categories. The first category en
These results were generated from CIF-10Hz surveillandeog encoded

with the H.264/AVC encoder under: high profile, low-delayBiB encoding COMPasses smgle-user video streaming solutions, fog.umn
structure, transmission deadline set to 100 ms and iraradrperiod of 4 s. packet scheduling, error protection or cross-layer adiapta
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. . . . . TABLE |
in order to maximize the received video qualityl [9]-[12]. A LLUSTRATIVE EXAMPLE OF THE RESULTING ALLOCATION OF

Such proposals assume exact packet-level information (e.g DIFFERENT POLICIES WITHIN ONE SLOTFRAME

packet distortion impact and packet-level transmissioadee| Timeslot(TS) | 1] 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10] 11|12

line) and propose highly-complex rate-distortion optietz RR;’“”d;jf"bgT ﬁ i i g : g //: i 2 g : g
. . . . | R-Round-robin

pe}ck_et schedul_mg solut|ons_,. Since only single-user tra S 5-Roundrobin A 1A T8 18 T8 clAalalels 6lc
mission scenarios are conS|d§red, such prop_osals are_l USefl para AlBlBlAalalclclBlarlaA BlC
after the multi-user resource (i.e. slot) allocation pemblis TABLE II
addressed and can easily interoperate with our proposed slo COMPARISON OF DIFFERENT POLICIES
allocation solution. _ [13] [15] [19] [20] This paper

The second category comprises multi-user video streamingqﬁgﬂvﬁ’ggg( Plae%e Plae‘f/';e Statistics | Statistics | ~ Statistics
e_mph:_:13|2|ng on resource aIIocano_n amongst muItlpI_e l_JsersC oDneslggin Yes Yes No Yes Yes
(i.e. visual sensors in our case) simultaneously transmitt ; ;

: : : 7 Allocation Earliest State- Minimal Weighted Non-
video and shan_r_lg the ;ame_W|reIess resources [13]-[14]" Method defﬁcsi{me dependent | lead first rr%mi stationary
The_ rjetvyork utility max_lmlzatlon (NUM) frgmework .andr Complexity | High High Low Low Low
optimization-based algorithms have been widely studied f

solving wireless multi-user resource allocation probleims
the past few years [21]-[24]. However, these models do nélly reduces to a weighted round-robin policy with weight
take into account the different delay preferences of difiee corresponding to the video bitrate. In Pradas and Vazquez-
users over time in the video streaming problem. Hence, th@stro[20], a NUM-based framework is developed to balance
resulting slot allocations are stationary under our dedinit fate-delay performance for video multicasting over adapti
Detailed packet-level information of the video bitstreanda satellite networks. Video streams are classified into,aled,
channel state information are incorporated in the optichiz&asses of Services (CoS) with different delay requirement
resource allocation solution. In Huang et B[1[13], a NUMhe NUM framework then incorporates these requirements by
problem is first solved for multi-user rate allocation base®P!ving a weighted sum utility maximization problem (where
on which time slots are assigned to users according to #h¢ weights are based on the delay requirements). After the
deadlines of their packets. The optimal multi-user de|ayjdeo transmission rates are determined, a weighted-round
constrained wireless video transmission framework is termrobin policy is performed to allocated slots to differentie®
lated as a multi-user Markov decision process (MUMDFStreams depending on their CoS. Though not exactly the same
[15]. The MUMDP then is decomposed into local Mppdecause of the different deployment under consideratios, t
which can be autonomously solved by individual users. Ev@Rlicy is analogous to a weighted-round-robin policy is ebhi
though such proposals provide for joint throughput andydel&e weights are determined based on both the rate and the
based optimization, detailed knowledge of the video packéglay requirements.
contents and their corresponding distortion impact is iregu ~ Because our proposal falls into this category of approaches
to perform the resource allocation. However, such solstiofhat do not require packet-level information, and to bethes-
are unsuitable within loT-enabled networks of sensors,revhdrate the differences with prior works, we provide an inteit
it is extremely unlikely that: (i) either the sensors or th€omparison of our resource allocation with two benchmark
LPBR will have access to the individual packet distortioolicies (which we call "R-Round-Robin” and "RD-Round-
estimates and delay requirements; (i) either system wailleh Robin”) that encapsulate the merits of Dutta etlall [19] and
the resources necessary to process and derive an optiffi@das and Vazquez-Caslrol[20], respectively. It is ingaito
transmission allocation based on such information. note that these policies are stationary because the atoaait
The third category of research works proposes slot allod&e current slot does not depend on, and adapt to, the atiacat
tion policies for multi-user video transmission withoutcgat- Of previous slots within each slot allocation block. As walsh
level knowledge and is instead based on knowledge of orfige, we can significantly improve upon the performance of
some statistics, such as the histogram of the delay deadlitkese stationary polices by using non-stationary polithes
and/or the histogram of bitstream element sizes presehirwittake into account the allocation of previous slots| [25].
the resource allocation period of the video streams. Exasnpl To better illustrate the difference of these policies, &abl
of such policies are the round-robin policy (e.g. weighted-shows an example slot allocation for 3 sensors A, B and
round-robin or “water-filling” strategies). For instancdie C within one slotframe comprising 12 timeslots. The target
sensors can be set to transmit in some predetermined ordigie of sensor A is three times of that of sensor C. The target
but, within each slot allocation block, each sensor may Iiate of sensor B is twice of that of sensor C. Sensor B is
allocated a number of slots that is proportional to its ratbe most delay sensitive while sensor C is the least delay
or delay sensitivity. In Dutta et a[ [19], a greedy policy isensitive. The allocations of all three benchmark policéssilt
proposed to fairly allocate transmission slots amongstipiel in cyclic repetitions within the slotframe, while in the pased
variable-bitrate streaming videos in order to maximize tH2ARA policy the allocation depends on past allocations and i
minimum “playout lead” (i.e. duration of time the video carhon-cyclic. Table Il further presents a summative comaris
be played using only the data already buffered in its cliendf our approach with the state-of-the-art on multi-userewid
across all videos. When the video streams are compressti¢aming.
using constant-bitrate encoding, the resulting policyerss The remainder of this paper is organized as follows: Section



