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Abstract

In the era of precision medicine, treatment
regimens are selected based on the patients
individual characteristics to improve the re-
sponse. However, given the high dimen-
sionality of clinical data, discovering which
data is relevant to consider when selecting
treatments can be challenging. We present
two novel approaches that discover the in-
formation (patient features) from the elec-
tronic health record that is most relevant
for predicting the best treatment regimen for
each specific patient. We describe two ap-
proaches: the first assumes that features are
independent (DE-IF), the second allows for
features to be correlated (DE-CF). We eval-
uate the performance of these approaches
against other methods using a data set of
50,000 cases. Different patient features are
relevant to predicting the success of differ-
ent treatments; DE-IF and DE-CF can dis-
cover these different relevant features and use
them to make personalized treatment recom-
mendations. We determine rewards based on
the results of external knowledge (published
literature and clinical practice guidelines) de-
scribing the effect of the same treatments on
similar patients as the ones considered in our
study. In general, our approach achieves a
16.6% improvement over other methods in
terms of kappa statistics. We also demon-
strate that the performance of our methods
is robust against missing information.

1 INTRODUCTION

A key aspect of precision medicine is the ability to
personalize the selection of a treatment regimen based

Preliminary work. Under review by AISTATS 2016. Do
not distribute.

on the personal characteristic of an individual patient
(Richmond, 2008). The wealth of information be-
ing routinely collected as part of the electronic health
record (EHR) provides an unprecedented opportunity
to discover appropriate treatments for patients given
historical information about the treatments adminis-
tered to similar patients and their outcomes (Shortliffe
and Cimino, 2006). However, using this information
is difficult precisely because there is too much of it;
what is needed is to extract the information that is
actually relevant for the particular patient and treat-
ment among the wealth of available information.

In this paper, we present a novel method called Dis-
covery Engine (DE) for optimizing treatment selec-
tion by identifying the features in the patient record
that differentiate the individuals who receive a treat-
ment and positively respond to it versus those who
do not. We describe two variants of this approach: a
simplified method that assumes all features are inde-
pendent (DE-IF) and one that takes into account fea-
ture correlations (DE-CF). Our approaches leverage
available contextual information about patients and
enable learning from the large quantities of observa-
tional clinical data to inform treatment recommenda-
tions and make better decisions by learning from simi-
lar patients. We show that our approaches consistently
perform better than existing approaches in matching
individual patients to relevant treatment regimens.

One of the biggest challenges faced by this research
or any other predictive algorithms is that the re-
wards/true outcomes of treatment (e.g. five-year pro-
gression free survival) are not available in the data
we have and indeed, are usually not available in most
data (Bennett and Hauser, 2012). Moreover, even if
rewards/true outcomes of treatment were available,
the counterfactuals rewards/outcomes of alternative
treatments that were not used are never available.
What is available is a large medical literature that re-
ports the results of a wide range of clinical references
including different types of patients, different types of
treatments, and the outcomes of these treatments. We
use the results of some of these references to construct
a transfer reward, which we use as a proxy for rewards.
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This allows us to train the DE algorithms and also
to assess their performance in comparison to existing
methods. The three primary contributions of this pa-
per are:

• We describe a method for discovering the relevant
information from the EHR that distinguishes be-
tween patients that should receive one particular
chemotherapy and the patients who should receive
another. For instance, patients with observed mu-
tations (e.g., EGFR mutation and HER-2 overex-
pression) are more likely to respond to a specific
type of chemotherapy (e.g., erlotinib) (Zhou et al.
2011).

• Using the retrospective cases in the EHR, our ap-
proach discovers the optimal treatment based on
the available information (e.g. their clinical find-
ings, treatment history, and outcomes).

• In lieu of having actual reward values associated
with treatment decisions, we define the transfer
rewards, a method for ranking chemotherapies de-
scribed in external knowledge based on their rel-
evance to individual patients based on reported
characteristics.

