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Abstract

We propose a novel approach for constructing effective treat-
ment policies when the observed data is biased and lacks
counterfactual information. Learning in settings where the
observed data does not contain all possible outcomes for all
treatments is difficult since the observed data is typically bi-
ased due to existing clinical guidelines. This is an important
problem in the medical domain as collecting unbiased data is
expensive and so learning from the wealth of existing biased
data is a worthwhile task. Our approach separates the prob-
lem into two stages: first we reduce the bias by learning a
representation map using a novel auto-encoder network – this
allows us to control the trade-off between the bias-reduction
and the information loss – and then we construct effective
treatment policies on the transformed data using a novel feed-
forward network. Separation of the problem into these two
stages creates an algorithm that can be adapted to the prob-
lem at hand – the bias-reduction step can be performed as a
preprocessing step for other algorithms. We compare our al-
gorithm against state-of-art algorithms on two semi-synthetic
datasets and demonstrate that our algorithm achieves a signif-
icant improvement in performance.

Introduction
Potential treatment outcomes for the current patient must be
learned from the outcomes of the treatments given to previ-
ous patients. However, treatment outcomes of the patients
are never the same and so the learning process must in-
volve learning how the current patient is alike to previous pa-
tients. This learning problem is complicated by the fact that
the data has only the outcomes of the treatments received
– not the potential outcomes of the alternative treatments,
the counterfactuals. Access to similar patients with differ-
ent treatments is also made difficult as the received treat-
ments are often chosen by some pre-existing clinical guide-
lines and so it may be the case that similar patients received
the same treatment – the observed data is biased.

This paper proposes a novel approach for treatment pol-
icy optimization. We construct two independent feedforward
networks: the first we call the bias-removing auto-encoder,
which is used to map the data (using a representation map
Φ) to a less biased representation without losing too much

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

informativeness – we control this trade-off with a hyperpa-
rameter, λ1 – and the second we call the feedforward policy
optimization network, which is used to learn the optimal pol-
icy, taking the transformed data (under Φ) as the training set.

Learning is carried out by first learning the auto-encoder
and then learning the policy optimizer. The bias-removing
auto-encoder contains a block used to learn the propensity
function – the function that takes representation-treatment
pairs and maps them to the probability of observing the treat-
ment given the representation. This is then used to force the
learned representations to be less biased.

We illustrate our algorithm on learning treatment effects
from Infant Health and Development (IHDP) dataset and
learning chemotherapy regimes for a breast cancer dataset.
Our results show that our algorithm achieves significant im-
provements with respect to strong baselines.

Related Work
From a conceptual point of view, the paper most closely
related to ours is (Johansson, Shalit, and Sontag 2016)
which discusses a similar problem: learning representations
from observational data. The approach taken in (Johans-
son, Shalit, and Sontag 2016) is somewhat different to ours,
though, in that they minimize the predictive loss combined
with discrepancy between the factual and counterfactual rep-
resentation populations. A more important difference from
our work is that (Johansson, Shalit, and Sontag 2016) as-
sumes that there are only two actions: treat and don’t treat –
in most situations there will be many possible actions. (Jo-
hansson, Shalit, and Sontag 2016) states explicitly that gen-
eralizing their approach to more than two actions is not an
obvious extension.

From a technical point of view, our work is most closely
related to (Swaminathan and Joachims; 2015a, 2015b) in
that we both aim to learn treatment policies from obser-
vational data. The approach taken in (Swaminathan and
Joachims; 2015a, 2015b) is somewhat similar to ours in the
sense that they minimize a ”corrected” loss function using
Inverse Propensity Scores (IPS) corrected by a regulariza-
tion term over the linear stochastic policy class. We go much
further in our paper by minimizing our loss function over a
much more general class of stochastic policies.

More broadly, our work is related to unsupervised auto
encoder neural networks, counterfactual estimation and es-



timating individual treatment effects. The standard auto en-
coder neural networks aim to learn a representation of the
data (possibly in a lower dimensional space) using en-
coder and reconstruction layers (Vincent et al. 2010; Bengio,
Courville, and Vincent 2013; Kingma and Welling 2013) for
dimensionality reduction. However, in our work we use auto
encoders to remove the bias created by the logging policy.
Our novel auto encoder contains both encoder and recon-
struction layers but jointly minimizes both the mean-squared
loss between the reconstruction and actual features and the
distance between the different distributions of the various
representation populations.

