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OBJECTIVES
Organ transplants

• Therapy of choice for patients with end
stage diseases!

• National Kidney Foundation: 121,678 peo-
ple waiting for lifesaving organ transplants
in the U.S. as of 1/11/2016!

Challenges

• Post-operative complications: infection, re-
jection and malignancy (Huynh 2014).

• Complications are highly dependent on the
features of both recipients and donors!

• Proper recipient-donor matching requires
accurate pre-operative survival analysis →
very little domain knowledge!

Our goal→ learn recipient-donor compatibility
from the electronic health record data (EHR)!

STATE-OF-THE-ART
Current clinical practice

• Donor Risk Index (DRI) (Feng 2006)
• Risk-Stratification Score (RSS) (Sorror 2007)
• Index for Mortality Prediction After Cardiac
Transplantation (IMPACT) (Weiss 2011)

Drawback of clinical risk scores:

• Expert-based, no rigorous validation.

• Ignores the heterogeneity of the recipient-
donor characteristics.

Need a data-driven predictive model that discov-
ers subgroups of “similar patients!

Related Machine Learning Algorithms

� Ensemble Methods (Kuznetsov 2014)
� Clustering Methods (Sontag 2016)
� Decision Tree Methods (Strobl 2009)

OUR METHOD
•Main idea: cluster the feature space into subgroups and assign a separate predictive model to every
subgroup [Build a tree with a predictor assigned to every leaf!].
•Model: • Recipient-donor feature space X and label space Y . •K feature clusters {X1, . . .,XK}.
• Cluster-specific predictors {h1, . . ., hK}.
• Learning: Jointly optimize K, {X1, . . .,XK} and {h1, . . ., hK} [Consider the Bias-Variance trade-off!]

min
{X1,...,Xk}

[
min

h1,...,hk∈H

k∑
i=1

F(X ∈ Xi)× EFi
[l(hi(x), y)]

]

subject to X =
k⋃

i=1

Xi, and Xi ∩ Xj = ∅ ∀i 6= j.

• NP hard! Need an approximate solution.

• Use an upper bound on the expected error
as the objective function.

• Add 2 constraints to make the problem
tractable: Restrict clusters to hyper-cubes, &
Restrict the number of clusters.

min
{X1,...,Xk}

E + α

√
k2 logM

n︸ ︷︷ ︸
Penalty term

, E : Empirical error

subject to Xi =
D∏

j=1

[aij , bij ], aij ≤ bij , aij ∈ R∗, bij ∈ R∗

k ≤ γ, where k ∈ Z+

X =
k⋃

i=1

Xi, and Xi ∩ Xj = ∅ for ∀i 6= j.
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CONCLUSIONS
• The outcomes of organ-transplant surgeries depend crucially on the individual traits of recipients and
donors.
•We developed a personalized prognostic tools that learns a tree of predictors, the output of which is a set
of recipient-donor feature clusters (phenotypes), and a predictive model customized for every cluster.
The performance of our algorithm outperforms state-of-the-art clinical risk scores and other machine
learning algorithms.

RESULTS
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Gain: 155 Patients (with DeepBoost)
         1,159 Patients (with RSS)

Gain: 316 Patients
         1,629 Patients

Gain: 298 Patients
         1,841 Patients

Gain: 141 Patients
         1,479 Patients

ConfidentMatch

Deep Boost

Recipient Stratification Score (RSS)

EXPERIMENTS
• United Network for Organ Sharing (UNOS)
dataset: a cohort of 56,716 patients who got heart
transplants from 1985 to 2015.
• Training set: transplants before 2010.
• Testing set: transplants after 2010.
• Our algorithm discovers 7 clusters (pheno-
types) for the heart transplant recipient-donor
pairs.
• Gains in the number of patients for whom the
PPV is 90% PPV are:

• 298 compared to DeepBoost.

• 1,841 compared to RSS.


