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Abstract— This paper focuses on analyzing the interactions emerging 

between users in online communities. Network utility maximization 

and other methods can be used to achieve efficient designs when the 

communities are composed of compliant users. However, such 

methods are not effective and efficient when the communities are 

composed of intelligent and self-interested users (multimedia social 

communities, social networks etc.), because the interests of the 

individual users may be in conflict. In our prior work, we designed 

social reciprocation protocols by assuming a stationary community in 

which a continuum population interacts. We proved that given these 

assumptions, users have incentives to voluntarily operate according 

to pre-determined social norms and provide services. In this paper, 

we extend this study to analyze the interactions of self-interested 

users under a social norm in an online community of finite population 

and without making stationary assumptions about the community. To 

optimize their long-term performance while operating in the 

community, users adapt strategies to play their best response based 

on their knowledge by solving individual stochastic control problems. 

The best-response dynamic introduces a stochastic dynamic process 

in the community, in which the strategies of users evolve over time. 

Understanding how a community responds to incentives in the long-

term provides protocol designers with guidelines for designing social 

norms in which no user will find it into its self-interest to adapt and 

deviate from the prescribed protocol. This will, in turn, influence the 

evolution of the community and induce the emergence of cooperative 

behavior among users, thereby maximizing the optimal social welfare 

of the community. 

Keywords- Learning in Online Communities, Social Norms, Markov 

Decision Process, Stochastically Stable Equilibrium. 

I.  INTRODUCTION  

The proliferation of social networking services has permeated 
our social and economic lives and created online social 
communities where individuals interact with each other. However, 
online communities in general rely on the voluntary contribution of 
services by individual users and are, therefore, vulnerable to 
intrinsic incentive problems which lead to prevalent free-riding 
behaviors among users, at the expense of the collective social 
welfare of the community [1][3]. 

Various incentive mechanisms have been proposed to 
encourage cooperation in online communities [2][14][16], with a 
large body of them relying on the idea of reciprocity, in which 
users are rated and differentially served based on their past 
behaviors. Reciprocity-based mechanisms can be further classified 
into direct reciprocity and indirect reciprocity depending on how 
the rating score is generated. Existing direct reciprocity protocols 
[2][3] do not scale well to online communities with large 
populations of anonymous users, since frequent interactions 
between two users are required in order to build up accurate mutual 
ratings in this bilateral reciprocation paradigm. In social 
reciprocation schemes, individuals obtain some information about 

other individuals (for example, their ratings) and decide their 
behaviors toward this individual based on their information about 
that individual. Hence, an individual can be rewarded or punished 
by other individuals in the community who have not had direct 
interactions with it. Since social reciprocation requires neither 
observable identities nor frequent interactions, it has a potential to 
form a basis of successful incentive schemes for online 
communities. As such, we have developed a general framework on 
social norms in [12] to study incentive schemes based on social 
reciprocation. Social norms are defined as the rules that are 
deployed in a group of users to regulate user behaviors. In incentive 
schemes based on social norms, a label containing information 
about its past behavior is assigned to each user indicating its 
reputation, status, etc. Users with different labels are treated 
differently by other users with which they interact. Hence, a social 
norm can be easily adopted in various online communities as long 
as an infrastructure exists for collecting, processing, and delivering 
information about the users’ behaviors, such as a tracker or a portal. 

In the analysis of [12], the state of a community is represented 
by the reputation distribution of users in it. It focuses on the fully-
compliant state of a community in which all users comply with the 
prescribed social norm voluntarily and determines how to design 
the social norm to prevent users’ deviations from this state. When 
there is a continuum population in the community, the fully-
compliant state is stable since the changes in individual users’ 
reputations average out at the community level and the law of large 
numbers can be applied [18]. In a real community of a finite 
population where the law of large numbers does not hold, the 
reputation distribution of users will be disturbed by stochastic 
permutations and varies over time. Hence, the fully-compliant state 
is not necessarily stable. Such variations affect the users’ incentives 
to comply with the social norm, and these users may find it in their 
self-interest to adapt their strategies and deviate from the social 
norm as pointed in [3]. Therefore, the analysis of [12] no longer 
applies to communities of finite populations. We extend in this 
work the study in [12] to analyze the interactions of self-interested 
users under a social norm in an online community with a finite 
population. It is of critical importance to understand the users’ 
learning and adaptation behavior and how it influences the long-
term evolution of users’ strategies, which can provide essential 
insights to facilitate the design of incentive mechanisms that can 
improve the efficiency and survivability of online communities.  