There are many works in estimating Individualized Treat-
ment Effects (ITE) (Athey and Imbens 2015; Hill 2011).
For example, one of the most recent one (Wager and Athey
2015) proposes a variant of random forests, called causal
forests. Their approach to remove bias is somewhat different
to ours in that they use tree-based algorithms on propensity
scores and estimate treatment effect on each leaf. Another
recent work on ITE estimation is (Alaa and van der Schaar
2017) which proposes multi task Gaussian processes to es-
timate treatment effects from observational data. However,
Gaussian processes are known to have poor scaling,O(N3),
with the number of samples, which may result in this ap-
proach being computationally infeasible. (Shalit, Johansson,
and Sontag 2017) recently extends (Johansson, Shalit, and
Sontag 2016).

We can categorize the counterfactual estimation tech-
niques into three groups: direct estimation, inverse propen-
sity score (IPS) estimation and doubly robust estimation.
The direct estimation approach computes the counterfac-
tuals by learning a mapping from feature-treatment pair to
their outcomes (Prentice 1976; Wager and Athey 2015). The
IPS estimates learn the counterfactuals by re-weighting each
instance with their inverse propensity scores (Swaminathan
and Joachims 2015a; Joachims and Swaminathan 2016).
Self normalizing estimator, a variant of IPS estimator, is also
used to learn counterfactuals (Swaminathan and Joachims
2015b). The doubly robust estimation techniques combine
the direct and IPS methods and generate more robust coun-
terfactual estimates (Dudı́k, Langford, and Li 2011; Jiang
and Li 2016). We believe our method lies within the realm
of doubly robust techniques.

Our paper builds on (Atan et al. 2016) where the bias is
addressed by feature selection step. This work extends their
approach by simply mapping the features into a representa-
tion step by trading off between the information loss and the
bias.

Problem Setup
Let T be the set of k treatments, X be the feature space
and Y be the set of possible outcomes. For each instance
x ∈ X ⊂ Rd, there is a treatment assignment T ∈ T and
there are k potential outcomes: Y (0), Y (1), . . . , Y (k−1) ∈
Y , corresponding to each of the k treatments. The observed
outcome is denoted Y ≡ Y (T ). We assume that the poten-
tial outcomes, (Y (0), . . . , Y (k−1)), are independent of the
treatment assignment T given the feature vector x, that is,

(Y (0), . . . , Y (k−1)) ⊥⊥ T |x.
A treatment policy, π : X → ∆(T ), is a map taking fea-

ture vectors to probability distributions over the k possible
treatments. Let Pr(X ) be a probability distribution over X .
Our goal is to find a policy, π∗ that maximizes the expec-
tation of the outcome Y T |X = x when x ∼ Pr(X ) and
T ∼ π. Formally, let π∗ maximize

V (π) = Ex∼Pr(X )

[
ET∼π(x)

[
E
[
Y (T )|x

]]]
A simple argument shows that π∗(x) assigns all probabil-

ity mass to the treatment(s) with the greatest expected out-
come, for each x. Now suppose π is a policy such that π(x)
assigns the treatment with the greatest expected outcome the
highest probability mass (but it may not be the case that all
probability mass is assigned to the ‘best’ treatments). Then
we can recover an optimal π∗ from π by simply sending
the maximal probability to 1 and all other probabilities to
0, that is π∗ = h(π). Therefore, it suffices to find a pol-
icy that assigns higher probabilities to better outcomes, and
we broaden our definition of an optimal policy to include all
such policies, noting that by applying h to such a policy, we
will in fact obtain a truly optimal policy.