2 RELATED WORKS

Current medical practice relies on manually curated
systematic reviews and clinical guidelines that provide
treatment recommendations for large groups of pa-
tients rather than personalized treatments that are tai-
lored to individual patients. Clinical decision support
systems have been proposed before, but many of them
do not consider the specific characteristics of patients
and do not provide personalized treatment recommen-
dations; hence, they are not very accurate and have
only limited applicability in practice (Tsumoto, 1998,
Greenspan and Syeda-Mahmood, 2012, and Xu et al.
2014). Moreover, clinicians often refer to the medical
literature available through Medline/PubMed, Visu-
alDX, and UpToDate to help them associate observed
finding with possible conditions and recommended ac-
tions; but, these resources are not customized to a
specific patients case.

Another strand of literature related to this work is
that on machine learning techniques, including Sup-
port Vector Machines (SVMs), AdaBoost, logistic re-
gression etc. are not able to accurately capture the nu-
anced relationships between specific patient character-
istics and specific treatments, thereby not being able
to issue accurate personalized treatment recommen-
dations. (Comparisons against these methods are per-
formed in the experiments section (Peterson, Doughty,

and Kann, 2013).) One of the reasons for inaccurate
recommendation is that those techniques cannot learn
the relevant features of patients that make them re-
spond to specific treatments.

Our method also exhibits similarities to the contex-
tual multi-armed bandit problem (MAB). However,
contextual MABs are very inefficient when the num-
ber of contexts (in our case patient characteristics) is
large (Tekin and van der Schaar, 2015). DE is able to
successfully deal with the curse of dimensionality by
discovering what information is relevant and making
decisions based on relevant contexts rather than the
entire EHR, much of which is irrelevant to the deci-
sion of whether to administer a specific treatment or
not.

3 PROBLEM FORMULATION

In this section, we introduce our method - discovery
engine (DE). Figure 1 depicts the proposed system,
which issues a treatment recommendation to the physi-
cian that is personalized to the patient. While the pro-
posed system is applicable in general, we illustrate its
use and performance in the context of breast cancer.
Let x = (x1, x2, ..., xD) denote the patient information
where D is the total number of features of each patient
such as age, tumor size, estrogen receptor information
etc.; a ∈ A ≡ {a1, a2, ..., aK} denotes the action (i.e.,
treatment) that is performed on the patient. Each fea-
ture is denoted as f ∈ F ≡ {f1, f2, ..., fD}. The reward
y would ideally be derived as the probability of five-
year survival of a patient given the chemotherapy reg-
imen. However, obtaining this reward value is difficult
in practice; instead, we use a surrogate reward mea-
sure which is discussed in a subsequent section. Let
x(n), a(n), y(n) be the patient information, action and
reward of nth patient and HN = {x(n), a(n), y(n)}Nn=1

be the information available for the N previously seen
patients. (This represents the training set.)

The success of a treatment a does not depend on all
the features (Goldstein et al. 2008): we assume that
the success of a treatment a depends only on a sub-
set of features R(a) ⊆ F which we call the relevant
features and let R =

⋃
a∈AR(a) be the set of all rel-

evant features. A key challenge is that the feature
that are relevant for predicting the success of a treat-
ment are not known a priori; they need to be dis-
covered/learned. Note that such learning/discovery
is very different from existing feature selection algo-
rithms which focus on the patients characteristics and
not on how these characteristics differently impact the
success of different treatments: our approach is capa-
ble of discovering different features that are relevant
to different treatments. We say that R(a) is rele-



Manuscript under review by AISTATS 2016

Figure 1: Personalized treatment recommendation system using DE

vant/informative for treatment a if the expected re-
ward only depends on the information contained in
R(a).

Figure 1 illustrates the aforementioned for-
mulation using an example, which discovers
R(Chemotherapy1)={Age, Prior Chemotherapy}, i.e.
the patients response to Chemotherapy 1 depends on
the patient age and the prior chemotherapy but not
on the lymph node status.

Our goal is to discover the relevant features of each
treatment a (this may be different for each treatment)
and determine the optimal treatment that corresponds
to the information contained within the relevant fea-
tures. The optimal recommended treatment is given
by,

a∗(xR) ≡ argmaxaE(y|a,xR(a))(y|a,xR(a))

where a∗(xR) is the treatment that yields the high-
est reward (e.g., best patient outcome) for a pa-
tient characterized by the relevant features (age, prior
chemotherapy) xR.

