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With the advances in the field of medical informat-
ics, automated clinical decision support systems are
becoming the de facto standard in personalized diag-
nosis. In order to establish high accuracy and con-
fidence in personalized diagnosis, massive amounts
of distributed, heterogeneous, correlated and high-
dimensional patient data from different sources such
as wearable sensors, mobile applications, Electronic
Health Record (EHR) databases etc. need to be pro-
cessed. This requires learning both locally and globally
due to privacy constraints and/or distributed nature of
the multi-modal medical data. In the last decade, a large
number of meta-learning techniques have been pro-
posed in which local learners make online predictions
based on their locally-collected data instances, and feed
these predictions to an ensemble learner, which fuses
them and issues a global prediction. However, most of
these works do not provide performance guarantees or,
when they do, these guarantees are asymptotic. None
of these existing works provide confidence estimates
about the issued predictions or rate of learning guaran-
tees for the ensemble learner. In this paper, we provide
a systematic ensemble learning method called Hedged
Bandits, which comes with both long run (asymptotic)
and short run (rate of learning) performance guaran-
tees. Moreover, we show that our proposed method
outperforms all existing ensemble learning techniques,
even in the presence of concept drift.

Introduction
Huge amounts of clinically relevant data streams are now be-
ing produced by more and more sources and in increasingly
diverse formats: wearable sensors, mobile patient monitor-
ing applications, EHRs etc. These streams can be mined
in real-time to provide actionable intelligence for a variety
of medical applications including remote patient monitor-
ing (Simons 2008) and medical diagnosis (Arsanjani et al.
2013). Such applications can leverage online data mining al-
gorithms that analyze the correlated, high-dimensional and
dynamic data instances captured by one or multiple hetero-
geneous data sources, extract actionable intelligence from
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these instances and make decisions in real-time. To mine
these medical data streams, the following questions need to
be answered continuously, for each data instance: Which
processing/prediction/decision rule should a local learner
(LL) select? How should the LLs adapt and learn their rules
to maximize their performance? How should the process-
ing/predictions/decisions of the LLs be combined/fused by
a meta-learner to maximize the overall performance?

Existing works on meta-learning (Littlestone and War-
muth 1989), (Freund and Schapire 1995) have aimed to
provide solutions to these questions by designing ensemble
learners (ELs) that fuse the predictions1 made by the LLs
into global predictions. A majority of the literature treats the
LLs as black box algorithms, and proposes various fusion al-
gorithms for the EL with the goal of issuing predictions that
are at least as good as the best LL in terms of prediction ac-
curacy. In some of these works, the obtained result holds for
any arbitrary sequence of data instance-label pairs, includ-
ing the ones generated by an adaptive adversary. However,
the performance bounds proved for the EL in these papers
depend on the performance of the LLs. In this work, we go
one step further and study the joint design of learning algo-
rithms for both the LLs and the EL.

In this paper, we present a novel learning method which
continuously learns and adapts the parameters of both the
LLs and the EL, after each data instance, in order to achieve
strong performance guarantees - both confidence bounds and
regret bounds. We call the proposed method Hedged Bandits
(HB). The proposed system consists of a contextual ban-
dit algorithm for the LLs and Hedge algorithm (Freund and
Schapire 1995) for the EL. The proposed method is able to
exploit the adversarial regret guarantees of Hedge and the
data-dependent regret guarantees of the contextual bandit
algorithm to derive a data-dependent regret bound for the
EL. It was proven for the Hedge algorithm that it has a
O(
√
T logM) bound on the regret of the EL with respect

to the best fixed LL, where T is time and M is the num-
ber of LLs. We utilize this property of Hedge to derive a
regret bound with respect to the best data-dependent predic-
tion rule of the best LL.

The contributions of this paper are:

1Throughout this paper the term prediction is used to denote a
variety of tasks from making predictions to taking actions.



• We prove regret bounds for each LL with respect to the
best data-dependent prediction rule of that LL.

• Using the regret bounds proven for each LL, we prove
a regret bound for the EL with respect to the best data-
dependent prediction rule of the best LL.