TABLE Il

NOMENCLATURE TABLE. MAC are [1][2][7][8]: Tsr € [0.2,2] s, Tsiot € [6,10] ms,
Notation Interpretation Notation Interpretation hn € {1,2,3}, bpacket€ [45,110] bytes.
Ter Slotframe duration | T, Timeslot duration B. Video Coding Adaptivity and Transmission Abstraction
T=I | Resource blocksize| h N“&?‘Zﬁg%ﬁ%g{?&e’ During each RAB, each sensemeeds to send the bitstream
transmitted by senscn corresponding to several independently-decodable video b

Bpasr | AC TraMe payloac) - - | Total bitstream size < stream unif$ We denote the total bitstream size (bytes) of

4 tim-gstg?nngsosflgracket ] Video delivery utility per each sensor within one RAB Uth Any MPEG video coder

nk K of sensor n n packet of sensom can be used to generate the video bitstream based on any
w Sensor n” weightof [ | Weighted sum rate ( standard{I, P, B} temporal prediction structure with a fixed

o slot t . sensorn transmission deadline set for each compredded, B} frame

. once it is produced by the encoder. This transmission deadli
Il describes the system model and formulates the reSOUfC8 mhosed either by the limited on-board memory of each
allocation problem with incomplete information. Sectidh | sensor (e.g. when only limited number of compressed frames
proposes the DARA approach for resource allocation. SectiQ, | pe buffered), or due to the stringent delay constraints
IV derives analytic bounds that characterize the perfoneaqmposed by the élpplication context (e.g. in real-time video

of the DARA gpproach. Section_ v provid_es the numerical Furveillance or monitoring). Each sensor adjusts its numbe
well as experimental r_esults using real video sequences Btaackets by discarding independently-decodable bitstre
real deployment. Section VI concludes the paper. parts that have expired. For example, within an MP4 or MKV
Il. SYSTEM MODEL encapsulation of H.264/AVC videol[6], it is straightforwiaio
We consider an LPBR under the TSCH mode of IEE |scard_ NAL units or SimpleBlocks _(respectl\{ely) w!theoqzi
ransmission deadlines and a partially received bitstream

802.15.4e MAC with V' visual sensors sharing the TSC e reliably decoded with the FFmpeg library, which will also

slotframe for their video bitstream transmission. Since Wa?gply error concealment before displaying the decodedovide

cannot control the end-to-end delay over the loT scenari Within each RAB, each packéte {1, ..., =} of sensor

of Figure 1, we consider instead a deadline set for each o . bpacket
) ) . n_bears a transmission time stamp (TT&), (measured
video bitstream part produced by each visual sensor. This : . SN
o LR n number of timeslots with respect to the beginning of the
transmission deadline is in the order of 100 ms. As shown . ; A
%lrrent RAB). The packet is valid for transmission if andyonl
|

in Figure 1, all sensors are directly connected to the LPB it is sent by the sensor before (or by) sldf .. Finall
that relays their video bitstreams to the end users using we y y ok Y,

established streaming over TCP/IP or UDPIIP[[5][6]. Talle Ieach pack_et of Se.“sw”a'f‘.sm_'“e‘j u_nt|l .SIOH"”“ induces an
. . o expectedvideo delivery utilityg,, which is a measure of the
provides a table of the key notations used in this paper.

average improvement of video quality if this packet is used.
A. Wireless System Abstraction We remark that, while distortion estimates can be used for

Under the TSCH mode, within each slotframe interval” _fqllowmg previous work [IDJL1L), |n_th|s paper we deflng
tilities based on the expected deadline and expected video

of Tsr s, each sensor is allocated one or more tlmesmﬁ%livery utility of groups packets, as this is informatidrat

(and a c_o_rrespondlng_ c_hannel) for each of its trgnsmls&ggn be reliably (and quickly) estimated by the video encoder
opportunities. Thus, within eachg s, each sensor will hop to fior to the actual production of video packets

one or more of the 16 channels available in the IEEE 802.1@.4 P ] P ’

PHY, albeit for very brief intervals of time [1][2][3]. Unde C- Problem Formulation

TSCH, the transmission medium coherence time experiencedince the LPBR has na-priori knowledge of the character-
at the MAC layer is substantially longer thdir [1][2][7][8]. istics of the generated video bitstream of each sensorn.e.
That is, the error rate at the MAC layer can be regardédowledge ofvn, k : d, x), it assigns the slots of each RAB
as constant over any time interval smaller or equalltp. 1o sensors solely based on limited statistical informatibout

In fact, due to TSCH’s properties this assumption has beeach video bitstream. This information corresponds to each
shown to be valid even for substantially prolonged peridds 8ensor’s weight distribution and the expected video dslive
time if the sensors and LPBR are not moving rapidly[[7][8utility g,, which is transmitted from each sensor to the LPBR
Moreover, due to strong channel coding schemes employedatiodically with very low overhead (only two MAC layer
the IEEE 802.15.4 PHY, less than 1% packet loss is observegtckets are needed).

at the MAC layer under typical operational conditions [8]. Let s be the current RAB vector, with elementgt) €
Consequently, in the following we focus on the resourcgl,2,..., N} representing the sensor to which timesiot
allocation performed in groups &f = ;F_SIFI timeslots, with {1,...,7} is allocated. If the resource allocation incorporates
Tsiot being the duration of one timeslot, and also assume veéhe entire bitstream of sensemwithout any transmission dead-
limited or no packet retransmissions at the MAC layer. Theﬁée%/idation, then the number of MAC frames transmitted is
T timeslots form aresource allocation bIocK_RAB). The h S 1(s(t) = 1), wherel(:) is the indicator function. In
number of MAC frames that can be transmitted by sensor i=1

n, 1 <n < N, within each timeslot of a RAB is denoted b
. y %j.e. bitstreams corresponding {d, P, B} frames that can be decoded if

hn and we assum? that each MAC frame carries a payloagy are received in their entirety, with the applicationcohcealment - if
of bpacket Dytes. Typical values for these parameters in TSCicessary.



such a case, we define the utility of the sensogiven the TTS deadlines expire during each RAB. Thus, tifesensor’s
o ) _ . : utility can be represented &y, (r,,) = G, hnry. Our proposed
RAB vectors by Qn(s) = gnfin 2, 1(s(t) = n) which gives approach requires determining the optimal weighted sum rat

t=1 . .
a measure of the expected video quality for sensan the yectorr* first and then finding a resource allocation veator
current RAB [10][12]. Because in the actual deployment th@at achieves* within the RAB.