In the datasetDN = {(x1, t1, y1), . . . , (xN , tN , yN )}, we
observe the patient’s features, xn, the treatment received, tn,
and the outcome of the treatment received, yn ≡ Y (tn) – im-
portantly, we do not observe any of the other potential out-
comes (i.e. Y (t)(xn) for t 6= tn). In the medical setup, the
feature vector x could represent a patient’s demographic in-
formation, family history, previous treatments, etc., t could
represent the surgery, intervention or drug received by the
patient, and y represents the effect of the treatment. We as-
sume that the data is generated by the following process:
• A patient with feature vector xn arrives according to the

fixed but unknown distribution Pr(X ), i.e., xn ∼ Pr(X ).
• Given the feature vector xn, a treatment tn is decided

upon by a logging policy π0(xn). That is tn ∼ π0(xn).
• The potential outcomes are drawn according to ytn ∼

Pr(·|xn, t) for all t, and yn ≡ ytnn is observed.
The difficulty in this problem arises because of (i) missing

outcomes of the treatments that are not received by the pa-
tient – the counterfactuals, (ii) the logging policy π0, which
for example represents some pre-existing clinical guidelines.
Even if π0 did not depend on x, that is, π0(x) = π0(x′) for
all x, x′ ∈ X , the problem of learning an optimal policy
is not trivial as the data does not contain the counterfactual
treatment outcomes. Our problem is further complicated by
π0 being dependent on x, that is, π0(x) 6= π0(x′) in general
for x 6= x′. Then the distributions under different treatment
regimens, Pr(X|t), are no longer the same as the general
distribution Pr(X ), so the functions trained on the treatment
regimens will not generalize well to the whole population.

It is worth noting at this point that it may be the case
that π0 varies with some unmeasured features; for exam-
ple, it may be the case that poorer patients cannot af-
ford a certain drug and so are rarely given it and that the
wealth of a patient is not measured in the dataset. This is
known as hidden confounding (Rosenbaum and Rubin 1983;



Pearl 2009) . We make the common assumption that we do,
in fact, measure all possible influences on the logging policy
π0.

We emphasize here that the dependence of π0 on x ac-
tually creates two nested classes of problems: (i) if π0 does
not vary with x then we are in a randomized setting, an ex-
ample of which would be a clinical trial, (ii) if π0 does vary
with x then we are in an observational setting, an example
of which is simply collecting records of patients that have
seen a doctor and received a treatment (based on the doc-
tor’s belief about the available treatments). In this paper we
tackle (ii) by first trying to make the problem as close to (i)
as possible.

To help illustrate our approach, consider the following toy
example: suppose a doctor assigns patients of a certain dis-
ease a treatment based on their age which might be young,
middle-aged or old. Suppose, that the doctor assigns treat-
ment 1 to all young patients and treatment 2 to all old pa-
tients, and to all middle-aged patients he assigns the treat-
ment completely at random. Then certainly any dataset col-
lected for this procedure will be biased (there are no young
patients who receive treatment 2). However, if instead we
classify patients as young-or-old and middle-aged (and there
is an equal proportion of young and old patients) then now
the treatment assignments to these categories are completely
random, and so by performing this transformation on the
features, we have removed the bias in the dataset. Note, how-
ever, that there is a cost to this; we have lost information that
was held in the feature vector, x, that may have been useful
for learning the optimal policy. In practice it will be very dif-
ficult to remove all the bias and at the very least very costly
in terms of the information loss – so even after performing
such a transformation we will still need to learn an optimal
treatment policy from incomplete (and slightly biased) data
that does not contain the counterfactual outcomes.

We build on the above example by breaking the problem
down into two parts. We introduce a representation space,
R, and seek to find a map Φ : X → R such that the in-
duced distribution of the treatments over R, which we de-
note Pr(T |Φ), is less biased (as in the toy example above)
but also such that a representation, Φ(x), retains as much
information about the input feature, x, as possible. We then
look to define an optimal policy π̂ : R → ∆(T ) which leads
to a policy π̄ : X → ∆(T ) given by π̄(x) = π̂(Φ(x)).

We measure the bias of a distribution, q, over T with re-
spect to a target distribution, p, using the cross-entropy loss
defined by:

`(p, q) = −
∑
t∈T

p(t) log q(t)

noting that, for p fixed, the above loss is minimized when
q ≡ p. In our case, the target distribution, p, is the distri-
bution of treatments over the whole population (note that
this distribution is induced by Pr(X ) and π0), which we
write Pr(T ), since then we will have that the distributions
{Pr(X|t) : t ∈ T } are all equal to Pr(X ). Therefore the
point-wise loss we look to minimize over maps Φ is:

`ce(Φ;x) = `(Pr(T ),Pr(T |Φ(x))) (1)

To measure the information loss due to a map Φ : X → R
we define the map Ψ̂ : R → X as the function that mini-
mizes:

`inf (Φ,Ψ) =

∫
||x−Ψ(Φ(x))||22 d Pr(X ) (2)

where ||·||2 denotes the usual `2-norm and then the informa-
tion loss is defined as `inf (Φ, Ψ̂). Note that if Φ is injective
(which would correspond to no information being lost due
to the map Φ), then Ψ̂ = Φ−1 and so `inf (Φ, Ψ̂) = 0. Also
note that since Ψ̂ minimizes (2) we can bound (2) using any
function Ψ : R → X , and so we can minimize (2) over all
function pairs (Φ,Ψ).