The evolution of users’ strategies can be modeled as a multi-
agent learning problem (MAL). There are two prevailing agendas 
existing in the current MAL works, namely descriptive learning 
and prescriptive learning respectively.  

The descriptive agenda focuses on investigating formal models 
of learning that agree with people’s natural behavior in the context 
of other learners and analyzes properties of the game, i.e. 
equilibrium results and convergence of users’ learning and 



adaptation process [6][20]. This agenda fails to answer the question 
on how the protocol designers should design protocols in order to 
construct a multi-agent learning system to achieve some desirable 
properties, e.g. the highest social efficiency.  

The prescriptive agenda exploits how agents should learn and 
how the protocol designers should construct systems that induct 
agents to learn certain strategies and influence the evolution of the 
community to achieve certain goals [10][13][19]. However, the 
current research in this agenda mostly focuses on the repeated or 
stochastic “common-payoff” (or “team”) games where the interests 
of the protocol designers and the interests of the learning agents are 
aligned. 

We focus in this work on the prescriptive learning in order to 
design protocols to induct users’ learning behavior. Different from 
[10][13][19], the interests of the protocol designer in our work, i.e. 
the social welfare of the community, and the self-interest of an 
individual user is not aligned but rather in conflict with each other. 
Instead of restricting users’ learning and adaptation rules as in 
[7][8], we allow users to form their own beliefs depending on their 
observations from the community, and adapt their service strategies 
using best responses to maximize their own long-term utility. 
Given the users’ best response dynamics, we design effective 
protocols based on social norms which induce users learn to 
cooperate with each other and contribute services voluntarily in the 
long term. Our design also studies how the social norms need to be 
adapted to different community characteristics, including the 
service cost and benefit, the population size of the community, and 
the users' discount factor for the future utility. In the final part, we 
extend our work to consider additional issues such as the long-term 
behavior of the community when users are heterogeneous and have 
different beliefs. 

The remainder of this paper is organized as follows. In Section 
II, we introduce our proposed social norm based framework for 
indirect reciprocity in online communities and propose the design 
problem for the protocol designers. In Section III, we study users’ 
learning behavior and the protocol design to influence the long-
term evolution of the community. Section IV presents our 
experimental results and the conclusions are drawn in Section V 
where directions for future research are also outlined. 

II. SYSTEM MODEL AND PROBLEM FORMULATION 

A. Repeated game formulation 

We consider an online community consisting of N  users. Each 
user can offer some valuable services to others, such as information, 
knowledge, data files, computation resources, storage space, etc. 
The community is modeled as a discrete-time system with time 
divided into periods. In each period, each user selects an idle user 
who is not serving others to request a service [3]. The selection is 
uniformly random such that all users in the community have an 
equal probability to be chosen by a particular user. Therefore, each 
user also receives one service request from other users per period 

1
.  

We model the interaction between a pair of matched users as a 
one-period asymmetric gift-giving game to characterize the 
asymmetry of interests among users [4]. The user who requests 
services is called a client and the user whose services are requested 
is called a server. Upon receiving the request, the server selects its 
level of contribution {0,1}z  to the client, where 1z  

indicates that the server provides the requested service to the client 
and 0z  indicates that the server refuses to provide the service. 
When the server provides a service by choosing 1z , it incurs a 
cost of c , and the client gains a benefit of b  by receiving the 
requested service; whereas both users receive a utility of 0 when 

                                                           
1The analysis can be extended to a general case when the service request rate 

per period is a positive real number.  

the server chooses 0z .The utility matrix of a one-period gift-
giving game is presented in Table 1. 

The social welfare of the community is quantified by the 
average one-period utility received by all users in the community, 
denoted as U . It is maximized at U b c  if all users are 
cooperative and choose 1z  when being requested. On the 
contrary, 0z  is always chosen by a self-interested server if it 
expects to maximize its one-period utility myopically. As a result, 
the social welfare is minimized as 0U  at the Nash equilibrium 
of the one-period game with no user providing services to others. 
To improve the inefficiency of the myopic Nash equilibrium, we 
design a new set of incentive protocols based on social norms to 
exploit the repeated nature of the users’ interactions and provide 
incentives for cooperation using the threat of future punishments. A 
social norm proposes a set of rules to regulate user behaviors. 
Compliance to these rules is positively rewarded (i.e. an increased 
level of service is provided to such users) and failure to comply 
with these rules can result in (severe) punishments (i.e. a decreased 
level of service is provided). 