resource allocation is performed before the video packets a
generated, the utility is not considering the visual sigaifice

of each packet per-se but is Computed based on the expectéﬂl this Section, we prOVide the slot allocation solution for
video delivery utility, q,,, and the amount of MAC frames Multi-camera video transmissions with limited informatio
transmitted. However, it is possible that some packets are dhe proposed Delay-Aware Resource Allocation (DARA) ap-
able to meet their TTS deadline if the timeslots for sensorProach comprises two steps. The first step determines the
come too late. In a multi-camera sensor network, this pmb|éNe|ghted sum rate a”OC&tiGﬂUSing the deadline distributions
becomes more complex since different sensors have differ& and the expected video delivery utiliy, of the video
TTS deadlines for their packets. In this paper, we modBitsteams. In the second step, the slot allocatios deter-

the different de'ay sensitivities amongst tié sensors by mined Using the DARA algorithB]in order to achieve the rate
the sensors’ discounting of the value of upcoming times'oﬁlocaﬂon r. Because the video characteristics (|e deadline

within the slotframe. Letw,, be the weight vector of size distributions) are changing over time, the slot allocatien
T for sensorn, wherew, ; € [0,1] is n™ sensor's weight of done for each RAB. We note that deadlines and delays do not

timeslott. We normalize the weight vector by setting ; = 1 need to be aligned with the RAB duration since the importance
and, by definition:Vn, ¢ : w,, > wy.41, SiNce the sensor’s of slots is not affected - sending packets in early slots will
valuation of transmission opportunities is decreasing wiihe Satisfy the deadline requirement better than in later slots

as packets begin to expire. Exampleswof for four different ~ Note that each RAB vectarcorresponds to a weighted sum
sensors are given in Figure 2. The expected discountetyutifiate allocation vector according to[(B). However, the inverse

I1l. DELAY-AWARE RESOURCEALLOCATION

of sensorn is then given by: is not true - it can be the case that there is no RAB vectran
- achieve a givemr. Hence, only certain values of the weighted
Qn(s,Wn) = Guh Z“’ A(s(t) = n) L sum rate can be achieved by the slot allocation, depending

on the discounting weights. We writ8({w1,...,wy};T) as
the set of achievable weighted sum rate vectors given weight
..., wy and a RAB withT slots.

t=1
The goal of the LPBR is to maximize an_
objective function of the sensors’ discounted utilities '
W(Q1(s,w1),....,Qn(s,wn)). This definition of the A. Weighted Sum Rate Allocation
objective function W is general enough to include the |f g sensors are not delay-sensitive, i, ¢ : Wny =1,

objective functions deployed in many existing works. Fahen the slot allocation problem is easy since it reduces to a
example, one can use the weighted sum of utilities of %ﬂmple weighted sum rate allocation problem.
N

sensorsW (Q1 (s, w1), ..., Qn (s, wy)) = Z_:l nQn (s, Wy) r* = argmax{W(Q1(r1), ...,Qn(rn))}
where{a, }neq1,.. vy are weights satisfyingy, < [0, 1] and subjectto r € B{wi,....,wn;T})

.....

(4)

N

> a, = 1. The resource allocation problem for the LPBR ] N

n=1 , o . wherer € B({wy,...,wy;T}) simply means)_ r, = T and
can then be formally defined as the derivation of the optimal n=1

RAB vectors* that maximizes the objective function of the?” : 7n € {0,1, ..., T'}. _
sensor’s utilities: Since slots have equal value to sensors, it does not matter

. which specific transmission opportunities are allocatetiémn
5 s max{W(Qi(s, w1), .., @n(s, wn))} (2) within a RAB. Therefore, once the optimal weighted sum rate
subject to [sflo < T allocation vector* is determined, an optimal RAB vectet

where ||s||o represents the number of non-zero elements (Which is obviously not unique) can easily be determined.(e.
vectors. Since there ar&/” possible RAB vectors, exhaus- Uusing weighted-round-robin schemes or "water-filling"asér
tive search for the solution tg1(2) is clearly very complermyv gies). However, if video transmissions are delay-seresitie
for modest values fotV and 7. Thus, we try to solve this Positions of slots will have different impacts on the expelct
problem in an alternative way. Frorl (1) we can see that thélity of each sensor’s bitstream since the early transiors
slot allocations influences thex™ sensor’s utility through term opportunities can satisfy the deadline requirements mase e

T ) . ) ily. Therefore, delay sensitivity makes the resource allion
tE wn,11(s(t) = n). We define this term as theeighted sum problem significantly more difficult.

=1 . . . . L .
rate and write Since in most scenaridg|(4) is a convex optimization, variou
T efficient optimization methods [26] can be used to solve it
Tn = an,tl(s(t) =n) (3) to obtain the weighted sum rate allocation vector. However,
t=1

. . SNote that we use “DARA approach” to refer to the whole apphoand
The weighted sum rate can be interpreted as the expect§gha aigorithm” to refer to the algorithm in the second stepthe DARA

number of packets that can be sent before their correspgndipproach.



Aég:éigﬁmlli '.::ﬁ'a)'A""are Resource Allocatic characterization of the performance of the proposed DARA
( ) algorith approach. In particular, we will prove that the proposed PAR

INPUT: The targeweighted sum ra allocatior

vector r*, t =1 approach achieves the optimal weighted sum rate alloctdion
OUTPUT: The RAB vectors the exponentially decreasing weights in infinite time homniz
gg‘ gaT r and show the performance gap is bounded for finite time
pFind the index T horizon.
n' = argmax f"w’ ( Z w,, ) IV. ANALYTIC CHARACTERIZATION OF NON-STATIONARY
Set s'(t) = n" = PoLICIES OFDARA
Update r as follows: ]
f.=f.—w. and We characterize the performance of the DARA approach
Lo=fyn=n in various deployment scenarios. Our analysis focuses on
Sett —t+1 exponentially-decreasing weight distributidnghat is, for each

_ untl ¢ = T +1_ : : sensorn, there exists a discount factéy, € [0,1) such that
even if we have determined the optimal weighted sum rafe , — s:-1 Since the focus is on the weighted sum rate

allocation vector™ € B({w1, ..., wy};T), itis unclear which yector sets, we simplify the notation and write the set of
RAB vectors™ corresponds to the optimal utility allocationachievable rates a8({41, ..., on }; 7).