Therefore, our first goal is to find a pair (Φ,Ψ) that min-
imizes (1) and (2). We control the trade-off between these
two (adversarial) losses using a hyperparameter, λ1. The loss
we look to minimize in the first stage is therefore:

L1(Φ,Ψ) =

∫
||x−Ψ(Φ(x))||22+λ1`ce(Φ;x) d Pr(X )

(3)

Now, given a suitable representation map, Φ, we look to
find an optimal policy, π̂, on the representation space, R.
We emphasize again that this is not trivial, even after hav-
ing performed the first stage since (i) not all bias will have
been removed and (ii) the dataset is incomplete – the coun-
terfactuals are still inaccessible. We define the target policy
π∗ by1:

π∗(t|r) =
E(Y (t)|r)∑
s∈T E(Y (s)|r)

(4)

noting that this policy assigns higher probabilities to treat-
ments with greater expected outcomes, and is therefore op-
timal in the sense described at the beginning of this section.

We use the cross-entropy loss to measure the loss of a
policy against π∗ at a point r ∈ R, i.e.

`pol(π; r) = −
∑
t∈T

π∗(t|r) log(π(t|r))

again noting that such a cross-entropy loss is minimized
when π(r) ≡ π∗(r). In fact, since the denominator in (3)
is the same for each term in (4) so we can multiply `pol by
the denominator. The total loss we therefore aim to minimize
is

L2(π) = −
∫ ∑

t∈T
E(Y (t)|r) log(π(t|r)) d Pr(R)

Algorithm
Having defined the problem, we now describe our algo-
rithm, Deep-Treat. We model the representation-decoder
pair, (Φ,Ψ), using our novel bias-removing auto-encoder
and model the optimal policy (overR) using our novel feed-
forward policy optimization network.

1We abuse notation slightly – writing π(t|r) to denote the prob-
ability of taking action t according to π(r).



Figure 1: Neural network Model

Bias removing auto-encoder
We model the pair (Φ,Ψ) as the encoder and decoder blocks,
respectively, of an auto-encoder network. Formally,

Φ(x) = WLe−1
e σ(WLe−2

e . . . σ(W 0
e x)), x ∈ X

Ψ(r) = WLd−1
d σ(WLd−2

d . . . σ(W 0
d r)), r ∈ R

where σ denotes an activation function (rectified linear unit
in our case) and W l

e and W l
d are the weight matrices of the

lth layer of the encoder and decoder blocks, respectively. Let
Θr = (W 0

e , . . . ,W
Le−1
e ,W 0

d , . . . ,W
Ld−1
d ) be the parame-

ters of the auto-encoder. Note that Le and Ld are the number
of layers in the encoder and decoder blocks.

To train this network, we need to evaluate the empirical
form of L1, which is given by

Lemp1 (Φ,Ψ) =

N∑
n=1

||xn−x′n||22 +λ1`ce(Pr(T ),Pr(T |Φn))

where Φn = Φ(xn) and x′n = Ψ(Φ(xn)). Unfortunately,
this objective cannot be calculated directly because both
{Pr(T |r) : r ∈ R} and Pr(T ) are not known by the learner
initially. The Deep-Treat algorithm estimates Pr(T ) and the
functional form of Pr(T |r) from the dataset, and replaces
the actual quantities with the estimated ones. The estimate
of Pr(T ) is given by

P̂r(T = t) =

∑N
n=1 I(Tn = t)

N

where I(·) is an indicator function. The estimate of Pr(T |r)
can be learned using a standard parametrized supervised
learning algorithm. We use the logistic regression algorithm
which estimates Pr(T |r) by assuming the following form:

P̂r(T = t|r) =
exp(θt · r)∑
t∈T exp(θt · r)

where · denotes the dot product and {θt}t∈T are the param-
eters of the logistic regression. Note that Pr(T |r) depends

on Φ and so we must learn new {θt}t∈T for each update of
Φ. In this case, the cross-entropy loss between P̂r(T ) and
P̂r(T |Φn) reduces to

`ce(P̂r(T ), P̂r(T |Φn)) =

−
∑
t∈T

P̂r(t)

(
θt · Φn − log

(∑
t∈T

exp(θt · Φn)

))
We train the bias-removing network by starting with a ran-

dom Θr and update using the Adam optimizer (Kingma
and Ba 2014). We particularly chose the Adam optimizer
because it is computationally efficient and requires very lit-
tle memory but any other optimization algorithm can also be
used.

Policy Optimization Network
We model the optimal policy, π̂, on the representation space
using a softmax layer. Formally,

π̂(t|r) =
exp(F (r, t))∑
t∈T exp(F (r, t))

where

F (r, t) = W t,Lp−1
p σ(W t,Lp−2

p . . . σ(W t,0
p r))

and Θp =
(
{W t,0

p : t ∈ T }, . . . , {W t,Lp−1
p : t ∈ T }

)
be

the parameters of the policy optimization network where
{W t,l

p : t ∈ T } are the weight matrices of the lth layer and
Lp is the number of layers in policy optimization network.

To train this network we need to evaluate the empirical
form of L2, given by

Lemp2 (π) = −
N∑
n=1

∑
t∈T

Y (t)(xn) log(π(t|Φn))

However, we cannot evaluate this for two reasons: (i) we
don’t have access to the counterfactual outcomes, (ii) we



Algorithm 1 Deep-Treat

Input: Le, Ld, Lp, λ1, λ2
1: Set P̂r(t) := 1

n

∑N
n=1 I(Tn = t) for all t.

// Bias Removing Network
2: for until convergence do
3: Fit logistic regression for the data SN =

(Φn, tn)Nn=1.
4: Set Θr ← Adam(SN ,Θr)
5: Compute new representations Φ based on Θr

6: end for
7: Output : Representations {Φn}Nn=1

// Policy Optimization Network
8: Generate new dataset VN = {Φn, tn, yn}
9: for until convergence do

10: Set Θp ← Adam(VN ,Θp)
11: end for

Output of training phase : π∗
// Execution Phase

12: Compute the distribution over treatments π∗(·|x)
13: Draw a treatment t̂(x) = maxt∈T π∗(t|x)

Output of execution phase: Recommendation t̂(x)

need to correct the bias of the representations by weight-
ing the instances by their inverse propensities (Rosenbaum
and Rubin 1983) since not all bias will be removed during
the auto-encoder stage. We therefore use the following mod-
ified cross-entropy loss:

L̂emp2 (π) = −
N∑
n=1

yn log(π(t|Φn))

P̂r(tn|Φn)
(5)

The corrected cross entropy loss in (5) is more robust than
the IPS estimate for policy loss (Swaminathan and Joachims
2015a) which has an exponential term that could explode the
gradients.

We introduce a regularization term, R(π), to avoid overfit-
ting and train our neural network to minimize the regularized
loss using the Adam optimizer:

π̂ = arg min
π

(
L̂emp2 (π) + λ2 R(π)

)
where λ2 > 0 is the hyperparameter used to trade-off be-
tween the loss and regularization.

Once these functions have been learned, we set the final
policy to π(x) = h(π̂(Φ(x))).

Extension: Treatment Effect Estimation
In this case, we consider a binary treatment set T = {0, 1}
where 1 is often known as treated and 0 is the control. The
quantity of interest in this case is the Individualized Treat-
ment Effect (ITE) for feature vector x, which is defined as
the difference between the expected treated outcome and ex-
pected control outcome, that is,

ITE(x) = E
[
Y (1) − Y (0)|x

]
.