• We prove confidence bounds on the predictions of each
LL, which is crucial to assess the accuracy of the medical
diagnosis, and to discard predictions of low confidence
LLs if necessary.

• We numerically compare HB with state-of-the-art ma-
chine learning methods in the context of medical infor-
matics and show the superiority of HB.

Problem Description
Consider the system model given in Figure 1. There are M
LLs indexed by the setM := {1, 2, . . . ,M}. Each LL re-
ceives streams of data instances, sequentially, over discrete
time steps (t = 1, 2, . . .). The instance received by LL i at
time t is denoted by xi(t). Without loss of generality, we as-
sume that xi(t) is a di dimensional vector in Xi := [0, 1]di .2

The collection of data instances at time t is denoted by
x(t) = {xi(t)}i∈M. As an example, in a medical diagno-
sis application x(t) can include real-valued features such as
lab test results; discrete features such as age and number of
previous conditions; and categorical features such as gen-
der, smoker/non-smoker, etc. In this example each LL cor-
responds to a different medical expert.

The set of prediction rules of LL i is denoted by Fi. After
observing xi(t), LL i selects a prediction rule ai(t) ∈ Fi.
The selected prediction rule produces a prediction ŷi(t).
Then, all LLs send their predictions ŷ(t) := {ŷi(t)}i∈M to
the EL, which combines them to produce a final prediction
ŷ(t). The set of possible predictions is denoted by Y , which
is equivalent to the set of true labels (ground truth). We as-
sume that the true label y(t) ∈ Y is revealed after the final
prediction, by which the LLs and the EL can update their
prediction rule selection strategy, which is a mapping from
the history of past observations, decisions, and the current
instance to the set of prediction rules.3

In our setup each LL is only required to observe its own
data instance and know its own prediction rules. However,
the accuracy of the prediction rules is unknown and data
dependent. The EL knows nothing about the instances and
prediction rules of the LLs. The accuracy of prediction rule
f ∈ Fi for instance xi(t) is denoted by πf (xi(t)) :=
Pr(ŷi(t) = y(t)|xi(t), ai(t) = f). We assume that the ac-
curacy of a prediction rule obeys the following Hölder rule,
which represents a similarity measure between different data
instances.
Assumption 1. There exists L > 0, α > 0 such that for all
i ∈M, f ∈ Fi, and x, x′ ∈ Xi, we have

|πf (x)− πf (x′)| ≤ L||x− x′||α.
2The unit hypercube is just used for notational simplicity. Our

methods can easily be generalized to arbitrary bounded, finite di-
mensional data spaces, including spaces of categorical variables.

3Missing and erroneous labels will be discussed later in the ex-
tensions section.

We assume that L and α are known by the LLs. Going
back to our medical informatics example, we can interpret
Assumption 1 as follows. Consider two patients. If all the
lab tests and demographic information of both patients are
similar, it is expected that they have the same underlying
condition. Hence, the prediction made by f should be simi-
lar for these patients.

Definition of the Regret
In this section we define the regret for each LL and the EL,
which defines the expected total number of excess prediction
errors due to not knowing the optimal prediction rules for
each instance. The optimal prediction rule of LL i for an
instance x ∈ Xi is defined as f∗i (x) := argmaxf∈Fi πf (x).
The (data-dependent) regret of LL i is defined as its total
expected loss due to not knowing f∗i (x), x ∈ Xi perfectly,
and is given by

Ri(T ) :=

T∑
t=1

πf∗i (xi(t))(xi(t))

− E

[
T∑
t=1

I(ŷi(t) = y(t))

]
(1)

for an arbitrary sequence of instances xi(1), . . . , xi(T ),
where I(·) is the indicator function.

Consider an arbitrary, length T sequence of instance col-
lections: xT := (x(1),x(2), . . . ,x(T )). The best LL for
xT is defined as

i∗(xT ) := argmax
i∈M

T∑
t=1

πf∗i (xi(t))(xi(t)) (2)

which is the LL whose total predictive accuracy is greatest
among all LLs.