(i.e. with respect to distortion reduction). To address,tim the _ . . )

next subsection we propose an efficient algorithm to compute 'dentical Discount Factors and Infinite Horizon

the corresponding RAB vectargiven the weighted sum rate Here we assume that sensors have an identical discount

allocation vectorr € B({w1,...,wy};T) determined in the factor and RAB duratioll" — oo. Under this assumption,

first step. we study the set of achievable weighted sum rate vectors and

prove the optimality of the DARA approach. Note that in this

case, the second and third components of the allocatiorianetr
Given a weighted sum rate allocation vectef <€ g not affect the resulting resource allocation since tveiies

B({wi,...,wn};T), we want to find a RAB vectos that f 51| sensors are the same.

achievesr®. This is achieved by the DARA algorithm, pre- Tne first step to solve the slot allocation problem is to

sented in Algorithm 1. characterize the set of achievable weighted sum rate alloca
In slot, the senson™, 1 <n* < N, with thg largest value tjon vectors such that we can determine the optimialby

of the resource allocation metrigf/.w?. ,( > wy- )77, solving the optimization probleni](4). When sensors have an

T=t+1

_ _ . | T=tt identical discount factor, the sum of sensors’ weighted sum
will be given the transmission opportunity of the curremttsl o satisfies:

where i, v,y € R are algorithm parameters to trade-off the N -
three components of the metric: ZT _ Zét—l __1 (5)
« f, stands for the distance to the target weighted sum rate ot " =1

1-9
allocation of sensog from the current allocated WelghtedThe above condition is necessary but not sufficient for the se

zgrp] rate.; s_?nscf)rf with -Iar.g@ﬁ;l .shou:ﬁ pedglven dthe of achievable weighted sum rate vectors. For example, |epo
Ia:?gfrr' priority of transmission since their demands alg sors are extremely delay-sensitive (i.e: 0), then the set

, : of achievable weighted sum rate vectors includes onlyXhe
» wy accounts for the benefit of allocating the curr

eny
) . ectors{V 1,....N}}:r=1(0,... ...,0) wherer,, =
timeslot to sensom; sensors with largeww, ; should {#n € {1,...N}}:x = (0, .., ) "

be ai the hiah ority of t A ] h 1. If the condition is also sufficient, then the set of achidgab
€ given the higher priority of ransmission sSINCe es&;qq s maximized. The following theorem determines when
sensors can increase their video quality more if th

i it in th ¢ slot: e@) is also sulfficient.
raTnsm| i the current slot, Theorem 1:Suppose the weight distributions are

e Y. wy, represents the urgency of allocating the cuexponentially-decreasing, sensors have an identicabdigc

T " factor Vn : 6, = ¢ and the RAB durationil’ — co. We
rent slot to sensom; sensors with lower > w,, can achieve the following set of weighted sum rate vectors

N

B. Delay-Aware Resource Allocation Algorithm

T=t+1 . .
should be given the higher priority of transmission sincB({J, ...,d};00) = {r : rm = T} if and only if the
it becomes more difficult to satisfy their demands in thgiscount factors > 1 — 175#
future. w

The choices ofs, v, v € R will depend on specific deployment . . &
scenarios. In generaf,, becomes more important with IargerWe write the weighted sum rate, asr, = > 67~ 1(s(r) =

Proof: Since the weights are,, , = 6'~, based on[{3),

=1
. . L We also writer,, = r,(1) indicatiTng that it is the
, becomes more important with largerand n)'. " AN
Hir Wnst P ge T:%:Hw"’T weighted sum ratecalculated at timeslot .1In general we
becomes important with smaller. can define as the weighted sum rate calculated at timeslot

The proposed DARA algorithm requires only statistical in-
formation of sensors’ video transmissions (i.e. the distl:iog 40ur goodness-of-fit tests show that, over a large ensembigeadline

iah di . | d . | . . distributions obtained from real video streams (e.g. Fég); the exponential
weig tS) and Is simple and easy to implement in practlcgﬁ tribution achieves the best log-likelihood ratio in qmarison to the Half-

systems. In the following section, we provide the analytigormal distribution and the Generalized Pareto distriuti



. Similar to the Bellman equation in dynamic programming;, }. This is achieved whew = {1/N,...,1/N}. Therefore

we can decompose into the current rate at time slot 1 and the- 1 — 1/N. ]
continuation weighted sum rate from timeslot 2: Theorem 1 states when the discount factor is larger enough,
0o i.e. video transmission is not very delay-sensitive, thiease
(1) = > 67 '(s(r) =n) achievable weighted sum rate vectors can be maximized. In
T=1 (6) the other extreme case, whén= 0, only N finite weighted
=1(s(1) =n)+4 22 o7 1(s(7) = n) sum rate allocation vectors can be achieved as we mentioned
= 1(s(1) = n) + 67, (2) earlier.

The result of Theorem 1 is important for the resource
Similarly, 7, (2) can be further decomposed into the currerfliocation design problem since we need to understand what
rate at timeslot 2 and, (3). We call the vector of weighted can possibly be achieved by the DARA approach (since the
sum ratesr in the setB({J,...,6};00) a feasible vector first step of the DARA approach needs to determine the target
of weighted sum rates. The main idea of the proof is weighted sum rates*). Whens > 1 — 1/N, we can simply
to show that whens > 1 — 1/N, for any¢ > 1, any obtain the optimal allocation* by solving the following

feasible vectors of weighted sum raté$) € B({J,...,6};00)  optimization problem

can be decomposed by a vector of current reilisés(t) =

1),..,1(s(t) = 1)]” and a feasible vector of continuation r* = argmax W(Qi(r), .., @n(r))

weighted sum rates(t+1) € B({4,...,6}; 00). As long as the . N 9)

subjectto > 7, = 5

n=1

above holds, we can pick any feasihiél), and decompose
it to determine the current vector of weighted sum rates ;?h timizati bl . ¢ | peagy
timeslot 1 (i.e. to determine which sensor transmit at tiotes IS optimizalion problem 1S easy 1o solve w IS a
. convex function in(rq,...,rn). For example, if the objec-
1). Since allr(1) is feasible, we can decompose it to determinteve is to maximize the minimum of the weighted sensors’
the current vector of weighted sum rates at timeslte. to g
determine which sensor transmits at timeglotin this way, utilities, i.e. W' = H%m Ondnhinry, then the solution can be
we can obtain the slot allocation policy that yields the wect
of weighted sum rates = r(1). =
For easier exposition of the proof, we normalizeby 1—4, the optimal allocationr* is determined, we then can run
yielding the normalized weighted sum ratg, which repre- the DARA algorithm to find the optimal resource allocation
sents the weighted average rate of senso€onsequently, a vector s. When sensors have an identical discount factor,
vector of normalized weighted sum rateds feasible if it is in each slot, finding the sensoat*, 1 < n* < N, that