The regulation of a social norm takes effect through its 
manipulation over the users’ social status, as in [9]. In the repeated 

game, each user is tagged with a reputation 0,1,2, ,L  

representing its social status, where L  is the reputation length and 
also the highest reputation that can be obtained by a user. The 
behavioral strategy that a user adopts in the repeated game is 

reputation-based and represented as 0{ ( )}L , where each 

term ( )  is the contribution level of this user when it is 

matched with a client of reputation . The set of strategies that can 
be chosen by a user is finite and denoted as . Different from [12] 
where we focused on determining the complete set of feasible 
strategies independent of their characteristics or implementation 
simplicity, in this work we explicitly consider the implementation 
and designing requirements and complexity of a strategy. In 
particular, each strategy in this work can be characterized by 

a service threshold {0,1, , 1}h L . By adopting , a user 

provides services only to clients whose reputations are no less than 

h 2
. Formally, a threshold-based strategy can be represented as 

follows: 

 
1    

( )
0    

if h

if h
. (1) 

As particular cases, the fully cooperative strategy with 0h  that 

provides services to all users unconditionally is denoted as C , 

whereas the fully defective strategy with 1h L
 
that provides 

no service to any of the users is denoted as D . 

We consider a social norm ( , )  that consists of a social 

rule and a reputation scheme, as shown in Figure 1. A social rule 

{ {0, , }}L  is a set of behavioral strategies that 

specifies the approved behaviors of users within the community. 
For a user of reputation , its reputation is increased when it 

                                                           
2The existing social norm based protocols such as [5] are in fact special cases of 

the threshold-based strategy proposed here. 

Table1. Utility matrix of a gift-giving game. 

 Server 

 1z  0z  

Client b , c  0 , 0  

 



follows  and is decreased otherwise. Alternatively, the social 

rule can be represented as a mapping :  , with 

( , ) ( )  for all  and . For illustration, we consider 

social rules which satisfy the following property in the design of 
protocols: 

 

1      

( , ) 1    

0   

if h and h

if h

otherwise

. (2) 

Hence a social rule instructs a user of reputation h  to provide 

services to all users in the community, i.e. 0h  if h ; 

while a user of reputation h  only have to provide service to 

users whose reputation is also above h , i.e. h h  if h . For 

the convenience of illustration, we refer to h  as the social 
threshold, which differentiates the services that users of different 
reputations receive and provide. Users of reputations lower than the 
social threshold are regarded as “bad users”, and users of 
reputations no less than the social threshold are regarded as “good 
users”. It should be noted that when 0h  or 1h L , 

C  for all , which cannot provide differential services to 

users and thus cannot be enforced among self-interested users, as 
shown in [12]. Therefore, we restrict our attention in the design on 

social rules whose social threshold {1, , }h L  without loss of 

generality. 
A reputation scheme  updates a user’s reputation based on its 

past behavior as a server. After a server plays, its client reports the 
contribution level to some trustworthy third-party managing device 
in the community (e.g. the tracker in P2P networks), and the 
managing device updates the server’s reputation according to  
and the client’s report. Formally, a reputation scheme  updates a 
server’s reputation based on the reputations of the matched users 
and the reported contribution level of the server. It is represented as 

a mapping :   , in which ( , , )z  is the 

reputation of the server in the next period given its current 

reputation , the client's reputation , and the server's reported 
contribution level z . As an example, we consider the 

following simple reputation scheme in this paper: 

 
min{ , 1}    ( , )

( , , )
0                     ( , )

L if z
z

if z
. (3) 

In this scheme, the server’s reputation is increased by 1 while not 
exceeding L  if the reported contribution level is the same as that 
specified by the social rule . Otherwise, the server’s reputation is 

set to 0  any time it deviates from the social rule. In practice, a 
system is continually being subjected to small stochastic 
perturbations that arise due to various types of operation errors in 
the community. To formalize the effect of such perturbations on the 
evolution of the community, we assume that the client’s report is 
subject to a small error probability  of being reversed. That is, 

0z  is reported to the managing device with probability  while 
the server actually plays 1z , and vice versa. It should be noted 
that the value of  is known to all users in the community. 