We break this problem into two parts as well. In the
first part, we use the bias removing auto-encoder to find a

map Φ : X → R and use the representations to estimate
ITE(x) = ÎTE(Φ(x)). We model ÎTE(·) on the represen-
tation space as

ÎTE(r) = G(r, 1)−G(r, 0)

whereG(r, t) = W t,Li−1
i σ(W t,Li−2

i . . . σ(W t,0
i r)), and Θi

be the parameters of the ITE estimation network. To train
this neural network, we need to evaluate the empirical Mean-
Squared Error (mse), given by

Lemp3 (ÎTE) =

N∑
n=1

[(
G(Φn, 1)− y1n

)2
+
(
G(Φn, 0)− y0n

)2]
.

However, we cannot compute this loss since (i) the coun-
terfactual treatment outcomes are not given to us, (ii) there
is bias that is not removed by the bias-removing auto en-
coder. We therefore train the neural network using the mod-
ified MSE:

L̂emp3 (ÎTE) =

N∑
n=1

(G(Φn, tn)− yn)
2

P̂r(tn|Φn)

Note that L̂emp3 (ÎTE) is an unbiased estimator of
Lemp3 (ÎTE) if P̂r(T |Φ) is correctly estimated.

Experiments on IHDP dataset for ITE
estimation

In this section, we describe the performance of our algorithm
in the IHDP dataset. Note that it is difficult (perhaps impos-
sible) to validate and test the algorithm using actual observa-
tional data unless the counterfactual treatment outcomes for
each instance are available – which would (almost) never be
the case. One way to validate and test our algorithm is by us-
ing simulated outcomes. This is the route we follow in these
experiments.

Dataset description
The IHDP is intended to enhance the cognitive and health
status of low birth weight, premature infants through pedi-
atric follow-ups and parent support groups (Hill 2011). The
semi-simulated dataset in (Hill 2011; Johansson, Shalit, and
Sontag 2016) is based on covariates from a real random-
ized experiment that evaluated the impact of the IHDP on
the subjects’ IQ scores at the age of three: selection bias is
introduced by removing a subset of the treated population.
All outcomes (response surfaces) are simulated. We used the
standard non-linear ”Response Surface B” setting in (Hill
2011). The dataset comprises 747 subjects (608 control and
139 treated), and there are 25 covariates associated with each
subject.

We implement our algorithm with Le = Ld = 2 lay-
ers with 50 hidden units and 2 layers for potential outcome
estimation for both treated and control groups with 50 hid-
den units with dropout 0.3. Table 3 shows the comparison
of our algorithm with the benchmarks on the IHDP data
(averaged over 100 iterations). In each of these iterations,
new outcomes are drawn from the data-generating model in



(Hill, 2011). Within each iteration we randomly divide the
IHDP dataset into training set (70%) and testing set (30%).
This is a very standard approach in the literature (Hill 2011;
Johansson, Shalit, and Sontag 2016).

Benchmarks
We compare our algorithm with following benchmarks:
• BART is a non-parametric tree-based method (Hill 2011).
• Causal Forest is a random forest variant for causal infer-

ence (Wager and Athey 2015).
• kNN estimates ITE by using k nearest neighbors.
• Balancing Neural Networks (BNN) is a feedforward

network for ITE estimation (Johansson, Shalit, and Son-
tag 2016).

Performance Metrics
We evaluate all the algorithms in terms of the Precision in
Estimation of Heterogeneous Effect (PEHE), that is,

PEHE =

√√√√ 1

N

N∑
n=1

(
ÎTE(Φ(xn))− ITE(xn)

)2
Obtaining a good (small) PEHE requires accurate estima-

tions of both observed and counterfactual outcomes.

Results
Table 1 shows the PEHE results averaged over 100 itera-
tions. As seen from the Table 1, our algorithm significantly
outperforms the benchmarks k-NN, BART, causal forest and
BNN on IHDP data. Note that BNN is a strong benchmark
as it handles the bias in the data by learning balanced rep-
resentations. The performance gain of the Deep-Treat with
respect to BNN shows that using auto-encoders to handle
the selection bias is advantageous. Furthermore, extending
the BNN to multiple actions is challenging and possibly re-
quires new innovations. Our algorithm on the other hand is
able to run on any number of actions, numerical results for
this are given in the next section.

Algorithm PEHE
Deep-Treat 1.83± 0.07

k-NN 5.30± 0.30
Causal Forest 3.86± 0.20

BNN 2.20± 0.13
BART 3.50± 0.20

Table 1: Performance in the IHDP experiment

Experiments on Breast Cancer Dataset for
Policy Optimization

In this section, we describe the performance of our algorithm
in the breast cancer dataset. Another way to validate and test
our algorithm is by using an alternative accepted procedure
to infer counterfactuals and to test the prediction of our al-
gorithm against this alternative accepted procedure. This is
the route we follow in our experiments.