-1
N o
obtained analytically as = L(l —9) aa"‘;—"h’l"] . After
—

in B,({4,...,0};00) = {v: Z v, = 1}. The decomposition maximizesfkw?, ( Z wm) is equivalent to finding the

n=1

of v(t) can be written as sensor with the maxmunﬁn The following theorem proves
o that the DARA algorithm is able to achieve any weighted sum
va(t) = (1—0) > 67 '1(s(1) =n) rate vector in the se8 and hence, the optimal* can be
- - )T(:t( ) n) determined.
@) Theorem 2:Suppose the weight distributions are
+(1-9) §- 67D 1(s(r) = n) exponentially-decreasing, sensors have an identicabdigc
_ a- )1(7( t)+i n) + Son(t + 1) factorVn : 6,, = § and the RAB duratiod’ — co. For any

target weighted sum rate vectore B({J, ...,d}; c0) and any
Hence, our goal is to show that whén> 1 — 1/N, for §>1 - 1/N, the resource allocatios generated by running
anyt > 1 any feasible vector of weighted sum rate§) € the DARA algorithm achieves.
B, ({4, ...,0}; 00) can be decomposed into a vector of current  Proof: We have proved in Theorem 1 that, whén>
rates[1(s(t) = 1),...,1(s(t) = N)]* and a feasible vector 1 — 1/N, at any timeslot, any feasibler € B({9, ..., 8}; 00
of continuation normalized weighted sum rate§& + 1) € can be decomposed into a vector of slot allocafibf(¢) =
By({9, ..., 0}; 00). 1),...,1(s(t) = N)]T and the continuation weighted sum rate
Suppose time slot is allocated to sensot. Thenv(t) can r(t + 1) € B({J, ...,d}; o) as follows: (whens(t) = n)

be decomposed as follows,
rn(t) =1+ 0r,(t+1);¥m #n:rp(t) = orp(t+ 1) (10)
v (t) = (1 = 6) + dvn(t + 1) ®) _ N _ _ _
Vm # n : v (t) = v, (t+ 1) This decomposition determines which sensor to transmit at
timeslott. In the DARA algorithm, we start with setting the
target weighted sum rate vecter= r(1) at slot 1, which
v (t is then decomposed to determine which sensor to transmit
1) = vm(t> . It can be easily verified tha‘[: vn(t+1) =1is intimeslot 1. Then we decompose the continuation weighted
sum rate vector and determine which sensor should transmit i
, i timeslot 2. By performing the decomposition in every tinogsl
we also needn : v, (¢ +1) > 0. This requires) > 1 —wn(t).  of the RAB, we can determine which sensor should transmit
Therefore, the minimum discount factords= max min{l = iy every timeslot. Based on the proof of Theorem 1, we

The continuation normalized weighted sum rates at tird
can therefore be derived ag (¢t + 1) = M

automatically satisfied. However, f@r(t + 1) to be feasible,



can do this decomposition forever because every contimatio determine the exact set of achievable weighted sum rate
weighted rate vector is feasible. Moreover, the weighted swectors. Hence, we will instead use approximate sets t@solv
rate achieved ag — oo will be r. m the optimization probleni{4).

B. Finite Time Horizon We notice that every feaS|bIe allocation vectds bounded

In practice, the channel coherence tirfieis not infinite.
Hence, the RAB duratio” is finite. In the following, we proxrmate set of achievable werghted sum rate vectors can be

characterize the performance gap of the proposed algorltlgp{w wab:T) = {r: Z rn = R} with Z mmw <
1yeesy WN g, = n — n,t

by Zmlnwnt < Z rn < Zmaant Hence, an ap-

when T is finite instead of infinite. Letv = TT—" =1
> ott I i _— .
t=1 R < Y maxw,,. For fixed R, when the objective function
v = be the normalized weighted sum rate allocation = t=1 » o )
z 5t-1 W is convex in{ry,...,rn}, the optimization probleni{4) is

when the time horizon is finite and infinite, respectivelysThconvex and it is thus solvable in polynomial time. For exanpl
following proposition derives an upper bound for the distan if the objective function is the minimum of the weighted
of the achieved weighted sum rate allocatigh (by running Sensors’ utilities, namely , then the solution can be olein

the algorithm for onlyT" slots) from the optimal normalized analytically asr;, = % Once the approximate opti-
weighted sum rate®. Z
Proposition 1: [vl — v2°| < 6T, mal weighted sum rate vectot is obtained, we can construct
Proof: We can writev? andv® as: the slot allocation vectos using the DARA algorithm. The
. " " . performance of using the approximation set and the DARA
S8t 1(s(t) = n) S5t (s(t) = n) algorithm will be evaluated in the next section.
— t=1 andv®® = t=1 _ V. EXPERIMENTS
ZT: gt—1 > ot In this section, we evaluate the performance of the pro-
t=1 t=1 posed resource allocation solution via: (i) numerical stud
(11) ies; (ii) experiments using the IETF 6tisch simulation of
Finally, since, the IEEE 802.15.4e TSCH MAC [[1][2] instantiation of the
- IEEE 802.15.4e TSCH MAC and standard surveillance videos
T > (1-6) 3 6 11(s(t) = n) encoded with H.264/AVC under the assumption of 4, 6 and
ot (12) 10 visual sensors sharing the IEEE 802.15e TSCH times-
v < (1—6) Z L1(s(t) = n) + 67 lots. These were found to be representative cases under the

bandwidth constraints of the physical layer of loT-oriehte
standards/[1][2][B].