The regret of the EL for xT is defined as

Rens(T ):=

T∑
t=1

(
πf∗

i∗ (xi∗ (t))
(xi∗(t))− E [I(ŷ(t) = y(t))]

)
where i∗ = i∗(xT ).

The goal of this work is to develop algorithms for the
LLs and the EL that minimize the growth rate of Rens(T ).
We will prove in the next section that the average regret
Rens(T )/T of the proposed algorithms will converge asymp-
totically to 0, meaning that algorithms are optimal in terms
of their average predictive accuracy, and prove a sublinear
regret bound on Rens(T ) with respect to the optimal data-
dependent prediction rule of the best expert, meaning that
the proposed algorithms have a provably fast rate of learn-
ing.

A Instance-based Uniform Partitioning
Algorithm for the LLs

Each LL uses the Instance-based Uniform Partitioning
(IUP) algorithm given in Figures 2 and 3 . IUP is designed to
exploit the similarity measure given in Assumption 1 when
learning accuracies of the prediction rules. Basically, IUP
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Figure 1: Block diagram of the HB. After observing the instance, each LL selects one of its prediction rules to produce a
prediction, and sends its prediction to the EL which makes the final prediction (diagnosis). Then, both the LLs and the EL
update their prediction policies based on the received feedback y(t) (outcome).

partitions Xi into a finite number of equal sized, identically
shaped, non-overlapping sets, whose granularity determine
the balance between approximation accuracy and estimation
accuracy. Evidently, increasing the size of a set in the par-
tition results in more past instances falling within that set,
and this positively effects the estimation accuracy. However,
increasing the size of the set also allows more dissimilar in-
stances to lie in the same set, which negatively effects the ap-
proximation accuracy. IUP strikes this balance by adjusting
the granularity of the data space partition based on the infor-
mation contained within the similarity measure (Assumption
1) and the time horizon T .4

Let mi be the partitioning parameter IUP used for LL i,
which is used for partitioning [0, 1]di into (mi)

di identical
hypercubes. This partition is denoted by Pi.5 IUP estimates
the accuracy of each prediction rule for each hypercube p ∈
Pi, i ∈ M separately, by only using the past history from
instance arrivals that fall into hypercube p. For each LL i,
IUP keeps and updates the following parameters during its
operation for LL i:

• Di(t): A non-decreasing function used to control the de-
viation probability of the sample mean accuracy of the
prediction rule f ∈ Fi from its true accuracy.

• N i
f,p(t): Number of times an instance arrived to hyper-

cube p ∈ Pi and prediction rule f of expert i is used to
make the prediction.

• π̂if,p(t): Sample mean accuracy of prediction rule f by
time t.

4It is also possible to strike this balance without knowing the
time horizon by using a standard method called the doubling trick.

5Instances lying at the edges of the hypercubes can be assigned
to one of the hypercubes in a random fashion without affecting the
derived performance bounds.

IUP alternates between two phases for each LL: exploration
and exploitation. The exploration phase enables learning
more about the accuracy of a prediction rule for which IUP
has high uncertainty. In other words, IUP explores a predic-
tion rule if it has a low confidence on the estimate of the
accuracy of that prediction rule. The exploitation phase uses
the prediction rule that is assumed to be the best so far in
order to minimize the number of incorrect predictions. The
decision to explore or exploit is given by checking whether
the accuracy estimates of the prediction rules for the hyper-
cube that contains the current instance are close enough to
their true values with respect to the number of instances that
have arrived so far. For this purpose, the following set is cal-
culated for LL i at time t.

Fue
i,pi(t)

(t) := {f ∈ Fi : N i
f,pi(t)

(t) ≤ Di(t)} (3)

where pi(t) is the hypercube in Pi that contains xi(t). If
Fue
i,pi(t)

(t) = ∅, then LL i enters the exploitation phase.
In the exploitation phase, the prediction rule with the high-
est estimated accuracy is chosen to make a prediction, i.e.,
ai(t) := argmaxf∈Fi π̂

i
f,pi(t)

(t), where

π̂if,pi(t)(t) =

∑t−1
t′=1 I(ai(t

′) = f, ŷi(t
′) = y(t′))

N i
f,pi(t)

(t)
.

