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Description on MP-based Survival Models
For the comparison of DeepHit with conventional machine
learning algorithms, we modified survival data to perform
survival analysis based on the mortality prediction using ma-
chine learning algorithms. For every time interval m where
m = 0, · · · , Tmax, the cause-specific data is updated with a
new dataset of patients who are not censored nor died from
other causes until the m-th time interval. Now, let’s focus
on modifying the survival data for the event k, which can be
easily generalized to other causes.

The number of patients who are not censored nor died
from other causes (i.e. other than cause k) until the m-th
time interval is denoted as Nk

m. Then, a new label, l̃(i)k , which
indicates whether the i-th patient is dead (l̃

(i)
k = 1) or alive

(l̃
(i)
k = 0) at the m-th time interval, is assigned for every

patient. Using the updated dataset D̃k
m = {x(i), l̃

(i)
k }

Nk
m

i=1, we
train conventional machine learning (ML) algorithms (e.g.
random forest, logistic regression and AdaBoost) in order
to predict the new label. From this, it is possible to obtain
ML classifiers independently trained at every time interval.
Then, the risk score of a patient at each time interval can be
assessed by using ML classifiers trained at the corresponding
time. The pseudo-code for training the ML-based survival
models for event cause k is described in Algorithm 1.

Additional Results for Discriminative
Performance

In this section, we provide additional results on the perfor-
mance benefits in terms of cause-specific Ctd-index, compar-
ing with the cause-specific version of survival models for the
SEER and the SYNTHETIC datasets, respectively in Table 1
and 2.

For the SEER dataset, DeepHit provided consistent perfor-
mance improvements over conventional benchmarks where
the improvements were statistically significant (p < 0.05 and
p < 0.001) except for cs-MP-AdaBoost and cs-MP-LogitR
in CVD prognosis, and statistically significant (p < 0.05 and
often p < 0.001) for all benchmarks in breast cancer prog-
nosis. For the SYNTHET dataset, DeepHit outperformed all
the benchmarks and the performance improvements were
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Algorithm 1 Pseudo code for ML-based survival model for
event cause k

Initialize: D̃k
m = φ for m = 0, · · · , Tmax

for m = 0, · · · , Tmax do
for i = 1, · · · , N do

if k(i) == k & s(i) ≤ m then
l̃
(i)
k ← 1

D̃k
m ← D̃k

m + {x(i), l̃
(i)
k }

else if s(i) > m then
l̃
(i)
k ← 0

D̃k
m ← D̃k

m + {x(i), l̃
(i)
k }

end if
end for
Train ML predictorH(m)

ML,k(x) with D̃k
m = {x(i), l̃

(i)
k }

Nk
m

i=1

end for

all statistically significant (p < 0.001) for both Event 1 and
Event 2.

Table 1: Additional comparison of cause-specific Ctd-index
performance (mean and 95% confidence interval) tested on
the SEER dataset

Algorithms CVD Breast Cancer

cs-RSF 0.280∗
(0.262 - 0.298)

0.584∗
(0.574 - 0.594)

cs-ThresReg 0.664‡
(0.657 - 0.671)

0.645∗
(0.628 - 0.662)

cs-MP-RForest 0.281∗
(0.263 - 0.299)

0.584∗
(0.574 - 0.594)

cs-MP-AdaBoost 0.671
(0.665 - 0.677)

0.741‡
(0.735 - 0.747)

cs-MP-LogitR 0.665
(0.645 - 0.685)

0.657∗
(0.648 - 0.666)

DeepHit 0.684
(0.674 - 0.694)

0.752
(0.748 - 0.756)

∗ indicates p-value < 0.001
‡ indicates p-value < 0.05



Table 2: Additional comparison of cause-specific Ctd-index
performance (mean and 95% confidence interval) tested on
the SYNTHETIC dataset

Algorithms Event 1 Event 2

cs-RSF 0.669∗
(0.664 - 0.674)

0.657∗
(0.652 - 0.662)

cs-ThresReg 0.579∗
(0.574 - 0.584)

0.588∗
(0.585 - 0.591)

cs-MP-RForest 0.620∗
(0.611 - 0.629)

0.610∗
(0.603 - 0.617)

cs-MP-AdaBoost 0.607∗
(0.600 - 0.614)

0.607∗
(0.601 - 0.613)

cs-MP-LogitR 0.579∗
(0.572 - 0.586)

0.586∗
(0.583 - 0.589)

DeepHit 0.755
(0.749 - 0.761)

0.755
(0.748 - 0.762)

∗ indicates p-value < 0.001

Weighted Average of AUC Curve
Through out the section, we focus on the single risk/event
case for further investigation on loss functions, and, thus, we
omit cause-specific indicator k for notational simplicity. To
highlight the gain of introducing L2, we adopt the analysis
that the Ctd-index is equivalent to the weighted average of
the area under time-specific ROC curve (AUC) (Antolini,
Boracchi, and Biganzoli 2005),

Ctd =

Tmax∑
m=0

w(m) ·AUC(m), (1)

In this equation,AUC(t) is based on the incident/dynamic
definition of sensitivity and specificity in (Heagerty and
Zheng 2005) and w(t) indicates the weight for AUC(t)
which is proportional to having acceptable pairs. AUC(t)
and w(t) are defined as

AUC(t)=

∑
i 6=j1

(
F (t|x(i))>F (t|x(j))

)
·1(s(i)= t, s(j)>t)∑

i6=j 1(s(i) = t, s(j) > t)
,

w(t) =

∑
i6=j 1(s(i) = t, s(j) > t)∑Tmax

m=0

∑
i6=j 1(s(i) = m, s(j) > m)

,

It is worth to stress that the same analysis on C-index is avail-
able for survival models with the PH assumption (Heagerty
and Zheng 2005).

In Figure 1 and 2, we depicted AUC(t) of DeepHit over
time with correspondingw(t) for the UNOS and METABRIC
dataset, respectively. An averaging window with the window
size of 10 time intervals is applied for AUC(t) in order to
mitigate fluctuations since AUC(t) is only available at times
where death event occurs. DeepHit trained with both L1 and
L2 (i.e. DeepHit) outperforms the same network trained with
only L1 (i.e. DeepHit w/ α = 0) consistently over time.
Moreover, compared to conventional survival models, Deep-
Hit provides performance gain on time intervals where w(t)

Figure 1: The performance in AUC(t) over time with corre-
sponding w(t) for the UNOS dataset.

Figure 2: The performance in AUC(t) over time with corre-
sponding w(t) for the METABRIC dataset.

is relative high. In other words, L2 helps the proposed net-
work to focus its discriminative performance on time intervals
where there a large number of patients who face the death
event. Therefore, DeepHit is able to achieve the performance
gain in terms of Ctd-index.
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