we thus have® — vl < §7. Secondly, we have
Lo o A. Benchmarks
v — ol > =’ _ Ust®)=n) t;‘s o= Three benchmark policies are used in our experiments:
" PIh i ot=1 (13) « (i) round-robin slot assignment (“Round-robin”), which
s T is the most typical option in WPAN MAC designs
= —(1=08)1%r X 0" 1(s(t) = n) M8
=t « (ii) rate-proportional round-robin slot assignment (“R-
Srncez §11(s(t) = n) < i st—1 — 11—:55, we have Round—rqbirr”) [19], where the average bit-budget of each
=1 =1 sensor within each RAB is used to allocate a proportional
number of slots in a round-robin fashion (higher budget
v — vl > —(1-6)2 5T Z §11(s(t) = n) 14 corresponds to more slots for a sensor);
ST 1 ET . (14) « (iii) rate/delay-proportional round-robin slot assignrhe
>-(1-0)1%r=5 = ¢ (“RD-Round-robin”) [20], where, beyond the bit-budget,

the delay deadline of each sensor is also used to weight
the slot assignment according to a heuristic rule, i.e.,

Proposition 1 proves that the performance gap by limiting beyond rate, the delay dea_dlme is taken into account in
the slot (i.e. time) horizon to be finite. Moreover, the gap the proportional slot allocation.

can be made arbitrarily small by choosifiylarge enough.  Note that the optimal slot allocation ("Optimal”), i.e. the
Therefore, the DARA algorithm asymptotically achieves th&olution to [2) that is computationally hard: since we can
optimal weighted sum rate vector determined in the first St@boose any one of theV sensors in each one of thg

NT. For example even with 2 sensors and a RAB with 100

C. Resource Allocation for the General Case timeslots, we need to search amongst more tHgf possible

In this subsection, we study the resource allocation probleslot allocations.
when sensors have heterogeneous discounting weights antiable IV lists the computational requirements of each pol-
when the time horizon is finite. It is analytically difficulticy, including the proposed DARA approach. The first steps

In summary, we have-67 < v2° — vl < 67, which means
[oT —p2e| < 7. [ |
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TABLE IV 1
COMPARISON OF DIFFERENT POLICIES IN INCREASING ORDER OF p
COMPLEXITY. ’

Policy Computational Complexity > 0
; Periodic allocation 07" RAB slots in 50851 0
Round-robin suk-linear time, O (T E L8l 2
1) Calculate avegze 3I-budget pe E o
; RAB in linear time, O [ N° 2 S ors o

R—Round-robin 2) Calculate N indices in linear F 00

time, O(NT) & 077 —— DARA(5=0.99)
RD—Round-robin As above E o6s| E°;”d_§°z”f ?50'93)99)

(=} —Round—-Robin =0.
1) Solve the convex optjmizatio(9) Z 06l| b DARA (5=0.995)
Proposed in polynomial time, O zN‘* ' 6 Round-Robin (6 = 0.995)

DARA approach izrzlingz:‘rl(t:il:’rl'lzgeO]\? ]\}99)(395 analytically 055 R-Round-Robin (3 = 0.995)

o
3

Exhaustive search %mor N7 possible 2 3 4 5 6 7 8 9 10

Optimal policies, i.e. O (NT Number of Sensors N

of the R-Round-robin. RD-Round-Robin and the proposé;ﬂp' 3. fPerformance comparison of various approaches uitdgtical

. ’ : oo t factors.
DARA approach involve solving convex optimization problemIscoun o (.Jrs . o _
which can be solved efficiently by many existing algorithms 1) !dentical Discount Factors:We first investigate the
[26]. The second steps are more critical which determin&€narios where sensors have identical discount factors. |
the slot assignment among the sensors. Since the numbeFigiire 3, the utility achieved by our proposed DARA approach
visual sensors is limited (i.e. in the vast majority of case¥d the two benchmarks (R-Round-robin and RD-Round-robin
N < 20), the complexity of determining the weighted sunsoincide for identical discount factors) are shown for eas
rate allocation (i.e. the first step of our DARA approach)jumbers of sensord’ € {2, ..., 10} and two discount factors
is low. Moreover, since our DARA algorithm ensures thatow = 0-99 and dnigh = 0.995. The resource allocation block
the complexity of determining the slot allocation (i.e. th&iZ€ iS set to" = 500 slots and, for ease of illustration,
second step of the DARA approach) is linear T the the minimum utility of [I5) has been normalized to for each
overall computation complexity is not a big concern. Notat th@lgorithm. As increases, each sensor is able to obtain less
performing the exhaustive search to determine the optitatl slimeslots and its utility is thus decreasing. Moreover,takie
allocation is extremely complex, i.€(N7), which prevents of later transmission opportunities is higher for largduea of

it from being implementable in practical systems. the discount factor and thus the utility is higher for suckesa
The proposed DARA approach significantly outperforms the
B. Numerical Study other benchmarks.

In this subsection, we present numerical results withtutili ~ Since the DARA algorithm is adaptively changing the slot
functions for each sensor that correspond to Theorems 1 @&s$ignment in order to achieve the target objective functio
2 and also use normalized scaling for the expected utilitief (L5) under Algorithm 1, i.e. maximizing the minimum
While this study does not directly map to real video sequencélility amongst all sensors, it is important to study whethe
and an IEEE 802.15.4e network, it establishes the validije algorithm can actually achieve the target objectivee@i
of the proposed DARA approach as a general non-stationdifjs max-min objective, the target utilities for all sersare
multi-user resource allocation method in a “bias-free” mam determined to be the same for all Sensors, i.e. 52.9, in tee fir
i.e. regardless of the specific settings of the WPAN and vid&éep of the DARA approach. Table V illustrates the utilitafs
codec used. Thus, beyond the specific context of this pap@gividual sensors achieved by the proposed DARA approach,
via such numerical studies one can extrapolate the ussfulnBound-Robin and R-Round-Robin. The network size is set to
of the DARA approach for other cases, e.g. in streaming B¢ NV = 6, the discount factor i$ = 0.99 and the RAB
audio or other error-tolerant multi-sensor data volumedeun iS set to7 = 500. As we can see, the utilities achieved
delay constraints. by running the DARA algorithm are very close to the target

We assume that each sensor produces video traffic whoédities. However, both Round-Robin and R-Round-Robin do
MAC frames (packets) can be characterized by a nornmt achieve the target utilities that maximize the minimum
distribution with mean200 and standard deviatio2o, i.e. Utility amongst all sensors.