Dataset description
We apply Deep-Treat to the problem of recommending
chemotherapy regimens for breast cancer patients. We eval-
uate our algorithm on a dataset of 10,000 records of breast
cancer patients participating in the National Surgical Adju-
vant Breast and Bowel Project (NSABP) by (Yoon, Davtyan,
and van der Schaar 2016). Each instance consists of the
following information about the patient: age, menopausal,
race, estrogen receptor, progesterone receptor, human epi-
dermal growth factor receptor 2 (HER2NEU), tumor stage,
tumor grade, Positive Axillary Lymph Node Count(PLNC),
WHO score, surgery type, Prior Chemotherapy, prior radio-
therapy and histology. The treatment is a choice among six
chemotherapy regimes AC, ACT, AT, CAF, CEF, CMF. The
outcomes for these regimens were derived based on 32 refer-
ences from PubMed Clinical Queries. The 32 references are
found by performing a narrow search on Pubmed about the
chemotherapy regimens of the interest. The treatment out-
comes for each patient are derived by aggregating the ac-
tual 5-year survival rates of the references by taking their
population statistics into account. Hence, the data contains
the feature vector x and all derived outcomes for each treat-
ment {Y t}t∈T . The details are given in (Yoon, Davtyan, and
van der Schaar 2016).

We generate an artificially biased DN =
{(x1, t1, y1), . . . , (xN , tN , yN )} from the original data. In
order to do that, we randomly select and sequester 20%
of the data, which we use to fit a logistic regression from
features to outcomes. Denote by θ0,t the parameter of the
logistic regression for treatment t. We use the fitted logistic
regression model to generate artificially biased data in the
following way. For each instance n, we sample a random
treatment tn ∼ π0(·|xn) ∝ exp(κθ0,t · xn) and set the
observed outcome to be yn ≡ Y tnn . We use κ > 0 to
increase the randomization in the data – a smaller κ makes
the data more random. By following this approach, we
create a dataset DN = {(x1, t1, y1), . . . , (xN , tN , yN )}.
This is a standard way of creating artificially biased data;
see (Swaminathan and Joachims 2015a). We divide the
other 80% of the data into 3 parts to train, validate and test
the performance of the algorithms.

We evaluate our algorithm with Le = 1, Ld = 1 auto
encoder layers (with 25 hidden units in the representation
block) and Lp = 2 policy layers with 50 hidden units. We
use relu as the activation function. We validate the hyper pa-
rameters of our algorithm on λ∗1 ∈

[
10−3, 10−2, . . . , 102

]
.

We choose the hyperparameter that minimizes the policy
loss in the validation instances. We use the same technique
to validate the hyper parameters of each algorithm. We train
each algorithm with the Adam optimizer and with early stop-
ping criteria.

Benchmarks
We compare the accuracy of our algorithm with the follow-
ing benchmarks:

• Policy Optimization with Neural Networks (PONET)
is our algorithm without the bias removing network.



Algorithm/Metric Accuracy Improvement score Kappa coefficient Improvement score
Deep-Treat 79.05% ± 0.65% - 70.96% -

PONET 72.87%± 1.54% 22.77% 62.40% 13.72%
POEM 64.68%± 1.88% 40.68% 51.05% 39.00%
MLP 62.74%± 0.66% 43.77% 48.36% 46.73%
LR 62.28%± 0.88% 44.45% 47.72% 48.70%

Logging 27.84% + 0.08% 70.96% 0% -

Table 2: Performance in the Breast Cancer Experiment (κ = 0.25)

• POEM is the algorithm from (Swaminathan and
Joachims 2015a) where the objective is optimized with
Adam.

• Multilayer Perceptron (MLP) is the MLP algorithm on
the concatenated input (x, t) .

• Logistic Regression (LR) is the separate LR algorithm
on input x on each treatment t.