4 DE ALGORITHM

4.1 Independent Features (DE-IF)

We begin by describing our approach under the sim-
plifying assumption that the features are independent.
The main idea of this algorithm is to find the relevant
features for a specific treatment that distinguish the
expected rewards for patients with specific patient in-
formation (i.e., age 50+ patients) and those obtained
for the entire population. Features that create a large
reward separation are considered relevant to that spe-

cific treatment. Then, DE-IF simultaneously learns
the relevant features that predict the success of a treat-
ment and the best treatment given a patients charac-
teristic. The key steps of DE-IF are outlined below:

Step 1: Define ŷSa (xS) and NS
a (xS) as the sample

mean reward estimator and the number of patients
whose information contains xS for treatment a. In-
tuitively, the sample mean reward estimator can be
thought of as the average reward of treatment a for
the patients with information xS (such as age= 50+,
tumor size= 4mm patients). Then, let ŷa be the sam-
ple mean reward estimator for treatment a and Na
be the number of patients to whom treatment a was
recommended.

Step 2: Using the reward estimates for all (a, f), the
algorithm computes a relevance metric hf (a) for each
treatment feature pair (a, f), i.e.,

hf (a) ≡
∑
xf

Nf
a (xf )
Na
|ŷfa (xf )− ŷa|

that measures the weighted variation of the reward es-
timates. Recall that f was defined earlier as a feature
itself.

Step 3: Using the relevance metric for each pair (a, f),
we discover the relevant feature (r̂(a)) for each treat-
ment a.

r̂(a) = argmaxf hf (a)

Define m(a) as the number of relevant features and
R̂(a) as the set of the relevant features for treatment
a. We sequentially discover m(a) number of relevant
features (r̂(a)) for each treatment a
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Initialize: R̂(a) = ∅, F (a) = {f1, ..., fD} for each a
for each treatment-feature pair (a, f) do

Compute hf (a) =
∑
xf

Nf
a (xf )
Na
|ŷfa (xf )− ŷa|

end for
for each treatment a do

do
r̂(a) = argmaxf∈F (a) hf (a)

R̂(a) = R̂(a)
⋃
r̂(a)

F (a) = F (a)\r̂(a)
while (|R̂(a)| < m(a))

end for
for any patient information xR̂ do

Compute â(xR̂) = argmaxa ŷ
R̂(a)
a (xR̂(a))

end for

Figure 2: Psuedocode of DE-IF

Step 4: Define R̂ =
⋃
a∈A R̂(a) as the relevant fea-

tures for all treatments. The optimal treatment with
respect to relevant features R̂ is determined as

â(xR̂) = argmaxa ŷ
R̂(a)
a (xR̂(a))

This optimization selects the treatment with the high-
est estimated reward given a patient with patient in-
formation xR̂. The pseudo-code is given in Figure 2.

4.2 Correlated Features (DE-CF)

We now describe our approach for the more general
case in which features are allowed to be correlated.
For example, for some cancers, tumor size and tumor
grade may be correlated, not independent. Therefore,
we provide a generalization of the DE algorithm called
DE-CF that properly treats correlated features. While
the basic steps are similar to DE-IF, DE-CF uses a
different relevance metric:

hS(a) ≡
∑

xS

NS
a (xS)
Na

|ŷSa (xS)− ŷa|

Then, the most relevant tuple (consisting of m(a) fea-
tures) associated with treatment a can be found as

R̂(a) = argmaxS:|S|=m(a) hS(a)

The pseudo-code of DE-CF is given in Figure 3.

4.3 Contrasting DE-IF and DE-CF

DE-CF suffers from the curse of dimensionality be-
cause it needs to estimate rewards for each tuple of
features and hence it needs to see many tuples, not just
many features. For instance, it needs to see many cases
with age 50+ and tumor size 4cm not just many cases
with age 50+ or tumor size 4cm. Hence, if the data set

Initialize: R̂(a) = ∅ for each a
for each treatment-feature set (a, S) do

Compute hS(a) ≡
∑

xS

NS
a (xS)
Na

|ŷSa (xS)− ŷa|
end for
for each treatment a do

Compute R̂(a) = argmaxS:|S|=m(a) hS(a)
end for
for any patient information xR̂ do

Compute â(xR̂) = argmaxa ŷ
R̂(a)
a (xR̂(a))

end for

Figure 3: Psuedocode of DE-CF

is small, DE-CF may not yield high confidence. For
this reason, we suggest that for small data sets, it is
likely better to make the perhaps incorrect assumption
of independent features and use DE-IF rather than
DE-CF.