Vn : hy, ~ N(200, 20). The expected video delivery utility per 2) General Discounting FactorsWhen the discounting
sensor is normalized to unity, i.8n : g, = 1. Under these factors are not exponentially decreasing or identical fibr a
conditions, we aim to maximize the minimum utility amongssensors, the proposed DARA approach may not achieve the
all sensors, namely optimal performance. Figure 4 illustrates the max-minitytil
of sensors (normalized {6, 1]) achieved by all approaches for
) n (15) two sets of discounting weights and sensors in the network.
subjectto r € B({wy,...,wn};T) In the first set of simulations (solid curves), the sensors’
whereVn : an, — 1/N. Unless otherwise stated, the DARAdisc:ounting factors are seIected_ fr¢®c990,0.992] with equal
parameters are set to e= v — v = 1. mtervals’. Ir_1 the sgcond set of simulations (dashed curttes)
sensors’ discounting factors are selected frn995,0.997]

5Similar numerical experiments have been derived for otfigtrildutions with equal intervals. This set of simulations serve as a eoun

and other settings - we only illustrate this case as a reptatiee one. terpart for the case where sensors have identical discount

W = min a,qphnrn
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of the original videos at spatial positiond00,100) and
(250, 250), respectively. By using H.264/AVC encoding in
é low-delay/quantization-stepsize mode, average vide@toi

2
= between 25-50 kbps where achieved per visual sensor for the
1S
2o CIF-10Hz case, while 4-13kbps where achieved for the QCIF-
é ore —4— DARA (3= [0.99 952] | 4Hz case.
£ 07| —5— Rouns-robin o 000 0.952) \ﬁf‘g\] 2) System DescriptionTheseN = {4,6,10} views were
© . . . . .
E 065 —9—;R;“"df;b';@gl”{gigﬁiﬂ;}) ¢ streamed via the 6tisch simulation of the TSCH MAC of
(s} 4 —Round—Robin = (0. . . .
Z el > DARA (=109950.997) ] IEEE 802.15.4e. For our experiments, each bitstream was
9+ Round-Robin (5 = [0.995 0.997]) . . L
0.55| -4 R_Round-Robin (6 - [0.695 0.967]) ] encapsulated with the MKV container, as: (_|) we have a_lready
o5l RD-Round-Robin (3=[0.9950997)) i developed low-delay open-source streaming mechanisms in
2o e berofsensomn 2" our prior work [6] that derive the hinting description of the

content in real time and are tolerant to a very wide range
Fig. 4. = Performance comparison of various approaches uddierent  of packet loss rates; (i) our prior work1[6] can handle the
discount factors. TABLE V streaming service beyond the WPAN within the 10T framework
ACHIEVED INDIVIDUAL UTILITIES BY DARA, ROUND-ROBIN AND of Figure 1, thus allowing for the provisioning of an endeod
R-ROUND-ROBIN. loT-based multi-camera video streaming solution. Thézeii

Sensac 1 2 3 4 5 6 . . . .. .
DARZ o€ 522 52E [50€ 52E [ 52¢ hinting description contains the transmission deadlinas f
RouncRobir [42.E] 89.€ | 63.€ | 38.4 | 62.F [ 45.7 each video frame (and consequently for each MAC timeslot)
R-RouncRobir | 58.€ | 48.€ | 47.€ | 53. | 46.¢ | 54.C as well as its size and frame typ¢I( P, B}). Thus, each
factors illustrated in Figure 3. When solvirlg (4), we uge-= sensor pnly need_s t_o gen(_arate its weight dlstnbutlonscbaa_e
T the hinting description of its recent content and commutrica

> minw, ;. DARA again significantly outperforms Round-them, along with the other three parameters g, hy, to
fal)in, R-Round-robin, and R-D-Round-robin. Importanthe the LPBR once every 12 slotframes. The LPBR solves the

max-min utilities achieved by DARA are similar to those irPPtimization problem based on the parametes g, hn to
the case of identical discount factors. The latter factdatis ©btain the optimal weighted sum rate vector, and then derive

that the deviation from optimality does not bring substntithe slot allocation via Algorithm 1, which is communicated
penalties for DARA. to all sensors in downlink mode in order to be used for the
subsequent 12 slotframes.

C. Application in Video Transmission under IEEE 802.15.4e 3) Experimental Settings and Video Quality Characteri-
TSCH MAC zation: The utilized settings are representative to a video
To validate the proposed DARA approach under realistigirveillance or monitoring application where the WPAN dxhs
conditions, we used the IETF 6tisch simulator (which igionitoring could allow for the content to be streamed over an
associated with the on-going Berkeley openWSN implemel®T-enabled application to remote users having a variety of
tation for the IEEE 802.15.4&][1][2]) and can be deployed dievices connected via a variety of networks. The parameters

TelosB motes with the CC2420 transceiver. Several camd@s our experiments wereN = {4,6,10}, Tsp = 1 s,
sensors can be coupled with this setup (e.g. MEMSIC's Lotisot = 7.7 ms, hy, = 1, bpacket= 110 bytes,d,, € [50, 600]
or IMB400, or EURESYS's Picolo V16-H.264) in order toms (set randomly for each sensor), VideoLAN x264 encoder
capture and encode video content with the H.264/AVC codwdth configuration [—preset placebo —tune psnr —muxer mkv —
and encapsulate it in MP4 or MKV format. However, in ordekeyint 40,16 —crf 44,35], i.e. one | frame every 4 seconds and
to provide experiments under controlled conditions andhwitwo crf values (corresponding to quantization stepsizapse
well-established and publicly-available content, weéasten- parameters led to variable-bitrate encoding with averaggsr
coded surveillance videos from the http://pets2007.nebsite 0f 25-60 kbps for CIF-10Hz and 4-13 kbps for QCIF-4Hz,
(PETS 2007 benchmark data) after converting them to: (@spectively. For the utilized content, application cahtand
4 views of CIF resolution at 10 Hz; (i) 10 views of QCIFencoding settings, we have verified via visual inspectiat: th
resolution at 4 Hz. These can then be packetized and streamed (i) mean PSNR between 20 25 dB corresponds to useful-
by each openWSN-based TelosB mote under a pre-established quality video, i.e. blurriness and frame drops occur in
transmission delay deadline for each video. several sections but main features and motion of objects
1) Content GenerationOut of a wide range of experiments or people is discernible;
performed, we present a representative case using dataset (ii) mean PSNR between 25 30 dB corresponds to good-
S1 from the PETS benchmark. This dataset comprises 2 quality video (low blurriness and almost no loss of motion
min 20 sec of 720576 RGB 25 Hz video stemming from or objects’ characteristics),
four different cameras of a public area. This led to four e (iii) mean PSNR above 30 dB corresponds to high-quality
CIF-10Hz video feeds by filtering and downsampling and video (video looks almost like the original albeit with
frame downconversion, which correspondXo= 4 sensors. very minor artifacts).
For N = 6 and N = 10 sensors, the four feeds where 4) Experiments:Clearly, the results will vary depending
further downscaled to QCIF-4Hz, and two and six additionan the delay deadline imposed on each sensor as well as
video feeds where created by cropping a QCIF-4Hz sectitt,e number of sensors in the WPAN. However, one other
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Fig. 5. Worst-case results: Mean PSNR (luminance chanr®), mer Fig. 7. Average-case results: Mean PSNR (luminance chaniil per