B. Utility function and the designer problem 

In general, a user’s expected utility in one period depends on its 
own strategy as well as other users’ reputations and strategies in the 
community. In the beginning of each period, the tracker broadcasts 
the reputation distribution of the community, which is also called 

as a community configuration, to all users. The community 

configuration is denoted as 0{ ( )}Ln , in which ( )n  

represents the number of users of reputation  in the community at 
this time. Due to their limited processing capabilities and 
interactions with others, users can only form simple beliefs about 
the strategies deployed by other users [15]. We assume that each 
user maintains a belief that a user of reputation higher than 0 will 
comply with the social rule  in the current period with the 

probability 1 , and play D  with the probability . In contrast, 

a user of reputation 0 will play D  with the probability 1  and 

comply with  with the probability  since it deviated in the 

previous period and has been punished. 
Since a user can never be matched with itself, it is more 

convenient to compute a user’s expected one period utility by 
employing the reputation distribution of all users except itself, 
which is called as the opponent configuration. The opponent 
configuration of a user of reputation  is denoted as 

0{ ( )}Lm , which preserves the relationship with the 

community configuration as ( ) ( )m n  for all  and 

( ) ( ) 1m n . Let ( , , )v  denote the expected one-period 

utility for a user of reputation  playing the strategy  when the 
community configuration is , we can compute it as: 

 
0

0

( , , )

1
( ) ( , , , ) (0) (0, , (0, ))

1 1
1

( ) (0, , ( )) (0) (0, , ( ))
1 1

1
( ) ( , , ( ))

1

D D

v

m b m b
N N

m b m b
N N

m c
N

 .(4) 

Here ( , , ( , ))b  is the one-period benefit which this user can 

receive when its matched server has a reputation and complies 

with ; ( , , ( ))c  is the one-period cost of this user when its 

matched client has a reputation . The expected utility of a user 

complying with  is compactly denoted as ( , ) ( , , )v v . 

A user’s long-term utility in the repeated game is evaluated with 
the infinite-horizon discounted sum criterion. Starting from any 

period 0t , the user’s expected long-term utility is expressed as 

 0 0 0 0

0

( ) ( ) ( ) ( ) ( ) ( )( , , ) { ( , , )}t t t t t t t t

t t

v E v , (5) 

where [0,1)  is the discount factor which represents a user’s 

preference of the future utility. 
Under a social norm , adaptive self-interested users play the 

best response in order to optimizes their expected long-term utility. 

The best response *  for a user in period 0t  is a strategy which 

satisfies 

 0 0( ) ( )* argmax ( , , )t tv . (6) 

The best-response dynamic of users thus introduces a dynamic 
process in the community which will be analyzed in the next 
section using a Markov chain analysis. Users’ strategies in this 
process evolve over time [11]. We are interested in whether this 



process may converge to an equilibrium in the long term, i.e. each 
user holds a fixed reputation and plays a fixed strategy after a 
sufficiently long period of time, and if an equilibrium exists, how 
the protocol designer can design the social norm in order to enforce 
all users to play cooperation in their best responses. This provides 
the protocol designer with guidelines for selecting the correct social 
norm based on the community characteristics, e.g. the utility 

structure ( , )b c  and the discount factor , in order to optimize the 

sharing efficiency in the community. To formalize the effect of 
stochastic permutations, we consider operation errors with the 
probability of occurrence approaches to 0, i.e. 0 .The resulting 
equilibrium is defined as a stochastically stable equilibrium in [11]. 

Indexing all users in the community by {1, , }i N  and denote 

the reputation profile and the strategy profile of all users as 
1( , , , , )i N

 and 
1( , , , , )i N

, we formally 

define a stochastically stable equilibrium and the protocol 
designer’s design problem as follows. 

Definition 1 [11].
 

A strategy profile  together with a 
community configuration  is a stochastically stable equilibrium if 

and only if when 0  
(1)  is the best response of users against , i.e. 

 argmax ( , , ),  {1, , }i i iv i N ; (7) 

(2)  is time invariant under the best response dynamics 

introduced by ; 
(3) The community stays at  with a positive fraction of time 

in the long term. 
The protocol designer tries to optimize the social welfare U  

whose maximum value is achieved when all users choose to 
cooperate with their clients and provide services. As we will show 
in the next section, the community converges to configurations 
belonging to the set of stochastically stable equilibria with 
probability 1 in the long term. Hence, the protocol designer should 
find a social norm under which users are mutually cooperative in 
all stochastically stable equilibria.  