4.4 DE with Missing Information

Electronic health records are often missing hence, DE
must be able to operate efficiently even when informa-
tion is missing. When information is missing, the fea-
ture information vector x can be divided into two com-
ponents: the available features (xav) and the missing
features (xm). Thus, x = {xav,xm}. When features
are missing, the relevance metric of DE-IF is solely
computed based on the available information:

hf (a) ≡
∑
xav
f

Nf
a (xav

f )

Na
|ŷfa (xavf )− ŷa|

If the feature f is frequently missing, hf (a) decreases,
and as a result the feature f is rarely selected as a
relevant feature. The relevance metric of DE-CF is
similarly modified. It should be also note that the es-

timated reward (ŷ
R̂(a)
a (xav

R̂(a)
)) given a patients avail-

able relevant information, xav
R̂(a)

, for each treatment a

is computed as:

ŷ
R̂(a)
a (xav

R̂(a)
) = E(ŷ

R̂(a)
a (xR̂(a))|xavR̂(a)

)

=
∑

xm

R̂(a)

P (xm
R̂(a)
|xav
R̂(a)

) · ŷR̂(a)
a (xav

R̂(a)
,xm
R̂(a)

)

=
∑

xm

R̂(a)

P (xm
R̂(a)
|xav
R̂(a)

) · ŷR̂(a)
a (xR̂(a))

We can estimate the conditional probability,
P (xm

R̂(a)
|xav
R̂(a)

), based on the probability distri-

bution of the features in training set.

For example, let us assume that there are two relevant
features (menopausal status and tumor stage) for the
treatment a. Suppose now that a patients tumor stage
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is G1 and her menopausal status is missing. Then to
compute the estimated reward for selecting a treat-
ment for that patient, we use the conditional proba-
bility of being premenopausal given that the patient
has a G1 tumor stage. Let us assume that this is 0.7
(as computed based on the patients in the training
set), then DE estimates the reward of treatment a for
this patient as:

ŷ
R̂(a)
a (G1) = 0.7 · ŷR̂(a)

a (Pre,G1)+0.3 · ŷR̂(a)
a (Post,G1)

5 TRANSFER REWARDS:
ESTIMATING REWARDS BASED
ON MEDICAL LITERATURE

As we have said in the introduction, the most natural
rewards would be patient outcomes (survival rates) but
these outcomes are very difficult to obtain in practice.
Instead, we use a proxy for outcomes based on exter-
nal knowledge which consists of published literature
and clinical practice guidelines. Let us refer to all ex-
ternal knowledge as the term reference for the rest of
the paper from here on. The idea is to match patients
to relevant reference given patient characteristics. For
each patient (represented by each features) and each
reference, we define the amount of information that
reference provides about that patient; we then aggre-
gate this information across all references. From this
information, we compute the posterior probability that
the treatment used in a given reference is the best
treatment for that patient. This defines the transfer
rewards, which we take as the reward for that treat-
ment when applied to that patient

To compute the transfer rewards, we first find relevant
patient features for each reference; we do this using a
modified feature selection algorithm based on the mu-
tual information (Peng, Long, and Ding, 2005). The
definition of the mutual information between the ith

reference (Ei) and the kth feature (fk) is:

I(fk;Ei) =
∑
x∈χk

P (x|Ei) log P (x|Ei)
P (x)

where P (x|Ei) is the probability of feature x in refer-
ence i, P (x) is the probability of feature x across the
entire set of references, and χk is context space of fk.

