Personalized Donor-Recipient Matching for Organ Transplantation

UCLA

OBJECTIVES

Organ transplants

e Therapy of choice for patients with end
stage diseases!

e National Kidney Foundation: 121,678 peo-
ple waiting for lifesaving organ transplants
in the U.S. as of 1/11/2016!

Challenges

e Post-operative complications: infection, re-
jection and malignancy (Huynh 2014).

e Complications are highly dependent on the
features of both recipients and donors!

e Proper recipient-donor matching requires
accurate pre-operative survival analysis —
very little domain knowledge!

Our goal — learn recipient-donor compatibility
from the electronic health record data (EHR)!
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STATE-OF-THE-ART

Current clinical practice

e Donor Risk Index (DRI) (Feng 2006)
e Risk-Stratification Score (RSS) (Sorror 2007)

e Index for Mortality Prediction After Cardiac
Transplantation (IMPACT) (Weiss 2011)

Drawback of clinical risk scores:
o Expert-based, no rigorous validation.

e Ignores the heterogeneity of the recipient-
donor characteristics.

Need a data-driven predictive model that discov-
ers subgroups of “similar patients!

Related Machine Learning Algorithms

Ensemble Methods (Kuznetsov 2014)
Clustering Methods (Sontag 2016)
Decision Tree Methods (Strobl 2009)

EXPERIMENTS

e United Network for Organ Sharing (UNOS)
dataset: a cohort of 56,716 patients who got heart
transplants from 1985 to 2015.

e Training set: transplants before 2010.

o Testing set: transplants after 2010.

e Our algorithm discovers 7 clusters (pheno-
types) for the heart transplant recipient-donor
pairs.

e Gains in the number of patients for whom the
PPV is 90% PPV are:

e 298 compared to DeepBoost.
e 1,841 compared to RSS.

e The outcomes of organ-transplant surgeries depend crucially on the individual traits of recipients and
donors.

e We developed a personalized prognostic tools that learns a tree of predictors, the output of which is a set
of recipient-donor feature clusters (phenotypes), and a predictive model customized for every cluster.
The performance of our algorithm outperforms state-of-the-art clinical risk scores and other machine
learning algorithms.
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OUR METHOD

e Main idea: cluster the feature space into subgroups and assign a separate predictive model to every
subgroup [Build a tree with a predictor assigned to every leaf!].

e Model: e Recipient-donor feature space X and label space ). e K feature clusters { X1, ..., Xk }.

e Cluster-specific predictors {h1,...,hx}.

e Learning: Jointly optimize K, {&},..., Xk} and {h4,..

., hik } [Consider the Bias-Variance trade-off!]
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e NP hard! Need an approximate solution.

e Use an upper bound on the expected error
as the objective function.

e Add 2 constraints to make the problem
tractable: Restrict clusters to hyper-cubes, &
Restrict the number of clusters.
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