III. USERS’ STRATEGIC LEARNING AND THE COMMUNITY’S 

LONG TERM EVOLUTION 

A. The MDP formulation and the structure of the optimal policy 

In this section, we analyze the evolution of the community and 
the design of protocols to induce cooperation among users. We first 
model a user’s learning and adaptation as a MDP, and characterize 
the structure of a user’s optimal policy of strategy adaptation. With 
the structure, we prove the properties of stochastically stable 
equilibria in Theorem 1, which helps us to design the optimal 
protocol in Theorem 2 in order to induce users to play 
cooperatively in the long term. 

At the beginning of each period, we assume that each user plays 
its service strategy used in the previous period with probability 

1 , and adapts to play its best response which satisfies (7) with 

probability . The probability (0,1)  is called the adaptation 

rate of a user. Formally, the adaptation of a user could be 
represented as an optimization problem over all possible selections 
of its sharing strategy  in order to maximize its expected long-

term utility ( , , )v , given its current knowledge and beliefs on 

the community. This is summarized below for readers’ 
convenience. 

Knowledge: At the beginning of each period, a user learns its 
current reputation  as well as the current community 
configuration  accurately from the managing device, e.g. the 

tracker. Hence, a user also learns its current opponent configuration 

. 

Belief: Each user maintains a belief about the strategies of other 
users as described in Section II.B. That is, a user whose reputation 
is higher than 0 will comply with the social rule   with the 

probability 1  in the current period, while a user whose 

reputation is 0 adopts the service strategy D  with the probability 

1 . 
Given the observations and beliefs, a user’s optimization 

problem can be formulated as a Markov Decision Process (MDP) 
[17] as below. 

State: The experienced dynamic of a user in each period is its 

current reputation  and the opponent configuration , which is 

defined as its state ( , )s = . 

Action: The action of a user is represented by the threshold of 

its serving strategy {0,1, , 1}a L , which is determined 

at the beginning of a period based on its state in this period. 
Transition probability: The transition of s  across periods is 

Markovian with the transition probability ( | , )p s s a , which is 

determined by the action a . 

Reward function: The one-period reward function ( )r s,a
 
is 

defined as the expected one-period utility as in (4). Similarly, the 

long-term reward function ( )R s  of a user is defined as the 

following discounted sum 

 ( ) ( )

0

( ) ( )t t t

t

R s r s ,a . (8) 

Policy and Value function: The solution of the MDP is a 

policy : {0,1, , 1}L , which maps each state to a 

service threshold. The value function is thus defined as the 

expected long-term utility ( , , )v , under a policy , which is 

formally represented as 

( ) ( ) (0)

0

( ) { ( ) } { ( ) }

{ ( ) } ( | ) ( )

t t t

t

s

V s E R s E r s ,a s s,

E r s,a p s s, V s

. (9) 

The above MDP can be solved using common computation 
methods such as value iteration and Q-learning [17], with the 

resulting optimal policy and value function being 
*{ ( )}s  and 

*{ ( )}V s . In any period, the optimal policy instructs a user of 

reputation  who faces an opponent configuration 
 
to play 

*( , ) , which is the best response of this user that satisfies (6). 

In the rest of this section, we characterize the structure of 
*{ ( )}s . 

First, it can be shown that the best response of a user in any period 
is always above the corresponding service threshold of the social 
rule, regardless of the user’s reputation  and the opponent 

configuration . That is, 
*( , ) h  for any  and . For the 

bad users, this conclusion is obvious. Suppose there is a good user 

with h  and *( , ) h , the best response of this user is to 

provide more services to the community than what is required by 
the social rule. This leads to a higher expected service cost for this 
user in the current period. However, this user also gets a higher 
probability to be punished by the social norm for being deviated 



from 
 
3
, and hence a lower expected future utility compared to 

what it could receive by complying with . Therefore, it can be 

concluded that this user will receive a strictly lower expected long-

term utility by playing *( , )  than what it could receive by 

complying with , which contradicts the fact that *( , )  is the 

best response which satisfies (6). 