The second step is to compute the transfer rewards as
a posterior probability. Given the nth patient, charac-
terized by the feature vector xn = {x1(n), ..., xD(n)},
we compute the posterior probability that the treat-
ment in reference i would be successful when applied
to a patient with these features; we abuse notation by
writing this as, P (Ei|X1 = x1(n), ..., XD = xD(n)).
We compute this posterior probability via Bayes rule;
it is computationally convenient to take logarithms:

log (P (Ei|X1 = x1(n), ..., XD = xD(n))

= log (P (X1=x1(n),...,XD=xD(n)|Ei)
P (X1=x1(n),...,XD=xD(n)) · P (Ei))

∼= logP (Ei) +
∑
l∈Rel log P (Xl=xl(n)|Ei)

P (Xl=xl(n))

where with similar abuse of notation we write P (Ei)
as the probability of selecting the ith reference as the
best treatment for the entire population.

We computed all the transfer rewards for each ref-
erence/treatment. These transfer rewards provide a
complete ranking of each treatment for each patient
(characterized by the relevance features). The treat-
ment with the highest transfer reward is the best treat-
ment for the given patient.

6 EXPERIMENTS

6.1 Dataset

We perform experiments on a de-identified data set of
50,000 patient cases which underwent screening and
diagnostic testing at a large academic medical center.
The patient data is characterized by 15 features sum-
marized in Table 1.

Table 1: Summary of patient information type

Features Range
Age 30s - 60+

Menopausal Pos/Neg

Race White/Black/Other

Estrogen Receptor Pos/Neg

Progesteron Receptor Pos/Neg
HER2NEU Pos/Neg/Neu

Tumor Stage T1 - T4

Tumor Grade G1 - G3

PLNC 0 - 10+

Lymph Node Status Pos/Neg

WHO Score 0 - 5

Surgery Type BCT/MRM/No

Prior Radiotherapy Experience / No

Prior Chemotherapy Experience/No

Histology Ductal/Mix/Lobular

From an initial set of 2,353 references (performing
a narrow search of therapies using PubMed Clini-
cal Queries), six chemotherapies listed in Table 2,
the standard chemotherapy regimen for breast cancer
(Fleeger et al. 2015, Hamel and Johnson, 2015, and
Levine, 2001), described in 32 references were selected
for further analysis. The sample size of reported refer-
ences ranged from 50 to 3,934 with a total population
of 27,118 individuals.
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We utilize a training set of 4,000 patients. The re-
maining patients provide the test set. Standard 10-fold
stratified cross-validation was applied, and therefore,
no training data were used during testing of the model,
but 10 different models were used to derive the final
test results.

Table 2: Code for each chemotherapy regimen

Code Specific Chemotherapy Regimen
AC Doxorubicin + Cyclophosphamide

ACT Doxorubicin + Cyclophosphamide +

Taxanes

AT Doxorubicin + Taxanes

CAF Cyclophosphamide + Doxorubicin +

5-Fluorouracil

CEF Cyclophosphamide + Epirubicin +

5-Fluorouracil

CMF Cyclophosphamide + Methotrexate +

5-Fluorouracil

6.2 Benchmarks

We compare the performance of DE-IF with six ex-
isting popular machine learning algorithms described
below:

• Correlation Feature Selection (CFS): a well-
known feature selection algorithm (Hall, 1998);

• All Contextual Learning (ACL): a well-known
contextual learning algorithm which uses all fea-
tures. This is a modified offline version of the
contextual bandit algorithm of Slivkins. (2014);

• Logistic Regression;

• Linear Regression;

• Support Vector Machines (SVM); we use a radial
basis function (RBF) kernel SVM;

• Adaptive Boosting (AdaBoost);

6.3 Measuring Success

Given a patient, our algorithm or any of these other
algorithms recommend a course of treatment corre-
sponding to a particular reference. If a patient has
exactly the same feature information as the patient
in that reference, we regard the algorithm in question
as making the correct recommendation for that pa-
tient; i.e. it has recommended the best course of treat-
ment. (Notice that the best course of treatment may
not promise a good outcome: some cancers are not
treatable.) We take the fraction/percentage of correct

recommendations to be the success rate for the algo-
rithm in question.

