
Technical Details 
Predict Pursuit: 

We created Predict Pursuit to discover patient subgroups based upon different 
response to medication, and optimize the corresponding predictive model for each 
subgroup in order to predict the asthma controllability with specific medication. Predict 
Pursuit adopts a novel framework for crafting complex predictive models out of simpler 
baseline models by creating a phenotypic characterization of the clinical feature space in 
which separate predictive models are assigned to disjoint partitions of the feature space. 
That is, Predict Pursuit outputs a set of partitions that cover the entire feature space, 
together with a set of predictive models, each tailored to a given partition, thereby leading 
to an overall complex, granular predictive model only with simpler baseline models.  

To determine phenotypes, the general approach of Predict Pursuit is to iteratively 
perform the following two steps: 

1. From the entire patient population, the algorithm splits the patients into all 
possible combinations of two subgroups (pairs) based on features. Next, the subgroups 
are analyzed to determine whether the medication responses are statistically different 
between the two groups – we compute p-values for this using student t-test. Among all 
the possible paired subgroups, the algorithm selects the ones for which the difference 
between their p-values is highest (maximized). 

2. The maximization in step 1 above is performed under the constraints: the 
difference between two sub-patient groups regarding clinical outcomes must be 
statistically significance. The first constraint ensures that the discovered subgroups 



achieve statistically different (significant versus not-significant) response by the 
medication regarding clinical outcomes.  

Fig. 1 portrays the block diagram of Predictor Pursuit, which sequentially 
discovers patient subgroups until there is no further personalization feasible (based on the 
optimization performed in the method described above). The final leaves of the tree 
discovered by our personalization method represent will be patient subgroups. A 
hypothetical example is: The algorithm first splits into two subgroups of young and old 
patients because it determined these features (of all features) have the most significantly 
difference of treatment response to Medication A versus B. Among the old and young 
patients (the old patients responded best to Medication A), a second split is among the 
young patients into male and females (the female responded best to Medication B) and 
the young males are further split into smokers and non-smokers (and only to the young 
male non-smoker patients Medication A. This continues until no further significant 
differences between paired treatment responses are determined. 

 
Fig 1. Block diagram of Predict Pursuit (left: greedy algorithm, right: one step of the algorithm) 

 



In detail, Predictor Pursuit divides the clinical feature space  into  disjoint 
subsets, where  is to be determined based on the given dataset, in such a way that for 
each subset, we optimize a separate predictive model that minimizes the overall expected 
risk. We write { , … , } as a partition of the feature space , where all such partitions 
are ensured to be disjoint and cover the entire . Given the above construct, the learning 
problem becomes a problem of (jointly) finding the optimal partitioning { , … , } of 
the clinical feature space, together with the optimal predictive model ℎ ∈ ℋ associated 
with every partition . This optimal partitioning and corresponding optimal predictive 
model-constructing problem can be formalized as follow. 

min{ ,…, } min,…, ∈ℋ ∑ ℱ( ∈ ) × ℱ (ℎ ( ), )

subject to  = ⋃ , and ∩ = ∅ for ∀ ≠
 

However, the computational complexity of solving the above optimization 
problem is exponentially increasing. Furthermore, the objective cannot be computed with 
finite number of samples. Therefore, Predict Pursuit adopts an efficient greedy algorithm 
for approximating the solution to the optimal partitioning problem with alternative 
objective (the upper bound of the expected loss based on empirical loss). As a first step to 
construct such an algorithm, we reformulate the optimal partitioning problem by 
incorporating two more constraints. First, we restrict the partitions of the recipient-donor 
feature space to be hypercubes. A hypercubic partition of the feature space  is defined as 
{ , … , } where = ∏ , ,   ≤ ,  & ∈ ℝ. Second, we restrict the 
number of partitions to be ∈ ℤ to solve this problem sequentially. The original 
optimization problem with these additional constraints can be stated as follows. 



min{ ,…, }  ∑ min∈ℋ( )
1 ∑ ℎ ,( , ) + log

subject to  
= ∏ , ,   ≤ , , ∈ ℝ

 ≤ , where  ∈ ℤ
= ⋃ , and ∩ = ∅ for ∀ ≠  

 