Lemma 1.
*( , ) h , for any   and . ■ 

The next lemma further shows that confronted with a same 
opponent configuration, the service threshold of a bad user’s best 
response (weakly) decreases against its reputation, and the same 
conclusion holds for a good user. We first provide some intuitive 
explanation. From (4), it can be determined that the expected 
amount of service that has to be provided by a bad user in one 
period only depends on its current opponent configuration and its 
selection of the sharing strategy, but it is independent on its current 
reputation. However, the average amount of service that a bad user 
expects to receive (weakly) increases with its reputation. Using 
similar ideas as in Lemma 1, we can argue that if this user’s best 

response *
1( , )  is smaller than *

2( , ) , it could always 

choose to play *
2( , )  when its reputation is 1  in order to 

receive a higher long-term utility. This contradicts the definition of 
the best response. The same analysis can be applied to a good user 
as well. 

Lemma 2. * *
1 2( , ) ( , )  if 1 2 h , and 

* *
1 2( , ) ( , )  for any 1 2h . ■ 

As proved by Lemma 1 and 2, a user’s best response adaptation 
will not increase the social welfare of a community, and in most 
cases, will actually decrease it. 

B. The community’s long term evolution and the stochastic 

stability 

In this section, we examine the evolution of the community 
under the best response dynamics. We define the strategy 

configuration of the community as 
*

0{ ( )}L  in one period when 

the community configuration is . Particularly, 
*( )  represents 

the strategy that users of reputation  will play as the best 

response in one period. For 0{ ( )}Ln  and 0{ ( )}Lm , 

we have that 
* *( ) ( , )  if ( ) ( )m n  for all  

and ( ) ( ) 1m n . 

A Markov chain analysis is employed to analyze the evolution 
of the community configuration . For notational convenience, let 

Hist  denote the history of the community, which includes past 
community configurations and the users’ actions until the current 
period. 

Given the social norm ( , ) , it is already shown that the 

best response of a user is fully determined by its opponent 
configuration, or alternatively, the user’s reputation and the 
community configuration. Meanwhile, the probability of the 

community configuration in the next period being , specified as 

( | )p Hist , is also determined by  and 
*

0{ ( )}L . As a result, 

                                                           
3It should be noted that the social norm does not only punish users who do not 

provide services as required. If a user provides service to another user who is 
supposed to be punished by the social norm, this user itself will also be punished. 

we have that *
0( | ) ( | ,{ ( )} ) ( | )Lp Hist p p , 

which implies that the community configuration evolves as a 
Markov chain on the finite space 

0

{ ( (0), , (L)) | ( )   ( ) }
L

= = n n n and n N (10) 

whose size is 
1

0

| |
L

l
N

l

C . The transition probabilities are given 

by ( | )p p  between any two configurations  and 

 and [ ]P p  is the transition matrix. Note that with 

0 , all entries in P  are positive. It is well-known that this 

Markov chain is irreducible and aperiodic, which introduces a 
unique stationary distribution. Let 

| |
| | { | 0  1,2, ,| |   1}i ii

q for i and qq

 be the | | -dimensional simplex. Any | |q  represents a 

probability distribution on the set of community configurations. 

Indexing all configurations in  from 1 to | | , iq  then 

represents the frequency that the community stays at the i -th 
configuration in the long term. A stationary distribution on the 

space  is a row vector 1 | | | |( , , )  satisfying 

 P . (11) 

To emphasize its dependence on , we sometimes also write  as 

. When P  is strictly positive, not only  exists and is 

unique, it also preserves the following important properties. 

Lemma 3.  preserves the following properties: 

(1) Stability: Starting from an arbitrary initial community 

configuration q , we have lim t

t
Pq . 

(2) Ergodicity: Starting from an arbitrary initial community 
configuration q , the fraction of time that the community stays at 

configuration i  is ( )iw  in the long term, for any 1 i . ■ 

Next, we analyze the stochastic stability of the community 
when 0 . To facilitate the analysis, we first define the concept 
of the limiting configuration distribution. 

Definition 2. The limiting configuration distribution of the 
community is defined by 

 
0

lim ( ) . (12) 

The existence and the uniqueness  can be proved as in [9]. 
Here we simply list the result. 

Lemma 4. There exists a unique limiting distribution for the 
community configurations. ■ 

Correspondingly, we define the concept of stochastically stable 
configuration as follows. 

Definition 3. A community configuration i  is called as a 

stochastically stable configuration if and only if 0i . 

Therefore, when time goes to infinity, the fraction of time that 
the community stays at a stochastically stable configuration is 
bounded away from zero [11]. On the contrary, if a configuration is 
not stochastically stable, then it has zero probability to emerge in 
the long term. 