Given the success rate for the algorithm, we apply
two performance metrics: simple percent agreement
(p0) and Cohens kappa coefficient (κ). Simple percent
agreement (po) is the success rate (the fraction of times
the personalized treatment prediction coincides with
the recommendation provided in the medical literature
for the patients with the same characteristics). Cohens
kappa coefficient (κ) is a metric which measures inter-
rater agreement. It is usually considered a more robust
measure than a simple percent agreement, because κ
measures the improvement over chance agreements. If
pe is the probability of agreement by chance, then,
κ = po−pe

1−pe .

As the bar graphs in Figure 4 show, the first
chemotherapy recommendation of DE-IF is success-
ful (as defined above) 73.4% of the time and one of
the first two recommendations is successful 88.4% of
the time. This is 7.7% better than the next best ap-
proach (i.e., SVM) in terms of selecting the optimal
chemotherapy on its first choice, and 5.6% better in
terms of matching the optimal chemotherapy within
the first 2 choices. This is already a significant im-
provement. In terms of kappa statistics, the improve-
ment is even greater: our algorithm works 16.6% bet-
ter than SVM. This is because SVM indiscriminately
recommends the popular chemotherapies and is not ro-
bust when classifying the less popular chemotherapies.
Given robustness considerations, which are essential in
medical treatment recommendations, kappa statistics
is more often used as a performance metric in medical
informatics.

It is especially useful to compare our algorithm with
other algorithms that rely on feature selection. Again,
note that other algorithms use feature selection, but
they do not select relevant features for specific treat-
ments and it is by doing this that our algorithm
achieves improvement. CFS achieves only a 48% of
simple percent agreement because it cannot use the
efficacy of the treatment to discriminate the relevant
features and hence the technique is entirely unsuper-
vised. ACL succumbs to the curse of dimensionality
because there are 15 features, resulting in over 500
million combinations to test. Logistic regression, lin-
ear regression, and SVM perform worse than DE-IF
because they do not consider the relevant patient in-
formation for selecting treatments.

DE-CF performs 9.4% worse than DE-IF in terms
of simple percent agreement. This is not surprising:
4,000 cases are simply not enough for DE-CF to es-
timate reward of feature tuples. The 95% confidence
intervals of DE-IF and DE-CF are 4.4% and 5.1% re-
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Figure 4: Performance analysis with benchmark algorithms (a) Kappa statistics, (b), (c) Simple percent agree-
ment (1st and 2nd)

spectively. Note also that all the other algorithms with
the exception of DE-IF and DE-CF cannot issue such
confidence estimates.

Because a large academic medical center may be able
to obtain a sufficient cohort to train treatment recom-
mendation algorithms such as the one presented, it is
often informative to know the amount of cases needed
to ensure that the near-optimal treatment is recom-
mended with a high probability. Our simulation re-
sults (Table 3) show that: DE-IF requires 4,000 cases
and DE-CF requires 40,000 cases to reach near-optimal
treatment recommendation. After 35,000 cases, DE-
CF works better than DE-IF because DE-CF has more
practical assumption for patients features and 35,000
cases are enough to discover relevance in this applica-
tion.

Table 3: Simple percent agreement analysis with var-
ious number of cases

Past Patients Number (×103)
% 2 4 10 30 40 45

DE-IF 67.4 73.4 73.0 73.3 73.3 73.4

DE-CF 57.9 64.0 69.4 72.7 74.5 74.9

AdaBo 54.3 55.4 56.3 57.9 56.9 57.1

6.4 Relevant Features for Each
Chemotherapy

Table 4 shows the top 4 ranked relevant features dis-
covered by DE-IF - tumor stage, positive axillary
lymph node number (PLNC), estrogen receptor etc.-
for recommending AC, ACT, AT, CAF, CEF and
CMF chemotherapy. As it can be seen from Table 4,
DE-IF is able to discover the different relevant features
that are relevant for different chemotherapy.