Otherwise, if Fue
i,pi(t)

(t) 6= ∅, then LL i enters the explo-
ration phase. In the exploration phase, an under-explored
prediction rule in Fue

i,pi(t)
(t) is randomly chosen to learn

about its accuracy.

Hedge Algorithm for the EL
Let ŷ(t) = (ŷ1(t), . . . , ŷM (t)) be the vector of predictions
made by the LLs at time t, by their prediction rules a(t) =
(a1(t), . . . , aM (t)). We assume that the EL uses the Hedge



IUP for LL i:
Input: Di(t), T , mi

Initialize sets: Create partition Pi of [0, 1]di into (mi)
di

identical hypercubes
Initialize counters: N i

f,p = 0,∀f ∈ Fi, p ∈ Pi
Initialize estimates: π̂if,p = 0, ∀f ∈ Fi, p ∈ Pi
while t ≥ 1 do

Find the set in Pi that xi(t) belongs to, i.e., pi(t)
Let p∗ = pi(t)
Compute the set of under-explored prediction rules
Fue
i,p∗(t) given in (3)

if Fue
i,p∗(t) 6= ∅ then

Select ai randomly from Fue
i,p∗(t)

else
Select ai randomly from argmaxf∈Fi π̂

i
f,p∗

end if
Produce a prediction ŷi based on ai.
Observe the true label y(t) (delay possible).
r = I(ŷi(t) = y(t))

π̂iai,p∗ =
π̂iai,p

∗N
i
ai,p
∗+r

Ni
ai,p
∗+1

N i
ai,p∗ ++

t = t+ 1
end while

Figure 2: Pseudocode of IUP for LL i.

algorithm (Freund and Schapire 1995), to produce the final
prediction ŷ(t).6

Hedge keeps a weight vector w(t) =
(w1(t), . . . , wM (t)), where wi(t) denotes the weight
of LL i, which represents the algorithm’s trust on the
predictions of LL i. After observing ŷ(t), Hedge samples
its final prediction from this set according to the following

6We decided to use Hedge as the ensemble learning algorithm
due to its simplicity and regret guarantees. In practice, Hedge
can be replaced with other ensemble learning algorithms. For in-
stance, we evaluate the performance when LLs use IUP and the EL
uses Weighted Majority (WM) algorithm (Littlestone and Warmuth
1989) in the numerical results section.
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Figure 3: Flowchart of IUP.

probability distribution:

Pr(ŷ(t) = ŷi(t)) := wi(t)/(

M∑
j=1

wj(t)).

This implies that Hedge will choose the LLs with higher
weights with higher probability. Whenever the prediction of
an LL is wrong, its weight is scaled down by κ ∈ [0, 1],
where κ is an input parameter of Hedge. As shown in (Fre-
und and Schapire 1995), the regret of Hedge with respect to
the best fixed LL is bounded by O(

√
T logM) for an arbi-

trary sequence of predictions made by the LLs. We will use
this property of Hedge together with the regret bound for
LLs to obtain a data-dependent regret bound for the EL.

Analysis of the Regret
In this section we prove bounds on the regrets given in Equa-
tions 1 and ??, when the LLs use IUP and the EL uses Hedge
as their algorithms. Due to limited space the proofs are given
in the supplemental material. The following theorem bounds
the regret of each LL.
Theorem 1. Regret bound for an LL. When LL i uses IUP
with control function Di(t) = t2α/(3α+di) log t and parti-
tioning parameter mi = dT 1/(3α+di)e, for any sequence
xT we have

Ri(T ) ≤ T
2α+di
3α+di

(
2di |Fi| log T + Ci,1

)
+ T

di
3α+di Ci,2

where

Ci,1 := 3Ld
α/2
i +

2Ld
α/2
i + 2

(2α+ di)/(3α+ di)

Ci,2 := 2di |Fi|+ β2di+1, β :=

∞∑
t=1

1/t2.