We prove in the following theorem that a stochastically stable 
configuration always belongs to a stochastically stable equilibrium. 
Moreover, we also prove that a stochastically stable configuration 



is solely composed of populations of reputations 0 and L . 
Alternatively speaking, users in a stochastically stable equilibrium 

will either always follow D  and hold a reputation of 0, or will 

always comply with the social rule  and hold a reputation of L . 

Theorem 1. A community configuration { (0), , ( )}n n L  

is a stochastically stable configuration if and only if there is a 
stochastically stable equilibrium with  being its community 

configuration.  also preserves the following property 

 ( ) 0n , for all {1, 1}L . (13) 

■ 
Theorem 1 provides characterizations of the stochastically 

stable configurations. Hence, there are 1N  community 

configurations which could possibly be stochastically stable 

configurations. With the slight abuse of notations, we use k  to 

denote the community configuration with ( )n L k  and 

(0)n N k  for {0, }k N . Since users are not mutually 

cooperative in any community configuration k  with 

{0, 1}k N , the protocol designer should design a social 

norm  under which there is a unique stochastically stable 

equilibrium with the community configuration being N . Since 

the reputations of all users remain at L , it is obvious that all users 
are complying with the social norm and are mutually cooperative 
with each other. Hence, the social welfare is maximized. The 
design problem of the protocol designer could then be presented as 
follows 

 
The following theorem solves the design problem (14) by 

determining the condition when N  is the unique stochastically 

stable configuration. To do this, we examine the “basin of 
attraction” of each community configuration [9]. Generally 
speaking, the configuration of a stochastically stable equilibrium 
has the largest basin of attraction among all configurations. 
Therefore, if there is a unique configuration that has the largest 
basin of attraction, we can then conclude that there is a unique 
stochastically stable equilibrium [11].  

Theorem 2. When the following inequality holds 

 
ln( / ) ln( / )

min{ , }
ln 1 1 1

ln[( ) ( ) ]

c b c b
h

N N c

N N b

, (15) 

the community converges to a unique stochastically stable 

configuration N  in the long term as ( )n L N  and ( ) 0n  for 

all L . ■ 

Theorem 2 can be used as a guideline for a protocol designer to 
select desirable social norms for an online community to induce 
mutual cooperation among users. In particular, it provides three 
sufficient conditions that make it in the self-interest of a user to 
comply with : (1) the service cost is sufficiently low to ensure a 

small service cost to benefit ratio /c b ; (2) users are sufficiently 

patient; (3) the social rule provides sufficient services to users with 
a low service threshold. 

We briefly explain the intuitions behind the above three 
conditions. Condition (1) highlights that by deviating from the 
social norm, the maximum gain on a user’s one-period utility is the 
saving of its service cost c , at the loss of its future utility which is 
proportional to b . Hence, the decreasing on /c b  provides larger 

incentives for users to comply with the social norm. A similar 
analysis can be applied to Condition (2). The discount factor  
adjusts the weights that a user places on its current and future 
utilities. With a larger , a user puts a higher weight on its future 
utility, and thus becomes more interested in increasing its 
reputation rather than deviating to saving its current service cost. 
As a result, the incentive for a user to comply with the social norm 
increases. Condition (3) contradicts the traditional opinion that a 
user’s incentive will increase when the punishment imposed by the 
social norm protocol becomes more severe. When the punishment 
is too severe, which is represented here by a high service threshold 
in the social norm, bad users with their reputations below h  will 
lose their incentives to comply with the social norm. Hence, this 
prohibits the protocol designer from increasing h  arbitrarily. 

IV. EXPERIMENTS 

In our experiments, we simulate the learning behavior of 

1000N  users. We run the experiment for 810 periods and 

measure the average reputation distribution over every 72.5 10  
periods. This can be used as an approximation on the community 
configuration in the long term and the results are illustrated in 
Figure 2. when 0.2  and 0.05 , respectively. The community 
configuration oscillates when 0.2  and cannot converge to a 
unique stationary point. Hence, the average reputation distribution 

changes after every 72.5 10  periods, with each reputation taking 
a positive fraction in the population in the long term. This 
highlights the difficulties of sustaining cooperation in communities 
with large errors. When 0.05 , the community configuration 
converges to the stochastically stable equilibrium. As a result, 
almost all users are of reputations 0 and L  in the long term, with 
users of reputation 0 providing no service and users of reputation 
L  acting in a mutually cooperative manner with each other. 