Importantly, the relevancy of the features discov-

Table 4: Discovered relevant features for each
chemotherapy

Chemo Relevant

Feature1

Relevant

Feature2

Relevant

Feature3

Relevant

Feature4

AC PLNC Tumor

Stage

Estrogen

Receptor

Age

ACT Tumor

Stage

Prior

Chemo

PLNC Estrogen

Receptor

AT Prior

Chemo

PLNC Surgery Age

CAF Surgery Tumor

Stage

Age Tumor

Grade

CEF PLNC Estrogen

Receptor

Tumor

Stage

Age

CMF Estrogen

Receptor

PLNC Radio

therapy

Tumor

Stage

ered by DE is confirmed by clinical studies. First,
note that the six considered chemotherapies are com-
monly recommended to node positive breast cancer
patients, i.e. patients where cancer has been found
in the lymph nodes (Hamel, and Johnson, 2015).
PLNC is the most relevant feature to differentiate
among node positive or node negative breast cancer.
Hence, PLNC is correctly identified by DE to be rel-
evant. Second, the menopause status is considered as
an important factor because medications affect can-
cer differently for premenopausal and postmenopausal
women (Mark, 2001). More specifically, the CEF
chemotherapy is only recommended to premenopausal
women. Although the menopausal status is not in-
cluded in this relevant feature set, women over the
age of 50 are usually considered as postmenopausal
(Mark, 2001). Therefore, age was correctly identi-
fied by DE to be a discriminative feature for select-
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ing among these chemotherapies. Third, tumor stage
is another important feature to discriminate among
chemotherapy treatments as confirmed in (Fleeger et
al. 2015). Chemicals A(Doxorubicin), T(Taxotere),
E(Epirubicin) are highly recommended to advanced
breast cancer and our top five chemotherapies include
more than one of these chemicals. Therefore, DE has
correctly discovered that the features that are relevant
for these chemotherapies contain tumor stage informa-
tion. Finally, chemical T(Taxotere) is usually recom-
mended to patients having breast cancer which do not
react to the current chemotherapy. Thus, the prior
chemotherapy information is indeed correctly discov-
ered by DE to be relevant for AT and ACT therapies.

6.5 Performance When Patient Information
is Missing

As mentioned before, information is often missing from
a patients EHR. Moreover, studies have shown that
the missing information is often not random (Botsis et
al. 2010). For example, the age of the patient is easy
to record and is often verified so it is typically nei-
ther missing nor incorrect. However, her2neu may not
be recorded depending on the diagnostic tests ordered
and capabilities of a clinic. Figure 3 shows the perfor-
mance degradation of DE and benchmark algorithms
as a function of the average degree of incompleteness
(Botsis et al. 2010). (We did not use the percent-
age of missing features as a metric as the features
are not randomly missing. Which features are miss-
ing features and the percentages of missing features
are described in the supplementary materials.) Fig-
ure 5 shows that the performance of DE-IF degrades
from 73.4% to 63.0% (when the average degree of in-
completeness is 50%. However, DE-IF continues to
outperform the other methods. DE discovers relevant
features with low missing probability, and is able to
estimate the missing feature information based on the
available feature information, so the impact of missing
information is minimized. In fact, DE does better than
most other algorithms even when DE misses significant
amounts of information from the EHR while the other
algorithms make their decision without missing infor-
mation. Hence DE is robust to missing information.

7 CONCLUSION AND FUTURE
WORK

We describe a novel approach that discovers the rele-
vant information from the EHR that is important in
determining which chemotherapy to assign to a patient
and use this information to provide personalized treat-
ment recommendations to the physician. Our results
demonstrate that DE is capable of outperforming ex-

Figure 5: Performance analysis with missing informa-
tion

isting machine learning and prediction techniques. We
also show that our method is robust against missing
information.

Future work will consider that various chemotherapy
treatments contain similar chemicals, and will extend
DE to incorporate the correlations of the treatments to
transfer the knowledge of one to another treatment. In
addition, variables such as the tumor size and PLNC
number may change over time. These changes may in-
fluence the duration of a therapy and the selection of
future therapies. Currently, we only consider a single
action, identifying what information is important in
deciding on a single treatment. Another DE extension
will consider the global sequence of treatment deci-
sions that optimize long-term outcomes (e.g., overall
survival).

In conclusion, we believe that our proposed contextual
learning approach demonstrates promise towards pro-
viding personalized treatment recommendations and
leveraging the external knowledge to provide reward
estimation. As new therapies are evaluated and ap-
proved for use, clinicians will have an increasingly dif-
ficult time determining which treatment is most ef-
fective for an individual patient. DE provides a step
towards providing computational methods for person-
alized treatment recommendation.
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