Let Opt( ) be the optimal partition of the above optimization problem; we 
construct a greedy algorithm which iteratively solve the above optimization problem to 
achieve the approximate solution for the original optimization problem. More specifically, 
we solve the above optimization problem recursively on each  separately up to the 
point where we do not expect to improve the objective function (i.e. the optimal  is 1). 
The final partition is the union of the partitions that are generated by applying this 
procedure recursively to each . We write the final partition achieved by the greedy 
algorithm as { ̂ ∗, … , ̂ ∗} and the corresponding predictive models as ℎ∗ , … , ℎ∗ . 
 
State-Transition Model: 

To understand the short-term response for different treatments, we use Markov 
Chain framework (2-3) to construct the state transition model for asthma controllability. 
Markov Chain consists of three components: states ( ), Action ( ), and transition 
probability ( ( , )), and we need to define those components to construct the state-
transition model. 

First, the states of asthma ( ) are defined using the 2007 NAEPP Asthma 
Guideline(4) criteria (State 1: Well-Controlled, State 2: Not-Well-Controlled, and State 3: 
Very-Poorly-Controlled). Next, actions for the asthma management ( ) are either 



Budesonide (Bud) or Nedocromil (Ned). Finally, the transition probability ( ( , )) is 
defined as the probability that the future state will be  if current state is  and the 
current action is . Mathematically, it can be defined as 

( , ) = P( = | = , = ) 

Figure 2 illustrates the state-transition model that we defined. 
Budesonide (Action 1) Nedocromil (Action 2) 

 
Fig 2. State-transition models (left: for budesonide, right: for nedocromil) 

 
To complete the above state-transition models, we need to estimate the entire 

transition probabilities, ( , ) for all ∈ {1,2} and , ∈ {1,2,3}. We used Monte Carlo 
method to estimate the entire transition probabilities. Based on the mathematical 
definition of the transition probability, ( , ) = ( = | = , = ), the 
estimator is, 

( , ) = ( = | = , = ), = ( = , = , = )
( = , = )  
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for all ∈ , the entire time horizon. ( = , = ) is defined as the number of cases 
that the current state is  with the medication . ( = , = , = ) is also 
similarly defined. 
 
Feature Prediction:   

We analyzed phenotype groups according to assigned treatment to determine the 
most predictive features to determine controllability throughout time. The predictive 
power of the features can be evaluated by the prediction accuracy of the Adaptive 
Boosting algorithm (5). We used single feature among the entire features and compute 
the prediction accuracy (area under the curve) for each feature. Then, we sorted the 
features based on the value of the area under the curve (AUC). We defined the top five 
predictive features as the features whose AUC values are highest. This methodology can 
be easily extended to multiple feature analysis if we treat multiple features as a subset of 
features. 
 To understand the effect of the feature on the asthma controllability, we used 
density estimation and computed the mean and standard deviation of the feature for well-
controlled patients and not-well-controlled patients. For instance, if the average value of 
the well-controlled patients for this feature is higher than not-well-controlled patients, we 
can say that higher value of this feature implies that this patient has a higher chance to be 
well-controlled. 

  



References  1. Yoon J, Alaa AM, Cadeiras M, van der Schaar M. Personalized Donor-Recipient Matching for Organ Transplantation. arXiv preprint arXiv:161103934. 2016. 2. Asmussen S. Applied Probability and Queues. Springer Science & Business Media. 2003:7 3. Parzen E. Stochastic Processes. Courier Dover Publications. 2015:188 4. National Asthma E, Prevention P. Expert Panel Report 3 (EPR-3): Guidelines for the Diagnosis and Management of Asthma-Summary Report 2007. J Allergy Clin Immunol. 2007;120(5 Suppl):S94-138. 5. Freund Y, Robert ES. A decision-theoretic generalization of on-line learning and an application to boosting. European conference on computational learning theory. Springer Berlin Heidelberg. 1995  