Theorem 1 states that the difference between the expected
number of correct predictions made by IUP and the highest
expected number of correct predictions LL i can achieve,
increases as a sublinear function of the sample size T . This
implies that the average excess prediction error of IUP com-
pared to the optimal set of predictions that LL i can make
converges to zero as the sample size approaches infinity.
Since the regret bound is uniform over time, this lets us ex-
actly calculate how far IUP is from the optimal strategy for
any finite T , in terms of the average number of correct pre-
dictions. Basically, we have Ri(T )/T = O

(
T
− α

3α+di

)
.

As a corollary of the above theorem, we have the follow-
ing confidence bound on the accuracy of the predictions of
LL i made by using IUP.
Corollary 1. Confidence bound for IUP. Assume that IUP
is run with the set of parameters given in Theorem 1. Let
ACCi,ε(t) be the event that the prediction rule chosen by
IUP for LL i at time t has accuracy greater than or equal to
πf∗i (xi(t))(x(t))− εt. If IUP exploits at time t, we have

Pr(ACCi,εt(t)) ≥ 1− 2|Fi|/t2

where εt = (5Ld
α/2
i + 2)t−α/(3α+di).



Corollary 1 gives a confidence bound on the predictions
made by IUP for each LL. This guarantees that the predic-
tion made by IUP is very close to the prediction of the best
prediction rule that can be selected given the instance. For
instance, in a medical application, the result of this corollary
can be used to calculate the patient sample size required to
achieve a desired level of confidence in the predictions of the
LLs. For instance, for every (ε, δ) pair, we can calculate the
minimum number of patients N∗ such that, for every new
patient n > N∗, IUP will not choose any prediction rule
with suboptimality greater than ε > 0 with probability at
least 1− δ, when it exploits.

The next theorem shows that the regret of the ensemble
learner grows sublinearly over time. Moreover, the term with
the highest regret order scales by |Fi∗ | but not the sum of the
number of prediction rules of all the LLs.
Theorem 2. Regret bound for the EL When the EL runs

Hedge(κ) with κ = 1/

(
1 +

√
2 logM
T

)
, the regret of the EL

with respect to the optimal data-dependent prediction rule of
the best expert is bounded by

Rens(T ) ≤
√
2T logM + logM

+ T
2α+di∗
3α+di∗

(
2di∗ |Fi∗ | log T + Ci∗,1

)
+ T

di∗
3α+di∗ Ci∗,2

Hence for α < di∗ , Rens(T ) = O

(
|Fi∗ |T

2α+di∗
3α+di∗

)
.

Theorem 2 implies that the highest time order of the re-
gret does not depend on M . Hence, the algorithm’s learn-
ing speed scales well with the number of experts. Since re-
gret is measured with respect to the optimal data-dependent
strategy of the best expert, it is expected that the ELs per-
formance will improve when better experts are added to the
system.

Extensions
Active EL: The prediction accuracy of an LL can be low
when it explores. Hence, the predictions of these LLs will
be risky, and should not be relied upon in medical diagnosis.
Moreover, since the EL combines the predictions of the LLs,
taking into account the prediction of an LL which explores
can reduce the prediction accuracy of the EL.

In order to overcome this, we propose the following mod-
ification: Let A(t) ⊂ M be the set of LLs that exploit at
time t. If A(t) = ∅, the EL will randomly choose one of
the LLs’ prediction as its final prediction. Otherwise, the EL
will apply an ensemble learning algorithm (such as Hedge
or WM) using only the LLs in A(t). This means that only
the predictions of the LLs in A(t) will be used by the EL
and only the weights of the LLs in A(t) will be updated by
the EL. Our numerical results illustrate that such a modifi-
cation can result in an accuracy that is much higher than the
accuracy of the best LL.

Missing labels: The proposed HB method can also tackle
missing and erroneous labels, which often occur in medical
diagnosis. In this case, the parameters of IUP and weights

of Hedge will only be updated for instances whose labels
are observed later. Assuming that the label of an instance
is observed with probability q, independently from other in-
stances, our regret bounds will scale with 1/q.