In the remainder of the experiments, we mainly focus on the 
stochastic stability of the community by considering a small 
operation error 0.05 . Figure 3. shows how the fraction of 

users of reputation L , i.e. ( )n L , changes in the long term against 

the discount factor , and how the service benefit b  as well as the 
social threshold h  impacts the stochastically stable equilibrium. 
Since users become more patient during their adaptations with a 
larger discount factor, the social norm providers larger threats to 
users through its punishments. Hence, users have more incentives 

to comply with the social norm with ( )n L  monotonically 

increasing. When 3b , the instant saving of the service cost 
outweighs the future benefit of obtaining a high reputation and 
hence, more users maintain the lowest reputation 0 compared to the 
case with 5b .Similar results are obtained when h  is adjusted, 
with users being easier to incentivize to comply with the social 
norm and thus, having the social community converge in the long-
term to reputation L  when h  is smaller. 

In the final part of the experiment, we assume that the 

community characteristics, e.g. the utility structure ( , )b c  and the 

discount factor  are not fixed but vary over time and consider 

how such variation will impact the long term evolution of the 

community. As an example, we use b  as the representative 

variable to plot the result and assume it varying over time 

following a Gaussian distribution with the mean 3b  and the 

variance 2 0.01 . Figure 4.  depicts the social welfare of the 

community over time. We consider two selections on the social 

 
 

. .       N

select

s t is the unique stochastically stable configuration

 .(14) 

 



rule as 1h  and 2h . In both cases, the social welfare when b  
is variable (solid lines) is smaller than the social welfare when b  is 

constant (dotted lines). This is due to the fact that our designed 

protocol only guarantees users sufficient incentives to comply with 

the social norm when b  is at its mean value 3. When b  deviates 

from its mean value, users might have incentives to adapt their best 

responses and deviate from the social norm. In addition, since most 

users maintain reputation L in the stochastically stable equilibrium 

when 3b  and 0.5 , the social norm with 2h  can 

provide larger incentives for users of reputation L  to follow the 

social strategy. Therefore, it is more robust against the variation on 

b , which maintains ( )n L  at a higher level than the social norm 

with 1h . As a result, the social norm with 2h  delivers 

higher social welfare for both 500N  and 1000N  when b  

is variable. 

V. CONCLUSION AND FUTURE RESEARCH DIRECTIONS 

We have studied the problem of designing social norm based 
protocols for online communities and analyzed the strategic 
learning behavior of users under such protocols. Knowledge on the 
evolution of the community in the long term can enable the 
protocol designers to select and implement protocols which 
maximize the social welfare of the community. Our analysis can be 
extended in several directions, among which we mention four. First, 
users in the community do not necessarily need to be homogeneous 
as discussed in Section II. Different users can have different 
benefits and costs for the service received/provided. Also, they can 
choose different discount factors  when evaluating the long-term 
utility. The discount factor that a user chooses can be dynamically 
adjusted over time depending on its own expected lifetime in the 
community. Second, clients can use more complicated decision 
rules while reporting the servers’ actions to the community 
manager in order to maximize their own long-term utility, instead 
of always reporting truthfully. Third, online communities may be 
subject to practical constraints such as topological constraints, in 
which users can only observe the local information and different 
users at different locations do not necessarily share the same 
community information. Hence, the analysis in this paper needs to 
be extended to scenarios where users adapt based on partial and 
heterogeneous information. Fourth, users adopt a simple belief 
model that other users will always comply with the social norm. 
However, a more sophisticated belief model can be introduced into 
our framework such that users can update their beliefs on others 
based on their observation. For example, the formation of user 
beliefs and opinions in social networks are extensively studied in 
[21] and [22]. Understanding how the users’ beliefs and strategies 
evolve also forms an important future research direction. 
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Figure 1.  The schematic representation of a social norm:  

(a) a representative social rule; (b) a representative reputation scheme 
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Figure 2.  The evolution of the community configuration in 810  periods. 
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Figure 3.  The fraction ( )n L  of users of reputation L  after 810  periods 

( 3, 0.05L , 1c ) 

 

Figure 4.  The evolution of the social welfare in the long term when the stage 

game benefit varies over time 

( 3, 0.5, 0.05L , 1c ) 
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