sensor for different methods (averaged over time and owaraleexperiment sensor for different methods averaged over: time, expetimepetitions and

repetitions) under maximum alignment. all possible misalignments.

TABLE VI
a5 | P-RoundRobin & Round-Robin - RO Round Robin -5 DARA] AVERAGE PSNR (N DB) OF DIFFERENT POLICIES
N high Round- | R-Round-| RD-Round-
quality N'| ‘Robin | Robin Robin | DARA
A good 4 10.9 12.7 11.0 15.3
£ quality WISrSt'Casse 6| 13.6 12.3 10.1 15.7
] usetal (Flgure®) 0| 152 | 135 125 | 196
Best-Case 4 10.9 24.1 24.5 27.0
bad (Fiquree) | 6| 137 | 252 259 | 299
quality 10 15.1 22.6 23.3 29.9
Average-Case 4 10.9 22.3 23.1 27.5
. 6 13.7 20.9 20.4 25.4
Sensor Index Sensor Index Sensor Index (Figure 7)
Fig. 6. Best-case results: Mean PSNR (luminance channglpeiBsensor for 10] 152 21.2 20.8 26.9

different methods (averaged over time and over severakignpet repetitions) ] o
under maximum misalignment. is the only method that can ensure the deadline-abiding

transmission of all video bitstreams with useful quality.
aspect that is important in the achievable performancesés th |n practice, the video bitstreams of different sensors have
difference between the Welght distributions of the sendeos random a"gnment conditions. ThUS, Figure 7 presents the
instance, the DARA approach will have the maximum benefiiean PSNR averaged under random alignment conditions
from diversity in the weight distributions as it will assigine i, the IEEE 802.15.4e TSCH MAC slotframe assignment.
RAB slots according to the delay tolerance and the overall Bimilarly, as before, while all other algorithms have one or
budget of each sensor. The degree of diversity in these Weighore sensors with average PSNR below 20 dB (i.e. unusable
distributions depends on: (i) the transmission delay deesll video quality), the DARA approach ensures that usable video
imposed; (ii) whether some (or all) sensors have their inteayality is maintained for all sensors. Thus, DARA does not
frames in synchronized transmissions. The prominencetrafinomy lead to the highest average PSNR across all sensors,
frames is due to their large size in comparison to the rem@ginipyt it also ensures that the minimum PSNR achieved is
frames, which causes a large peak in the weight distributi@lough to sustain usable video quality under the imposeydel
at the particular RAB where their appear, as shown in Figug@nstraints.
2. We thus present three separate sets of results. Spéyifical |n Taple VI, we report a summary of the average PSNR
in Figure 5 and Figure 6 the average PSNR per sens@thieved by different policies in different scenarios. Asm
(luminance channel) is presented when imposing minimufined previously, PSNR values above 20dB were deemed to

diversity (i.e. worst-case scenario where all I-frames bf &orrespond to usable visual quality for the spatial resmiut
sensors are temporally aligned) and maximum diversity én thnd frame rate of the utilized video material.

sensor transmissions (i.e. | frames of sensors are as tathypor
misaligned as possible), respectively. As expected, theltse VI. CONCLUSIONS
demonstrate that, under maximum I-frame alignment (worstWe present a new solution for slot allocation of multi-
case scenario), all algorithms achieve similar perforrean@camera video streaming that is validated under IEEE 802¢15.
they will only be able to accommodate only 1 5 sensors withireless personal area networks, which are expected taeco
mean PSNR above 20 dB), which means that the video of thelominant deployment framework for video streaming under
majority of sensors is of unusable quality. the Internet-of-Things (IoT) paradigm. Within the resaesrc
Under maximum misalignment (i.e. best-case scenario @fnstrained context of 10T applications, unlike existingriks
Figure 6), Round-robin continues to fail as its PSNR is almothat require packet-level cross-layer information to perf
always below 20 dB per sensor and R-Round-robin and RBesource allocation, we consider the more practical casgavh
Round-robin achieve moderate success in transmittinguliseonly limited statistical information of each sensor’'s peick
quality video (i.e. PSNR above 20 dB). On the other handeadlines is available. A unique characteristic of the psaol
the DARA algorithm not only succeeds in transmitting usefuDARA approach for resource allocation is that it yields a-hon
quality video from all sensors, but also achieves mean PSNRtionary slot allocation policy by updating the indicasai
above 25 dB (i.e. good quality) for all sensors. This indisat manner that depends on the allocation of previous slots Thi
that, even under the best-case scenario, the DARA algoritlgnin contrast with all existing slot allocation policiescsuas



round-robin and its variants, which are stationary becdise
allocation of the current slot does not adapt to the allocati

of previous slots. Our numerical studies and experimentts Wiy, w. 3. Neely, E. Modiano, and C.-P. Li
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[21] A. Eryilmaz and R. Srikant, “Fair resource allocation wireless
networks using queue-length-based scheduling and coogesintrol,”
IEEE INFOCOM2005.

“Fairness and wyati stochastic

H.264/AVC encoded video and the IETF 6tisch simulator of control for heterogeneous network$£EE INFOCOM2005.

the IEEE 802.15.4e TSCH indicate significant performan¢!
improvements against benchmark solutions. The preseat alg

rithm is constructed to operate in a particular setting boan
be applicable to many other resource allocation problems
many other settings.
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