• Logging is the logging policy performance.
For MLP and LR, we compute a policy based on the esti-

mated outcomes of each treatment. Denote by G(x, t) the
estimated outcome for treatment t on a patient with fea-
ture vector x. The recommended treatment is then t̂(x) =
arg maxt∈T G(x, t). Note that MLP, LR and PONET algo-
rithms do not address the selection bias.

Performance Metrics
In this subsection, we introduce the metrics that are used
to compare the performance of each algorithm. For the nth
instance, let t∗n denote the treatment with highest outcome,
i.e., t∗n = arg maxt∈T Y

t
n . Let Dtest denote the instances in

the testing set and Ntest = |Dtest|. We define the (absolute)
accuracy of an algorithm A that returns a policy πA as

Acc(A) =
1

Ntest

∑
j∈Jtest

∑
t∈T

πA(t|xj)I(t∗n = t).

We run each algorithm,A, for 10 iterations on the breast can-
cer dataset. In each iteration, we generate artificially biased
data by following the above procedure, and train, validate
and test the performance of each algorithm on randomly di-
vided datasets. We report the average of the iterations with
95% confidence intervals.

We define loss with respect to the “perfect” algorithm that
would predict accurately all of the time, so the loss of the
algorithm A is 1 − Acc(A). We evaluate the improvement
of our algorithm over each other algorithms as the ratio of
the actual loss reduction over the possible loss reduction,
expressed as a percentage:

Improvement Score(A) =
Acc(Deep-Treat)− Acc(A)

1− Acc(A)

The Improvement Score of each algorithm A with respect
to our algorithm is presented in Table 1. We also present Co-
hen’s Kappa Coefficient (alongside an improvement score
for this) which measures the improvement of the algorithms
over the logging policy, given by:

Kappa(A) =
Acc(A)− Acc(Logging)

1− Acc(Logging)

Results
Performance Comparisons Table 2 shows the perfor-
mance on each algorithm. As seen, our algorithm is able to
outperform each benchmark in terms of the Acc and Kappa
metrics. The performance gain of Deep-Treat with respect to
PONET and MLP shows that naive policy optimization al-
gorithms tend to fit a function that does not generalize well
on the counterfactuals. Our algorithm is also performing bet-
ter than the POEM algorithm by allowing a more general-
ized class of policies (POEM optimizes over linear stochas-
tic policies). In comparison with POEM, Deep-Treat finds
the best chemotherapy regime for an additional 11% of the
10,000 patients. This means that, in the sample of 10,000
women with breast cancer, 1100 additional women would
receive the best chemotherapy regime, and hence have the
best chance of survival.

Effect of the logging policy In this subsection, we eval-
uate Deep-Treat on different logging policies. We generate
different logging policies by varying the parameter κ on our
data-generating process. Table 3 shows the entropy of P̂r(T )
on the generated data. Larger entropy indicates more ran-
domized data. As seen from the table, smaller κ generates
more randomized datasets and larger κ generates more bi-
ased datasets.

κ 2−2 2−1 20 21 22

Entropy 1.71 1.49 1.13 1.02 0.9545

Table 3: Entropy of P̂r(T )

Figure 2: Effect of the logging policy



Figure 2 presents the accuracy of Deep-Treat and log-
ging policy based on different κ values. The accuracy of
the Deep-Treat increases with accuracy of the logging pol-
icy if there is enough randomization in the data. This is be-
cause Deep-Treat improves the logging policy performance
by replacing the suboptimal treatments of the logging pol-
icy with the optimal ones. In order for Deep-Treat to do that
there should be enough randomization in the data so that
Deep-Treat can improve upon observing outcomes of the al-
ternative treatments received by similar patients. If there is
no such randomization, the accuracy of the Deep-Treat de-
creases.

Conclusion
In this paper we introduced a new approach for learning
balanced representations and optimal policies from obser-
vational data. The heart of our method is the bias remov-
ing auto-encoder which trades off between information loss
and bias and the policy optimization feedforward neural net-
work which learns a mapping from a representation space to
a probablity distribution over treatments. Our algorithm is
widely applicable in domains beyond medicine due to the
wealth of observational data that exists in a wide variety of
areas, and we leave it to a future work to explore these possi-
bilities. Although our algorithm is able to achieve significant
empirical gains with respect to strong benchmarks, we hope
to see development of a deeper theoretical understanding of
learning balanced representations in the multiple treatment
setup, believing this is an interesting open problem.
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