If there is a positive probability pε that the label is incor-
rect, then our algorithms will still work, and the same re-
gret bounds will hold. However, the benchmark we compare
against will change from the best prediction rule to a pε-near
optimal prediction rule. This means that our algorithms will
be guaranteed to have sublinear regret with respect to a pre-
diction rule whose accuracy is at least pε smaller than the
accuracy of the best prediction rule given each instance.

Application to Medical Diagnosis
In this section, we evaluate the performance of HB (with ac-
tive EL defined in Extensions Section, using both IUP for
LLs, Hedge for EL and IUP for LLs, WM for EL) with
various machine learning techniques on a breast cancer di-
agnosis dataset from the UCI archive (Mangasarian, Street,
and Wolberg 1995). More specifically, we compare HB with
three state-of-the-art machine learning techniques (Logistic
regression (LR), support vector machine with radial based
kernerl function (SVMs), and Adaptive boosting algorithm
(AdaBoost) ) and the best and the worst LL.

Description of the dataset: The original dataset consists
of 569 instances and 30 attributes that are clinically rele-
vant to the breast cancer diagnosis (e.g. tumor radius, tex-
ture, perimeter, etc.). The diagnosis outcome (label) is bi-
nary, either malignant or benign.

Simulation setup: Each algorithm runs 50 times and the
average performances of 50 runs are reported as final result.
For HB algorithm, we create 3 LLs, and randomly assign 10
attributes to each LL as its feature types. The LLs do not
have any common attributes for fair comparison with non-
ensemble algorithms. Hence, di = 10 for all i ∈ {1, 2, 3}.
For each run, we simulate 10000 instances by drawing an in-
stance from the original 569 instances uniformly at random
at each time step. For the offline benchmarks (LR, SVMs
and AdaBoost) are trained using 285 (50%) randomly drawn
instances from the original 569 instances. Like HB, they are
also tested on 10,000 instances drawn uniformly at random
from the original 569 instances (excluding the 285 (50%)
training instances). In other word, no training instances were
used in testing set, but 50 different training sets were used to
compute the average performace. LR and SVMs used all 30
attributes, while the 3 weak learners of AdaBoost used 10
randomly assigned attributes as their feature types.

Results on prediction accuracy: All algorithms make
one of the two predictions (benign or malignant) for every
instance. We consider three performance metrics: prediction
error rate (PER), false positive rate (FPR), and false negative
rate (FNR). PER is defined as the fraction of times the pre-
diction is different from the label. FPR and FNR are defined
as the rate of prediction error among benign cases and the
rate of prediction error among malignant cases, respectively.

As the Table 1 shows, HB (IUP + WM) has 2.01% PER,
1.27% FAR, and 2.98% FNR. Hence, its PER is only 66.7%
of PER of the second best of the benchmark algorithms
(LR). We also note that PER of the best LL is 60% less than



Table 1: Comparison of HB with other benchmarks
Units(%) Average Std

Performance Metric PER FPR FNR PER FPR FNR
HB(IUP+WM) 2.01 1.27 2.98 0.48 0.62 0.71

HB(IUP + Hedge) 2.57 2.22 2.94 0.77 0.82 0.88
Logistic Regression 6.04 8.48 2.94 2.18 4.07 1.3

AdaBoost 6.91 9.55 2.99 2.58 4.82 1.83
SVMs 9.73 14.21 2.98 2.5 4.19 1.98

Best LL of IUP 2.41 2.07 2.97 0.75 0.86 0.88
Average LL of IUP 3.82 3.59 2.91 0.53 0.7 0.8
Worst LL of IUP 5.21 4.97 2.95 0.75 1.08 1.26
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Figure 4: PER of HB, LR and AdaBoost as a function of the
composition of the training set.

PER of LR. This implies that IUP used by the LLs yields
high classification accuracy, because it learns the best data
dependent prediction rule of the LLs.

HB with IUP and WM outperforms the best LL, because
it takes a weighted majority of the predictions of LLs as its
final prediction, and as we can see from Table 1, all LL are
reasonably close in terms of their PER to the best LL, since
the PER of the worst LL is 5.82%. In contrast, Hedge puts a
probability distribution over the LLs based on their weights,
and follows the prediction of the chosen LL. Due to this, it
is expected that the deterministic approach (WM) performs
better than the probabilistic approach (Hedge), when all LLs
have low PER.

Another advantage of HB is that it results in low standard
deviation for PER, FPR and FNR, which is expected since
IUP provides tight confidence bounds on the accuracy of the
prediction rule chosen for any instance for which it exploits.

In Figure 3, the performances of HB (with WM), LR and
AdaBoost are compared as a function of the training set
composition. Since both LLs and the EL learn online, HB’s
performance is much less dependent on the training set com-
position. On the other hand, the performance of LR and Ad-
aBoost, the offline algorithms, highly depends on the com-
position of the training set. This shows the adaptivity of HB
to various data distributions.

Although LR, SVMs and Adaboost algorithms are able to

change into an online version by retraining each model after
arriving every instance, the computational complexity of this
online implementations is much higher than that of HB. For
instance, the computational complexity of online logistic re-
gression is O(k · N) higher than our HB algorithm where
k is the iteration number for optimizing the parameters in
logistic regression.

Related Works

In this section, we compare our proposed method with other
online learning and ensemble learning methods in terms of
the underlying assumptions and performance bounds.

Heterogeneous data observations: Most of the existing
ensemble learning methods assume that the LLs make pre-
dictions by observing the same set of instances (Littlestone
and Warmuth 1989), (Fan, Stolfo, and Zhang 1999), (Masud
et al. 2009), (Street and Kim 2001), (Minku and Yao 2012).
Our methods allow the LLs to act based on heterogeneous
data streams that are related to the same event. Moreover, we
impose no statistical assumptions on the correlation between
these data streams. This is achieved by isolating the decision
making process of the EL from the data. Essentially, the EL
acts solely based on the predictions it receives from the LLs.

Reduced computational complexity: Most ensemble
learning methods process the data in chunks. For instance,
(Fan, Stolfo, and Zhang 1999) considers an online version
of AdaBoost, in which weights are updated in a batch fash-
ion after the processing of each data chunk is completed.
Unlike this work, our method processes each instance only
once upon its arrival, and do not need to store any past in-
stances. Moreover, the LLs only learn from their own in-
stances, and no data exchange between LLs are necessary.
The above properties make our method computationally ef-
ficient and suitable for distributed implementation.

Dealing with dynamic data distribution: Since our
method does not require any statistical assumptions on the
data generation process, it works even when the data distri-
bution is dynamically changing, i.e., when there is concept
drift (Žliobaitė 2010). To deal with concept drift (Minku and
Yao 2012) considers two ensembles, where one ensemble
is used for making predictions, while the other ensemble is
used for tracking the changes in data distribution. Dynamic
WM algorithms, which adapt the LLs based on the ELs per-
formance are proposed in (Kolter and Maloof 2005), (Kolter
and Maloof 2007). However, the bounds on the performance
of the proposed algorithms are derived with respect to an
online learner trained on each concept individually, and no
confidence bound is derived for each individual instance. A
perceptron WM rule is proposed in (Canzian, Zhang, and
van der Schaar 2013), where each LL receives predictions of
other LLs before making the final prediction. An asymptotic
bound on the prediction error probability is provided, under
the strong assumption that the prediction error probability of
the best prediction rule tends to zero. All of these previous
works tackle the concept drift using ad-hoc methods, and do
not have strong regret and confidence bound guarantees, as
our method does.



Conclusion
In this paper we proposed an ensemble learning algorithm
which uses multi-modal medical data for medical diagno-
sis. The proposed algorithm is able to process the multi-
modal data in a distributed fashion in real-time to come up
with a single final diagnosis. The explore-exploit scheme
adopted by the proposed algorithm is used to derive confi-
dence bounds on the accuracy of the predictions made by the
local learners. Apart from the confidence bounds, the pro-
posed algorithm also achieves a sublinear context-dependent
regret bound for the final diagnosis produced by the ensem-
ble learner.
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